Online Competitive auctions

Elias Koutsoupias

Joint work with George Pierrakos

Outline

(1) The model
(2) The state of the art
(3) The online question

4 On stochastic input and randomized algorithms

Digital goods auctions

- We want to sell a digital good (with no replication cost)
- There are n bidders who have a private valuation for the good
- Objective: Design an auction to maximize the profit
- Offline

All bidders are present

- Online Bidders appear online

How to model uncertainty?

- Adversarial:

The input is designed by a powerful adversary who knows the algorithm and tailors the set of bids to defeat it

- Stochastic:

There is a known or unknown probability distribution.

- Independent bids: Each bid is selected independently from the distribution
- Correlated bids: The probability distribution is for sets of bids and not for each bid separately
- Random-order (online)

The adversary selects the set of bids and they are presented in a random order, as in the secretary problem

Some truthful offline auctions

An auction is truthful if and only if the price offered to a bidder is independent of his bid

- DOP (offline)
- To every bidder offer the optimal single price for the remaining bidders
- RSOP (offline)
- Partition the randomly bidders into two sets
- Find the optimal single price for each set and offer it to the bidders of the other set
- BPSF (online)
- To every bidder offer the optimal single price for the revealed bids (the online version of DOP)

How to evaluate an auctios?

- Let $b_{1}>b_{2}>\ldots>b_{n}$ be the bids

Compare a mechanism against

- Sum of all bids: $\sum_{i} \mathrm{~b}_{i}$ (unrealistic)
- Optimal single-price profit: max $_{i} i^{*} \mathrm{~b}_{i}$ (problem: highest bid impossible to get)
- A reasonable benchmark: $\mathrm{F}^{(2)}=\max _{\mathrm{i}>=2} i^{*} \mathrm{~b}_{i}$ The optimal profit of
- a single-price auction
- which sells the good to at least 2 bidders

This is the benchmark we adopt

- We call an algorithm ρ-competitive if its profit is at least $F^{(2)} / \rho$

Questions for benchmark $F^{(2)}$

- Optimal competitive ratio for the adversarial offline case?
- Symmetric deterministic: unbounded
- Randomized: $\in[2.42,3.24]$
- RSOP is 4.64 competitive
- Conjecture: RSOP is 4-competitive
(Goldberg-Hartline-Karlin-Wright-Saks, Hartline-McGrew)

Question for benchmark F(2)

- Optimal competitive ratio for the stochastic case?
- Again $\in[2.42,3.24]$
- Why the same? Because of Yao's lemma
- Theorem: For bid-independent distributions the answer is 2.42
- Optimal online competitive ratio for the random-order case?
- Theorem: There is a generic transformation of offline auctions to online auctions, with only a loss of a factor of 2 in the competitive ratio.
- Competitive ratio $\in[4,6.48]$
- Conjecture: The BPSF auction is 4-competitive
(Previous work: Majiaghayi-Kleinberg-Parkes, in 2004 showed a very high competitive ratio)

The online question

$$
b_{\pi_{1}}, \ldots, b_{\pi_{t-1}} \rightarrow b_{\pi_{t}}
$$

- π is a random permutation
- What is the best price to offer to $b_{\pi_{t}}$?
- We assume that the past bids are known
- A learning question?

The online setting

$$
b_{\pi_{1}}, \ldots, b_{\pi_{t-1}} \rightarrow b_{\pi_{t}}
$$

- Min, Mean, Median: unbounded competitive ratio
- Max: competitive ratio approx. $k /\left(H_{k}-1\right)$, where $\left.F^{(} 2\right)=k b_{k}$. No bad for small values of k (less than 4 for $k<=5$)
- SCS is a variant of RSOP with offline competitive 4. Its online version has competitive ratio less than 4 for $k>=5$

Transforming an offline mechanism to online

$$
b_{\pi_{1}}, \ldots, b_{\pi_{t-1}} \rightarrow b_{\pi_{t}}
$$

- Simply run the offline algorithm for the set of revealed bids and the current (unrevealed bid)
- Is it good? We compare we $\mathrm{F}^{(2)}$ of all bids
- Theorem:

We loose a factor of 2 at most. In fact, only $k /(k-1)$ where $F^{(2)}=k b_{k}$.

Proof

- Let ρ be the offline competitive ratio
- Expected online profit at step $t=1 / t * 1 / \rho *$ expected offline profit of the first t bids
- with probability $\binom{t}{m}\binom{n-t}{k-m} /\binom{n}{k}$ the first t bids have m of the highest k bids which contribute to the optimum.
- offline profit $>=\mathrm{m}_{k}$, when $\mathbf{m}>=2$
- Putting everything together
online profit $>=\sum_{t=2}^{n} \sum_{m=2}^{\min \{t, k\}} \frac{\binom{t}{m}\binom{n-t}{k-m}}{\binom{n}{k}} \frac{1}{t \rho} m b_{k}=(k-1) / \rho b_{k}$
$=(k-1) /(k \rho) F^{(2)}$

How to prove lower bounds for randomized algorithms?

- Find a bad distribution of bids and show that no deterministic mechanism can fair well against it (Minmax / Yao's Lemma)
- What is the worst distribution?
- Theorem: For distributions which select the bids independently, the distribution with the highest competitive ratio has cumulative distribution $\mathrm{P}[\mathrm{x}]=1-1 / \mathrm{x}$
- Why?

How to prove lower bounds for randomized algorithms?

- Lemma:

Let D_{1}, D_{2} be two probability distributions with cumulative distributions F_{1}, F_{2} such that $F_{1}(x) \leq F_{2}(x)$ for every x. Let also $G: R^{n} \rightarrow R$ be a function which is non-decreasing in all its variables. Then

$$
E_{b \in D_{1}^{n}}[G(b)] \geq E_{b \in D_{2}^{n}}[G(b)]
$$

- The important condition in the proof is that the values in $b \in \mathrm{R}_{+}^{n}$ are independent.

How to prove lower bounds for randomized algorithms?

- Let $G=F^{(2)}$, which is non-decreasing in every bid
- Fix a distribution $F(x)$ of the bids
- By scaling, assume that the online profit is 1
- Let

$$
F_{1}(x)=\left\{\begin{array}{ll}
0 & x<1 \\
1-\frac{1}{x} & x \geq 1
\end{array} \quad F_{2}(x)=F(x)\right.
$$

- The lemma gives that F_{1} is the worst distribution

