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Digital goods auctions

Digital good auction

We want to sell a digital good (with no replication cost)

n bidders who have a private valuation for the good

Objective: Maximize the pro�t

Types of auctions

O�ine All bidders are present
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How to model uncertainty?

Models

Adversarial The input is designed by a powerful adversary who
knows the algorithm and tailors the set of bids to
defeat it

Stochastic There is a known or unknown probability distribution.

Independent bids: Each bid is selected
independently from the others
Correlated bids: The probability distribution is
for all bids and not for each one separately

Random-order (online) The adversary selects the set of bids and
they are presented in a random order, as in the
secretary problem
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Some truthful o�ine auctions

Truthfulness

An auction is truthful if and only if the price o�ered to a bidder is
independent of his bid

Some auctions

DOP (o�ine) To every bidder o�er the optimal single price of the
other bidders



Some truthful o�ine auctions

Some auctions

RSOP (o�ine)

Partition the bidders randomly into two sets
Find the optimal single price for each set and
o�er it to the bidders of the other set

SCS (o�ine) Similar to RSOP but try to extract the pro�t of each
set instead of o�ering its optimal price

BPSF (online) To every bidder o�er the optimal single price for the
revealed bids (the online version of DOP)



How to evaluate an auction?

Notation: Let b1 > b2 > · · · > bn be the bids

Compare a mechanism against ?

Sum of all bids:
∑

i bi (unrealistic)

Optimal single-price pro�t: maxi i · bi (problem: highest bid
impossible to get)

A reasonable benchmark:

F (2) = max
i>=2

i · bi

The optimal pro�t of

a single-price auction

which sells the good to at least 2 bidders

This is the benchmark we adopt

We call an algorithm ρ-competitive if its pro�t is at least
F (2)/ρ
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Questions for competitive auctions

Optimal competitive ratio for the adversarial o�ine case?

Symmetric deterministic: unbounded

Randomized: ∈ [2.42, 3.24]

RSOP is 4.64-competitive

Conjecture: RSOP is 4-competitive

(Goldberg-Hartline-Karlin-Saks-Wright, Hartline-McGrew)

Optimal competitive ratio for the stochastic case?

Again ∈ [2.42, 3.24]

Why the same? Because of Yao's lemma

Theorem: For bid-independent distributions the answer is 2.42
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Question for competitive auctions

Optimal online competitive ratio for the random-order case?

Theorem: There is a generic transformation of o�ine auctions
to online auctions, with only a loss of a factor of 2 in the
competitive ratio.

Competitive ratio ∈ [4, 6.48]

Conjecture: The BPSF auction is 4-competitive

Previous work: Majiaghayi-Kleinberg-Parkes, in 2004 showed a very
high competitive ratio
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Stochastic case: worst-case distribution

Suppose that the bids are drawn from a known probability
distribution

We can then design the auction with the best competitive ratio

How high can it be?

For which distribution?

Yao's lemma / minmax property

The competitive ratio of the worst-case distribution provides a
(usually tight) lower bound for randomized algorithms in the
worst-case input.
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Independent vs correlated distributions

correlated i.i.d.

We will only consider i.i.d.'s or simply i.d's



The equal-reveneue distribution

The equal-revenue distributions

The equal-revenue cumulative distributions are of the form

Fc(x) =

{
0 x < c

1− c
x

x ≥ c

It has pro�t x(1− Fc(x)) = c independent of the price o�ered

x

F
c
(x
)
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The worst-case independent distribution

Theorem

Among the independent distributions, the equal-revenue

distributions have maximum competitive ratio.

Proof.

Let F be a cumulative distribution with competitive ratio ρ

The optimal pricing mechanism selects price p which
maximizes p(1− F (p))

Let c be its pro�t

Then for every x : x(1− F (x)) ≤ c , or equivalently,
F (x) ≥ 1− c/x .

Thus, F (x) dominates the equal-revenue distribution Fc(x).
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A crucial lemma

Lemma

Let F1, F2 be two cumulative distributions with F1(x) ≤ F2(x) for
every x. Let also G : Rn → R be a function which is

non-decreasing in all its variables. Then

Eb∈Fn
1
[G (b)] ≥ Eb∈Fn

2
[G (b)]

x0

0.5

1y

F1(x)

F2(x)



Proof (cont.)

The proof of the lemma

For a single variable the proof depends on the following
property of integrals∫ ∞

0

F ′(x)G (x) dx =

∫ ∞
0

(1− F (x))G ′(x) dx + G (0)

For many variables, we can apply this inductively

The independence of variables is crucial for the induction

The benchmark F (2)(b) is non-decreasing in each bid

Therefore the equal-revenue distributions have maximum
competitive ratio
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The competitive ratio of independent distributions

[GHKSW06] has shown that if b1, . . . , bn are drawn from the
equal-revenue distribution F1, the expected value of F (2) is

n ·

(
1−

n∑
i=2

(
−1
n

)i−1
· i

i − 1
·
(
n − 1

i − 1

))

The competitive ratio ranges from 2 (when n = 2) to 2.42
(when n→∞)

Conjecture

The optimal o�ine competitive ratio is 2.42
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The online problem

Assumptions

Unknown bids b1 > b2 > · · · > bn

They arrive in order bπ1 , ..., bπn , where π is a random
permutation

For each bid we o�er a take-it-or-leave price

We assume that we learn the actual bid

The bidders cannot control their arrival time

Question

What is the best price p(bπ1 , . . . , bπt−1) to o�er to bπt?
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Natural (?) pricing algorithms

Pricing algorithms

MIN, MEAN, MEDIAN: unbounded competitive ratio

Why? Consider bids 1, 1, 0, 0, . . . , 0

Theorem

The algorithm (MAX) which o�ers the maximum revealed bid has

competitive ratio k/(Hk − 1), where F (2) = kbk .

Proof.

The exact (!) pro�t of MAX is

1

2
b2 + · · ·+

1

n
bn

The ratio k/(Hk − 1) is not bad for small values of k (it is less than
4 for k ≤ 5).
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Transforming an o�ine mechanism to online

How to transform an o�ine algorithm to online

Simply run the o�ine algorithm for the set of revealed bids
and the current (unrevealed bid)

For example, the online version of DOP is the BPSF auction

Is it good? We compare with F (2) of all bids

Theorem

The competitive ratio of the online algorithm is at most

k/(k − 1) ≤ 2 times greater than the o�ine competitive ratio,

where F (2) = kbk .
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Proof

Let ρ be the o�ine competitive ratio

Let F (2)(b1, . . . , bn) = k · bk
Expected online pro�t at step t =
1

t
· expected o�ine pro�t of the �rst t bids

With probability
(
t
m

)(
n−t
k−m

)
/
(
n
k

)
the �rst t bids have m of the

high k bids

o�ine pro�t ≥ 1

ρ ·m · bk , when m ≥ 2

Putting everything together

online pro�t ≥
n∑

t=2

min{t,k}∑
m=2

(
t
m

)(
n−t
k−m

)(
n
k

) · 1
tρ
·mbk

=
k − 1

ρ
bk =

k − 1

k
· 1
ρ
· F (2)
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Consequences

Theorem

The online competitive ratio is between 4 and 6.48

Why?

The lower bound comes from speci�c cases: 2 distinct bids or
b = (2+ ε, 2− ε, 1)
For the upper bound, take the o�ine auction of
Hartline-McGrew with competitive ratio 3.24 and transform it
into an online auction

Conjecture

The online competitive ratio is 4. Stronger: BPSF has competitive

ratio 4.
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"Almost" 4-competitive

Let F (2) = k · bk
MAX has competitive ratio k

Hk−1 ≤ 4 for k ≤ 5

Online-SCS has competitive ratio k
k−1

(
1

2
−
(

k−1
bk−1c

)
· 2−k

)−1
,

which is less than 4 for k ≥ 5.

If we know k , we can achieve 4-competitiveness.
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Deterministic vs randomized

O�ine auctions

No o�ine symmetric deterministic auction has bounded
competitive ratio [GHKSW06]

Online auctions

Order seems to matter!

BPSF has bounded competitive ratio (open!)
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RSOP and BPSF

Let S = {bj1 > bj2 > · · · > bjr }, a subset of bids

De�ne y(S) = max{1 · bj1 , 2 · bj2 , . . . , r · bjr } the optimal single
price pro�t of S

De�ne z(S) the pro�t from o�ering the optimal single price of
S to the other side

z(S) = (ji − i)bji , where i = argmax y(S)

RSOP =
∑

S⊆{b2,...,bn}

z(S) · 2−(n−1)

BPSF =
∑

S⊆{b2,...,bn}

z(S) ·
(
n − 1

|S |

)−1
· n−1
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Conjectures

Conjecture

RSOP is 4-competitive. Equivalently, for every set of bids b:∑
S⊆{b2,...,bn}

z(S) · 2−(n−1) ≥ y(b2, b2, b3, . . . , bn)

Conjecture

BPSF is 4-competitive. Equivalently, for every set of bids b:

∑
S⊆{b2,...,bn}

z(S) ·
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A coupling argument

∑
S∈{b2,...,bn}

b2∈S

y(S) ≥

∑
S∈{b2,...,bn}

bi∈S

y(S) =

2n−i
i−2∑
j=0

(
i − 2

j

)
· (j + 1) · bi =

2n−3 · i · bi

Lemma ∑
S∈{b2,...,bn}

b2∈S

y(S) ≥ 2n−3 · F (2)



Relations between z and y

Conjecture ∑
S∈{b2,...,bn}

z(S) ≥
∑

S∈{b2,...,bn}
b2∈S

y(S)

This will show that RSOP is 4-competitive

Conjecture ∑
S∈{b3,...,bn}

z(S) ≥
∑

S∈{b3,...,bn}

y(S)

The second conjecture implies the �rst because

z(bj1 , . . . , bjr ) ≥ y(bj1 , . . . , bjr )− y(bj2 , . . . , bjr )
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S∈{b3,...,bn}

y(S)

The second conjecture implies the �rst because

z(bj1 , . . . , bjr ) ≥ y(bj1 , . . . , bjr )− y(bj2 , . . . , bjr )



Open problems

Open problems

Prove or disprove that the worst-case distribution is
bid-independent

Prove that BPSF is 4-competitive

Prove that RSOP is 4-competitive



Open problems

Open problems

Prove or disprove that the worst-case distribution is
bid-independent

Prove that BPSF is 4-competitive

Prove that RSOP is 4-competitive



Open problems

Open problems
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Open problems

Open problems

Prove or disprove that the worst-case distribution is
bid-independent

Prove that BPSF is 4-competitive

Prove that RSOP is 4-competitive



Thank you!
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