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SHAPES
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×2 Semialgebraic models: Bezier parameterisation, NURBS, offset, draft,
blending.

×2 Initial degree not high;

×2 Many algebraic patches;

×2 Coefficients known with incertainty: double type coefficients.

×2 Intensive use of algebraic tools;
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Shape sampling
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Subdvision solver

×2 Bernstein basis: f(x) =
∑d

i=0 bi B
i
d(x), where Bi

d(x) =
(
d
i

)
xi(1− x)d−i.

b = [bi]i=0,...,d are called the control coefficients.

• f(0) = b0, f(1) = bd,

• f ′(x) =
∑d−1

i=0 ∆(b)i B
i
d−1(x) where ∆(b)i = bi+1 − bi.

×2 Subdivision by de Casteljau algorithm:
b0
i = bi, i = 0, . . . , d,

br
i (t) = (1− t) br−1

i (t) + t br−1
i+1 (t), i = 0, . . . , d− r.

• The control coefficients b−(t) = (b0
0(t), b

1
0(t), . . . , b

d
0(t)) and b+(t) =

(bd
0(t), b

d−1
1 (t), . . . , b0

d(t)) describe f on [0, t] and [t, 1].

• For t = 1
2, br

i = 1
2(b

r−1
i + br−1

i+1 ).; use of adapted arithmetic.

• Number of arithmetic operations bounded by O(d2), memory space O(d).
Indeed, asymptotic complexity O(d log(d)).
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×2 Isolation of real roots
Proposition: (Descartes rule) #{f(x) = 0; x ∈ [0, 1]}=V (b)−2p, p ∈ N.

Algorithm: isolation of the roots of f on the interval [a, b]

input: A polynomial f := (b, [a, b]) with simple real roots and ε.
If V (b) > 1 and |b− a| > ε, subdivide;
If V (b) = 0, remove the interval.
If V (b) = 1, output interval containing one and only one root.
If |b− a| ≤ ε and V (b) > 0 output the interval and the multiplicity.

output: list of isolating intervals in [a, b] for the real roots of f or the
ε-multiple root.

• Multiple roots (and their multiplicity) computed within a precision ε.

• x := t/(1− t) : Uspensky method.

• Complexity: O(1
2d(d + 1) r

(
dlog2

(
1+
√

3
2s

)
e − log2(r) + 4

)
) [MVY02],

[MRR04]

• Natural extension to B-splines.
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Ingredients

Theorem: V (b−) + V (b+) ≤ V (b).

Theorem: (Vincent) If there is no complex root in the complex disc
D(1

2,
1
2) then

V (b) = 0.

Theorem: (Two circles) If there is no complex root in the union of the
complex discs D(1

2 ± i 1
2
√

3
, 1√

3
) except a simple real root, then

V (b) = 1.
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Shape reconstruction
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Reconstruction of cylinders

• Cylinders throught 4 points: curve of degree 3.
• Cylinders throught 5 points: 6 = 3× 3− 3.
• Cylinders throught 4 points and fixed radius: 12 = 3× 4.

• Line tangent to 4 unit balls: 12.
• Cylinders throught 4 points and extremal radius: 18 =
3× 10− 3× 4.
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Resultant-based method

×2 Aim: Project the problem onto a smaller (equivalent) one.

⇒ Algebraically speaking, deduce equations in the projection space

×2 Means: resultant theory.

⇒ Analysis of the geometry of the solution (preprocessing).

⇒ Use an adequate resultant formulation (preprocessing).

⇒ Construct a solveur implementing this formulation (preprocessing).

⇒ Instantiate the parameters and solve numerically (at run-time).
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×2 Projective resultant: {κi,j(x)} = {xαj; |αj| = di}. X = Pn.

Sylvester-like matrix. Ratio of two Determinants. Determinant of the Koszul
complex. [Mac1902], [J91].

×2 Toric resultant: {κi,j(t)} = {tαj; αj ∈ Ai}, t ∈ (K − {0})n, X =
TA0⊕···⊕An.

Polytope geomtry. Sylvester-like matrix. Maximal minors. Ratio of two
Determinants [BKK75, GKZ91, PSCE93, DA01].

×2 Resultant over a parameterised variety: {κi,j(t)} associated with the

parametrisation of X = σ(U).
Bezoutian matrix. Maximal minors. A multiple of ResX()̧. [EM98, BEM00].

×2 Residual resultant: κi,j(x) ∈ (g1(x), . . . , gk(x)). X is the blow-up of Pn

along Z(g1, . . . , gk).
Explicit resolution of (F : G). Gcd of the maximal minors. Degree formula.

Ratio of determinants. [BKM75, BEM01, B01].
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Shape structuring
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Arrangement of surfaces

×2 Constructions
×2 Intersection points of curves, surfaces.
×2 Approximation of curves of intersection.
×2 Offsets, Median of curves, surfaces.

⇒ fast solveurs, control on the error, refinement procedures.

×2 Predicats
×2 Sorting points on a curve.
×2 Connectivity. Topological coherence.
×2 Geometric predicats on the constructed points, curves, . . .

⇒ fast tests (µs), filtering technics, polynomial formula/algebraic
numbers. Algebraic manipulations, resultants.
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Topology of implicit curves

Algorithm: Topology of an implicit curve

1. Compute the critical value for the projection along the y-abcisses.
2. Above each point, compute the y-value, with their multiplicity.
3. Between two critical points, compute the number of branches.
4. Connect the points between two slices according to their y-order.

⇒ Generic position: atmost one critical point per vertical.
⇒ Sturm-Habicht sequence to express y in terms of the x.
⇒ Descartes rule to separate the multiple point from the regular ones.
⇒ Specialisation for union of simple primitives (critical and intersection points).
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Topology of 3D curves

A curve C ⊂ R3 defined by P (x, y, z) = 0, Q(x, y, z) = 0.

Algorithm: Topology of a 3D implicit curve

1. Compute the x-critical points of C.
2. Compute the singular points of πx,y(C) and πx,z(C).
3. Lift these points onto C.
4. Inbetween two critical values, compute a regular section of C.
5. Connect the points between two slices according to their (y, z)-order.

⇒ Generic position:
∀α ∈ R, #{ (α, β, γ) x-critical } ≤ 1; no (x, y)-asymptotic direction.

⇒ Ingredients: resultants, univariate gcd, multivariate solver.
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Meshing singular implicit surfaces

Input: S = V (f(x, y, z) = 0) in a Box.

Output: A triangulation of S isotopic to S.

Algorithm: Triangulation of algebraic surfaces

1. Compute a Whitney stratification S for S.
2. Deduce the sections where the topology changes so that between two

sections, the surface is “topologically trivial”.
3. Compute the topology of the sections.
4. Compute the topology of the apparent countour.
5. Use it to connect the sections together.
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Ingredients

• Polar variety: VPz(S) = {x ∈ R3; f(x) = 0; ∂z(f)(x) = 0}.
• The squarefree part R(x, y) of Resultantz(f(x, y, z), ∂zf(x, y, z)).
• A Whitney stratification of S:
S0 = points of S which projects to a x-critical of V (R(x, y) = 0).
S1 = VPz(S)− S0.

S2 = S − S1.

• Thom’s lemma:

Theorem: Let Z be a Whitney stratified subset of R3 and f : Z → Rn

be a proper stratified submersion. Then there is a stratum preserving
homeomorphism

h : Z → Rn × (f−1(0) ∩ Z)
which is smooth on each stratum and commutes with the projection to
Rn.
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Algebraic numbers

×2 Representation:
×2 an arithmetic tree (

√
x + y + 2

√
x y −

√
x−√

y), and/or

×2 a (irreducible) polynomial p(x) = 0 and an isolating interval.

×2 Construction:
⇒ Isolation via Descartes, Uspenksy, de Casteljau, Sturm(-Habicht) algorithm.

×2 Predicates:

⇒ Comparison of two numbers by refinement until a separating bound:

α 6= 0 ⇒ |α| > B(Symbolic Expression of α).

⇒ Queries such as comparision, sign determination via Sturm(-Habicht) method.
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Sturm method

• Univariate polynomials A(x), B(x) of degree d1, d2

• Sturm sequence R0 := A,R1 := B, Ri+1 = −rem(Ri−1, Ri) . . . RN .

• VA,B(a) := number of sign variation of [R0(a), R1(a), . . . RN(a)].
Theorem: VA,A′B(a)−VA,A′B(b) is the number of real roots of A such that
B > 0 - the number of real roots of A such that B < 0 on the interval
]a, b[.

• Application to sign determination of polynomials at the root of A on an
isolating interval.

• Precomputation for fixed degree.

• Habicht variant based on sign of minors of the Sylvester matrix. Control of
the coefficient size.
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Algebraic solvers

We assume that Z(I) = {ζ1, . . . , ζd} ⇔ A = K[x]/I of finite dimension D over
K.

Ma : A → A
u 7→ a u

Mt
a : Â → Â

Λ 7→ a · Λ = Λ ◦MaTheorem:
×2 The eigenvalues of Ma are {a(ζ1), . . . , a(ζd)}.
×2 The eigenvectors of all (Mt

a)a∈A are (up to a scalar) 1ζi
: p 7→ p(ζi).

Theorem: In a basis of A, all the matrices Ma (a ∈ A) are of the form

Ma =

24 N1
a 0

. . .

0 Nd
a

35 with Ni
a =

24 a(ζi) ?
. . .

0 a(ζi)

35

Algorithm: Solving a zero-dimensionnal multivariate system.

1. Compute the table of multiplication by xi, i = 1, . . . , n.
2. Compute the eigenvectors of the tranposed matrices M t

xi
.

3. Deduce the coordinates of the roots from the eigenvectors.
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Normal form computation

Compute the projection of K[x] onto a vector space B, modulo the ideal
I = (f1, . . . , fm).

⇒ Grobner basis [CLO92, F99].

Compatibility with a monomial ordering but numerical instability.

⇒ Generalisation [M99, MT00, MT02].

No monomial ordering required. Linear algebra with column pivoting ; better
numerical behavior of the basis.

Linear algebra on sparse matrices. Generic Sparse LU decomposition.
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• Examples with kastura(n), modular arithmetic:
n mac random dlex
6 0.17s 0.28s 0.58s
7 0.95s 5.07s 4.66s
10 256.81s 7590.85s 635s
11 1412s ∞ 4591.43s

• Katsura(6), and floating point arithmetic :

choice function number of bits time max(||fi||∞)
dlex 128 1.48s 10−28

dinvlex 128 4.35s 10−24

mac 128 1s 10−30

dinvlex 80 3.98s 10−15

mac 80 0.95s 10−19

dlex 80 1.35s 10−20

dlex 64 −
dinvlex 64 −
mac 64 0.9s 10−11

Ph. Trebuchet 21



• Parallel robot, approximate coefficients.

choice function number of bits time max(||fi||∞)
dlex 250 11.16s 0.42 ∗ 10−63

mac 250 11.62s 0.46 ∗ 10−63

dinvlex 250 13.8s 0.135 ∗ 10−60

dlex 128 9.13s 0.3 ∗ 10−24

dinvlex 128 11.1s 0.3 ∗ 10−23

mac 128 9.80s 0.1 ∗ 10−24

dlex 80 - -
dinvlex 80 - -
mac 80 6.80s 10−12

• Parallel robot, rational coefficients.
mac minsz dlex mix

size 18M 30M 50M 45M

Ph. Trebuchet 22



A/ The robotic problem

×2 Equations: ‖R Yi + T −Xi‖2 − d2
i = 0, i = 1, . . . , 6,

R = 1
a2+b2+c2+d2

26664
a2 − b2 − c2 + d2 2 ab− 2 cd 2 ac + 2 bd

2 ab + 2 cd −a2 + b2 − c2 + d2 2 bc− 2 ad

2 ac− 2 bd 2 ad + 2 bc −a2 − b2 + c2 + d2

37775, T =

24 u/z
v/z
w/z

35

×2 Solutions: Generically 40 solutions: [RV92], [L93], [M93], [M94], [FL95], . . .
IP3×P3 = P1

2 ∩ Q8
2 ∩Q20

1 ∩ Q40
0 ∩Q

2×12
−1,1 ∩Q

10
1,−1 ∩Q−1| {z }

imbeddedcomponents

×2 Solvers: ideally fast and accurate; used intensively for several values of di

and same geometry of the plateform; avoid singularities.
Direct modelisation Quaternions Redundant

250 b. 3.21s 128 b. - 250 b. 8.46s 128 b. 6, 25s 250 b. 1.5s 128 b. 1.2s.

experimentation by Ph. trebuchet 23



Shape interrogation
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Multivariate Bernstein representation

×2 Rectangular patches: f(x, y) =
∑d1

i=0

∑d2
j=0 bj,iB

i
d1

(x)Bj
d2

(y) associated

with the box [0, 1]× [0, 1].
• Subdivision by row or by column, similar to the univariate case.

• Arithmetic complexity of a subdivision bounded by O(d3) (d =
max(d1, d2)), memory space O(d2).

×2 Triangular patches: f(x, y) =
∑

i+j+k=d bi,j,k
d!

i!j!k! x
i yj (1 − x − y)k

associated with the representation on the 2d simplex.
• Subdivision at a new point. Arithmetic complexity O(d3), memory space

O(d2).
• Combined with Delaunay triangulations.
• Extension to A-patches.

25



Multivariate subdivision solver


f1(u) =

∑
i1,...,in

b1
i1,...,in

Bd1,...,dn
i1,...,in

(u1, . . . , un),
...

fs(u) =
∑

i1,...,in
bs
i1,...,in

Bd1,...,dn
i1,...,in

(u1, . . . , un),

×2 Algorithm
1. preconditioning on the equations;
2. reduction of the domain;
3. if the reduction ratio is too small, subdivision of the domain.

Joint work with J.P. Pavone 26



Preconditioning (for square systems)

Transform f into f̃ = M f
a) Optimize the distance between the equations:

||f ||2 =
∑

0≤i1≤d1,...,0≤in≤dn

|b(f)i1,...,in|2,

by taking for M , the matrix of eigenvectors of Q = (〈fi|fj〉)1≤i,j≤s.

b) M = J−1
f (u0) for u0 ∈ D.

Joint work with J.P. Pavone 27



Reduction

mj(f ;xj) =
dj∑

ij=0

min
{0≤ik≤dk,k 6=j}

bi1,...,in B
ij
dj

(xj; aj, bj)

Mj(f ;xj) =
dj∑

ij=0

max
{0≤ik≤dk,k 6=j}

bi1,...,in B
ij
dj

(xj; aj, bj).

Proposition: [PS93] The intersection of the convex hull of the control
polygon with the axis contains the projection of the zeroes of f(u) = 0.
Proposition: For any u = (u1, . . . , un) ∈ D, and any j = 1, . . . , n, we have

mj(f ;uj) ≤ f(u) ≤ Mj(f ;uj).

Use the roots of mj(f, uj) = 0, Mj(f, uj) = 0 to
reduce the domain of search.

Joint work with J.P. Pavone 28



Theorem: (Multivariate Vincent theorem) If f(x) has no root in the
complex polydisc D(1/2, 1/2)n, then the coefficients of f in the Bernstein
basis of [0, 1]n are of the same sign.

• Quadratic convergence for the control polygon:
Theorem: There exists κ2(f) such that for D of size ε small enought,

∀x ∈ D; |f(x)− b(f ;x)| ≤ κ2(f) ε2.

• Quadratic convergence for the reduction: preconditioner (b).

Proposition: Let D a domain of size ε containning a simple root of f .
There exists κf > 0, such that for ε small enought

|M̃j(f̃ ;uj)− m̃j(f̃ ;uj)| ≤ κfε
2.

• Guarantee: adapt the arithmetic rounding mode during the reduction.

Joint work with J.P. Pavone 29



Experiments

sbd subdivision.
rd reduction, based on a univariate root-solver using the Descarte’s rule.

sbds subdivision using the preconditioner (a).
rds reduction using the global preconditioner (a).
rdl reduction using the jacobian preconditioner (b).

Joint work with J.P. Pavone 30



method iterations subdivisions output time (ms)
sbd 161447 161447 61678 1493
rd 731 383 36 18
sbds 137445 137445 53686 1888
rds 389 202 18 21
rdl 75 34 8 7

bidegrees (2,3), (3,4); 3 singular solutions.

method iterations subdivisions output time (ms)
sbd 235077 235077 98250 4349
rd 275988 166139 89990 8596
sbds 1524 1524 114 36
rds 590 367 20 29
rdl 307 94 14 18

bidegrees (3,4), (3,4); 3 singular solutions.

method iterations subdivisions resultat time (ms)
sbd 4826 4826 220 217
rd 2071 1437 128 114
sbds 3286 3286 152 180
rds 1113 748 88 117
rdl 389 116 78 44

bidegree (12,12), (12,12)

Joint work with J.P. Pavone 31



Tools

×2 Synaps:
• A library for symbolic and numeric computations.

• Data structures: vectors, matrices (dense, Toeplitz, Hankel, sparse,
. . . ), univariate polynomials, multivariate polynomials.

• Algorithm: different types of solvers, resultants. . .

• GPL+runtime exception, cvs@cvs-sop.inria.fr.
• http://www-sop.inria.fr/galaad/logiciels/synaps/

×2 Axel
• Algebraic Software-Components for gEometric modeLing;

• C++; gcc 3.*; configure; autoconf; cvs server; doxygen

• Data structures: points, point graph, parameterised and implicit curves and
surfaces, quadrics, bezier, bspline . . .

• Algorithms: intersection, topology, meshing . . .

• http://www-sophia.inria.fr/logiciels/axel/
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×2 Mathemagix
• Typed computer algebra interpreter.

• Hight level programming langage.

• Automatic tools for building external dynamic modules (play-plug-play).

• ftp://ftp.mathemagix.org/pub/mathemagix/targz/

×2 Texmacs
• High quality mathematical editor

• Import/export latex, html, xml

• Interface to computer algebra systems.
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