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Mechanism design

Mechanisms as Algorithms

Mechanism Design = Algorithms with payments

Given an objective, design a game with payments whose equilibrium
is the objective.

Here we consider dominant equilibria (i.e., a player has an optimal
strategy, no matter what the other players do).
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Typical Example: Single-item Auction

Problem

We want to sell an object to n players (buyers).

Each player has a value vi for the object, which is known only to
him/her .

Objective: Give the item to the player with the highest value.

Features

Incomplete information: only the players know their values

Money is used as an incentive. But: money is not part of the
objective.

Direct revelation: The players declare all their values at the beginning.

Elias Koutsoupias (di.UoA.gr) Mechanism Design for Scheduling Unrelated MachinesPaderborn 2008/04/29 4 / 50



Example: Single-item Auction (cont.)

The VCG mechanism

Each player declares a value v̂i , not necessarily equal to the true value
vi .

The mechanism allocates the object to the player with the highest
bid, maxi v̂i . This is the objective when the players are truthful.

The player pays only the second highest bid.

Proposition

The VCG mechanism is truthful.
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The Mechanism Design Framework

The general mechanism design (social choice) setting

There are n players and m outcomes. Let vij be the gain of player i
when the outcome of the game is j .

[

v11 v12 v13

v21 v22 v23

]

The domain D of the problem is a set of n ×m matrices.

The objective of the mechanism designer is to select the outcome
(i.e., column) which optimizes his/her objective.

The objective of each player is to maximize his/her gain.

Only the players know the values vij .
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The Mechanism Design Framework (cont.)

Problem (The single-item auction)

There are n players and m = n outcomes. The i-th outcome is for player i
to get the item.
The domain of the problem is all n× n matrices of the form





v1 0 0
0 v2 0
0 0 v3





Each row corresponds to a player, and each column to an outcome.
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Combinatorial Auction

Problem (Combinatorial auction)

There are n players (bidders) and m objects (items)

Each player i has a value ui ,S for each subset (bundle) S of the
objects. These are private values.

Objective: Allocate the objects to the players to maximize the sum of
the values of their bundles.

Example (3 players, 2 items)




u1,12 u1,1 u1,1 u1,2 u1,2 0 0 0 0
0 u2,2 0 u2,1 0 u2,12 u2,1 u2,2 0
0 0 u3,2 0 u3,1 0 u3,2 u3,1 u3,12




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Scheduling unrelated machines

Problem (Scheduling)

There are n players (machines) and m objects (tasks)

Each player i has a (private) value tij for each task j

Objective: Allocate the tasks to the players to minimize the maximum
value among the players (i.e., the makespan)

Example (2 players, 2 tasks)
[

t11 + t12 t11 t12 0
0 t22 t21 t21 + t22

]
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Direct Revelation Mechanisms

The protocol of the mechanism

Declare Each player i declares his/her values v̂ij .

Allocate An allocation algorithm A computes the outcome j∗ = A(v̂).

Pay A payment algorithm p computes for each player i a
payment pi(v̂ , j∗).

The objectives

Player Player i gains vij∗ − pi(v̂ , j∗).

Social The objective of the mechanism is to select the outcome j∗

which optimizes some global objective f (v). (For example to
select the column with maximum total value).
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Truthful mechanisms

Definition (Truthful mechanisms)

A mechanism is truthful when revealing the true values (v̂ij = vij) is a
dominant strategy of every player.

Theorem (The revelation principle)

For every mechanism there is an equivalent truthful mechanism (with the
same payments and outcome) .

Why?

Given a non-truthful mechanism, we can design a new truthful mechanism
which first simulates the lying strategies of the players and then applies the
original mechanism. The players would tell the truth to this mechanism.
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The revelation principle

A, p

v̂1 = L(v1)

v̂n = L(vn)

v1

vn

A, p

v̂1 = L(v1)

v̂n = L(vn)

v1

vn
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Truthful mechanisms for single-item auction

First Price

The mechanism in which the highest bidder gets the item and pays
his declared price is not truthful.

Counterexample: v1 = 2, v2 = 1. Player 1 gains by bidding v̂1 = 1+ ε.

Second Price

The mechanism in which the highest bidder gets the item and pays
the second highest price is truthful.

Central question

Which mechanisms are truthful?
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Which mechanisms are truthful?

Focus on allocations

The objective (social choice) does not involve the payments.

Which allocation algorithms admit a payment policy that makes the
mechanism truthful?

Example (Single-item auction)

The algorithm which allocates the object to the highest value is
truthful. (The second price payment policy makes it truthful).

The algorithm which allocates the object to the second highest

value is not truthful. (There is no payment policy to make it
truthful). Why?
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The VCG and the affine maximizer

Definition (VCG)

The Vickrey-Clarke-Groves (VCG) mechanism selects the outcome which
maximizes the sum of the values of the players.

Definition (Affine maximizer)

In an affine maximizer (or generalized VCG) there are constants λi (one
for each player) and γj (one for each outcome) and the mechanism selects
the outcome j which maximizes

∑

i λivij + γj .

Example (Affine maximizer for 2 players, 3 outcomes)

v11 v12 v13 ← λ1

v21 v22 v23 ← λ2

↑ ↑ ↑
γ1 γ2 γ3
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The VCG Mechanism

Theorem

The generalized VCG mechanism is truthful.

The payment of each player i is equal to the (weighted) sum of the
remaining players plus an arbitrary value that depends on the values
of the other players:

λipi (v , j) = −
∑

i ′ 6=i

λi ′vi ′j + hi (v−i )

The objective (value + payment) of each player i becomes (almost)
identical to the global objective!

We can think of it, as giving a discount to a player equal to the
increase of the global objective because of his/her participation (by
carefully selecting the function h).
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The VCG Mechanism for the combinatorial
auction

Is VCG good?

For the combinatorial auction problem, where the global objective is
to maximize the total value, the VCG achieves the global objective.

There is however a problem: Computing the optimal solution may be
computationally hard.

If the input is the whole n× kn array, then the problem is
computationally trivial (linear-time).
If the input is given implicitly, then the problem can be NP-hard.
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The VCG Mechanism for the scheduling
problem

VCG does not match the social optimum

The VCG mechanism is not appropriate for the scheduling problem. It
maximizes the sum, while the objective is the makespan!

Comparison of combinatorial auctions and scheduling

The domain of scheduling is a restriction of the domain of
combinatorial auction in which the valuations of bundles are additive.

Auction is a maximization problem, scheduling is a minimization
problem. (Not a significant difference.)

They differ in the objective. One aims at the sum the other at the
max. In this respect, scheduling is more difficult.
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Characterization of truthful mechanisms

Problem

Given a domain—a mechanism design problem—characterize the truthful
mechanisms.

Let xj = xj(v) be a 0-1 value that indicates the selected outcome.

xj =

{

1 if the allocation algorithm selects outcome j

0 otherwise

Definition (Monotonicity)

An allocation algorithm is called monotone if for every two inputs v and v ′

that differ only on the i -th player, the allocations x and x ′ satisfy

∑

j

(xj − x ′
j )(vij − v ′

ij) ≥ 0

This is sometimes called weak monotonicity in the literature.
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Characterization of truthful mechanisms

Theorem (Saks-Yu, 2005)

Monotonicity is necessary and sufficient condition for truthfulness for
convex domains.

The proof of necessity is easy. The proof for sufficiency is deeper.

The characterization applies to almost all interesting problems with
continuous domains.

It does not apply to discrete domains. For example, when there are
two possible values for each item, low and high.

This characterization is complete but not necessarily useful.
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Roberts’ Theorem

Theorem (Roberts, 1979)

For the unrestricted domain with at least 3 outcomes, the only truthful
mechanisms are the generalized VCG mechanisms.

Desired characterization

This characterization is much more useful than the monotonicity
property.

Can we get similar characterizations for the problems of combinatorial
auctions and scheduling?
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Open Problems

Open problems

Characterize the truthful mechanisms for the combinatorial auction
problem.
Ron Lavi, Ahuva Mualem, and Noam Nisan [2003] gave an almost
complete answer: The generalized VCG is essentially the only truthful
mechanism, under some mild (?) assumptions.

Characterize the truthful mechanisms for the scheduling problem.
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Algorithms for auctions and scheduling

Open problems for combinatorial auctions

Design a mechanism that achieves allocations with good
approximation ratio and has low computational and communication
complexity

Characterize the allocation algorithms of the truthful mechanisms.

Open problems for scheduling

Design a mechanism with good approximation ratio.

Characterize the allocation algorithms of the truthful mechanisms.

In both problems we seek good approximations algorithms.

In the combinatorial auction problem, the issue is only computational.
After all, we have a perfect (exponential-time) algorithm, the VCG.

In the scheduling problem, the issue is truthfulness. The VCG does
not apply.
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Scheduling unrelated machines

Definition

There are n players (machines) and m objects (tasks)

Each player i has a (private) value tij for each task j

Objective: Allocate the tasks to the players to minimize the maximum
value among the players (i.e., the makespan)
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The setting

Input

t =









t11 t12 · · · t1m
t21 t22 · · · t2m
· · ·
tn1 tn2 · · · tnm









→

Output

x =









x11 x12 · · · x1m

x21 x22 · · · x2m

· · ·
xn1 xn2 · · · xnm









Input – Output

n players/machines (rows).

m tasks (columns).

The input consists of nonnegative values tij .

The output is an allocation:

xij =

{

1 when task j is allocated to machine i

0 otherwise
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Simple algorithms

VCG and its generalizations

Affine Minimizers Threshold

Weighted VCG Task Independent

VCG

VCG: Allocate each task to the machine of minimum value

Weighted VCG: VCG but first speedup some machines

Affine Minimizer: Weigthed VCG with additional constants for each
allocation

Task Independent: Allocate every task independently of the others

Threshold: Allocate a task j to machine i independently of the other
values of machine i

Elias Koutsoupias (di.UoA.gr) Mechanism Design for Scheduling Unrelated MachinesPaderborn 2008/04/29 26 / 50



Truthful ≡ Monotone

Definition (Monotonicity Property)

An allocation algorithm is called monotone if it satisfies the following
property: for every two sets of tasks t and t ′ which differ only on machine
i (i.e., on the i -the row) the associated allocations x and x ′ satisfy

(xi − x ′
i ) · (ti − t ′i ) ≤ 0,

where · denotes the dot product of the vectors, that is,
∑m

j=1(xij − x ′
ij)(tij − t ′ij) ≤ 0.

Theorem (Nisan, Ronen 1998, Saks, Lan Yu 2005)

Truthful ≡ Monotone
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The Monotonicity Property

First Input












t11 t12 · · · t1m

· · ·
ti1 ti2 · · · tim
· · ·
tn1 tn2 · · · tnm













⇒













x11 x12 · · · x1m

· · ·
xi1 xi2 · · · xim

· · ·
xn1 xn2 · · · xnm













Second Input












t11 t12 · · · t1m

· · ·
t ′i1 t ′i2 · · · t ′im
· · ·
tn1 tn2 · · · tnm













⇒













x ′

11 x ′

12 · · · x ′

1m

· · ·
x ′

i1 x ′

i2 · · · x ′

im

· · ·
x ′

n1 x ′

n2 · · · x ′

nm













Monotonicity
m

∑

j=1

(xij − x ′

ij)(tij − t ′ij) ≤ 0
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A geometric approach to truthfulness

2 tasks

Fix all values except of t11 and t12. Consider how the space of t11 and
t12 is partitioned by a truthful mechanism.

Rab: the region for which the allocation of the first machine is
x11 = a and x12 = b.

The Monotonicity Property implies that a mechanism is truthful iff
the regions Rab and Ra′b′ are separated by a line of the form

(a − a′)t11 + (b − b′)t12 = const.
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A geometric approach to truthfulness

The geometry of truthful mechanisms

t11

t12

R11 R01

R10 R00

t11

t12

R11 R01

R10 R00

Figure: The two possible ways to partition the positive orthant.

Boundaries for the special cases

For affine maximizers, the boundaries depend linearly on the values of
the other players, and the diagonal part has constant length

For threshold mechanisms, the diagonal part does not exist but the
boundaries can be arbitrary (monotone) functions.
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History of the scheduling problem

Computational issues

It is a well-studied NP-hard problem

Lenstra, Shmoys, and Tardos showed that its approximation ratio is in
[1.5, 2].

Mechanisms for scheduling

Nisan and Ronen in 1998 initiated the study of its mechanism-design
version.

They gave an upper bound (VCG) with approximation ratio n.

They gave a lower bound of 2.

They conjectured that the right answer is the upper bound.

They also gave a randomized mechanism with approximation ratio
7/4 for 2 players.
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Recent results

Deterministic

The lower bound was improved to 2.41 (Christodoulou – K – Vidali)
and to 2.61 (K – Vidali).

For 2 machines the only truthful mechanisms with bounded
approximation ratio are task-independent (Dobzinski – Sundararajan).

For 2 machines, (with some mild asumptions) the only truthful
mechanims are either affine minimizers or task-independent
(Christodoulou – K – Vidali, submitted).
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Recent results

Randomized

The lower bound was improved to 2− 1/n (Mu’alem – Schapira).

The upper bound was improved to 7n/8 (Mu’alem – Shapira).

Fractional

The lower bound was improved to 2− 1/n (Christodoulou – K –
Kovács).

The upper bound for task-independent mechanisms was pinned to
(n + 1)/2 (Christodoulou – K – Kovács).

Discrete (high and low value)

Mechanism with approximation ratio 2 (Lavi – Swamy).
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The related machines problem

Results

Archer and Tardos considered the related machines problem

In this case, for each machine there is a single value (instead of a
vector), its speed.

They gave a variant of the (exponential-time) optimal algorithm
which is truthful

They also gave a polynomial-time randomized 3-approximation
mechanism, which was later improved by Archer to 2-approximation.

Andelman, Azar, and Sorani gave a 5-approximation deterministic
truthful mechanism.

Kovács improved it to 3-approximation and later to 2.8.
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How to use the Monotonicity Property

We manipulate the values of one player in a particular way which
guarantees that his allocation remains the same.

Example (Change the values, keep the allocation)

t =





1 2 2

2 3 1
1 2 2




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How to use the Monotonicity Property

We manipulate the values of one player in a particular way which
guarantees that his allocation remains the same.

Example (Change the values, keep the allocation)

t =





1 2 2

2 3 1
1 2 2



 → t ′ =





1− ε1 2 + ε2 2− ε3
2 3 1
1 2 2




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How to use the Monotonicity Property

We manipulate the values of one player in a particular way which
guarantees that his allocation remains the same.

Example (Change the values, keep the allocation)

t =





1 2 2

2 3 1
1 2 2



 → t ′ =





1− ε1 2 + ε2 2− ε3
2 3 1
1 2 2





Example (Increase a value, keep the allocation)

t =





0 · · ·
∞ · · ·
∞ · · ·




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How to use the Monotonicity Property

We manipulate the values of one player in a particular way which
guarantees that his allocation remains the same.

Example (Change the values, keep the allocation)

t =





1 2 2

2 3 1
1 2 2



 → t ′ =





1− ε1 2 + ε2 2− ε3
2 3 1
1 2 2





Example (Increase a value, keep the allocation)

t =





0 · · ·
∞ · · ·
∞ · · ·



 → t ′ =





1 · · ·
∞ · · ·
∞ · · ·




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Easy proof of lower bound 2

2 players, 3 tasks

Either the mechanism partitions the tasks to the two machines

(

1 1 1
1 1 1

)

or gives all tasks to the same machine

(

1 1 1
1 1 1

)
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Easy proof of lower bound 2

2 players, 3 tasks

Either the mechanism partitions the tasks to the two machines

(

1 1 1
1 1 1

)

→

(

0 1 1
1 1 1

)

or gives all tasks to the same machine

(

1 1 1
1 1 1

)

→

(

1 1 1
0 1 1

)
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The instances of the 2.61 lower bound









0 · · · ∞ a a2 · · · an−1

∞ · · · ∞ a2 a3 · · · an

· · ·
∞ · · · 0 an an+1 · · · a2n−1









Claim

If the first player does not get all the non-dummy tasks (the aj tasks),
then the approximation ratio is at least 1 + a.

Therefore the approximation ratio is

min{1 + a,
a + a2 + · · ·+ an−1

an−1
}.

For n→∞ and a = φ, the ratio is 2.618 . . ..
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The Proof of the Claim

We prove the claim by induction. For this we need to strengthen the
induction hypothesis. The claim holds for all instances of the form









0 · · · ∞ ai1 ai2 · · · aik

∞ · · · ∞ ai1+1 ai2+1 · · · aik+1

· · ·
∞ · · · 0 ai1+n−1 ai2+n · · · aik+n−1









k ∈ {1, . . . , n − 1} and i1 < i2 < · · · < ik .
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The Proof of the Claim (cont.)

Manipulating the values

Assume that the first player does not get all the non-dummy tasks.

We first manipulate the values so that

the first player gets no non-zero task and
every other player gets at most one non-zero task.
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The Proof of the Claim (cont.)

Example (No task for the first player)








0 · · · ∞ ai1 ai2 · · · aik

∞ · · · ∞ ai1+1 ai2+1 · · · aik+1

· · ·
∞ · · · 0 ai1+n−1 ai2+n−1 · · · aik+n−1









If the first player gets some non-zero task, reduce the value to 0. The first
player keeps the same tasks (by Monotonicity).









0 · · · ∞ ai1 ai2 · · · 0

∞ · · · ∞ ai1+1 ai2+1 · · · aik+1

· · ·
∞ · · · 0 ai1+n−1 ai2+n−1 · · · aik+n−1








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The Proof of the Claim (cont.)

Example (Zero or one task for other players)








0 · · · ∞ ai1 ai2 · · · aik

∞ · · · ∞ ai1+1 ai2+1 · · · aik+1

· · ·
∞ · · · 0 ai1+n−1 ai2+n−1 · · · aik+n−1









If some other player gets at least two non-zero tasks, reduce one value to
0. The player still gets at least one non-zero task.









0 · · · ∞ ai1 ai2 · · · aik

∞ · · · ∞ 0 ai2+1 · · · aik+1

· · ·
∞ · · · 0 ai1+n−1 ai2+n−1 · · · aik+n−1








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The Proof of the Claim (cont.)

The result

At the end of the process,

the first player has no non-zero tasks,

every other player has at most one non-zero task,

some other player has exactly one non-zero task.
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The Proof of the Claim (cont.)

Estimating

The optimum value is aik (the diagonal right-to-left).

We find a task with cost at least aik+1 and we raise its dummy
(diagonal) value to aik .

The heart of the proof is that there always exists such a task which
will not affect the optimum value.

The cost of the mechanism is at least aik + aik+1 while the optimum
is aik . The approximation ratio is at least 1 + a.

Example








0 ∞ ∞ · · · aik−3 aik−1 aik

∞ 0 ∞ · · · aik−2 aik aik+1

∞ ∞ 0 · · · aik−1 aik+1 aik+2

· · ·








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The Proof of the Claim (cont.)

Estimating

The optimum value is aik (the diagonal right-to-left).

We find a task with cost at least aik+1 and we raise its dummy
(diagonal) value to aik .

The heart of the proof is that there always exists such a task which
will not affect the optimum value.

The cost of the mechanism is at least aik + aik+1 while the optimum
is aik . The approximation ratio is at least 1 + a.

Example








0 ∞ ∞ · · · aik−3 aik−1 aik

∞ 0 ∞ · · · aik−2 aik aik+1

∞ ∞ aik · · · aik−1 aik+1 aik+2

· · ·









Elias Koutsoupias (di.UoA.gr) Mechanism Design for Scheduling Unrelated MachinesPaderborn 2008/04/29 43 / 50



The Fractional Version

Fractional allocations

With fractional allocations each task can be split across the machines.

The classical version of the problem is solvable in polynomial time (by
linear programming).

fractional approximation ratio ≤ randomized approximation ratio
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Fractional Version: Lower Bound

A bad input
















0 ∞ · · · ∞ · · · ∞ n − 1
∞ 0 · · · ∞ · · · ∞ n − 1
· · ·
∞ ∞ · · · 0 · · · ∞ n − 1
· · ·
∞ ∞ · · · ∞ · · · 0 n − 1

















Proving a lower bound of 2− 1/n

Find the player who gets the largest fraction of the last task and raise
its diagonal 0 value to 1.
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Fractional Version: Lower Bound

A bad input
















0 ∞ · · · ∞ · · · ∞ n − 1
∞ 0 · · · ∞ · · · ∞ n − 1
· · ·
∞ ∞ · · · 1 · · · ∞ n− 1

· · ·
∞ ∞ · · · ∞ · · · 0 n − 1

















Proving a lower bound of 2− 1/n

Find the player who gets the largest fraction of the last task and raise
its diagonal 0 value to 1.

When we change the values, the allocation remains almost the same.

The optimal cost for the new input is 1.

The cost of the changed player is at least 1 + n−1
n
− ε.

The approximation ratio is at least 2− 1
n
− ε.
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Fractional Version: Upper Bound

The SQUARE Algorithm

The mechanism SQUARE is a task independent algorithm which allocates
to every player i a fraction inversely proportional to t2

ij of task j .

Theorem

The mechanism SQUARE is truthful with approximation ratio n+1
2 .
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Fractional Version: Upper Bound (cont.)

Ingredients of the proof

The approximation ratio remains unaffected when we concentrate on
instances in which the optimum allocation is integral.

Let S1, . . . ,Sn be an optimal allocation.

We consider the execution time of SQUARE for machine i :

costi =
∑

j

xij tij =
∑

r

∑

j∈Sr

xij tij

We will show that

∑

j∈Sr

xij tij ≤ optr for r = i

∑

j∈Sr

xij tij ≤
1

2
optr for r 6= i
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Fractional Version: Upper Bound (cont.)

For r = i , we have
∑

j∈Sr
xij tij ≤

∑

j∈Sr
tij = optr .

For r 6= i , we have

∑

j∈Sr

xij tij =
∑

j∈Sr

1
t2
ij

∑

k
1
t2
kj

tij

≤
∑

j∈Sr

1
t2
ij

1
t2
rj

+ 1
t2
ij

tij

=
∑

j∈Sr

tij trj
t2
ij + t2

rj

trj

≤
∑

j∈Sr

1

2
trj

=
1

2
optr
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Monotone algorithms

Algorithms and Monotonicity

Monotonicity, which is not specific to the scheduling task problem but
it has much wider applicability, poses a new challenging framework for
designing algorithms.

In the traditional theory of algorithms, the algorithm designer could
concentrate on how to solve every instance of the problem by itself.

With monotone algorithms, this is no longer the case. The solutions
for one instance must be consistent with the solutions of the
remaining instances—they must satisfy the Monotonicity Property.

Monotone algorithms are holistic algorithms: they must consider the
whole space of inputs together.
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My favorite problems in mechanism design

Scheduling unrelated machines

Characterize the truthful mechanisms for scheduling unrelated
machines.

Close the gap between 2.41 and n for this problem.

Improve the bounds 2 and Θ(n) for randomized mechanisms.

Study the fractional allocation version for the makespan as well as the
max-min objective (fairness).

Other problems

Characterize the truthful mechanisms for more general settings such
as the combinatorial auction problem

Online mechanism design

Secretary problems
Competitive auctions
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