Online Competitive auctions

Elias Koutsoupias

Joint work with George Pierrakos

Elias Koutsoupias ()

- 3 The online question
- On stochastic input and randomized algorithms

- 4 B b - 4 B b

- We want to sell a digital good (with no replication cost)
- There are n bidders who have a private valuation for the good
- Objective: Design an auction to maximize the profit
- Offline All bidders are present
- Online Bidders appear online

• Adversarial:

The input is designed by a powerful adversary who knows the algorithm and tailors the set of bids to defeat it

• Stochastic:

There is a known or unknown probability distribution.

- Independent bids: Each bid is selected independently from the distribution
- Correlated bids: The probability distribution is for sets of bids and not for each bid separately
- Random-order (online)

The adversary selects the set of bids and they are presented in a random order, as in the **secretary problem**

An auction is **truthful** if and only if the price offered to a bidder is independent of his bid

- DOP (offline)
 - To every bidder offer the optimal single price for the remaining bidders
- RSOP (offline)
 - Partition the randomly bidders into two sets
 - Find the optimal single price for each set and offer it to the bidders of the other set
- BPSF (online)
 - To every bidder offer the optimal single price for the revealed bids (the online version of DOP)

How to evaluate an auctios?

- Let b₁>b₂>...>b_n be the bids
 Compare a mechanism against
- Sum of all bids: $\sum_i b_i$ (unrealistic)
- Optimal single-price profit: max; i*b; (problem: highest bid impossible to get)
- A reasonable benchmark: F⁽²⁾=max_{i>=2} i*b_i The optimal profit of
 - a single-price auction
 - which sells the good to at least 2 bidders
 - This is the benchmark we adopt
- We call an algorithm ρ -competitive if its profit is at least $F^{(2)}/\rho$

- Optimal competitive ratio for the adversarial offline case?
 - Symmetric deterministic: unbounded
 - Randomized: \in [2.42, 3.24]
 - RSOP is 4.64 competitive
 - Conjecture: RSOP is 4-competitive

(Goldberg-Hartline-Karlin-Wright-Saks, Hartline-McGrew)

Question for benchmark $F^{(2)}$

- Optimal competitive ratio for the stochastic case?
 - Again \in [2.42, 3.24]
 - Why the same? Because of Yao's lemma
 - Theorem: For bid-independent distributions the answer is 2.42
- Optimal online competitive ratio for the random-order case?
 - Theorem: There is a generic transformation of offline auctions to online auctions, with only a loss of a factor of 2 in the competitive ratio.
 - Competitive ratio \in [4, 6.48]
 - Conjecture: The BPSF auction is 4-competitive

(Previous work: Majiaghayi-Kleinberg-Parkes, in 2004 showed a very high competitive ratio)

$$b_{\pi_1}, ..., b_{\pi_{t-1}} \to b_{\pi_t}$$

- π is a random permutation
- What is the best price to offer to b_{π_t} ?
- We assume that the past bids are known
- A learning question?

$$b_{\pi_1},...,b_{\pi_{t-1}}\to b_{\pi_t}$$

- Min, Mean, Median: unbounded competitive ratio
- Max: competitive ratio approx. $k/(H_k 1)$, where $F(2) = kb_k$. No bad for small values of k (less than 4 for k<=5)
- SCS is a variant of RSOP with offline competitive 4. Its online version has competitive ratio less than 4 for k>=5

Transforming an offline mechanism to online

$$b_{\pi_1},...,b_{\pi_{t-1}}\to b_{\pi_t}$$

- Simply run the offline algorithm for the set of revealed bids and the current (unrevealed bid)
- Is it good? We compare we $F^{(2)}$ of all bids
- Theorem:

We loose a factor of 2 at most. In fact, only k/(k-1) where $F(2) = kb_k$.

- $\bullet~$ Let $\rho~$ be the offline competitive ratio
- Expected online profit at step $t = 1/t * 1/\rho$ * expected offline profit of the first t bids
- with probability $\binom{t}{m}\binom{n-t}{k-m}/\binom{n}{k}$ the first t bids have m of the highest k bids which contribute to the optimum.
- offline profit $>= m b_k$, when m >= 2
- Putting everything together

online profit >=
$$\sum_{t=2}^{n} \sum_{m=2}^{\min\{t,k\}} \frac{\binom{t}{m}\binom{n-t}{k-m}}{\binom{n}{k}} \frac{1}{t\rho} m b_k = (k-1)/\rho b_k$$

= $(k-1)/(k\rho)F^{(2)}$

How to prove lower bounds for randomized algorithms?

- Find a bad distribution of bids and show that no deterministic mechanism can fair well against it (Minmax / Yao's Lemma)
- What is the worst distribution?
- Theorem: For distributions which select the bids independently, the distribution with the highest competitive ratio has cumulative distribution P[x]=1-1/x
- Why?

How to prove lower bounds for randomized algorithms?

• Lemma:

Let D_1 , D_2 be two probability distributions with cumulative distributions F_1 , F_2 such that $F_1(x) \le F_2(x)$ for every x. Let also $G : \mathbb{R}^n \to \mathbb{R}$ be a function which is non-decreasing in all its variables. Then

$$E_{b\in D_1^n}[G(b)] \geq E_{b\in D_2^n}[G(b)]$$

 The important condition in the proof is that the values in b ∈ Rⁿ₊ are independent.

How to prove lower bounds for randomized algorithms?

- Let $G = F^{(2)}$, which is non-decreasing in every bid
- Fix a distribution F(x) of the bids
- ullet By scaling, assume that the online profit is 1
- Let

$$F_1(x) = egin{cases} 0 & x < 1 \ 1 - rac{1}{x} & x \ge 1 \ \end{array} \qquad F_2(x) = F(x)$$

• The lemma gives that F_1 is the worst distribution