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Abstract: Four-wave mixing (FWM) is one the limiting factors for existing 
and future wavelength division multiplexed optical networks. A 
semianalytical method based on Monte Carlo and Extreme Value theory is 
proposed and applied to study the influence of the FWM noise on the 
performance of WDM systems. The statistical behavior of the FWM noise 
is investigated while the Bit-Error rate is calculated for various 
combinations of the design parameters and for both single and multiple 
span WDM systems. The semianalytical method is also compared to the 
Multicanonical Monte Carlo (MCMC) method showing the same efficiency 
and accuracy with the former providing however the advantage of deriving 
closed-form approximations for the cumulative distribution functions of the 
photocurrents in the mark and the space state and the BER. 
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1. Introduction 

It is widely accepted that multimedia applications and broadband services will play a 
significant role in the operation of future and already installed Wavelength Division 
Multiplexing (WDM) Optical Networks [1] due to the extremely huge volume of data that 
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should be transmitted. These phenomena will be further enhanced as optical fibers get closer 
to the customers’ premises, an architecture known as Fiber To The Home (FTTH) [2, 3]. The 
increased bit-rate of access networks will enable the extended use of capacity starving 
applications leading to the aggregation of high data volumes in transport and backbone 
networks. As a consequence, optical backbone networks must have the demanded 
characteristics (e.g. capacity) to support this vast data traffic in order to provide the quality of 
service required for these upgraded applications. Although, WDM optical networks 
concentrate several advantages such as low losses and high capacity, there are numerous 
linear and nonlinear effects degrading their performance and thus should be accurately 
evaluated. 

Nonlinear effects such as self- and cross-phase modulation as well as four-wave mixing 
(FWM) seem to be more severe than linear ones since they cannot be easily compensated for 
by optical amplifiers and chromatic dispersion compensators. Both cross-phase modulation 
and FWM cause interference between channels of different wavelengths, resulting in an upper 
power limit for each WDM channel. However, as the channel spacing and/or the chromatic 
dispersion of a WDM network decrease, FWM greatly influences its performance. Using 
split-step Fourier simulation, it was shown that FWM-induced distortion dominates over both 
SPM and XPM effects in a WDM link with low dispersion fibers [4]. Hence, a study of such 
systems is useful since low dispersion fibers (G.655 fibers) can provide many advantages 
(e.g., reduced need for dispersion compensation modules, etc.) and are used in numerous 
already installed links especially in transport and backbone networks. 

Several techniques have been used for the evaluation of the Bit Error Rate under the 
influence of FWM [4–7]. However, these techniques suffer from several drawbacks. The Split 
Step Fourier method [4] cannot be used for the evaluation of the BER and is limited to the 
estimation of the Q-factor under the assumption of Gaussian distributed noises. In [5], Monte 
Carlo simulations were performed, however the accuracy of the obtained results is low 
especially in the range of low BER values due to time constraints and the use of a 
symmetrical exponential approximation. The accuracy was slightly improved at [6] at the cost 
of increased time consumption. The Multicanonical Monte Carlo (MCMC) method [7, 8] can 
greatly reduce the time required for the simulations but it cannot give a closed form formula 
for the probability density functions (pdfs) of the photocurrents that are used in the estimation 
of the BER. 

In this paper, a hybrid method is proposed for the derivation of semi-analytical 
expressions for both the BER and the cumulative distribution functions (cdfs) of the 
photocurrents using Extreme Values Theory (EVT) [9, 10] enabling the quick and accurate 
estimation of the FWM noise impact. 

2. Four Wave Mixing (FWM) 

2.1 Single span systems 

A WDM system with equally spaced Nch channels and amplitude-shift keying modulation, 
which is the most frequently used modulation scheme, is considered. All signals are assumed 
to be copolarized and synchronized, which represents a worst-case situation. Only the 
performance of the central channel has to be investigated since, in this case, the energy 
conservation requirement is satisfied by the largest number of frequency combinations. 

FWM introduce intensity fluctuations that depend on the intensity of neighboring 
channels, resulting into interchannel interference. In detail, when three waves of frequencies 
fp, fq and fr (p ≠ q, r) interact due to the third-order electric susceptibility, a product wave is 
generated at frequency fpqr = fp + fq - fr. In case of systems with in-phase and equally spaced 
channels, most of the generated components will be located at the initial frequencies leading 
to induced distortion. The output power Ppqr of the FWM product is given by: 

 
2

2 2

9
L

pqr pqr p q r effP d P P P e Lαγ η−=  (1) 
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where Pi (i = p, q, r) represents the input peak power at the frequencies fi = ωi/2π in the mark 
state. In a WDM system it can be assumed that all the peak powers at the mark state are equal 
(Pi = Pin for i = 1,2,…,Nch). In (1), γ is the nonlinear coefficient of the fiber, α is the fiber loss 

coefficient, L is the total fiber length, ( )1 /L
effL e α α−= − is the effective length of the fiber, 

dpqr is the degeneracy factor (dpqr = 3 when p = q, dpqr = 6 when p≠q) and η is the mixing 
efficiency given by: 

 
( )

( )22

2 22

4 sin / 2
1

1

L

L

e L

e
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α

βαη
α β

−

−

 Δ = + 
+ Δ  −   

 (2a) 

In (2b), Δβ represents the phase mismatch and may be expressed in terms of the channel 
frequencies fi. For typical values of fiber’s chromatic dispersion coefficient D, dD/dλ (λ is the 
wavelength of the signal) and channel spacing Δf, phase mismatch can be approximated as 
follows: 

 ( ) ( )
2

22 D
f p r q r

c

πλβΔ ≈ Δ − −  (2b) 

where c is the speed of light in vacuum. 
In practical applications, it can be assumed that Δβ>>α which generally holds for D ≥ 

2ps/nm/Km and channel spacing Δf ≥ 10GHz. For large L one can also use the fact that exp(-
αL)<<1. In this case, the expressions of the FWM noise photocurrents are: 

 ( ) ( ) ( ) ( )
2

exp 2 expm m
z z mS k E kP L k P L Iα δ α= ≅ − + −  (3) 

 ( ) ( ) 2
2s s

sS k E k Iδ= ≅  (4) 

for the mark (the signal bit of the central channel is 1) and the space (the signal bit of the 
central channel is 0) state respectively. Note that k is the receiver’s responsivity, E(m) and E(s) 
are the amplitudes of the optical fields in the mark and the space state, respectively [11] and 
Pz ( = Pin) is the input peak power of the central channel z. In (3), (4) variables δ, Im,s are given 
by [6]: 
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for the mark and the space state respectively. Note that θpqr = θp + θq - θr is the phase of the 
FWM noise generated from a channel combination (p, q, r) with p, q, r ϵ [1 . . .Nch] and r = p 
+ q - z. Random phases θi due to channel i phase noise can be assumed mutually independent 
and uniformly distributed in [0, 2π]. Furthermore, Bi = 0 or Bi = 1 is the bit value of channel i. 
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2.2 Multispan systems 

The analysis carried out in the previous subsection assumes a single-span system. However, 
practical systems consist of multiple spans. Moreover, if optical amplifiers are used in 
multispan WDM systems to compensate for the optical losses, then additional FWM noise 
products are generated in each span. Thus expansion of the above analysis is required and is 
of great importance. 

An easy way to take into account multiple spans is to approximate the pdf of the total 
FWM noise by the convolution of the individual (in each span) FWM noise pdfs. This 
approximation is based on the assumption that the phases of the channels at the beginning of 
each span, the phases of the products in different spans as well as FWM noise products in 
each span are independent [5]. Also, the net dispersion in each span causes a walk-off of 
neighboring channels by at least one bit period. These considerations presuppose that the 
dispersion of each fiber span differs slightly and that the lengths of the fibers used in the span 
are different. 

It is thus obvious that these assumptions may not be valid in all cases. If for example, the 
dispersion is completely compensated for in each span; then the phases of the channels cannot 
be considered independent. Hence, a more general approach should be followed. 

In such cases and assuming equal spans, one can compute the photocurrents Sm and Ss in 
the mark and the space state respectively by transforming the FWM efficiency of (2a) as 
follows [12]: 
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where M is the total span number and Δβ is the phase mismatch factor of each product. This 
essentially results in multiplying each term of the FWM products sum by 
sin(MΔβL/2)/sin(ΔβL/2). Doing so, however, destroys the independence of the auxiliary 
variables Im and Is from systems parameters (see Appendix A). Their applicability assumes 
the FWM efficiency given by Eq. (2a). 

3. Basics of extreme value theory 

In this section, the theoretical background of the EVT will be presented. To begin with, 
suppose a set of n independent and identically distributed random variables Χ1, Χ2,…,Xn, with 
a pdf f(x) and a cdf F(x). The statistical behavior of the maxima Mn = max Xi or minima M’n = 
min Xi (extremes), i = 1, 2,…,n as n→∞ is investigated by the EVT. The cdfs Fn(x) of Mn and 
Fn'(x) of M’n can be written as a function of F(x): 

 ( ) ( ) ( ) ( )
1

n
n

n r n
i

F x P M x F x F x
=

= ≤ = =   ∏  (9a) 

 ( ) ( ) ( )' ' 1 1
n

n r nF x P M x F x= ≤ = − −    (9b) 

Equations (9a) and (9b) are not really useful in practical cases since the initial cdf of Xi is 
unknown and Fn(x) depends on n. However, in the case of maxima, as n→∞ and according to 
Fisher–Tippett theorem [10], there are location parameters μn and scale parameters σn, 
depending on n, such that: 

 ( ) ( )lim ,n n nn
F x G x xμ σ

→∞
+ = ∀  (10) 

where: 

 ( ) ( ) 1/
exp 1 , 1 0G x x x

ξξ ξ− = − + + >   (11) 
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It is straightforward to show that the cdf of the maxima is: 

 ( )
1/

exp 1 n
n

n

x
F x

ξ
μξ

σ

−   − = − +       
 (12) 

where ξ is the shape parameter. For ξ = 0, the cdf of the maxima Fn is limited to the Gumbel 
distribution or simply the extreme value distribution: 

 ( ) ( ){ }, exp expn G n nF x a x u= − − −    (13) 

It should be noted that αn and un depend on n and are related to μn and σn. Moreover, in the 
cases ξ > 0 and ξ < 0, Fn(x) follow Fréchet or Weibull distributions respectively. In the same 
manner, one can easily derive the following expression for the cdf Fn’(x) of the minima M’n: 

 ( ) ( ){ }' ' '
, 1 exp expn G n nF x a x u = − − −   (14) 

4. Using EVT in the BER calculation 

In this section, the proposed framework for the estimation of system performance in terms of 
the BER will be described. In fact, EVT will be used to quickly find semi-analytical 
expressions for both the photocurrents’ cdfs in the mark and the space state and the BER. 
According to the proposed method, a set of p = n × N values of the photocurrent S(m) (or S(s)) 
are produced using Monte Carlo simulations on Eqs. (3)–(7). The p photocurrent values are 
segmented into N groups of n samples and each group forms the sequence of the independent 
and identically distributed (iid) random variables X1, X2,…, Xn. The maximum (minimum) 
value of each group is then calculated for the space (mark) state. The obtained maxima 
(minima) are sorted in the ascending order as analyzed in [10]. In order to estimate the 
parameters an and un of (13) or the parameters an’ and un’ of (14), the sorted set of maxima 
(minima) x1, x2,…, xN such that x1 ≤ x2 … ≤ xN, are plotted against the linearized probability yi 
= -ln[-ln[Λ(xi)]] or yi’ = ln[-ln[1-Λ(xi)]] respectively, where Λ(xi) = i / (1 + N) is the empirical 
distribution of the maxima (minima). 

In [6], the pdfs of the variable Is and Im (left part) and thus the pdfs of the photocurrents 

were shown to be of the form , ,I Im s m sb bpdf Be bAe± ±= =  leading to an exponential cdf 
,I1 m sbcdf Ae±= − . Furthermore, one can easily show that exponential cdfs always satisfy von-

Mises convergence criterion, 
1

lim 0
x

d cdf

dx pdf→∞

 − = 
 

, which determines the distributions F(x) 

leading to a Gumbel distribution for the extremes. This can also be confirmed by the example 
application provided in section II.D of [10] describing how an exponential distribution 
function leads to a Gumbel extreme distribution. Using these facts, in the following the 
Gumbel distribution is used as the cdf of the maxima Fn or minima Fn’. Hence, parameters an 
and un or an’ and un’ are obtained through linear fit such that yi = an (xi - un) or yi’ = an’ (xi - 
un’). To compute the BER, one can use: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }

1

2
1 1

1
2 2

m s

Q

S SQ

m s m s

BER f d f d

P S Q P S Q P S Q P S Q

ξ ξ ξ ξ
∞

−∞
 = + =  

= ≤ + ≥ = ≤ + − ≤      

 
 (15) 

where ( ) ( ),m sS S
f f  are the pdfs of the photocurrents, Sm and Ss, in the mark and the space state 

respectively. The integrals are the probabilities that an error will occur in the space and the 
mark states, respectively and Q is the decision level. The terms in the last equality of (15) can 
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be easily estimated using the photocurrents’ cdfs which in turn is related to Fn’ and Fn 
through Eqs. (9a) and (9b). 

Assuming that the maxima of the photocurrents at the space state and the minima of the 
photocurrent at the mark state follow the distributions ,n GF  and '

,n GF  (Eqs. (13) and (14)), as 

mentioned before, and using (9a) and (9b), the cdfs of the photocurrents are given by: 

 ( ) ( ) ( ) ( )1/' '
,1 1

n

m m m n G mF S P S s F s mark = ≤ = − −   (16) 

 ( ) ( ) ( ) ( )1/

,

n

s s s n G sF s P S s F s space = ≤ =    (17) 

Hence, Eq. (15) can be transformed as follows: 

 
( ){ } ( ){ }

( )( ){ } ( )( ){ }

1/ 1/'
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1/ 1/
' '

1 1
1 1 1

2 2
1

2 exp exp exp exp
2

n n

n G n G

n n

n n n n

BER F Q F Q

a Q u a Q u

   = − − + − =  

    = − − − − − − −    

(18) 

where Q is chosen such as to minimize the BER. 

5. Results and discussion 

We applied the proposed hybrid Extreme value / MC method for the estimation of the impact 
of the FWM noise on the performance of WDM systems. Several values for both the 
iterations and the samples were examined, however there was no good convergence between 
the Gumbel distribution and the photocurrents distribution. In the following, N = 1000 
iterations were used, each involving the generation of 100 samples [10] leading to a good 
convergence as shown in the next subsection. In the remainder of the paper the parameters 
used in the calculations are as follows: λ = 1.55μm, c = 3 × 108m/s, L = 80Km, α = 
0.2dB/Km, γ = 2.4 (Km × W)−1 and k = 1.28 A/W. 

5.1 Comparison with multicanonical Monte Carlo method 

In order to assess WDM systems performance using the proposed hybrid method, one should 
initially investigate its accuracy. Towards this direction, the Extreme value / MC method is 
compared to the multicanonical MC (MCMC) method. 

The results obtained by the hybrid method for the central channel (z = 8) of a 16-channel 
WDM system are plotted as points in Fig. 1 for various values of the chromatic dispersion 
and the channel spacing. Shown as lines are the BER obtained by the MCMC method. From 
Fig. 1, it can be deduced that the results of the proposed hybrid method are almost identical to 
those of the MCMC method proving its high accuracy. 
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Fig. 1. Comparison between the proposed hybrid method and the MCMC method for Nch = 16 
channels. 

It is interesting to note that although both methods can be used to accurately estimate even 
very low BER values (i.e., 10−15) with almost same computation time requirements, the 
proposed method has a big advantage; It provides a semi-analytical expressions for the cdfs in 
the mark (Eqs. (14) and (16)) and the space state (Eqs. (13) and (17)) respectively as well as 
for the BER. 
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Fig. 2. Normalized CDF of the photocurrent for Nch = 16 channels, chromatic dispersion D = 
5ps/km/nm and channel spacing Δf = 25GHz. 

For example, the normalized cdfs of a 16 channels single span WDM system with D = 
5ps/km/nm, Δf = 25GHz and Pin = 9dBm obtained by the hybrid method are illustrated in Fig. 
2. In this case the parameters of Eqs. (13) and (14) are found an = 2.12 × 104, un = 7.83 × 10−5, 
an’ = 2.99 × 104 and un’ = 6.69 × 10−5. 

#192868 - $15.00 USD Received 25 Jun 2013; revised 29 Jul 2013; accepted 29 Jul 2013; published 23 Sep 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.023075 | OPTICS EXPRESS  23081



 

Fig. 3. Bit Error Rate as a function of the input peak power Pin for a) Nch = 8, b) Nch = 16 and c) 
Nch = 32 channels. D1 = 2ps/km/nm and D2 = 5ps/km/nm. 

This is important since it enables further processing of the obtained results without the 
need of repeating simulations. For example, one can approximately but easily estimate the 
statistics of the photocurrents in a WDM multispan system (for various values of spans) using 
the semi-analytical expressions obtained once for the single span system along with the 
convolutional approach described in [5]. 

Furthermore, the advantage of semi-analytical expressions can be used in order to 
incorporate other noises, such as thermal noise, influencing actual systems performance. To 
include these noises, one can use a technique based on the moment generating function 
(MGF) of the decision variable whereas the error probability can be estimated by use of the 
saddle-point approximation through the MGF as described in [13]. 

5.2 Single span systems 

In this subsection, the proposed method is used in the case of a single span WDM system. 
Although single span systems can be considered as a simplification of practical systems, they 
can be proved useful and powerful for the investigation of FWM noise statistical 
characteristics providing a first glance in FWM impact on systems performance. 

Figures 3(a)-3(c) depict the BER as a function of the input peak power Pin for various 
values of the number of channels, the chromatic dispersion and the channel spacing using 
(18). As expected, when the dispersion or the channel spacing is increased lower values of the 
BER are obtained. Similar behavior is observed as the number of channels is reduced. 

For example, for Nch = 16 channels, channel spacing Δf = 25 GHz and input peak power 
Pin = 4 dBm, an increase in chromatic dispersion coefficient D from 2 to 5ps/nm/km causes a 
reduction of the BER from 3 × 10−3 to 10−7. 

Such plots are important for the design of practical systems. They are useful in 
determining the maximum input power allowed in a WDM link, given its characteristics, i.e., 
channel spacing Δf, fiber dispersion coefficient D, and the total number of channels Νch. For 
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example, for Nch = 32, D = 2ps/nm/km, and Δf = 50 GHz, the input peak power of each 
channel must not exceed 5dBm if the BER is not to exceed the threshold of 10−9. 

5.3 Multispan systems 

In order to investigate the more practical case of multispan systems, a series of hybrid 
Extreme Value / MC simulations is performed using this time the FWM efficiency of (8). 

In Fig. 4, the results for the cdf of the FWM photocurrent in a multispan system are 
presented for M = 2, 4, 8 spans, Nch = 32 channels, chromatic dispersion coefficient D = 
2ps/km/nm, channel spacing Δf = 50GHz and input peak power 6 dBm. 
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Fig. 4. CDF of multispan WDM systems with Nch = 32 channels, input peak power Pin = 
6dBm, chromatic dispersion coefficient D = 2ps/km/nm and channel spacing Δf = 50GHz. 

Although, Fig. 4 cannot be used in order to extract useful information, it can provide a 
first insight on the impact of multiple spans on the performance of WDM systems. 

As shown in Fig. 4, an increase in the number of spans causes a consequent decrease of 
both cdfs (mark and space) slopes. This can be an indication of the detrimental influence of 
the number of spans on systems performance. 

To confirm the negative impact of number of spans as well as to derive detailed results 
regarding FWM induced distortion in a multispan WDM system, the BER is estimated as a 
function of the input peak power (Fig. 5). 
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Fig. 5. Bit Error Rate as a function of the input peak power Pin of multispan WDM systems 
with Nch = 32 channels, chromatic dispersion coefficient D = 2ps/km/nm, channel spacing Δf = 
50GHz and various values of the number of spans. 

Figure 5 depicts the BER as a function of the transmitter’s power for various values of the 
number of spans. The multispan WDM systems under investigation are assumed to have Nch = 
32 channels, dispersion coefficient D = 2ps/km/nm and channel spacing Δf = 50GHz. As 
shown in Fig. 5, an increase in the number of spans results in an increase of the BER. For 
example, in case of Pin = 4dBm, the BER equals to 3 × 10−11, 10−8 and 8 × 10−6 for M = 2, 4 
and 8 spans respectively. In other words, an increase of the number of spans from 2 to 4, 4 to 
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8 and 2 to 8 spans, imposes a power penalty of almost 1, 1.5 and 2.5dB respectively in the 
case of BER = 10−9. This can be attributed to the fact that then additional FWM noise 
products are generated in each span while the already existing ones are further enhanced. 

6. Conclusion 

In this paper, a method based on MC and extreme value theory has been proposed for the 
semianalytical estimation of the impact of FWM noise in WDM optical systems. The 
presented method exhibits the same accuracy and computational time requirements with the 
MCMC while providing close-form BER formulas. This method can also be used to study the 
statistical characteristics of the FWM noise and provide semi-analytical expressions for the 
BER and the cdfs of the photocurrents in both single and multiple span systems. 

Appendix A 

The optical fields amplitudes, E(m) and E(s), at a given channel z in the mark and the space 
states, respectively, are given by: 

 ( ) ( ) ( ) ( )exp exp expm
z z p q r pqr pqr

pqr

E P L j B B B P jα θ θ= − +  (A1) 

 ( ) ( )exps
p q r pqr pqr

pqr

E B B B P jθ=  (A2) 

where Pz and θz are the input peak power and the phase in the mark state, respectively, of 
given channel z, while Ppqr and θpqr = θp + θq - θr are the peak power and the phase, 
respectively, of the FWM noise generated from a channel combination (p, q, r). 

The photocurrent at the detector is written as: 
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 ( )exp
p q r pqr pqr

pqr

B B B P jθ

 
 
 
 
 
 
 

(A3) 

Assuming that the last part of Eq. (A3) is zero, the photocurrent is given by: 

 ( ) ( ) ( ) ( )exp 2 exp cosm
z z p q r pqr pqr z

pqr

S kP L k P L B B B Pα α θ θ= − + − −  (A4) 

The output power Ppqr of the FWM product is: 

 
2

2 2

9
L

pqr pqr p q r effP d P P P e Lαγ η−=  (A5) 

where the effective length of the fiber is ( )1 /L
effL e α α−= −  and the four-wave mixing 

efficiency, η, is given by: 

#192868 - $15.00 USD Received 25 Jun 2013; revised 29 Jul 2013; accepted 29 Jul 2013; published 23 Sep 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.023075 | OPTICS EXPRESS  23084



 
( )

( )22

2 22

4 sin / 2
1

1

L

L

e L

e

α

α

βαη
α β

−

−

 Δ = + 
+ Δ  −   

 (A6) 

Thus, Eq. (A4) can be transformed to: 
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(A7) 

For typical values of fiber’s chromatic dispersion coefficient D, dD/dλ (λ is the wavelength of 
the signal) and channel spacing Δf, phase mismatch can be approximated as follows: 

 ( ) ( )
2

22 D
f p r q r

c

πλβΔ ≈ Δ − −  (A8) 

where c is the speed of light in vacuum. 
For D ≥ 2ps/nm/Km and channel spacing Δf ≥ 10GHz, one can assume that Δβ>>α while 

for large L, exp(-αL)<<1. In this case, the photocurrent in the mark state can be simplified to: 

 ( ) ( ) ( ) ( ) ( )exp 2 exp exp cos
3

pqrm

z z p q r p q r pqr z

pqr

d
S kP L k P L B B B P P P L

γ
α α α θ θ

β
= − + − − −

Δ
 (A9) 

By replacing Eq. (A9) to Eq. (A8) and assuming that Pp = Pq = Pr = Pin, the following 
equation can be easily derived: 
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(A10) 

The first part of Eq. (A10) shows that using the approximations of Δβ>>α, exp(-αL)<<1 and 
that of Eq. (A8), one can easily isolate system parameters, α, L, γ, λ, D, Pin and Δf. By doing 
this, system parameters can be removed outside summation and packed into the variable δ. 

In the case of a multispan system, the efficiency of the four-wave mixing is given by: 

 
( )

( )
( )

( )2 22

2 2 22
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1

sin / 2 1
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M L e L

L e
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α

β βαη
βα β

−

−

 Δ Δ = + Δ+ Δ  −   

 (A11) 

However, even if the same approximations (Δβ>>α, exp(-αL)<<1 and Eq. (A8)) are used, the 
term sin2(MΔβL/2)/ sin2(ΔβL/2) is forced to participate in the summation (due to the presence 
of p, q and r in Δβ), trapping system parameters. This prohibits the isolation of system 
parameters from the rest terms of the photocurrent. 

In the space state, it is straightforward to show that: 

 ( ) ( ) ( )
2 2

cos sins
p q r pqr pqr p q r pqr pqr

pqr pqr

S B B B P B B B Pθ θ
   

= +   
   
   (A12) 
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Since Ppqr is included in the summations of Eq. (A12), the same conclusion for the 
multispan system can be derived in the same manner. 
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