
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

DISSERTATION

Keyword search in RDF databases

Charalampos S. Nikolaou

Supervisor: Manolis Koubarakis, Associate Professor N.K.U.A.

ATHENS
NOVEMBER 2010

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

DISSERTATION

Keyword search in RDF databases

Charalampos S. Nikolaou

Supervisor: Manolis Koubarakis, Associate Professor N.K.U.A.

ATHENS
NOVEMBER 2010

DISSERTATION

Keyword search in RDF databases

Charalampos S. Nikolaou
R.N.: M953

SUPERVISOR:

Manolis Koubarakis, Associate Professor N.K.U.A.

EXAMINATION COMMITTEE:

Ioannis Ioannidis, Professor N.K.U.A.

Abstract

We present the design and implementation of a keyword-based querying system
operating on RDF databases. The system employs a keyword-based query language
extended with temporal constructs in the form of all Allen’s thirteen temporal relations:
before, after, overlaps, etc. The underlying data model is able to capture indefinite
temporal information defining the time-limits over which a certain fact is valid. Indefinite
information concerning a time point can be given as an interval in which the point must
lie. In the case of indefinite information about time intervals, the starting and ending
time points of an interval are defined in the same way. We also evaluate our design
and implementation commenting on its results. For this, we employ three datasets
that exhibit different characteristics. We evaluate our system in terms of efficiency and
effectiveness, i.e., scalability, query time response performance, and quality of results.
We also study related work on keyword-based search for structured and semi-structured
data and present the state-of-the-art on evaluation methodologies for keyword-based
search techniques. We position our work in that context and present new challenges
that subsequent research attempts should address.

SUBJECT AREA: Semantic Web, Databases, Knowledge Bases

Keywords: keyword search, keywords, query processing, RDF, graphs, temporal infor-
mation

Dedicated to my loving nan,

1912–2008

Acknowledgements

First and foremost, I would like to thank my supervisor, Manolis Koubarakis, for his
patience, trust, and kindness. Then, I would like to thank my colleagues, Vivi, Manolis,
Alex, George, and Vissarrion for supporting me both psychologically and spiritually, and
for being available to listen to and discuss various matters of this dissertation. Last, I
thank Knud Möller, who provided me with the query logs of the Semantic Web Dog Food
site.

Contents

List of Figures 15

List of Tables 17

Prologue 19

1 Introduction 21
1.1 Keyword search in the Past . 21
1.2 Keyword search in the Present . 22
1.3 Keyword search in the Future . 23
1.4 Objectives and contributions of this dissertation 25
1.5 Dissertation Outline . 26

2 Related Work 29
2.1 Prerequisite Knowledge . 29

2.1.1 Data Models . 30
2.1.2 The RDF framework . 30
2.1.3 The RDF Schema . 31
2.1.4 Temporal RDF . 31

2.2 Categorization of keyword-based search approaches 32
2.2.1 Data Models . 32

2.2.1.1 Schema-aware . 33
2.2.1.2 Schema-agnostic . 33

2.2.2 Structure of the answer . 34
2.2.3 Exploration Algorithms . 34
2.2.4 Ranking/Scoring of Answers . 35
2.2.5 Indexing . 37

2.3 Evaluation Methodologies for keyword search 39
2.3.1 Evaluation in unstructured data 39
2.3.2 Evaluation in structured and semi-structured data 40

2.3.2.1 XML Evaluation . 42
2.3.2.2 Semantic Web Evaluation 44

2.4 Other Directions to Keyword Search . 46
2.5 Conclusions . 47

3 Our approach to keyword-based search 49
3.1 Contributions to keyword-based Search 49
3.2 Data Model and Query Language . 50

3.2.1 Data Model . 50
3.2.2 Query Language . 51

3.3 The keyword-based Search Algorithm . 52
3.3.1 Employed Data Structures . 52
3.3.2 Scoring of graphs . 56
3.3.3 Overview of the algorithm . 58

3.4 Conclusions . 65

4 Implementation 67
4.1 The Architecture of the Keyword Querying System 67
4.2 Components . 68

4.2.1 Query Processor . 69
4.2.2 Indexer . 71
4.2.3 RDFStore Connection Manager . 71

4.3 Technical Details . 72
4.4 Conclusions . 72

5 The Papyrus Platform 73
5.1 User Requirements . 74

5.1.1 Accessing archival content . 74
5.1.2 Historical research method . 75
5.1.3 Concept evolution . 76
5.1.4 Multilingualism . 76

5.2 The Papyrus Platform . 77
5.3 News and History Ontologies . 78

5.3.1 The News Ontology . 78
5.3.2 The History Ontology . 79
5.3.3 Mapping the History and News Ontologies 81

5.4 Conclusions . 82

6 Evaluation 83
6.1 Datasets . 83

6.1.1 History ontology . 83
6.1.2 Semantic Web Dog Food Corpus 84
6.1.3 DBLP . 85

6.2 Measuring Efficiency . 85
6.2.1 Scalability . 86
6.2.2 Performance . 89

6.3 Measuring Effectiveness . 99
6.4 Conclusions . 101

7 Epilogue 103
7.1 Future Work . 103

Appendices 107

A Queries used in evaluation 107
A.1 History ontology . 107
A.2 Semantic Web Dog Food . 115
A.3 DBLP . 116

References 117

List of Figures

2.1 Improvement course of TREC’s retrieval effectiveness 41

3.1 The data graph of the RDF triples of Table 3.1 54
3.2 The summary graph of the data graph of Figure 3.1 54
3.3 The augmented graph of the data graph of Figure 3.1 and keyword query

2010 koubarakis publications . 55

4.1 The architecture of the keyword querying system. 68

5.1 The Papyrus Platform . 77
5.2 News ontology structure . 79

6.1 Load scalability for the History ontology 86
6.2 Load scalability for the Semantic Web Dog Food dataset 87
6.3 Load scalability for the DBLP dataset . 87
6.4 Comparison of the load times of different index types against various num-

ber of triples (DBLP dataset) . 90
6.5 Construction times for each index type for each dataset. 91
6.6 Construction times for each index type for History and Semantic Web Dog

Food datasets. 92
6.7 Load times of the summary graph index for each dataset. 92
6.8 Query time performance for different scoring functions for the History on-

tology. 93
6.9 Performance of query tasks for different queries for the History ontology. . 94
6.10Percentage of query tasks to overall query processing for the History ontology. 94
6.11Query time performance for different scoring functions for the Semantic

Web Dog Food dataset. 95
6.12Performance of query tasks for different queries for the Semantic Web Dog

Food dataset. 96
6.13Percentage of query tasks to overall query processing for the Semantic Web

Dog Food dataset. 96
6.14Query time performance for different scoring functions for the DBLP dataset. 97
6.15Performance of query tasks for different queries for the DBLP dataset. . . 98
6.16Percentage of query tasks to overall query processing for the DBLP dataset. 98

6.17Effectiveness evaluation results for the History ontology. 100

List of Tables

3.1 A set of RDF triples . 53
3.2 An example of the interpretations for two keywords. 59

6.1 Structural statistics for the History ontology dataset. 84
6.2 Structural statistics for the Semantic Web Dog Food dataset. 84
6.3 Structural statistics for the DBLP dataset. 85

A.1 Queries for the History ontology dataset 107
A.2 Expected answers for the History ontology queries 108
A.3 Queries for the Semantic Web Dog Food dataset 115
A.4 Queries for the DBLP dataset . 116

Prologue

This dissertation has been conducted during my postgraduate studies in the De-
partment of Informatics & Telecommunications, in the program of Computer Systems
Technology, 2009–2010. In this period, I was also involved in the EU funded project Pa-
pyrus: Cultural and historical digital libraries dynamically mined from news archives.
Papyrus was the context over which this work was developed, applied, tested, and eval-
uated.

Keyword search in RDF databases

Chapter 1

Introduction

Nowadays, keyword search is the predominant way of searching a data source such
as the Web. Using solely keywords, i.e., a small number of highly discriminating terms
the user anticipates that she will identify the web pages most relevant to her information
needs. Keyword search offers a straightforward, intuitive, and yet flexible method of re-
trieving information. The success of keyword search in the field of Information Retrieval
(IR) and the World Wide Web (WWW or just Web) has generated interest in keyword
search interfaces to relational databases and similar structured and semi-structured
data sources.

This dissertation studies the way keyword search has evolved over time, how it has
been adopted by different fields in computer science, such as IR, databases, and seman-
tic web, and surveys the state-of-the-art in keyword search for fields managing struc-
tured and semi-structured data. Beyond that, it presents and extensively evaluates
the design and implementation of a system operating on RDF data, accepting keyword
queries with temporal constraints. Last, it presents the state-of-the-art in evaluation of
keyword search systems operating on structured and semi-structured data.

1.1 Keyword search in the Past

In the past, keyword search was studied mainly in the area of IR1. This is, mainly, due
to its application area, e.g., library systems (bibliographic catalogs, patent collections,
text archives, etc.), which motivated the development of the respective technologies. The
users of such an application area are non-technical humans with cognitive capabilities
and limitations [Wei07]. Consequently, IR systems aim at understanding user queries
as approximate, trying, first, to reveal the actual information needs of the user, and then
supporting an interactive process of data exploration, query rephrasing, and guidance
towards the final results. In this respect, the field of IR views query processing as a
ranking task based on statistical models.

1In IR’s terminology keyword search is known as free text search or full text search.

Charalampos S. Nikolaou 21

Keyword search in RDF databases

On the other hand, the field of databases, while initiated roughly at the same time
that IR did, it targeted a very different application area: that of accounting systems,
such as online reservations, banking transactions, etc. In contrast to IR, the users of
databases consist mainly of technically skilled people, adept at using a specific language
to interact with a database system. In turn, a database system expects a user to pose
precise queries, aiming at providing exact results in one shot and as fast as possible. In
this respect, the field of databases views query processing as a matching task based on
testing logical predicates.

However, from a technical point of view, the key difference between IR and databases
seems to lie in emphasizing different data types: text in IR, and numbers in databases,
or more precisely, unstructured text documents in IR, and structured records with
numerical and categorical attributes in databases.

It is evident that the two directions and their respective research communities em-
phasized very different aspects of information management: text understanding, statis-
tical ranking models, and user satisfaction on the IR side, and data consistency, precise
query processing, and efficiency on the databases side.

The picture of these two fields has only started to change in the late 1990s, when
there were attempts towards their integration. The most notable of them were the
probabilistic Datalog [Fuh95], the probabilistic relational-algebra models [FR97], and the
WHIRL approach to similarity joins [Coh98, Coh00], which all brought IR’s imprecision to
databases. In addition, commercial database systems adopted various IR techniques to
provide imprecise text matching and full-text search capabilities in the textual attributes
of a relation, and thus paving the way towards enabling keyword search in the field of
databases.

1.2 Keyword search in the Present

It is only in the past few years that the need for integration of IR and databases meth-
ods are so compelling to efficiently and effectively support keyword search in both fields.
This is, at first, due to the emergence of various mission-critical applications, such as
Digital Libraries (DL). Digital Libraries are information repositories growing exponen-
tially in size, with documents augmented with metadata and annotations expressed in
semi-structured data formats, such as XML, and more recently RDFa2. From an IR
point of view, there is a need for efficiently storing and querying such data, which is
admittedly a characteristic that can be credited to databases. From the perspective of
databases, application areas, such as customer support and customer relation manage-
ment systems (CRM), product and market research, as well as social networks and blogs
appeared lately in the Web, require support for structured and textual data, as well as
ranking and recommendation in the presence of uncertain information of highly diverse
quality.

2http://www.w3.org/TR/xhtml-rdfa-primer/

Charalampos S. Nikolaou 22

http://www.w3.org/TR/xhtml-rdfa-primer/

Keyword search in RDF databases

Unfortunately, until the beginning of 2000s keyword search facilities in databases
was anything but adequate. The user of a database system had to master a structured
query language, know the schema of the database, and then express his information
needs in that language. While this way of accessing a database is powerful enough, its
learning curve is very steep for ordinary users to adopt. Moreover, imprecise textual
matching on specific attributes of a relation is not effective. This is because information
needed to answer a keyword query is often split across relations/tuples, due to nor-
malization requirements. These reasons have given rise to a new research community
arguing that the logical schema of a database, while being an appropriate abstraction
over the underlying physical schema for data organization, it is still at a level too low
to serve as the abstraction with which users should interact directly. Instead, a higher
level presentation data model abstraction is needed to allow users to structure infor-
mation in a natural way. Clearly, there is a trend towards making databases more
usable [JCE+07].

Keyword search in databases is evolving towards this direction over the last decade
(2001–2010). The demand for this need is even higher taking in mind that keyword-
based searching for information is an indispensable task of people’s lives. Web search
engines are widely used for searching textual documents, images, and videos. There
are also vast collections of structured and semi-structured data, such as XML and RDF,
both on the Web and in relational databases.

To serve its new purpose, keyword search over structured and semi-structured data
should automatically assemble relevant pieces of information that are in different loca-
tions, but are inter-connected and collectively relevant to the query. Such an approach,
apart from addressing the aforementioned requirements, it also allows users to easily
access heterogeneous databases. For instance, for websites with various database back-
ends, this approach provides a more flexible search method than the existing solution
that uses a fixed set of pre-built template queries. Furthermore, this approach helps
to reveal interesting or unexpected relationships among entities. Making databases
searchable will substantially increase the information volume that a user can access,
have potential to provide search results with better quality compared to keyword search
on textual documents and the Web, and thus increase the database usability and make
significant impact to people’s lives.

1.3 Keyword search in the Future

Still, the current approaches to keyword search over text documents, web pages,
structured and semi-structured data, are based on inverted indexes and structural
information available through hyperlinks, foreign-primary key relationships, parent-
child relationships in XML, and property relationships in RDF.

From the perspective of unstructured data, it is often the case in a web setting that
different web pages are ranked very differently, while providing information about the
same facts, the same persons, the same events, etc. What makes ranking different is that

Charalampos S. Nikolaou 23

Keyword search in RDF databases

web pages are authored by different people, with different cultural, cognitive, and techni-
cal background, probably speaking different languages, and mastering the subject at dif-
ferent levels. No wonder, there is an increasing need for recognizing named entities and
their relationships, as well as place and time attributes expressed in natural-language
sentences. These can be made explicit through information extraction techniques, such
as pattern matching, statistical learning, and natural language processing. There is
also demand in exploiting current state-of-the-art techniques for striking out the partic-
ularities and the language of one’s writing, keeping only the essence of the writing. Of
course, this approach exhibits uncertainty; querying such extracted knowledge entails
ranking.

From the structured and semi-structured data point of view, there is a similar prob-
lem, but disguised under the veil of integration. Still, the problem of unstructured data
co-exists in this setting on textual attributes (databases), or literals (XML/RDF). Here,
the norm is that applications access multiple data sources, such as databases, and
semi-structured data stored completely as an attribute of a relation, or even separately.
Making matters worse, the choice of the data sources to be used for a query often can be
made at run-time. Even if each source contains structured data records and comes with
an explicit schema, there is no unified global schema unless a breakthrough could be
achieved to magically perform perfect, on-the-fly, data integration. So, the application
program must be able to cope with the heterogeneity of the underlying schema names,
XML tags, and RDF, and queries must be schema-agnostic or at least tolerant to schema
relaxation.

According to [Wei07, WKRS09], the solution is in the construction, development,
and maintenance of knowledge bases, which have received considerable attention in the
recent databases, IR, WWW, and semantic web literature. For example, information-
extraction techniques [ERS+09] have been successfully applied to textual as well as
semi-structured web sources, such as Wikipedia3, to build large-scale knowledge repos-
itories, such as DBpedia [ABK+07], Freebase [BEP+08, BCT07], YAGO [SKW08], and
also community specific collections, such as DBLife [DCG+08] and Libra [NMS+07].
These repositories typically contain entities, such as people, locations, movies, com-
panies, conferences, organizations, etc., and the relationships between them, such as
bornIn, actedIn, hasGenre, isCEOof, isPCMemberOf, and so on. Such data con-
ceptually forms a large graph with nodes corresponding to (typed) entities and edges
denoting (typed and possibly weighted) relationships, and it can be conveniently rep-
resented in the form of subject-property-object (SPO) triples of RDF. When triples are
extracted from web pages — or even annotated —, they can be associated with a variety
of weights, including extraction confidence, the number of times the triple was seen in
the corpus, entity extraction confidence, etc. Unquestionably, IR and databases meth-
ods could indeed have the potential to play major roles in this endeavor. Furthermore,
keyword search should definitely be the prevalent query method to this kind of data,
due to its intuitive and simple interface, which has been widely adopted by experienced

3http://en.wikipedia.org/

Charalampos S. Nikolaou 24

http://en.wikipedia.org/

Keyword search in RDF databases

and inexperienced users as well.
The construction, development, and maintenance of such knowledge bases has also

been dictated both from the emergence of the semantic web technologies and the enor-
mous availability of RDF data in the Web the last few years. This web of data bears
enormous potential for supporting web users in accomplishing more complex tasks and
ultimately bringing about new possibilities for commercial exploitation. Several initia-
tives have been started to deal with and to promote this web of data, noticeably the
Linking Open Data (LOD) project4 and the Billion Triple Challenge5.

1.4 Objectives and contributions of this dissertation

This dissertation follows the spirit of the research work that has been done in keyword
search during the last ten years (2001–2010), as discussed above. In line with the
trends of this decade and future demands as they have been addressed in [Wei07,
WKRS09, CRW05, JCE+07], two different types of data are addressed, structured and
semi-structured. For structured data, the prevalent field of computer science is the
field of databases; this type of data deals with tuples and relations of the relational data
model [AHV95]. For semi-structured data, the prevalent research areas are the fields
of Data Management, Data Integration, Data Exchange, the Web, the Semantic Web6,
etc. Consequently, the main representative of these research areas are the Extensible
Markup Language (XML)7, the Resource Description Framework (RDF) [LS99], and the
RDF Schema (RDFS) [BG00], from which the works based on the RDF(S) framework have
been chosen to be presented.

Although the first objective of this dissertation is to record the related work done in
keyword search, it is worth noting that it does not aim at surveying this field. Instead,
it aims at giving the full picture of the evolution of keyword searching, initiated by the
field of IR, and then adopted by the fields of web and databases, and how each field
has contributed to each other and in keyword searching independently. This way, the
demands and trends of each research era can be identified and elevated, together with
the research problems that each area has faced.

In this respect, for the presentation of the related work in keyword search, a number
of categorical dimensions have been identified and extracted, which are considered sig-
nificant from the perspective of this dissertation, and are orthogonal to the studied data
models. As such, they allow for parallelly viewing the way in which keyword search has
influenced the above mentioned fields in chronological order, and how the solutions and
techniques developed in these different areas — being initially independent to each other
— have come to be adopted by all of them. However, for completeness, other dimensions
and directions together with references to the respective work have been identified and

4http://linkeddata.org/
5http://www.cs.vu.nl/pmika/swc/swapplication.html
6http://www.w3.org/2001/sw/
7http://www.w3.org/XML/

Charalampos S. Nikolaou 25

http://linkeddata.org/
http://www.cs.vu.nl/pmika/swc/swapplication.html
http://www.w3.org/2001/sw/
http://www.w3.org/XML/

Keyword search in RDF databases

briefly presented.
The second objective of the dissertation is to advance the state-of-the-art research in

keyword search over RDF data. To this goal, the contributions of this dissertation lay on
the design, implementation, and evaluation of a system supporting keyword searching
over RDF data. In particular, the work of this dissertation differentiates itself from re-
lated work, because it adds the temporal dimension to keyword-based querying. To this
end, first, it introduces a new data model able to capture temporal information. Second,
it introduces a keyword-based query language with temporal constructs capturing all
Allen’s temporal relations [All83]. Third, it improves and extends the keyword search
algorithm proposed in [TWRC09] incorporating the temporal dimension. Fourth, it ex-
tensively evaluates the proposed keyword querying system both in terms of efficiency
and effectiveness, employing three different datasets each one exposing different char-
acteristics. To the best of the author’s knowledge, there is no related work providing
such rigorous evaluation results. Overall, regarding RDF data as a knowledge base, and
taking into account the future trend and demands in keyword search [Wei07, WKRS09],
the proposed work is on the cutting edge of the research — thus well targeted —, and
can be safely regarded as indispensable.

The third and last objective is to shed light on the evaluation of systems and tech-
niques targeting at keyword search over structured and semi-structured data. Keyword
search provide only an approximate specification of the information items to be re-
trieved. Therefore, the correctness of the retrieval cannot be formally verified, as it is the
case with query languages, such as SQL. Instead, retrieval effectiveness is measured by
user perception and experience. The empirical assessment of keyword-based systems
is therefore imperative. Here, the aim is to study and review the current initiatives and
methodologies, which, unquestionably, but justifiably, make this field immature, due to
its immense difficulty. Conversely, the area of IR has made a great progress towards the
evaluation of its systems and techniques with the establishment of TREC (Text REtrieval
Conference)8, which provides a solid ground and a rigid methodology for evaluation.

1.5 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 discusses related work
in the field of keyword search over structured and semi-structured data, and it presents
the current status of the evaluation methodologies and techniques of systems that sup-
port keyword searching over such data. Besides that, it presents other directions in
keyword searching. Then, Chapters 3 and 4 discuss the approach taken by this dis-
sertation to the problem of keyword search over RDF data, presenting the design and
implementation of a keyword querying system. Next, Chapter 5 discusses Papyrus, an
European Union funded project in the context of which this dissertation has been con-
ducted. Chapter 6 discusses the evaluation methodology followed in this dissertation,

8http://trec.nist.gov/

Charalampos S. Nikolaou 26

http://trec.nist.gov/

Keyword search in RDF databases

and comments on its results. Last, Chapter 7 concludes the dissertation, recapitulating
and identifying various directions and open problems for future work.

Charalampos S. Nikolaou 27

Keyword search in RDF databases

Chapter 2

Related Work

This chapter discusses related work in the field of keyword search over structured
and semi-structured data. First Section 2.1 introduces some basic background knowl-
edge needed for understanding the techniques employed throughout the dissertation.
Second, Section 2.2 introduces a number of dimensions, which are then used to catego-
rize related work. This assists the reader to obtain a clear and complete view of related
work, identify several aspects playing an important role in keyword-based search, and
easily compare related work with this dissertation. Furthermore, for each dimension an
approach taken in related work is picked for presentation.

Next, Section 2.3 discusses the current status of the evaluation methodologies and
techniques of systems that support keyword searching over structured and semi-structured
data. It is pointed out that the current state is far from good, without providing any solid
and rigid methodology, as opposed to the respective evaluation process developed in the
field of IR. Fortunately, this area has already started to attract the interest of the re-
search community leading to initiatives, such as INEX1 (INitiative for the Evaluation of
XML), and interesting and promising evaluation methodologies.

Last, Section 2.4 discusses other directions taken in keyword searching, which di-
verge from the path of query processing. Such works focus on the improvement of user
interaction with systems providing keyword search interfaces, as well as improving the
quality of search results.

2.1 Prerequisite Knowledge

As prerequisite knowledge we define and describe data models (Subsection 2.1.1),
the RDF framework (Subsection 2.1.2) and the RDF Schema (Subsection 2.1.3), as well
as the Temporal RDF data model (Subsection 2.1.4).

1www.inex.otago.ac.nz

Charalampos S. Nikolaou 29

www.inex.otago.ac.nz

Keyword search in RDF databases

2.1.1 Data Models

A data model [Ull88] is a mathematical formalism with two parts:

1. A notation for describing data, and

2. A set of operations used to manipulate that data.

Examples of such data models in the area of databases are the Relational Data
Model [AHV95, Ull88], the Object Relational Model [Ull88], the Network Data Model [Ull88],
etc. The relational data model logically organizes data in relations composing of tuples
of attributes and includes such operations as select, project, join, etc. The object
relational model considers relations as objects and organizes them in a hierarchy. The
network data model is the entity-relationship model with all relationships restricted to
be binary, many-one relationships. This restriction allows for using a simple directed
graph model for representing the actual data. It organizes data using two fundamental
constructs, called records and sets. In this model, data is organized in records and sets
(not to be confused with mathematical sets). Records contain fields (which may be orga-
nized hierarchically, as in the programming language COBOL). Sets define one-to-many
relationships between records. The operations of the network model are navigational in
style: a program maintains a current position, and navigates from one record to another
by following the relationships in which the record participates. Records can also be
located by supplying key values.

In the area of IR, an example of a data model is the Vector Space Model (VSM) [MRS],
which considers documents as vectors/points in a n−dimensional space. Addition-
ally, the RDF framework can be regarded itself as a data model forming a graph of
(subject, predicate, object) triples. The nodes of that graph are the subject and object
parts of these triples. The predicate part correspond to labeled, directed edges emanat-
ing from a subject node, and ending in an object node.

2.1.2 The RDF framework

The Resource Description Framework (RDF) [LS99] is a language for representing
information about resources in the World Wide Web. Resources are identified using
URIs (Uniform Resource Identifiers)2 and described using triples. A triple consists of
three elements: the subject, the predicate, and the object, and it is usually
written as follows:

(subject, predicate, object)

, where subject ∈ U
⋃
B, predicate ∈

⋃
U , and object ∈ U

⋃
B
⋃
L. The set U stands

for the set of URIs, B for the set of blank nodes (these are resources that cannot be
identified exactly with a specific URI), and L for the set of RDF literals. Using the triple

2http://labs.apache.org/webarch/uri/rfc/rfc3986.html [RFC3986]

Charalampos S. Nikolaou 30

http://labs.apache.org/webarch/uri/rfc/rfc3986.html

Keyword search in RDF databases

notation, a statement concerning the creator of the web page www.example.com can
be represented as:

(www.ex.com/person/p1, www.ex.com/creator, www.ex.com)

A set of RDF triples is called a RDF graph.

2.1.3 The RDF Schema

The RDF Schema (RDFS) [BG00] is a language for defining vocabularies that can be
used in RDF graphs. These vocabularies specify the classes and properties that can
be used in a domain modeled by an RDF graph. Classes and properties are used for
describing groups of related resources and relationships between resources. Classes
are sets of resources. Elements of a class (nodes in an RDF graph) are known as
instances or individuals of that class. To state that a resource is an instance of a
class, the property rdf:type may be used. The following are the most important
classes in RDF(S): rdf:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype,
rdf:XMLLiteral, and rdf:Property. Properties are binary relations between sub-
ject resources and object resources. The built-in properties of RDF(S) are: rdfs:range,
rdfs:domain, rdf:type, rdfs:subClassOf, and rdfs:subPropertyOf. To avoid
distracting the reader, the formal semantics of the RDF Vocabulary are not presented
here, except one: all things being described by RDF expressions are called resources, and
are considered to be instances of the class rdfs:Resource. The class rdfs:Resource
represents the set called ‘‘Resources’’ in the formal model for RDF(S).

2.1.4 Temporal RDF

The RDF(S) data model fails to capture the different semantics that arise with the de-
scription of statements containing temporal information. The first works that proposed
temporal features in RDF were by Gutierrez and colleagues [GHV05, HV06, GHV07]. In
their proposal, a framework to incorporate valid time in RDF is introduced. Extending
the concept of RDF triple, a temporal triple is an RDF triple with an additional temporal
label (a natural number). For example, (s, p, o)[t] is a temporal triple which denotes the
fact that the triple (s, p, o) is valid at time t. Triples valid at time intervals are then
defined by sets of triples valid at time points. Finally, a temporal RDF graph is defined
as a set of temporal RDF triples. The works in [GHV05, HV06, GHV07] study the se-
mantics of the proposed extension to RDF, define appropriate query languages for the
extension and present results on the complexity of query answering. The representation
and reasoning about incomplete temporal information in RDF has also been studied
in [HV06]. The authors of [HV06] treat indefinite temporal information (i.e., anonymous
time) as blank nodes incorporating, also, temporal constraints based on Allen’s interval
algebra [All83]. The resulting graphs are called c-temporal graphs for which they provide

Charalampos S. Nikolaou 31

www.example.com

Keyword search in RDF databases

semantics by extending the semantics of temporal RDF graphs defined in their earlier
works [GHV05, GHV07].

2.2 Categorization of keyword-based search approaches

Here, the dimensions used for categorization of related work on keyword-based
search are introduced. These include the employed data model (Subsection 2.2.1),
the structure of the answer (Subsection 2.2.2), the underlying exploration algorithm
(Subsection 2.2.3), the ranking/scoring functions of answers (Subsection 2.2.4), and
indexing techniques (Subsection 2.2.5).

2.2.1 Data Models

Clearly, the various data models proposed in the area of databases deal with the
same kind of data, i.e., numerical and categorical, but each of them provides a different
view over them employing different kind of operations on that data. This specific view
is tightly associated with the respective query language used to access the stored data.
The query language is the interface between the database system and the user that
needs access to the data, and is designed to reflect the structure and properties of the
underlying data model.

From the perspective of this dissertation a query is simply a set of keywords. In the
databases setting, the problem of answering such a query amounts to finding tuples
having attributes with values matching a keyword from that set (according to some
matching criteria), and then trying to connect them following a primary-foreign key
relationship. This sense of connection is the one making the graph-based (tree-based)
data model the most appropriate to handle such queries. That is, the query language
and the peculiarities of the relational data model (e.g., the organization of closely related
information across different relations) dictated the usage of another data model on top of
the relational one. Indeed, all related work discussed here from the area of databases use
such a graph data model on top of the relational one. This is due to the wide spread and
tremendous development of technologies that are based on the relation data model. In
this respect, the proposed research works are interoperable and can be directly applied
to such systems.

Similarly, for semi-structured data, and especially for RDF data, the data model
is a graph. Consequently, all approaches to keyword search employ a graph data
model, either undirected or directed for representing the underlying data and their inter-
relationships. It is also possible that weights can be associated with each graph element,
that is, node or edge, to reflect its importance in relation to the other graph elements.
However, the key differentiation of these approaches is whether they take into account
the schema of the underlying data (schema-aware) or not (schema-agnostic). In rela-
tional databases this schema is that of the database. Likewise, in RDF, it is the RDF
Schema (RDFS) [BG00].

Charalampos S. Nikolaou 32

Keyword search in RDF databases

2.2.1.1 Schema-aware

Schema-aware approaches model the underlying data as a graph based on their
schema definition. In databases, such an approach maps database relations to nodes,
and the edges represent relationships between two relations, such as primary-foreign key
dependencies [ACD02, HP02, HGP03, LYMC06, LLZ07, MYP07, QYCT09, SKI08, QYC09].
In RDF, this approach maps RDF classes to nodes, and the properties that should appear
between the instances of two classes are mapped to edges. The edges are labeled with
the name of the property [LUM06, TCRS07, TWRC09].

These approaches frequently involve two phases for the generation of the answer to a
keyword query. First, they take as input the schema graph and any elements matching
a keyword of the query, and then try to derive the schema of every possible answer3.
From the databases side, such matching elements might be a relation, either because
it matched against a keyword, or because a tuple in that relation matched against it.
From the RDF side, it might be a class, or a property, that is, an edge between two class
nodes, or even a node/edge of the data graph. Second, given these answer schemas,
appropriate queries are constructed to retrieve the actual tuples from the database (or
entities in the case of RDF).

In the literature, schema-aware approaches can also be found as schema-level, or
schema graph.

2.2.1.2 Schema-agnostic

Schema-agnostic approaches model the underlying data as a data graph. In databases,
such an approach maps tuples to nodes, and edges to primary-foreign key depen-
dencies [HBN+01, BHN+02, BHP04, KPC+05, HWY07, LOF+08]. In RDF, the data
graph is precisely the graph that is implicitly formed from the RDF triples (see Sub-
section 2.2.1) [HWY07, LOF+08, TLR, WLP+09, LT10].

These approaches involve one phase for the answer generation, where the answer
schema extraction and the tuple/entity retrieval task are interleaved: the system ex-
plores the data graph trying to build trees/graphs connecting all the keywords of the
query, in the case of AND semantics, or some of them, in case of OR semantics.

It is worth mentioning that the works based on a schema-aware data model in a
databases setting are significantly more than those based on a schema-agnostic one4.
In contrast to databases, in a semi-structured setting, the works based on a schema-
aware data model are significantly fewer than those based on a schema-agnostic one.
This observation is justified taking in mind that the data stored in relational databases
must adhere to a specific schema, which is not the case for semi-structured data.

3This phase can be found in the literature as keyword query translation.
4Works such as [HWY07] and [LOF+08] have to be excluded from the schema-agnostic citation list,

due to the fact that they are proposed for general graph structured data, and not especially for the area
of databases.

Charalampos S. Nikolaou 33

Keyword search in RDF databases

Accordingly, in the literature, schema-agnostic approaches can also be found as
tuple-level, or data graph.

2.2.2 Structure of the answer

Currently, posing a keyword query at a web search engine, the result is a ranked set
of web pages on account of containing these keywords. Comparing this approach with
the approaches taken for handling keywords queries on structured and semi-structured
data, the result is generally a structured item to reflect apart from the plain information
contained in the keywords, the way this information is connected, defining, in this
way, a possible interpretation of the answer. Consequently, such an item might be
a tree [HBN+01, BHN+02, HP02, ACD02, HGP03, KPC+05, LYMC06, LLZ07, MYP07,
HWY07, QYCT09, QYC09], a graph [LOF+08, SKI08], or just a node/entity [ACD+03,
BHP04, LUM06, WLP+09, LT10] of these structures.

Other approaches, especially in RDF, stop at the stage of query computation letting
the user pick the query close to his information needs [TCRS07, TWRC09]. They compute
the queries corresponding to all possible interpretations of the user keyword query, and
then present them in a graph structure to the user. Last, there are works, towards
providing the interpretation of a structured answer in natural language [SKAI08, KSI10].

2.2.3 Exploration Algorithms

Many approaches to keyword search that generate tree or graph structured answers
deal with the problem of finding substructures connecting the elements containing the
keywords of the query. General approaches that rely on tree and graph structured data
are mainly Backward Expansion [HBN+01, BHN+02], Bidirectional Search [KPC+05]
and their extensions [HWY07, TWRC09]. In the following, backward expansion and
bidirectional search are presented.

Backward Expansion The Backward Expansion algorithm [HBN+01, BHN+02] first
identifies the nodes of the graph containing a keyword of the query, called keyword
nodes, and then performs an iterative traversal along incoming edges of visited nodes,
until a node is found, called answer root, with the special property of being a node
connected to all keyword nodes through a path of visited outgoing edges. This iterative
traversal is performed initiating a Dĳkstra single source shortest path algorithm for each
keyword node. If a keyword is contained in more than one nodes, then these nodes form
a cluster for which a single copy of the Dĳkstra algorithm is instantiated. This cluster is
called Initial Keyword Cluster, and is denoted as IKCi, on account of containing nodes
matching with the i-th keyword.

At each iteration of the algorithm there are two strategies for choosing the direction
(i.e., the node) to follow (i.e., to visit) next. Before proceeding to their presentation, some
terminology is introduced. The keyword query is a set of keywords K = {k1, k2, . . . , kn}.
A Keyword Cluster,KCi, is the set of nodes that have been visited and can reach keyword

Charalampos S. Nikolaou 34

Keyword search in RDF databases

ki, i.e., IKCi ∩KCi = IKCi. Initially, each such cluster contains all the keyword nodes
for each ki, i.e., KCi = IKCi. The expansion strategies are the following:

Equi-distance expansion in each keyword cluster: Having picked a keyword cluster,
KCi, this strategy decides which node to visit next. Intuitively, this strategy ex-
pands a keyword cluster by visiting nodes in order of increasing distance from the
initial keyword cluster. Formally, the node to visit next for a keyword cluster KCi
is the node (among all nodes not in KCi) with the shortest distance to a node in
the set IKCi.

Distance-balanced expansion across keyword clusters: This strategy decides the fron-
tier of which keyword cluster will be expanded. Intuitively, the algorithm attempts
to balance the distance between each initial keyword cluster and its frontier across
all clusters. Formally, let (u,KCi) be the node-cluster pair such that u /∈ KCi and
the distance from u to IKCi is the shortest possible. Then, the cluster to expand
next is KCi.

Bidirectional Expansion The same authors proposed the Bidirectional Expansion al-
gorithm [KPC+05] to overcome the poor performance that Backward Expansion exhibits
in certain types of graphs. The Bidirectional Expansion algorithm is an extension of the
Backward Expansion algorithm that has the option of exploring the graph by following
forward edges as well. The rationale is to identify a root node much faster. To control
the expansion order, the algorithm prioritize nodes by heuristic activation factors, which
intuitively estimate how likely nodes can be answer roots. While this strategy is shown to
perform well in multiple scenarios, it is difficult to provide any worst-case performance
guarantee. The reason is that activation factors are heuristic measures derived from
general graph topology and parts of the graph already visited; they may not accurately
reflect the likelihood of reaching keyword nodes through an unexplored region of the
graph within a reasonable distance.

2.2.4 Ranking/Scoring of Answers

Keyword searches are inherently ambiguous and not all query results are equally
relevant to a user. Various ranking schemes have been proposed to order the query
results into a sorted list so that users can focus on the top ones, which are hopefully the
most relevant ones. Various ranking schemes are used in existing work, which consider
both the properties of data nodes (e.g., TFIDF and complex measures adopted from IR,
node/edge weight, ranking in the style of page rank) and the properties of the whole
query result (e.g., path length, number of nodes/edges, weights of nodes/edges, size
normalization) [GKS08, HWY07, LOF+08, LYMC06, LLZ07, HBN+01, BHN+02, KPC+05,
ACD02, HP02, HGP03, TWRC09, WLP+09].

In particular, in [HBN+01, BHN+02] answers are ranked using a notion of proximity
coupled with a notion of prestige of nodes based on incoming links, similar to techniques

Charalampos S. Nikolaou 35

Keyword search in RDF databases

developed for web search. In addition, the overall ranking scheme includes weighting
of edges, and it is the additive or multiplicative combination of edge and node scores.
Representing the overall node and edge score with Nscore and Escore respectively, then
the overall score of an answer is given as follows:

Additive : (1− λ) ∗ Escore + λ ∗Nscore

Multiplicative : Escore ∗Nλ
score

Considering answer trees, [HBN+01, BHN+02] compute the overall node score as the
average of the scores of the root and leaf nodes, i.e., omitting any intermediate nodes.
The score of a node u is determined by the number of incoming edges Pr(u) , conveying
this way the notion of prestige. This score is normalized using the maximum prestige
score of the nodes of the underlying graph:

Score(u) =
Pr(u)

maxu∈V (G){Pr(u)}
Works such as [HGP03, LLZ07, LYMC06, LOF+08, TWRC09] employ a number of IR

measures to rank answers. In [HGP03, LLZ07] they exploit the IR techniques built-in in
RDBMs, while in [LYMC06] they extend them providing novel and more fine grained scor-
ing measures (tree normalization, document length normalization, document frequency
normalization, inter-document frequency normalization, different scoring schemes for
schema and value matching keyword term). In [LOF+08] they propose a novel index
which materializes TFIDF-based IR rankings. In contrast, the work [TWRC09] employs
the Lucene index to textual ranking.

Apart from ranking answers based on textual similarity, other factors are also con-
sidered, such as structural compactness, completeness factor, and popularity measures
(i.e., simplified variations of page rank ranking). All these factors can be used inde-
pendently or combined in a additive or multiplicative way as mentioned previously (or
following variations of these basic schemes). The structural compactness of answers is
determined by the sum of the path lengths present in the answer as in [TWRC09] or a
more sophisticated combination of the path lengths between any two nodes ni, nj of the
answer as in [LOF+08]:

Score(ni, nj) =
∑
Pij

1

(|Pij|+ 1)2

where Pij is any path between nodes ni and nj, and |Pij| is the length of such a path.
The authors of [LLZ07] consider answers that are relevant to any subset of query

keywords. To quantify the factor of the number of matching query keywords, they employ
the completeness factor, which has been recognized as significant by IR researchers in
the face of short queries.

Another aspect differentiating approaches to scoring is whether the score of an an-
swer is computed from the combination of the scores of its components. Most ap-
proaches use monotonic functions, in which the score of an answer reflects an aggrega-
tion function over the scores of its components. Approaches such as [LLZ07, LYMC06]

Charalampos S. Nikolaou 36

Keyword search in RDF databases

use non-monotonic functions, in which the score of an answer is independent to its com-
ponents. Especially for top-k query processing approaches, non-monotonic functions
have to be paired with a respective monotonic upper bounding function to efficiently
determine the top-k answers.

2.2.5 Indexing

Subsection 2.2.1.2 made an observation that schema-aware works in databases are
more than those concerning semi-structured data. And this was due to the fact that it
is very difficult to find semi-structured data adhering to a specific schema, as opposed
to structured data. In fact, most of the publicly available semi-structured data, even im-
plying a specific schema, come without explicitly defining one, in order to be flexible for
future updates, and able to include data containing incomplete and indefinite informa-
tion, which otherwise would require revisiting the schema and modifying the portion of
data adhering to the old schema, possibly introducing further incomplete and indefinite
information. Taking also into consideration the increasing amount of heterogeneous
and schema-less data, as well as the need for their efficient storing, databases are em-
ployed extensively to this mean. Consequently, this imposing need for schema-agnostic
techniques, apart from having been reflected on databases also, it has led to approaches
leveraging special graph indexes to handle their increasing size and process keyword
queries more efficiently [HWY07, LOF+08, TLR, WLP+09].

For emphasizing the drift of keyword search approaches to indexing, it is worth
mentioning the BANKS approach [HBN+01, BHN+02], which employs a schema-agnostic
data model by mapping a tuple to a graph node and a primary-foreign key dependency
to a graph edge. Specifically, the authors had assumed that such a graph can fit in
main memory [BHN+02]. The verbatim argument was the following:

We assume that the graph fits in memory. This is not unreasonable, even
for moderately large databases, because the in-memory node representation
need not store any attribute of the corresponding tuple other than the RID.
The only other in-memory structure is an index to map RIDs to the graph
nodes. Indices to map keywords to RIDs can be disk resident. As a result
the graphs of even large databases with millions of nodes and edges can fit
in modest amounts of memory.

Unquestionably, this argument has been invalidated by the enormous amount of today’s
data availability.

Another motivation towards employing special indexes is the low performance on
the computation of the top-k answers to a keyword query. Until 2007, approaches
were employing indexes only for the identification of nodes containing query keywords;
finding substructures connecting these nodes relies on graph exploration (see Subsec-
tion 2.2.3). For a system supporting a large, ongoing workload of keyword queries, it
is natural and critical to exploit indexes that provide graph connectivity information
to speed up searches. Lack of this feature can be attributed in part to the difficulty in

Charalampos S. Nikolaou 37

Keyword search in RDF databases

indexing connectivity for general graphs, because a naive index would have an unaccept-
ably high (quadratic) storage requirement. As a result, such approaches pre-compute
various quantities (such as node distances, path lengths, etc.), which are not affected
by the query keywords, and are employed in scoring functions. This direction is taken
in [HWY07, LOF+08].

Bi-level Index

The approach followed in [HWY07] is the construction of a bi-level index. The index
partitions a graph into multiple subgraphs, or alternatively, blocks. The first level of the
index is called top-level block index (TB-index) and is used for storing mappings between
keyword and nodes to blocks. The second level of the index is called intra-block index
(IB-index) and is used for storing detailed information about a block. The functionality
of each kind of index is described in the following.

The TB-index is needed for initiating the exploration algorithm on these blocks of
the graph that contain nodes matching with a keyword of the query. Furthermore, it is
advised to direct the exploration process across blocks. To do so, it keeps keyword-block
lists (LKB(w)), which denote the blocks containing nodes matching with keyword w, and
portal-block lists (LPB(p)), which denote the blocks in which node p is contained and
has an outgoing edge to a node contained in another block, i.e., p is an out-portal node5.

The IB-index is exploited to guide the exploration algorithm inside a block. At each
step of the exploration process the TB-index is consulted to determine whether it is time
for the exploration process to be continued in another block. The IB-index employs the
following datastructures:

Intra-block keyword-node list, LKN(b, w). For each block b and keyword w it keeps
the list of nodes (sorted by distance) connected to a node matching with w inside
block b. This data structure is employed for backward search, as described in Sub-
section 2.2.3, implementing the equi-distance expansion in each keyword cluster
strategy.

Intra-block node-keyword map, MNK(b, u, w). For each block b, node u, and keyword
w it keeps the shortest distance of u to the node matching with w inside block
b. This data structure is employed for forward search, as described in Subsec-
tion 2.2.3, implementing the heuristic evaluation function used in bidirectional
search.

Intra-block portal-node lists, LPN(b, p). For each block b and node p it keeps the list
of nodes (sorted by distance) connected to a portal node, i.e., a node of block
b, which has either an outgoing or incoming edge from another block, different
from b. This data structure supports backward expansion search to continue in
a different block, because of the fact that an answer might cover more than one

5Likewise, an in-portal node is one that has an incoming edge from a node contained in another block.

Charalampos S. Nikolaou 38

Keyword search in RDF databases

blocks. Indeed, the previous two data structures guarantee the finding of the
local shortest distance of two nodes, but this distance is not guaranteed to be the
shortest globally, consider all blocks.

Intra-block node-portal distance map, DNP (b, u). For each block b and node u it keeps
the shortest distance from u to an out-portal node of b. This data structure deter-
mines a lower bound of the shortest distance between a node and a node matching
with a keyword, and is used to prune the search space.

2.3 Evaluation Methodologies for keyword search

This section discusses the current status of the evaluation methodologies and tech-
niques of systems that support keyword searching over structured and semi-structured
data, and is compared to that of IR. It is pointed out that the current state is far from
good, without providing any solid and rigid methodology, as opposed to the respective
evaluation process developed in the field of IR [Web10]. Fortunately, this area has al-
ready started to attract the interest of the research community leading to initiatives,
such as INEX (INitiative for the Evaluation of XML)6, and interesting and promising
evaluation methodologies.

2.3.1 Evaluation in unstructured data

Unstructured data is unquestionably a form of data that has been exhaustively stud-
ied and processed in the field of IR. From its early days, the most powerful way to effective
retrieval was the hierarchical indexing scheme. However, experiments conducted by the
librarian Cyril Cleverdon, at the library of the Cranfield Aeronautical College, in Eng-
land, in the late 1950s and early 1960s, showed that such indexing techniques were
weak in terms of retrieval quality. In this same position was the technique for indexing
documents by plain keywords. The experiments resulted in the fact that what mattered
was the process of retrieval itself.

The experimental methodology developed in the Cranfield tests has been highly in-
fluential. This methodology consists of three components, which are the following:

Corpus This consists of the set of documents to index and retrieve.

Topics These are the request statements, which is part of the information requests that
have to be processed against the corpus.

qrels These constitute the assessments of which documents in the corpus are relevant
to each request.

6www.inex.otago.ac.nz

Charalampos S. Nikolaou 39

www.inex.otago.ac.nz

Keyword search in RDF databases

These three components together form a test collection. The use of such a test
collection in an evaluation process is often termed the ‘‘Cranfield methodology’’ or even
the ‘‘Cranfield paradigm’’ [Voo01].

The test collection methodology is ideally suited to automation and computerization.
Relevance assessments are made in advance and are reusable, so experiments can be
performed automatically and cheaply. The first such computerized retrieval systems
were developed in the early 1960s, the most famous being that of the SMART project
at Cornell University [Sal81]. Early progress was brisk, driven by the fast turnaround
of collection-based evaluation, and the foundations of statistical information retrieval
were laid down within a decade, including term weighting, query expansion, and result
ranking. Over time, however, the field suffered from a lack of consolidation of results,
due, in part, to the small ageing test collections employed. The credibility of experimental
findings was undermined, impeding the adoption of research technologies in operational
systems.

The second great impetus to empirical IR research came with the institution of TREC7

(Text REtrieval Conferences) in 1992. TREC produces large-scale, up-to-date test col-
lections, encourages collaborative experiments upon them, and provides a venue for
publishing and discussing results. The first collection used at TREC, known as TIP-
STER8, contained around 750, 000 documents. The impact that the TREC effort had
upon the effectiveness of retrieval systems was tremendous. Even though SMART had
been under active development for three decades, the first five years of TREC saw its re-
trieval effectiveness almost double, as measured by mean average precision (MAP) [MRS],
one common evaluation metric. A number of important innovations were made during
these early years of TREC, from new similarity metrics such as Okapi BM25 or just
BM25 [RWJ+96, RW94] — now the standard retrieval formula —, to smaller refinements
that, nevertheless, had significant impacts, such as document length normalization.
However, few of these innovations were revolutionary in their nature; rather, the exis-
tence of a large and standard test environment allowed existing ideas to be extended,
refined, and tuned. Figure 2.1 depicts how much TREC affected and improved the re-
trieval effectiveness of documents since its establishment, and how this improvement
rate of effectiveness started reaching the limits of improvement of current approaches.

2.3.2 Evaluation in structured and semi-structured data

From the perspective of keyword search on structured and semi-structured data,
the earliest works laid the burden of research on performing it in an efficient manner.
At this stage, for structured approaches, any and only tuples that contained all of the
query keywords were considered correct matches of the query [ACD02, HP02]. Clearly,
the evaluation of effectiveness was not considered. As techniques improved, researches
became interested in the quality of results also. Proper ranking functions of the rel-

7http://trec.nist.gov/
8http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/

Charalampos S. Nikolaou 40

http://trec.nist.gov/
http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/

Keyword search in RDF databases

0.
15

0.
20

0.
25

0.
30

0.
35

Year

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

1992 1993 1994 1995 1996 1997 1998 1999

Innovation
StagnationTREC begins

TREC AdHoc Track ends

Figure 1: Retrieval effectiveness of the SMART versions from the first eight years of TREC, averaged across
the first eight TREC collections [3].

though, ideally suited to automation and computerization. Relevance assessments are made in advance and are
reusable, so experiments can be performed automatically and cheaply. The first such computerized retrieval
systems were developed in the early 1960s, the most famous being that of the SMART project at Cornell Uni-
versity [14, 13]. Early progress was brisk, driven by the fast turnaround of collection-based evaluation, and the
foundations of statistical information retrieval were laid down within a decade, including term weighting, query
expansion, and result ranking. Over time, however, the field suffered from a lack of consolidation of results, due
in part to the small and ageing test collections employed [16]. The largest collection used by SMART in 1990
had under 13,000 documents and was already 20 years old [15]. The credibility of experimental findings was
undermined, impeding the adoption of research technologies in operational systems [13].

The second great impetus to empirical IR research came with the institution of the Text REtrieval Confer-
ences (TREC) in 1992 [6, 20]. TREC produces large-scale, up-to-date test collections, encourages collaborative
experiments upon them, and provides a venue for publishing and discussing results. The first collection used
at TREC, known as TIPSTER, contained some 750,000 documents, a fifty-fold leap over what was available
previously. The collaborative experiments run at TREC also provided a forum for the direct comparison, on
equal terms, of many different research ideas. The first TREC experiment involved 22 research groups; by the
fifth year, this has reached 38; and at its (apparent) peak in 2005, 117 research groups participated in TREC [18].

The impact that the TREC effort had upon the effectiveness of retrieval systems can be gauged from Figure 1.
Even though SMART had been under active development for three decades, the first five years of TREC saw its
retrieval effectiveness almost double, as measured by mean average precision, one common evaluation metric.
And SMART’s experience is typical of that of other participating groups. A number of important innovations
were made during these early years of TREC, from new similarity metrics such as BM25 [12], now the standard
retrieval formula, to smaller refinements that nevertheless had significant impacts, such as document length
normalization. Few of these innovations were revolutionary in their nature; rather, the existence of a large and
standard test environment allowed existing ideas to be extended, refined, and tuned. Figure 1 also suggests
that improvements had plateaued by TREC’s fifth year, leading to the retirement of the ad-hoc (plain text)
task in favour of fresher tasks in 1998; and a recent survey has found little improvements in ad-hoc retrieval
effectiveness during the following decade [2]. This underlines the impact that the standard, large-scale test
collections produced by TREC had: in just a few years, they took retrieval technology from half of its potential,
arrived at through three decades of piecemeal research, up to the effectiveness limits of current approaches.

3

Figure 2.1: Improvement course of TREC’s retrieval effectiveness across the first eight
TREC collections [BW99] (image taken from [Web10]).

evance of the answers to the query were introduced. Some of these were specific to
the nature of structured and semi-structured data, and specifically, to their tree/graph
structure [BHN+02, HWY07]. Other ranking functions were adopted from IR, treat-
ing individual attributes or whole answers as virtual documents [HGP03, LLZ07]. The
most fruitful of all were those which combined both a structural and a full-text ranking
component [HGP03, HWY07, LOF+08, TWRC09].

With the development of ranking functions came the need to assess the quality of
the results. For this, a number of different test datasets have been employed. The most
widely used are the IMDB9 movie database10 and the DBLP11 database of academic
publications for use in a database12, XML13, or RDF14 context. Conversely, the wide
acceptance of these datasets cannot be found on the query sets. Queries are generally
formulated by the authors themselves, rather than taken from a query log, or written
by independent third parties. Self-authored queries have a strong potential for bias.
Making matters worse, query sets have not been re-used between experiments and ex-
perimenters, making comparison of results, if not applicable, extremely difficult, unless
the researcher provides that comparison directly through re-implementing or re-using
existing approaches as baselines — an important practice that is rarely followed by re-
searchers. Moreover, query sets are often quite small, rarely more than 20 per dataset.
Compared to the query sets employed in TREC collections, which are often sampled
from the log of a commercial search engine and can reach the number of 50 — a number
regarded as insufficient by many researchers [WMZ08] —, the poorness in the quality of

9http://www.imdb.com/
10http://www.imdb.com/interfaces
11http://www.informatik.uni-trier.de/˜ley/db/
12http://dblp.l3s.de/dblp++.php
13http://dblp.uni-trier.de/xml/
14http://dblp.l3s.de/dblp++.php

Charalampos S. Nikolaou 41

http://www.imdb.com/
http://www.imdb.com/interfaces
http://www.informatik.uni-trier.de/~ley/db/
http://dblp.l3s.de/dblp++.php
http://dblp.uni-trier.de/xml/
http://dblp.l3s.de/dblp++.php

Keyword search in RDF databases

the first queries is unquestionable.
In the same style follows the relevance assessment of the results, which is gener-

ally performed by the authors themselves or their colleagues. Like self-authoring, self-
assessment is prone to biasing. The suspicion that such bias has occurred is strongest
where abnormally high effectiveness scores are achieved. For instance, top-end scores
at TREC for mean reciprocal rank (MRR) — an admittedly unstable metric —, are around
0.8, but [LLZ07] achieve the rather astonishing, perfect MRR score of 1. Similarly, the
best fully automatic TREC participant systems achieve scores of around 0.25 under the
top-100 precision metric, but [LOF+08] reports around 0.9.

Given the disparity of query sets, corpora, and assessment methodologies, it is not
straightforward to determine how retrieval effectiveness in keyword search over struc-
tured and semi-structured data has progressed. The only and safe method is to follow
the chain of baselines. It seems that keyword search over structured data is at roughly
the same stage that IR was before the ‘‘TREC era’’. What is needed is a standard method,
combined with large-scale, independently curated test collections [Web10].

2.3.2.1 XML Evaluation

Fortunately, from the perspective of semi-structured data, there is an increasing
mobility towards this direction. For the evaluation of XML the INEX initiative has been
established, which aims at providing an infrastructure for evaluating the effectiveness
of content-oriented XML retrieval. The main goal of INEX is to promote the evaluation
of focused retrieval15 by providing large test collections of semi-structured documents,
uniform evaluation measures, and a forum for organizations to compare their results.
The objective of the evaluation in INEX, based on the ad-hoc task, is to assess a system’s
retrieval effectiveness, where effectiveness is measured as a system’s ability to satisfy
both content and structural aspects of a user’s information need and retrieve the most
specific relevant document components, which are exhaustive to the topic of request
and match its structural constraints [GK02].

In this direction, and in line with the methodology employed in TREC, in 2002 INEX
licensed a collection of IEEE articles for use in XML element retrieval experiments. In
2005 this collection was expanded with more IEEE articles. In 2006 the IEEE collection
was complemented with an XML dump of the Wikipedia, which was itself updated in
2009. The Lonely Planet Guide16 has also been used, and since 2007 a collection of
scanned books (licensed from Microsoft) has also been made available for book retrieval
experiments.

The methodoly that INEX follows for test collection construction is the following: each
year INEX subscribers (participants) provide sample queries (called topics) they believe
are suitable for experimental purposes. These are collected, verified, and de-duplicated

15The process of focused retrieval is oriented towards satisfying information need based not only on the
document level, but also on the component level that comprises a document.

16http://www.lonelyplanet.com/

Charalampos S. Nikolaou 42

http://www.lonelyplanet.com/

Keyword search in RDF databases

by INEX before being distributed back to the participants as a new set of topics. Partici-
pants then run the topics through their search engines17 and submit back to INEX their
results. It is important to be noted here, that the results are not only document rele-
vances, but also component (i.e., XML element) relevances of these documents. From
the submitted result sets, using a technique known as pooling, a set of documents are
chosen for evaluation. These documents are then distributed back to the original au-
thors of the topics to make judgments as to which document/elements are relevant and
which are not for each topic, providing also a ranked list of documents/components.
In this way the relevance of a document to a query is not known before the participant
submits their runs, and no one person is responsible for creating the set of topics or
making the decision as to which documents are relevant to which topics.

The assessements of document/components are based on the following two dimen-
sions:

Topical relevance , which reflects the extent to which the information contained in a
document component satisfies the information need.

Component coverage , which reflects the extent to which a document component is
focused on the information need, while being an informative unit.

Both these dimensions are measured using graded scales. For document relevance
the following four-point scale is used [KJ02]:

Irrelevant (0): The document component does not contain any information about the
topic of request.

Marginally relevant (1): The document component mentions the topic of request, but
only in passing.

Fairly relevant (2): The document component contains more information than the topic
description, but this information is not exhaustive. In the case of multifaceted
topics, only some of the sub-themes or viewpoints are discussed.

Highly relevant (3): The document component discusses the topic of request exhaus-
tively. In the case of multifaceted topics, all or most sub-themes or viewpoints are
discussed.

Component coverage is selected from the following four categories [Sch98]:

No coverage (N) : The topic or an aspect of the topic is not a theme of the document
component.

Too large (L): The topic or an aspect of the topic is only a minor theme of the document
component.

17This is in contrast to TREC, in which the participants are provided with a reference retrieval system
to assess the relevance of a document to a topic.

Charalampos S. Nikolaou 43

Keyword search in RDF databases

Too small (S): The topic or an aspect of the topic is the main or only theme of the
document component, but the component is too small to act as a meaningful unit
of information.

Exact coverage (E): The topic or an aspect of the topic is the main or only theme of the
document component, and the component acts as a meaningful unit of informa-
tion.

Due to the nature of XML retrieval, metrics from traditional evaluation initiatives like
TREC could not be applied in INEX without modification. Therefore, it was necessary for
INEX to develop new evaluation procedures, such as implicit relevance assessements,
quantisation of relevance and coverage, and recall/precision metrics. More details can
be found in [GK02].

2.3.2.2 Semantic Web Evaluation

From the perspective of the RDF framework and Semantic Web technologies in gen-
eral, there are a few experimental works proposing interesting evaluation methodolo-
gies, the most notable of which are [PAAG+10, PAAG+, FLS+09]. Except for these, the
SemSearch Workshop18 of the WWW conference, established in 2009, focuses (apart
from others) around semantic search in general, and specifically in proposing evalua-
tion methodologies, and constructing standard datasets and benchmarks for semantic
search.

INEX+DBpedia The authors of [PAAG+10, PAAG+], first, attempt to built a new corpus
from the intersection of the DBpedia19 knowledge base and the INEX-Wikipedia20 col-
lection, which results in a set of 2, 233, 718 documents. With the new corpus, the INEX
2009 topics and assessments are adapted to this new corpus, producing 68 topics and a
properly modified assessments file. Such an approach is justifiable, taking in mind the
common structure of XML and RDF. Second, they establish metrics to evaluate retrieval
performance exploiting the TREC-eval software21, which implements state-of-the-art IR
metrics used for search engine performance evaluation [MRS]. These metrics are gener-
ally oriented around two main directions: the ability to retrieve relevant documents and
the ability to sort them properly. Some of the used metrics are the following:

Mean Average Precision (MAP), which is the average of the precision values measured
at different recall levels,

18SemSearch 2009-2010: http://km.aifb.kit.edu/ws/semsearch09, http://km.aifb.
kit.edu/ws/semsearch10/

19http://DBPedia.org/About
20A collection of XML documents obtained from Wikipedia, which are offered through INEX, and can be

adapted to meets the needs of Semantic Web technologies, such as RDF.
21http://trec.nist.gov/trec_eval

Charalampos S. Nikolaou 44

http://km.aifb.kit.edu/ws/semsearch09
http://km.aifb.kit.edu/ws/semsearch10/
http://km.aifb.kit.edu/ws/semsearch10/
http://DBPedia.org/About
http://trec.nist.gov/trec_eval

Keyword search in RDF databases

Geometric Mean Average Precision (GMAP), which is a variant of MAP that uses a
geometric mean,

Precision after X documents (P@X), which measures the precision afterX documents
have been retrieved, and

R-Precision , which measures precision after R documents have been retrieved, where
R is the total number of relevant documents for a query.

The proposed evaluation framework was used to evaluate two ranking functions,
BM25, and Lucene22. The results showed that BM25 outperforms Lucene, especially
when dealing with structured documents, e.g., XML documents. It is worth noting that
the evaluation setting was similar in style to an evaluation based on the TREC standards.
Specifically, the set of queries was taken from the INEX 2009 contest, which provides
judgments for 68 queries. Each query consists of three different versions of the same
topic: title, description, and narrative.

TREC in Ontology-based setting The authors of [FLS+09] propose a benchmark based
on an adaptation of the Cranfield paradigm (see Subsection 2.3.1) to evaluate ontology-
based search approaches and compare them against baseline IR models. According
to the standards of a test collection, the proposed benchmark comprises the following
components:

1. a text document collection of size 10 GB,

2. a set of 20 queries,

3. the document relevance judgments for these queries,

4. a set of ontologies and knowledge bases covering the query topics, and

5. a set of annotations for the ontologies and knowledge bases.

The text document collection as well as the set of queries and the document rel-
evance judgments are obtained from one of the most widely used datasets in the IR
community, the TREC WEB track, and specifically, the TREC 9 and TREC 2001 WEB
track. Concerning the ontologies, the authors faced the problem of the sparsity and
incompleteness of semantic data available on the Web. Due to this problem, a number
of 40 publicly available ontologies were chosen, together with another 100 repositories of
semantic data, which covered a subset of the test collection and queries.

As far as knowledge bases are concerned, the problem of sparsity and availability is
much more overt. Current publicly available ontologies contain significant structural
information in the form of classes and relations, but conversely are barely populated

22http://lucene.apache.org/

Charalampos S. Nikolaou 45

http://lucene.apache.org/

Keyword search in RDF databases

or not at all. As a result, the available KBs are still not enough to perform significant
large-scale experiments. To overcome this limitation, some of the selected ontologies
have been semi-automatically populated using Wikipedia as an information source.

Last, from the side of annotations, the goal is to generate weighted annotations
about the documents of the collection for each semantic entity of each ontology and
knowledge base. The rationale behind this approach lies in the attempt of the authors
towards bridging the semantic gap between a document and an ontology. Provided that
all ontology entities are associated to one or more documents via these annotations, the
answers of a keyword-based search algorithm can be mapped to the documents of the
collection, and then evaluated using the standard IR methodology.

The authors applied the proposed benchmark on a use case example to compare a
real ontology-based keyword search system [FLS+08] against the following systems:

Keyword search (KS): a conventional keyword-based retrieval approach, using the Jakarta
Lucene library23.

Best TREC automatic search (BTA): the approach used by the best TREC search en-
gine that uses as query just the title section.

Best TREC manual search (BTM): the approach used by the best TREC search engine,
which manually generates the queries using information from the title, description,
and the narrative.

The evaluation conducted using two metrics, MAP and P@10. The results show that
the ontology-based approach outperforms KS, mainly due to the annotation generation,
which results in entities been annotated with documents not containing keywords de-
scribing that entity. As far as BTA is concerned, the results are comparable. Regarding
BTM, it outperforms all systems. To justify this last result, the authors argue that there
are two reasons to blame: first, the annotation process, the quality of which affects the
quality of the answers, and second, the fact that many documents in the answer of the
the ontology-based approach were not judged in the TREC collection, and thus consid-
ered as irrelevant, whereas close inspection by the authors showed that a significant
portion, 31.5%, were in fact relevant.

2.4 Other Directions to Keyword Search

The research interest around keyword search does not focus on query processing
only. Besides, a lot of interest lays on other aspects of keyword search that have to do
with the improvement of user interaction with systems providing keyword search inter-
faces, as well as improving the quality of search results. In this respect, the proposed
works aim at providing more intuitive interfaces and visualizations for exploring both
the results of keyword searching and the content that the underlying data capture, as

23http://lucene.apache.org

Charalampos S. Nikolaou 46

http://lucene.apache.org

Keyword search in RDF databases

well as techniques for bridging the semantic gap between the keywords of the query
and the content of the underlying data. The most notable approaches involve browsing,
faceted search, result snippets, result clustering, and query cleaning. Although all of
them have been successfully used in text search, they pose new challenges in the con-
text of keyword searching on structured and semi-structured data. In the following, a
brief introduction is given for each one.

Browsing. Approaches dealing with browsing provide zero-effort web publishing of the
underlying data, which would otherwise require a lot of effort or remain dormant.
Furthermore, they provide rich interfaces for exploring search results in the form
of hierarchical, graphical or faceted views, which is very helpful in identifying the
in-between connections of the underlying data and refining the initial keyword
query [ACD+03, HBN+01, BHN+02, WLP+09, TMH10, BW07].

Result Snippets. To compensate the inaccuracy of ranking functions, result snippets
should be generated [HLC08b, HLC08a]. The principle of result snippets is orthog-
onal to that of ranking functions: let users quickly judge the relevance of query
results by providing a brief quotable passage of each query result, so that users
can choose and explore relevant ones among many results.

Result Clustering. In face of query ambiguity, instead of displaying a mixture of query
results of different semantics, it is more desirable to cluster query results based
on their similarity, so that the user can quickly browse all possible interpreta-
tions of query semantics and choose the sets of results that are relevant [HKPS06,
KZGM09, WPZ+06].

Query Cleaning. Query cleaning involves semantic linkage and spelling corrections of
database-relevant query keywords, followed by segmentation of nearby query key-
words so that each segment corresponds to a high quality data term. Compared
to query cleaning on textual documents, query cleaning for structured data brings
great potentials with new challenges [PY08].

2.5 Conclusions

In this chapter related work in the field of keyword search over structured and semi-
structured data was discussed. To assist presentation of related work, a number of
dimensions were introduced, such as the data model, structure of the answer, explo-
ration algorithms, ranking/scoring of answers, and indexing. Related work, then, was
categorized according to these dimensions.

The next contribution of this chapter was the presentation of the current status of
evaluation methodologies and techniques of systems that support keyword searching
over structured and semi-structured data. It was pointed out that the current state
is far from good, without providing any solid and rigid methodology, as opposed to the
respective evaluation process developed in the field of IR.

Charalampos S. Nikolaou 47

Keyword search in RDF databases

Last, the chapter discussed other directions taken in keyword searching, which di-
verge from the path of query processing aiming at improving user interaction and quality
of results.

Charalampos S. Nikolaou 48

Keyword search in RDF databases

Chapter 3

Our approach to keyword-based search

This chapter presents our approach to keyword-based search. The approach is based
on and extends the approach presented in [TWRC09]. In [TWRC09], the authors present
an approach for keyword search on graph-structured data, and particularly RDF. Con-
cepts from the field of Information Retrieval are employed to support an imprecise match-
ing that incorporates syntactic and semantic similarities between a user keyword and
the content of the queried RDF data. As a result, the user does not need to know the
labels of the data elements when doing keyword search. From the perspective of query
answering, the user keywords are interpreted as elements of structured queries letting
the user select, in an additional step, one of the top-k computed queries to retrieve all
its answers. The authors of [TWRC09] have devised a new algorithm for subgraph explo-
ration guaranteeing that the computed results have the k best scores. Last, a strategy
for graph summarization is employed that can substantially reduce the search space.
In effect, the exploration of subgraphs does not operate on the entire data graph, but a
summary one containing only the elements that are necessary to compute the queries.

The rest of the chapter is organized as follows. Section 3.1 discusses the contri-
butions of this dissertation to keyword-based search. Next, in Section 3.2, the data
model and query language employed in the query processor are presented. Section 3.3
presents the algorithm of the keyword-based search. Last, Section 3.4 concludes the
chapter.

3.1 Contributions to keyword-based Search

This dissertation adopts and improves several of the techniques presented in [TWRC09].
The contributions of the work of this dissertation are summarized in the following:

• A key point that differentiates our approach is that the answer to a keyword query
is a sorted list of entities that are relevant to the conjunction of the keywords of the
query. From the perspective of an information search system, these entities try to
capture the meaning of the keywords and provide relevant information with a view
to satisfying the information needs of the user that posed such a query. Conversely,

Charalampos S. Nikolaou 49

Keyword search in RDF databases

the authors of [TWRC09] are interested in presenting structured queries to the
user, which correspond to descriptions of the answers. Thus, the keyword search
process contains an additional, interactive, step, namely the presentation of these
queries. We feel that such an interactive step is not efficient and useful, because,
first, it adds an extra interaction between the user and the system, and, second,
it does not clearly separate the answer’s space. It is very common, that different
structured queries are very similar, each one providing a highly overlapping set of
answers at such a level that the user feels they should have been merged.

• A significant extension is the addition of a temporal dimension to a keyword query.
To this end, the keyword-based query language is extended with temporal con-
structs (i.e., ‘‘before 15/05/1985’’) (see Subsection 3.2.2), which define temporal
constraints on the given keywords. Further, the graph exploration algorithm has
been extended to operate on such temporal constraints.

• The graph exploration algorithm has been improved appropriately (see Subsec-
tion 3.3.3) resulting in better time performance and better quality in the results.

• Finally, in contrast to [TWRC09], the top-k interpretations of the query keywords
are taken into account sacrificing performance against better quality of results and
satisfaction of the user information needs.

3.2 Data Model and Query Language

The data model of the query processor that does keyword search is built on the data
models of RDF(S) and temporal RDF (see subsection 2.2.1 for more details). The query
language is keyword-based, i.e., a query is just a set of keywords, and has been extended
with temporal constraints. In the following the data model and the query language are
presented in detail.

3.2.1 Data Model

The data model adopts the temporal model and representation of [GHV05, GHV07]
concerning the time during which a statement (i.e., a triple) is valid, but also extends
it appropriately in order to associate also a class or an individual with the time dur-
ing which it is valid, or in other words, define its lifetime. This is done using the
semantics of RDF(S) and particularly the fact that every resource is an instance of class
rdfs:Resource. Hence, the lifetime of a class c is a temporal triple of the form (c,
rdf:subClassOf, rdfs:Resource)[t] and in the case of an individual i, it is a
temporal triple of the form (i, rdf:type, rdfs:Resource)[t].

Definition 1 The lifetime of a resource is given by the mapping λ : U → I which maps a
class c and an individual i to t ∈ I if (c, rdfs:subClassOf, rdfs:Resource)[t]
or (i, rdf:type, rdfs:Resource)[t] exists respectively.

Charalampos S. Nikolaou 50

Keyword search in RDF databases

In contrast to works [GHV05, GHV07], which deal with definite temporal information,
we deal also with indefinite temporal information. Indefinite information concerning a
time point can be given as an interval in which the point must lie. In the case of indefinite
information about time intervals, the starting and ending time points of an interval are
defined in the same way. This way, an interval expression is enough both for time points
and intervals (a time point is an time interval whose start and end points are the same).

Definition 2 A time interval is a quadruple (s1, s2, e1, e2) ∈ I , where I ⊆ N ×N ×N ×N
is the set of time intervals and N is the set of natural numbers.

Likewise, a temporal RDF triple is a temporal RDF triple as defined in [GHV05,
GHV07], that is, (s, p, o)[t], where t ∈ I. An example of such an interval is this:
(19850501, 19850520, 20100301, 20100304), which may be used to denote that a state-
ment was valid during the period that started sometime between days 01/05/1985
and 20/05/1985 and ended some time during days 01/03/2010 and 04/03/2010.
For readability purposes, such an interval can be given in the form of [19850501 −
19850520, 20100301 − 20100304]. Using this second form, an interval having a definite
start time point can be given as [19850501, 20100301− 20100304] and an interval having
both a definite start and end time point can be given simply as [198505015, 20100302].

In terms of data representation, a time interval is represented with four natural
numbers. These numbers encode the usual data notation year-month-day as done in
ISO 8601 encoding1. The first two numbers denote the interval of the starting point
and the last two numbers denote the interval of the ending point. If all numbers are
equal, then the interval is a definite time point. If the first two numbers are equal, then
the interval has a definite starting time. The same applies to the ending time point. In
effect, time intervals may be definite or have indefinite start or end points for which a
time interval estimate is known, in which case the information is indefinite.

3.2.2 Query Language

The query language is keyword-based, i.e., a query is just a set of keywords. To
query data with temporal information the keyword query language is extended with
temporal constraints. Temporal constraints define a temporal relation between two
intervals. Temporal relations may be any of the thirteen temporal relations defined
by the work of Allen [All81], such as ‘‘a before b’’, ‘‘a meets b’’, ‘‘a overlaps b’’,
‘‘a starts b’’, ‘‘a finishes b’’, ‘‘a during b’’, and ‘‘a cotemporal b’’. The other
six can be derived swapping the intervals of the first six relations. All these temporal
relations have been implemented as temporal operators on time intervals and extended
to take indefinite information into account. In effect, having indefinite time intervals
introduces uncertainty in the answer of whether a time interval is related to another
in any of these thirteen relations. For example, consider a definite time interval a,
[1985/05/15, 1985/05/29] and an indefinite one b, [1984/05/23, 1985/05/10−1985/05/25].

1http://en.wikipedia.org/wiki/ISO_8601

Charalampos S. Nikolaou 51

http://en.wikipedia.org/wiki/ISO_8601

Keyword search in RDF databases

Then, it is uncertain whether ‘‘b meets a’’, or ‘‘b overlaps a’’, or ‘‘b before a’’, but it is
certain that ‘‘a starts b’’, ‘‘a finishes b’’, ‘‘a cotemporal b’’, etc. do not hold. This
kind of uncertainty is analogous to the one captured by the uncertainty operator of the
work in[Kou94].

Formally, a query is of the following form:

KL φ

The expression KL is a list of keywords and φ is a finite conjunction of formulas of
the form R c , where R is one of the thirteen Allen relations and c ∈ I , i.e., it is
a time interval. Given that a temporal RDF graph in the proposed data model can
contain indefinite temporal information, the usual issues known from work on indefinite
information in the relational model arise [Gra91]. Thus, a query can have possible
answers, certain answers, or answers under conditions. Querying temporal data is
orthogonal to the approach taken for keyword querying, in the sense that a temporal
constraint, given together with a user keyword, implies the execution of the keyword
search algorithm applying the temporal constraints in every stage of the exploration
process (see Subsection 3.3.3). This means that during exploration, an element of the
graph model is not explored if does not satisfy the given temporal constraints.

3.3 The keyword-based Search Algorithm

In this section, the query processing algorithm that does keyword search on top
of RDF data is presented. Before proceeding to its presentation, the employed data
structures are discussed.

3.3.1 Employed Data Structures

The keyword search algorithm can operate on graph data models representing the
underlying RDF data. Currently, three different graph data structures can be used,
each one providing a different view on the underlying data and affecting the space and
time complexity of the algorithm in a different way. Using the terminology of [TWRC09],
these graph data structures are the data graph, summary graph, and augmented graph.
The data graph is an identical view of the underlying RDF graph. The summary graph
summarizes the data graph in the sense that it contains structural (schema) elements
only, such as classes and properties between classes. The augmented graph is a super
graph of the summary graph containing also specific elements of the data graph; those
that are not present in the summary graph and match with a keyword in the query, that
is, those that are present in the instance level. In the following, formal definitions of the
data, summary, and augmented graphs are given.

Definition 3 A data graph G is a tuple (V, L,E), where the following apply:

Charalampos S. Nikolaou 52

Keyword search in RDF databases

Table 3.1: A set of RDF triples
Subject Predicate Object Subject Predicate Object
pro1 type Project res2 name Y annis Ioannidis
pro2 type Project res1 name Manolis Koubarakis
pro1 name Papyrus res1 worksAt univ1
pub1 type Publication univ1 type University
pub1 author res1 univ2 type University
pub1 author res2 University subclass Agent
pub1 year 2010 Researcher subclass Person
pub2 type Publication Person subclass Agent
res1 type Researcher Agent subclass Resource
res2 type Researcher res3 type Researcher
univ1 name DI&T pub1 hasProject pro1

• The set V is a finite set of vertices, which is the disjoint union VE] VC] VV . The
set VE is called E-vertices and represents the set of RDF entities, the set VC is called
C-vertices and represents the set of RDF classes, while the set VV is called V-vertices
and represents the set of RDF literals.

• The set L is a finite set of edge labels. subdivided by L = LR]LA]{type, subclass},
where LR represents the labels of edges between two entities and LA represents the
labels of edges between an entity and a literal. The labels type and subclass have
the same meaning as in the RDF framework.

• The set E is a finite set of edges of the form e(v1, v2) with v1, v2 ∈ V and e ∈ L.
Moreover, the following restrictions apply:

– e ∈ LR if and only if v1, v2 ∈ VE,

– e ∈ LA if and only if v1 ∈ VE and v2 ∈ VV ,

– e = type if and only if v1 ∈ VE and v2 ∈ VC , and

– e = subclass if and only if v1, v2 ∈ VC .

For example, the data graph representing the triples of Table 3.1 is shown in Fig-
ure 3.1. Note that nodes representing entities are depicted in a circles, classes are
depicted in ellipses, while typed literals are depicted in squared circles.

Definition 4 A summary graph Gs of a data graph G = (V, L,E) is a tuple (V ′, L′, E ′)
with vertices V ′ = VC ∪ {Resource}, edge labels L′ = LR] {subclass}, and edges E ′ of
type e(v1, v2) with v1, v2 ∈ V ′ and e ∈ L′. In particular, every vertex v′ ∈ VC represents
an aggregation of all the vertices v ∈ V having the type v′, i.e., Jv′K := {v|type(v, v′) ∈ E}
and Resource represents the aggregation of all the vertices v ∈ V with no given type, i.e.,
JResourceK = {v|¬∃c ∈ VC with type(v, c) ∈ E}. Accordingly, we have e(v′1, v

′
2) ∈ E ′ if

and only if there is an edge e(v1, v2) ∈ E for some v1 ∈ Jv′1K and v2 ∈ Jv′2K.

Charalampos S. Nikolaou 53

Keyword search in RDF databases

su
bc
la
ss

sub
clas

s

subclass
subclass

wo
rks

At

hasProject

aut
hor

pro1

pro2

pub1

pub2

res
res

2

res3

univ1

univ2

Project

Researcher

University

Publication

Person Resource

Agent

author

type

ty
p
e

typ
e

ty
p
e

ty
p
e

ty
pe

type

Manolis
Koubarakis

Yannis
Ioannidis

na
m
e

n
a
m
e

Papyrus name

DI&T

na
m
e

2010

ty
p
eyear

type

1

Figure 3.1: The data graph of the RDF triples of Table 3.1

Project Researcher

Publication Person

Agent

University

Resource

su
bc
la
ss

sub
clas

s

subclass

su
b
cla

ss

worksAt

h
a
sP
ro
je
ct au

th
or

Figure 3.2: The summary graph of the data graph of Figure 3.1

For example, the summary graph corresponding to the data graph of Figure 3.1 is
shown in Figure 3.2.

Definition 5 Given a set K of keywords, the augmented graph Gs
K of a data graph G

consists of G’s summary graph Gs additionally containing the following:

• e(v′, vk) for any keyword matching element vk, whereG contains e(v, vk) and type(v, v′),
and

• ek(v′, value) for any keyword matching element ek, where G contains ek(v, ṽ) and
type(v, v′), and ṽ is not a keyword matching element. Thereby, value is an new
artificial node.

For example, the augmented graph corresponding to the data graph of Figure 3.1
and the keyword query 2010 koubarakis publications is shown in Figure 3.3.
Note that the keyword elements that have been matched with the user keywords are
highlighted in orange. These keyword elements are the starting points of the exploration
process described in subsection 3.3.3.

The keyword search algorithm conducts an exploration algorithm only on the aug-
mented graph upon submission of a user query, and uses the summary graph to suc-
cinctly represent the underlying data. In effect, a user query corresponds to an aug-
mented graph, that is, the summary graph augmented with data from the data graph.

Charalampos S. Nikolaou 54

Keyword search in RDF databases

2010 Resource

Agent

Researcher

Person

University

h
a
sP
ro
je
ct

auth
or

su
b
cla

ss

worksAt

year

nam
e

su
bc
la
ss

subclass

sub
clas

s

Project

Publication

Manolis
Koubarakis

Figure 3.3: The augmented graph of the data graph of Figure 3.1 and keyword query
2010 koubarakis publications

Clearly, the use of summary and augmented graphs plays a significant role on the data
and time performance of the algorithm. In the case of data performance, the algorithm
uses only the structural information from the data graph, which is embedded in the
summary and augmented graph making the keyword search algorithm capable of work-
ing mostly in memory.

At this point, it has to be noted that it is absolutely realistic to assume that the sum-
mary and augmented graph structures can fit in memory. For example, as of the Novem-
ber 2009, the DBpedia dataset describes 2.9 million ‘‘things’’ [sic] (i.e., resources) with
479 million ‘‘facts’’ [sic] (i.e., triples). From these resources, 205 are classes which are
inter-connected with 1200 properties, 1.170.000 are individuals, and the rest 479 mil-
lion resources identify links to external images, web pages, and other datasets. Taking
into account that DBpedia is a snapshot of Wikipedia, which is rapidly evolving, mostly
in terms of data entries and not in terms of new knowledge that affects its schema, it is
realistic to assume that the aforementioned classes and properties, which comprise the
summary graph, can fit in main memory, and that do not incur any significant space
overhead to the algorithm.

In the case of time performance, the worst case scenario for the algorithm is to
explore the whole augmented graph. While this does not incur any significant overhead,
it is avoided because it leads to poor quality answers. So, again the time performance
is of no concern. The only case in which there is a time performance issue, is when a
keyword may have a great number of interpretations, that is, when it could correspond to
different elements of the data graph. In such cases, which are the norm for such search
applications, the time overhead is significant, because keyword interpretation becomes
a combinatorial problem, since we have to take into account all possible combinations
of the interpretations of the user keywords.

Details concerning the construction of these graph data structures are given in Chap-
ter 4, where the components of the query processor are presented in detail.

Charalampos S. Nikolaou 55

Keyword search in RDF databases

3.3.2 Scoring of graphs

The computation process can result in many queries all corresponding to possible
interpretations of the query keywords. In the following, several scoring functions are
introduced that aim to assess the relevance of the computed queries. It is worth noting
that while this subsection talks about scoring, the scoring functions employed are in
fact cost functions, i.e., they measure the badness (high cost, low score) and not the
goodness (low cost, high score) of the answers. This should not confuse the reader.

Another point worth noting, is that queries are seen as graphs. These graphs are
constructed from a set of paths P . The score of such a graph is defined as a monotonic
aggregation of its path costs.

CG =
∑
pi∈P

Cpi

In general, the cost of a path is computed from the cost of its elements.

Cpi =
∑
n∈pi

c(n)

Path Length

The path length is commonly used as a basic metric for ranking answer trees/graphs
in recent approaches to keyword queries. This is based on the assumption that the
information need of the user can be modelled in terms of entities, which are closely
related. Thus, a shorter path between two entities should be preferred. In effect, compact
graphs or alternatively graphs with low diameter are preferred. For computing path
length, the general cost function for paths given above can be casted as Cpi =

∑
n∈pi 1,

i.e., the cost of an element in any path is simply one, cp(n) = 1. Accordingly, the cost of
a graph can be computed via

CGpath =
∑
pi∈P

∑
n∈pi

cp(n)

Another, more strict way of defining the cost of an element knowing a-priori the
diameter of the graph diam, is to use cp(n) = 1/diam. In this respect, the cost of a path
with length equals to the diameter of the graph, would be 1, i.e., the maximum cost.

Keyword Matching

The keyword matching cost function assigns to every element of a graph a cost in
the interval [0, 1] according to whether it is a keyword element or not. Suppose that
sim(·) is a score function determining the textual similarity of a query keyword to that
of a keyword present in the index. Then, the cost for a graph element n is given by the
following expression:

Charalampos S. Nikolaou 56

Keyword search in RDF databases

ckm(n) =

{
ε > 0 , if 1− sim(n) = 0
1− sim(n) , otherwise

That is, keyword elements have lower cost, than those that were not matched against
a keyword of the query, which have a cost of one2. Accordingly, the cost of a graph can
be computed via

CGkm =
∑
pi∈P

∑
n∈pi

(1− sim(n))

Popularity

The purpose of the popularity function is to measure how popular is a graph taking
into account the popularity of its elements. For class nodes, popularity is determined
by the number of entities that have as type that class node. For entity nodes, popularity
is determined by the number of incoming edges (triples in which they are objects). For
edges, popularity is determined by the number of pair of entities connected with that
edge. The higher the popularity of an element, the lower should its contribution be
to the cost of a path. Accordingly, if |vagg| is the number of E-vertices that have been
clustered to a C-vertex v, |eagg| is the number of R-edges that have been clustered to a
corresponding R-edge e of the summary graph, |V | and |E| is the number of nodes and
edges, respectively, in the data graph, and |vinc| is the number of incoming edges for
node v, then the cost for a graph element can be computed by the following expression:

cpop(n) =

1− |nagg |

|V | , if n ∈ VC
1− |ninc|

|V | , if n ∈ VE
1− |nagg |

|E| , if n ∈ LR

As before, the cost of a graph can be computed via

CGpop =
∑
pi∈P

∑
n∈pi

cpop(n)

Combine

The combine function aims at combining the former defined functions, to derive a
score function taking in mind the succinctness of the answer (path length), the level
of matching of the query keywords with the answer (keyword matching), and also the
popularity of each element in the answer relative to the whole graph (popularity). The
combination of these functions can be computed via

CGcomb =
∑
pi∈P

∑
n∈pi

(cp(n) ∗ ckw(n) ∗ cpop(n))

2It is required that ckm be positive so as to be combined effectively with other score functions.

Charalampos S. Nikolaou 57

Keyword search in RDF databases

It is worth mentioning that while the path length and the popularity scores can be
computed off-line, the matching scores are specific to the query and are thus computed
and associated with elements of the summary graph only during query computation.

3.3.3 Overview of the algorithm

The process of querying RDF graph data using keywords consists of the following
phases:

Keyword interpretation. During this phase each keyword of the query is interpreted as
an element of the RDF data (i.e., class, property, or individual) and, subsequently,
as an element of the data graph. To this end, a keyword index is employed, which
indexes all string literals. This way, imprecise syntactic matching of keywords
to RDF entities is supported. Next, these RDF entities are mapped to entities of
the data and summary graph constructing the augmented graph upon which the
subsequent phases operate.

Graph Exploration. This phase explores the augmented graph. Specifically, the in-
terpreted keywords from the previous stage serve as starting points of the graph
exploration. The aim is to find the k best subgraphs that connect the keywords with
each other and satisfy the temporal constraints (i.e., all entities of the subgraphs
have a lifetime that satisfy the temporal relations in the query).

Query Mapping. During this phase, the subgraphs of the previous phase are mapped
to SPARQL queries, which are, then, evaluated against the RDF store of the RDF
data deriving new entities.

Entity Transformation. The last phase constructs the answer of the keyword query in
the form of a sorted list of RDF entities. For this, each subgraph is traversed to
extract its entities. All properties (i.e., edges) and literals (i.e., value nodes) are
discarded. Thereby, the derived entities are only classes or entities.

In the following, the aforementioned phases are described in more detail.

Keyword Interpretation

This phase of the algorithm interprets the user keywords to elements of the RDF data,
which can be either a class, a property, or an individual. To do that, a keyword index
is constructed which indexes all string literals of the RDF data. For each keyword, first,
the index of RDF literals is examined taking the matching elements. These matching
elements comprise different interpretations of a single user keyword in the context of
the underlying data. Each such interpretation, i.e., each element of the data graph, is
mapped to an element of the summary graph. Because of the fact that the summary
graph contains only structural information, some interpretations will not be mapped
to any elements of the summary graph. Those elements are added to the summary

Charalampos S. Nikolaou 58

Keyword search in RDF databases

Table 3.2: An example of the interpretations for two keywords.

kw1 score kw2 score
a1 0.9 b1 0.9
a2 0.8 b2 0.85
a3 0.72 b3 0.7
a4 0.6 b4 0.2
a5 0.5 b5 0.15
a6 0.4 b6 0.1
a7 0.2 b7 0.05

graph, comprising the augmented graph. After this stage, all these elements are named
keyword elements. This interpretation process is repeated for each user keyword and,
at a final step, the top-k′ possible combinations of interpretations are calculated. It
is mentioned that the augmented graph is constructed using a single interpretation
from every keyword in the user query. In other words, every combination of keyword
interpretations is mapped to a different augmented graph.

The calculation of all possible combinations of keyword interpretations is an issue
that is not tackled in keyword search works in general due to its high time complexity.
Most of the works simply ignore this problem. Others, opt for taking it into account in
the design of the keyword search algorithms, but ignore it in the respective implemen-
tation (see for example [TWRC09]). We believe that this limitation is very restrictive and
its support is of great importance due to the fact that the user might have no knowledge
about the domain of the underlying data. Furthermore, using techniques from informa-
tion retrieval such as stemming, lemmatization, and imprecise syntactic matching, it is
evident that the best result of the interpretation process may not satisfy the user needs.
In contrast to the work in [TWRC09], we calculate the top-k′ possible combinations of
keyword interpretations and for each such combination a graph exploration is initiated
on the respective augmented graph. It is worth noting, that the design of the keyword
search algorithm in [TWRC09] enforces the addition of all keyword interpretations in
the summary graph. We strongly believe that such an approach is irrational taking into
account the design of the algorithm: the exploration process of the resultant augmented
graph reports a subgraph, i.e., a candidate answer, only if the subgraph is composed of
paths the origin of which is a keyword element. That is, such an answer would embody
all keyword interpretations, which is rather impossible.

The calculation of the top-k′ possible combinations of keyword interpretations is done
using Algorithm 1. Formally, for n keywords, and n sorted lists in descending score order
(interpretations per keyword), the problem amounts to computing the top-k′ n-ary tuples,
that is, the n tuples with the highest sum of scores of items from each sorted list. As
an example, consider two keywords, kw1 and kw2, and their respective interpretations
with scores as shown in Table 3.2. Then, the top-2, top-3, top-4, top-5, and top-

Charalampos S. Nikolaou 59

Keyword search in RDF databases

6 combinations are the following: (a1, b2) with score = 1.75, (a2, b1) with score = 1.7,
(a2, b2) with score = 1.65, (a3, b1) with score = 1.62, and (a1, b3) with score = 1.6. Note,
also, that in every combination it must be the case that one and only one item is present
from each sorted list.

Algorithm 1: Compute top-k′ Combinations
Input: n sorted lists in descending order, k′: the number of top-k′ combinations
Output: Topk: the top-k′ combinations (vectors)
// initialize heap to the best combination
Heap.add((1, 1, . . . , 1));1

while Heap.size() > 0 and Topk.size() < k′ do2

v ← Heap.pop();3

Topk.add(v);4

foreach valid descendant u of v do5

Heap.add(u);6

return Topk;7

The algorithm employs a MAX-Heap and is initialized so that it contains the first, best
n-ary tuple from the first items of the n sorted lists. We will refer to a tuple composed of
the i1-th, i2-th, . . . , in-th item of the first, second, . . . , n-th sorted list, respectively, with
the vector (i1, i2, . . . , in). Clearly, the best tuple is v = (1, 1, . . . , 1), with n co-ordinates
and score =

∑n
i=1 v(i). At each step, the algorithm pops the root of the heap, which is

appended to the top-k′ combinations, and adds its descendants into the heap (lines 2–
6). A descendant of a vector (i1, i2, . . . , in) is a vector which has one and only one of its
co-ordinates increased by 1. A descendant is valid only if all co-ordinates are less or
equal than the respective lengths of the n lists. The process terminates when k′ vectors
have been computed or the heap has become empty.

Graph Exploration

The second phase of the algorithm is the exploration of the augmented graph for
finding the top-k subgraphs, and is shown in Algorithms 2 and 3. The input to the al-
gorithm comprises the summary graph, Gs and the keyword elements, K = (k1, . . . , kn),
which correspond to one interpretation from the set of the top-k′. Further, k denotes
the number of the subgraphs to be computed. The maximum distance dmax is provided
to constrain the exploration to neighbors that are within a given diameter. In order to
keep track of the visited paths during exploration the concept of cursor is employed.
A cursor is represented as c(n, k, p, d, w), where n is the graph element just visited, k
is a keyword element representing the origin of the path captured by c, and p is the
parent cursor of c. Besides, the cost w and the distance d are stored for the path. In
order to keep track of information related to a graph element n and the different paths
discovered for n during the exploration, a data structure of the form (w, (C1, . . . , Cn)) is

Charalampos S. Nikolaou 60

Keyword search in RDF databases

employed, where w is the cost of n as discussed in Subsection 3.3.2 and Ci is a sorted
list of cursors representing paths form ki to n.

Algorithm 2: Explore Augmented Graph
Input: k, dmax, Gs, K = (k1, . . . , km), TC
Output: the top-k subgraphs
// add cursor for each keyword element/interpretation to

Qi ∈ LQ
foreach k ∈ K do1

Qi.add(new Cursor(k, k, ∅, 0, k.w));2

while not all queues Qi ∈ LQ are empty do3

c← minCostCursor(LQ);4

n← c.n;5

if c.d < dmax then6

n.addCursor(c);7

// do not expand keyword elements further
if n /∈ K then8

// get all neighbors except parent element of c
nbrs← neighbors(n)\(c.p).n;9

if nbrs 6= ∅ then10

foreach n ∈ nbrs do11

// check for cyclic path and temporal
satisfaction

if n /∈ parents(c) and satisfies(n, TC) then12

// add new cursor to respective queue
Qi.add(new Cursor(n, c.k, c.n, c.d+ 1, c.w + n.w));13

Qi.pop(c);14

topk ← Topk(n, SG,LQ, k);15

if topk 6= ∅ then16

return topk;17

// top-k results failed to be computed, return the current
best

return SG;18

The first step of the algorithm is the construction of the augmented graph. This
graph is constructed at query time augmenting the information present in the summary
graph. The exploration process uses the keyword elements derived from the keyword
interpretation as its starting elements (K = (k1, . . . , kn)), constructing also the respective
cursors (lines 1–2). All generated cursors are kept into priority queues, Qi ∈ LQ. Each
queue Qi keeps the cursors having as origin the keyword element ki. Each starting

Charalampos S. Nikolaou 61

Keyword search in RDF databases

element forms a point of an independent exploration of the augmented graph. In effect,
during exploration and for each starting element, many different paths are explored and
for each of them a different cursor is used. At each step of the exploration process a
cursor (i.e., a path) with the lowest cost is chosen for expansion (according to a cost
function) from a queue of cursors (line 4). If the current visited element has also been
explored by other cursors emanating from every other starting element, then a subgraph
has been found, and the current visited element constitutes a connecting element (line 1
of Algorithm 3). This subgraph, which is produced by the combination of the paths
emanating from all starting elements and end at the connecting element, is inserted into
a list of candidates subgraphs (line 2 of Algorithm 3), SG, from which only the top-k will
be selected at the end. The exploration process terminates when one of the following
conditions are true:

1. The exploration depth has reached an upper limit, dmax (line 6 of Algorithm 2).
In this case, all regions with radius dmax around each starting element have been
explored. It is justified that the exploration process have to stop, because it is
unlikely to lead to relevant information.

2. All top-k subgraphs have been produced. This happens only when the highest
cost of a subgraph from the list of candidate subgraphs (worst subgraph) becomes
less than the lowest cost of newly created cursors (current best path) (line 7 of
Algorithm 3). Because of the fact that at each step of the exploration, the cursor
with the globally lowest cost is selected and expanded, it is certain that paths with
the lowest cost are explored at first place. So, new subgraphs will have cost greater
than this cost (given that a subgraph is composed of many paths). In the case that
this cost becomes greater than the highest cost of all produced subgraphs, the
top-k subgraphs are the k subgraphs with the lowest cost.

3. All graph elements have been explored.

The above description of the exploration process is very similar to the one employed
in [TWRC09]. We have extended this process in the following ways:

Temporal dimension. The exploration algorithm has been extended to handle tempo-
ral data. More specifically, each element of the data graph (either edge or node) is
associated with a time period denoting its validity time/lifetime. Upon submission
of a user keyword query with a temporal constraint, TC, the exploration process,
as described above, expands only those elements that satisfy TC (line 12 of Algo-
rithm 2). Because of the fact that indefinite temporal information can be queried,
elements that possibly satisfy the temporal constraints are visited and expanded,
but their contribution to the overall cost is higher, so they are ranked lower in the
answer.

Exploration termination. Apart from the termination conditions listed above, we have
enforced another one that terminates the exploration process of a cursor emanating

Charalampos S. Nikolaou 62

Keyword search in RDF databases

Algorithm 3: Compute top-k Subgraphs
Input: n, SG, LQ, k
Output: ∅ or topk subgraphs
if n is a connecting element then1

// generate possible subgraphs
SG.add(gensubgraphs(n));2

SGbest ← k-best(SG);3

lowestCost← minCostCursor(LQ).w;4

highestCost← k-ranked(SGbest);5

if highestCost < lowestCost then6

// top-k subgraphs have been computed
return SGbest;7

return ∅;8

from a specific starting element. According to this, when the exploration process
is about to expand a cursor to an element that is a starting element itself, it is
visited, but a cursor is not produced for that element (line 8 of Algorithm 2). The
rationale behind this is that if the expansion continued for this element, then the
cursors that would be produced beyond that would have already been produced
by the exploration emanating from this starting element itself. This extension is
considered significant, because it reduces both the exploration time and space.

Synchronous exploration for each combination of keyword interpretation . This al-
gorithm has been extended to allow synchronous execution of a number of explo-
ration processes sharing a number of resources and data structures.

Query Mapping

During the phase of query mapping, the subgraphs that have been produced during
the exploration process are mapped to SPARQL queries, which are evaluated on top of
the RDF store.

A complete mapping of such a subgraph to a conjunctive query can be obtained as
follows:

Processing of graph nodes. The labels of nodes might be used as constants. Thus,
nodes are associated with their labels. Also, nodes might stand for variables.
Every such a node is therefore also associated with a distinct variable. To support
this two functions are defined, constant(n) and var(n) that return either the label
of a node or a variable.

Mapping of relation edges. Relation edges are edges between two nodes that are en-
tities. In the augmented graph, these nodes denote classes. So, each such edge

Charalampos S. Nikolaou 63

Keyword search in RDF databases

e(n1, n2) is mapped to three RDF triples of the following form:

(var(n1), type, constant(n1))

(var(n2), type, constant(n2))

(var(n1), e, var(n2))

The first two triples express the fact that n1 and n2 are instances of the respective
classes, while the third triple express the fact that e is the property that relates
these two entities.

Mapping of attribute edges. Attribute edges are edges between two nodes of which the
first is an individual and the second is a typed literal value. Such an edge e(n1, n2)
is mapped to two RDF triples of the following form:

(var(n1), type, constant(n1))

(var(n1), e, constant(n2))

By traversing the subgraph and by the exhaustive application of these mapping
rules, a subgraph can be translated to a query. The query is simply a conjunction
of all the triples generated for a given subgraph.

Entity Transformation

During the phase of entity transformation, all subgraphs generated by the phase of
graph exploration, together with the entities derived by the phase of query mapping are
processed to derive all distinct entities and assign them a cost. These entities form the
answer to the user. This is in contrast to [TWRC09], in which they stop at the previous
phase, involving the user to chose the preferred query (subgraph) to be evaluated.

To transform a subgraph to a set of entities, the subgraph is traversed keeping only
the nodes. We will denote the set of entities derived from a subgraph SGi as SGESGi

and their union as SGE ≡
⋃
SGi

SGESGi
. Similarly, the set of entities derived from

the phase of query mapping for a subgraph SGi is given as QESGi
and their union as

QE ≡
⋃
SGi

QESGi
.

The next step is to assign costs to the entities of both sets SGE and QE. For
this purpose, we keep the minimum cost of all subgraphs in minCost, and the set
of subgraphs in which an entity from each set appears in SGSGE(e) and SGQE(e).
Furthermore, the cost of an entity or a subgraph can be derived from the cost function
Ccf (·), where cf is any cost function mentioned in subsection 3.3.2..

Then, the cost of an entity derived from all subgraphs, i.e., e ∈ SGE, is given by the
following formula:

Cost(e, S) =
Ccf (e) ∗minSGCost

|SGS(e)|
∑

SGi∈SGS(e)

1

Ccf (SGi)

Charalampos S. Nikolaou 64

Keyword search in RDF databases

The previous formulae resemble a weighted average of the cost of an entity over the
subgraphs in which it appears. The weight for an entity cost in a specific subgraph
is getting lower as the subgraph containing it is ranked lower. If an entity belongs to
both sets SGE and QE, then the final cost is the average of the costs Cost(e, SGE) and
Cost(e,QE). Thus, the final cost of an entity e ∈ SGE ∪ QE is given by the following
expression:

Cost(e) =

Cost(e,SGE)+Cost(e,QE)

2
, if e ∈ SGE ∩QE

Cost(e, SGE) , if e ∈ SGE and e /∈ QE
Cost(e,QE) , if e ∈ QE and e /∈ SGE

3.4 Conclusions

This chapter presented our approach to keyword-based search. In particular, it
discussed our contributions to keyword-based search over RDF data and how it dif-
ferentiates itself with the work it has been based on, namely, [TWRC09]. It presented
the data model and the query language, which exhibit temporal constructs. Last, it
presented the keyword-based search algorithm emphasizing on the extensions of the
respective algorithm discussed in [TWRC09].

Charalampos S. Nikolaou 65

Keyword search in RDF databases

Chapter 4

Implementation

In this chapter the implementation details concerning the work discussed in Chap-
ter 3 is presented. For the rest of the document, the implementation of this work is
referenced as keyword querying system or simply system, when there is no possibil-
ity for confusion. The keyword-based query system can be seen as a system accepting
keyword-based queries, and specifically, queries following the form of the query language
introduced in Chapter 3.

The contributions of our implementation are the following:

• An indexing mechanism is employed (see Subsection 4.2.2) which is able to index
RDF literals while the algorithm is running as opposed to [TWRC09], in which the
indexing takes place offline. This is achieved, because the algorithm has been
designed to be independent from the storage layer, which can be updated indepen-
dently.

• Similar to that is the construction of the graph data structures used by the key-
word search algorithm, which are constructed online without affecting its time
performance (see Subsection 4.2.1).

The rest of the chapter is organized as follows: First, in Section 4.1 the architecture
and the role of the system in a more abstract way are presented. Second, Section 4.2
discusses the various components of the system in detail and how they coordinate
with each other. Third, Section 4.3 discusses the technical details of the system, such
as the programming language and the environment on which it was developed. Last,
Section 4.4 concludes the chapter.

4.1 The Architecture of the Keyword Querying System

The keyword querying system functions on top of a RDF store providing a keyword-
based search service. Any application interested in keyword-based search on RDF data

Charalampos S. Nikolaou 67

Keyword search in RDF databases

can easily integrate the keyword querying system in its architectural design. The key-
word querying system expects as input a query expressed in the query language intro-
duced in Chapter 3. In this respect, it expects a list of keywords and a set of temporal
constraints. The output is an ordered list of RDF entities ranked according to how much
they reflect the user information needs as conveyed by the query.

Figure 4.1: The architecture of the keyword querying system.

In Figure 4.1 the architecture of the system is depicted, together with the user in-
teraction. Upon submission of a user query, the keywords are processed by the Query
Processor component and mapped to entities of the underlying RDF data, using the in-
dex that has been constructed by the Indexer component (see Subsection 4.2.2). These
entities are the starting points of the exploration process of the augmented graph of the
underlying data (see Chapter 3 for details). The exploration process computes subgraphs
of the augmented graph that match the user keywords and the temporal constraints. At
a next step, each subgraph is mapped to a SPARQL query that is evaluated in the RDF
store, whose results, i.e., entities, are added to the subgraph. All such subgraphs are
then processed and transformed to an ordered list of RDF entities with scores, which
form the answer to the user query.

In the next section we present the various components of our query processing mod-
ule in detail.

4.2 Components

The query processing module (Figure 4.1) consists of three first-level components, the
Query Processor (Subsection 4.2.1), the Indexer (Subsection 4.2.2), and the RDFStore
Connection Manager (Subsection 4.2.3).

Charalampos S. Nikolaou 68

Keyword search in RDF databases

4.2.1 Query Processor

The Query Processor is the main component of the querying system. This processor
receives the input (in the form of a string) and then invokes and controls the rest of
the first-level components. The most important part of the Query Processor is the
Graph Index which encapsulates the data model of the system. In fact, Graph Index
contains a view of the underlying RDF data, employing the graph data structures data,
summary, and augmented graphs as described in Chapter 3. The Query Processor
component uses the Query Parser in order to parse the input and break it in keywords
and temporal constraints, eliminating duplicate keywords and special characters (such
as *, \, ?, ", ’, ˜, etc.). These keywords are then mapped to entities by invoking the
Indexer component. These entities, which can be nodes or edges of the underlying RDF
graph, are obtained from the Indexer in the form of URIs. At a second step these URIs
are mapped to elements of the data model using the Graph Index producing keyword
elements. It is crucial here to draw a distinction between the URIs of the Indexer that
refer to URIs of the underlying RDF graph and the respective elements of the URIs in
the data model. Clearly, the Query Processor orchestrates the invocation of the other
components and their in-between interaction.

Graph Index

The Graph Index embodies the data model of the keyword querying system. It makes
use of the three graph datastructures, namely, data graph, summary graph, and aug-
mented graph. Graph Index constructs a summary graph view of the underlying RDF
data upon loading the RDF data in the RDF store, and persists it in the RDF store. The
augmented graph is constructed at the time of query processing. To achieve that, the
summary graph is augmented with the keyword elements obtained from both the Indexer
and the Graph Index forming the starting points of the exploration process executed by
the Explorer component.

Note that the summary graph is loaded only once at the initialization stage of the
Query Processor component, whereas the augmented graph is constructed only when a
query is submitted. The exploration process takes place on the augmented graph only.
The reason behind this is that, first, we are interested in computing queries and not
answers to queries; we want to derive the query structure of the computed subgraphs
and then have them evaluated over the RDF store. This also leads to a very good
performance since the augmented graph is much more compact and smaller than the
actual data graph. Finally, upon construction of these views over the underlying RDF
data, the Query Processor does not interact further with the RDF store.

Construction of the summary graph The construction of the summary graph is data-
driven meaning that it is constructed taking into account only the instances of the
underlying RDF graph and it represents the schema that the instance data conforms
to. The construction is done at the time of loading the RDF data in the RDF store. In

Charalampos S. Nikolaou 69

Keyword search in RDF databases

contrast to this approach, other approaches, such as [TWRC09], first, load the data into
a storage backend, and then have the indices constructed offline.

According to our method, the construction of the summary graph does not incurs any
significant extra time cost than just loading a RDF dataset. This is because the inference
mechanism, provided from almost all RDF stores, is utilized. An inference mechanism
is one through which new statements can be derived based on the triggering of a set
of predefined rules when the premise is satisfied. There are two prominent algorithms
for inference, forward chaining and backward chaining. Forward chaining runs proac-
tively during the insertion of new statements adding inferred statements to the existing
dataset, while backward chaining runs upon query submission inferring statements on
the fly without persisting them. Each method has the advantages and disadvantages.
In our setting, the most appropriate is forward chaining. The construction process is
as follows: when a property between two instances is encountered, an edge between
the respective classes of these instances is inferred. To do so, the property rdf:type
of these instances has to be available. In other words, two RDF triples concerning the
types of these instances have to be already present in the RDF store.

Comparing this approach to the one in [TWRC09], it is shown in Chapter 6 that the
load time of an RDF dataset and the construction of the respective summary graph is
much more efficient than executing these two tasks sequentially.

Summary graph statistics Besides the inference process described above, statistics
are kept for the nodes and edges of the summary graph. In the case of nodes, these
statistics reflect the number of instances of each class. In the case of edges, they reflect
the number of properties that are between instances of the respective class nodes of the
edge. Both numbers represent the support of each element of the graph by the data
graph and can be used as a measure for their significance in the data graph. Such
statistics are employed when the popularity or combine score functions are used (see
Subsection 3.3.2).

Explorer

The Explorer component is invoked after the keywords have been mapped to elements
of the summary and data Graph, and the augmented graph has been constructed. From
these keyword elements, the augmented graph is then explored to find a connecting
element, i.e., a particular type of a graph element (either edge or node) that is connected
to all keyword elements. The paths between the connecting element and a keyword
element are combined to construct a matching subgraph. The process continues until
the top-k queries have been computed1. Finally, the resulting subgraphs are returned
to the Query Processor, who then invokes the Query Mapper component to construct a
SPARQL query for each such subgraph, and evaluate it on the RDF store.

1The process of exploration is described in detail in Chapter 3.

Charalampos S. Nikolaou 70

Keyword search in RDF databases

Query Mapper

The Query Mapper component is responsible for constructing SPARQL queries out
of matching subgraphs of the explored augmented graph. A complete mapping of such
a subgraph to a conjunctive query is computed using the rules described in detail in
Chapter 3. The step of translating such a conjunctive query to graph patterns of a
SPARQL query is then straightforward.

Entity Transformer

The Entity Transformer component takes over the process of transforming the sub-
graphs produced during exploration to RDF entities. The implementation is straightfor-
ward conforming to the description of the entity transformation as described in Chap-
ter 3.

4.2.2 Indexer

The Indexer component is responsible for indexing the literals of the RDF graph. This
index is created and stored in the RDF store. The purpose of this index is to facilitate the
mapping of user keywords to URIs of the RDF graph. For the indexing, the LuceneSail
software2 is used which has been proposed in [MSG+08]. LuceneSail employs full-text
search functionality over RDF by simply combining two well-known established systems:
Sesame3 and Lucene. It employs pure Lucene queries within pure RDF queries (using
SPARQL), taking full advantage of the expressiveness of each of them. From the design
perspective, LuceneSail can be incorporated into a Sesame system and accessed in a
uniform and transparent way. This is achieved without any modifications of the syntax
of the SPARQL query language according to [MSG+08], and because it has been designed
and implemented as a SAIL stack. LuceneSail has excellent performance characteristics,
while keeping requirements of resources low. It implements many common IR features,
which are required in our case, such as:

• stemming and lemmatization,

• phrase, wildcard, fuzzy, proximity and range queries,

• boolean operators and term boosting.

4.2.3 RDFStore Connection Manager

The RDFStore Connection Manager is the component that takes over the interaction
between the rest of the components (i.e., Query Processor and Indexer) and the RDF
store (in our case Sesame). Every component that needs access to the RDF store has

2LuceneSail is available at https://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail.
3www.openrdf.org

Charalampos S. Nikolaou 71

https://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail
www.openrdf.org

Keyword search in RDF databases

to invoke an appropriate method of this component. It has to be mentioned here that
the RDFStore Connection Manager operates both locally and remotely because it uses
the HTTP communication protocol of Sesame 2.0 and communicate directly with the
Sesame Server4. Currently, the only type of queries that the RDFStore Connection
Manager supports and are needed by the query module is SPARQL query evaluation
and RDF data loading. Using the first type, the connection manager sends a SPARQL
query for evaluation to the repository and returns back the matched resources. With
the second type, the connection manager loads RDF data in the repository; the data may
come from a file or a URI.

4.3 Technical Details

This section contains details concerning the implementation of the developed key-
word querying system and dependencies to other systems that were utilized. The key-
word querying system has been implemented in the Java programming language using
the Java Development Kit 1.65. For the development, the Ganymede6 release of the
Eclipse IDE7 was used. The development took place on a Linux system with the follow-
ing characteristics: Linux 2.6.28-13-generic #45-Ubuntu SMP i686 GNU/Linux. It has
already been tested in a Windows system running the XP Professional operation system.
The query processing module depends on the LuceneSail 1.2.08 full-text indexing tool of
RDF data and Lucene 2.3.29 search engine. The RDF store functionality is offered using
the Sesame2 RDF store10.

4.4 Conclusions

In this chapter the architecture of the keyword querying system was presented and
the various components that comprise it were described in detail. Finally, the technical
details and requirements of the keyword querying system were discussed.

4http://www.openrdf.org/doc/sesame2/system/ch08.html
5http://java.sun.com/javase/downloads/index.jsp
6www.eclipse.org/ganymede/
7www.eclipse.org/
8https://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail
9http://lucene.apache.org/

10www.openrdf.org

Charalampos S. Nikolaou 72

http://www.openrdf.org/doc/sesame2/system/ch08.html
http://java.sun.com/javase/downloads/index.jsp
www.eclipse.org/ganymede/
www.eclipse.org/
https://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail
http://lucene.apache.org/
www.openrdf.org

Keyword search in RDF databases

Chapter 5

The Papyrus Platform

Papyrus1 (grant agreement number, 215874) is an European Union (EU) funded
research project of the Information and Communication Technologies (ICT) Work Pro-
gramme2 under the 7th Framework Programme3 (FP7-ICT-2007-1). Papyrus addresses
Challenge 44 (Objective ICT-2007.4.1) of ICT Work Programme, i.e., Digital libraries and
content and specifically Call 35, i.e., ‘‘Digital libraries and technology-enhanced learn-
ing’’.

The full title of Papyrus is ‘‘Cultural and historical digital libraries dynamically mined
from news archives’’. Papyrus is a dynamic Digital Library (DL) aiming at providing many
user communities with electronic access to available information of their discipline. In
this respect, Papyrus follows the line of past and existing work for digital recapturing
and preservation of European cultural and scientific heritage. These works consume
significant effort and resources for the digitization, characterization, and classification
of available content. What has never been targeted, however, is a digital library that
makes available the content of one discipline to the user community of another.

Papyrus approaches this need by introducing the concept of a cross-discipline digital
library engine. Papyrus is a dynamic digital library that processes user queries in
the context of a specific discipline, searches for content in another domain, possible
unrelated to that discipline, and presents the results in a way useful and comprehensive
to the user. Papyrus showcases this approach with a specific pair of disciplines, which
can be illustrated as an apparent need and may prove to be an immediate exploitation
opportunity even on its own.

This proposed use case is the recovery of history from news digital content. The
rational behind this selection is that vast amounts of digital news content exist in huge
archives, which, although being of incredible value, are underused as they are not easily
searchable and do not have a significant value if seen as individual news items. News

1http://www.ict-papyrus.eu
2http://cordis.europa.eu/fp7/ict/programme/home_en.html
3http://cordis.europa.eu/fp7/home_en.html
4http://cordis.europa.eu/fp7/ict/programme/overview4_en.html
5http://cordis.europa.eu/fp7/ict/programme/challenge4_en.html

Charalampos S. Nikolaou 73

http://www.ict-papyrus.eu
http://cordis.europa.eu/fp7/ict/programme/home_en.html
http://cordis.europa.eu/fp7/home_en.html
http://cordis.europa.eu/fp7/ict/programme/overview4_en.html
http://cordis.europa.eu/fp7/ict/programme/challenge4_en.html

Keyword search in RDF databases

organizations have been recording history as it developed at each point in time and have
been doing this since their foundation, which for many news publishers or agencies dates
back to the previous centuries. Furthermore, the content found in these news archives
addresses the widest sense of cultural and scientific heritage, covering disciplines like
the history of politics, sciences, and entertainment, allowing for the potential of cross
examination of events in all these domains.

Apart from offering an interesting case study of Semantic Web technologies in action,
Papyrus advances the current state-of-the-art of particular Semantic Web technologies
in several ways. First, through a detailed user study, Papyrus has captured user needs
in relation to ontologies for historical research and has implemented them in its two on-
tologies. Second, Papyrus has implemented a Web-based ontology browser suitable for
users that are neither ontology, nor computer experts. Furthermore, it has implemented
a keyword search tool that is tailored to the needs of historians taking into account entity
evolution and time information.

The rest of the chapter is organized as follows. In Section 5.1 the user requirements,
which set the goals of Papyrus, are presented. Next, in Section 5.2, an overview of the
Papyrus platform is presented and is shown how it addresses the user requirements,
and how it is related to this dissertation. Then, in Section 5.3, the News and History
ontologies are presented that represent the two disciplines of Papyrus, namely, news
journalism and history research. Last, Section 5.4 concludes the chapter.

5.1 User Requirements

Historians (or, alternatively, history researchers) constitute the users of Papyrus. At
its first stages, Papyrus put the burden of work on conducting extensive user needs
studies. A dimension that was particularly stressed during that time is the educational
value of the Papyrus platform [KST09b]. The combination of existing historical research
results — in the form of essays and terminology definitions — with archival material
is considered of particular importance for the education of history students and the
training of new researchers.

In the following subsections, the most challenging needs are presented.

5.1.1 Accessing archival content

The first relevant user need identified has been the ways that history researchers
prefer to search and explore archival content. The usual way for a historian to proceed
when searching for relevant material is to break down the research topic into groups
of keywords, and then try to find material related to these keywords. Through our
study, it was evident that history researchers feel comfortable searching with keywords,
which, as a result, constitutes their main method for retrieving content from an archive.
However, most of the researchers pointed out the deficiencies of existing keyword search
tools for archives, in terms of both precision and recall. As a result, it is important for

Charalampos S. Nikolaou 74

Keyword search in RDF databases

them to be able to have an effective keyword-based search tool to support archival
research. The historians also emphasized the need for additional search facilities that
would allow better navigation through search results and refinement based on various
criteria. Another important requirement is the one for providing efficient ways to browse
vocabularies and catalogues related to their historical research.

5.1.2 Historical research method

An important step in understanding user needs within Papyrus has been the study
of representative topics and questions for history research. An example, which we will
utilize in the rest, is the following:

I am interested in the history of the discipline of Biotechnology, and in par-
ticular the history of Cloning and stem-cell research, and the controversies
and ethical issues related to these.

Historians proceed in specific steps when attempting to gather the material needed
to investigate a specific topic like the aforementioned. These steps are the following:

• Collecting secondary material, which includes essays of other history researchers
on related subjects. This material is typically available in conventional or digital
libraries and comes with a set of common vocabulary used by historians to refer
to the topics covered by particular essays. This could contain historiographical
issues, like ‘‘Controversies and Disputes’’, ‘‘Discipline formation’’, or ‘‘Change in
science’’, as well as general concepts like that of ‘‘Research’’, or ‘‘Ethics’’.

• Collecting primary material, e.g., news archive content related to the research
subject. This material usually comes with another, different vocabulary, the one
prominent during the time of the creation of the archive documents.

To collect the appropriate secondary material, users need to formulate their research
topic in terms of the historiographical issues and concepts involved. To collect the
necessary archival content, users need to identify the appropriate vocabulary used in
archives to annotate this content. This means that history researchers should be able
to effectively express their research topics in the vocabulary of the archive. However, as
already mentioned, this is a challenging task due to the fact that archival material covers
large time-spans and may even be different in different time periods. Thus, inexperienced
researchers may easily miss important information that is present in the archive due to
the lack of vocabulary knowledge of the right terminology to use.

In our example, an inexperienced user may search the news archive with keywords,
such as ‘‘history of biotechnology’’, ‘‘cloning and ethics’’, ‘‘stem-cell controversies’’, which
is in fact the vocabulary of the secondary sources. As a result, such an approach would
not return many relevant news items. A more experienced researcher would ‘‘translate’’

Charalampos S. Nikolaou 75

Keyword search in RDF databases

the query into the vocabulary of the news archive, by searching for the term ‘‘biotechnol-
ogy’’, along with its related terms in the past, like ‘‘biomedical chemistry’’, ‘‘biotechnics’’,
‘‘fermentation’’, etc. Also, to identify news items related to ethical issues and Cloning,
she would use keywords like ‘‘bioethics committee’’ or even ‘‘Roman Catholic Church’’.
However, this ability to transform a query to those terms, which may help extend the
search results, greatly depends on the experience of the researcher in the particular
domain.

5.1.3 Concept evolution

A very important issue for history researchers is the evolution of concepts with the
passage of time, which may include changes in their name, or subtle changes in their
definition. Sometimes a search may result in a scarce or irrelevant set of documents,
returned due to such misinterpretations of a modern term against its past usage.

Returning back to our example, the history of the concept ‘‘Biotechnology’’ has
changed in meaning and name many times within the 20th century. Biotechnology
as a concept and scientific discipline has progressed from food technology and fermen-
tation, to genetics and biomedical engineering [Bud91], whereas the concept of Cloning
has had several important breakthroughs and changes in its techniques over the last
century. Time is also important to historians for capturing the evolution of concepts. In
fact, many kinds of time are important: absolute (e.g., the year 1963), symbolic (e.g.,
the year of Dolly’s creation), relative (e.g., before 1963), and indefinite (e.g., three to five
years after 1963).

5.1.4 Multilingualism

The issue of multilingualism in the context of a digital repository providing access to
archival content of different countries and in different languages is particularly important
for historical research. One dimension of the problem is related to the fact that a
concept may have been introduced in different time points in different languages. In our
example, the concept ‘‘Biotechnology’’ has undergone different development paths in
German-speaking and English-speaking countries[Bud91]. A second, more complicated
dimension of the problem is related to the fact that a term used as the name of the
concept during the same time period could mean different things in different languages.
Taking, for example, the development of the concept Biotechnology in the German-
speaking countries, there were two terms with different connotations used to refer to the
same concept of Biotechnology in English, i.e., ‘‘biotechnik’’ (biology-based technology)
and ‘‘biontotechnologie’’ (microbiology and fermentation). Based on such cases present
in historical essays it was recorded that concepts can be described by different terms
depending on the context of use. For example, the concepts and the terms that describe
them may change not only due to the passage of time, but also due to the place they are
used, the viewpoint of the person using them, etc.

Charalampos S. Nikolaou 76

Keyword search in RDF databases

Figure 5.1: The Papyrus Platform

5.2 The Papyrus Platform

Taking into account the user needs identified in Section 5.1, Papyrus attempts to
provide an effective way to support the history researcher in the process of accessing
historical archives to retrieve useful material. To realize this objective, Papyrus has
applied and extended existing Semantic Web technologies. The current working pro-
totype is already available6 and its evaluation has been concluded and is presented in
Chapter 6.

The Papyrus platform, shown in Figure 5.1, is designed with the History and News
ontologies at its core, which model the History and News domains respectively. The two
ontologies have been created as extensions of existing standards with the cooperation
of the corresponding domain experts, historians, and journalists. Details about these
ontologies are given in Section 5.3. The Papyrus platform allows historians to carry out
their research by utilizing news archives as primary sources. In the current implemen-
tation, these archives consist of subsets of the news archives of Agence France Press7

(AFP) and Deutsche Welle8 (DW), which contain articles, images, and videos specializing
in the area of Biotechnology and Renewable Energy, areas of particular interest to his-
torians and journalists. News articles are represented in XML and stored in a relational
database. Through specialized content analysis algorithms and tools developed in the
context of the project [FCI10, PPT10], archival content has been extensively annotated

6http://hades.atc.gr/CMS_Papyrus_1_1/
7http://www.afp.com/afpcom/en/
8http://www.dw-world.de/

Charalampos S. Nikolaou 77

http://hades.atc.gr/CMS_Papyrus_1_1/
http://www.afp.com/afpcom/en/
http://www.dw-world.de/

Keyword search in RDF databases

with a rich set of metadata based on the entities of the News ontology. These analy-
sis and annotation processes are out of the scope of this dissertation and will not be
presented any further.

The News ontology is mapped to the History ontology by taking advantage of the
historical research method to retrieve information on specific historical topics. These
mappings are discussed in Subsection 5.3.3.

For the visualization and browsing of the ontologies and the news archive, the Pa-
pyrus platform offers a specialized browser which, together with the keyword search
and the mapping mechanisms of the platform, enables users to navigate from History
ontology entities to News ontology entities and achieve effective access to the primary
material in the archives. The Papyrus platform offers, also, a number of Web tools
to allow for distributed multiuser ontology editing, creation of mappings between the
two ontologies, and management of news content and analysis results [BKTV10]. The
description of these tools is not included in this dissertation.

5.3 News and History Ontologies

This section, first, describes the ontologies used to express the primary and sec-
ondary domain of Papyrus, i.e., the news archive and history respectively. Second, it
discusses the role of mappings, and how they are employed to bridge the gap present in
these ontologies.

5.3.1 The News Ontology

The News ontology [Kiy] was developed with the help of news professionals working
in AFP and is intended to describe the structure and the semantics of the news content.
The ontology was constructed based on the NewsML-G2 XML standard9, designed by
the IPTC10 [Tro08] for conveying and annotating news content. The purpose of this
standard is to provide a model for the description of news items, and their related topics
and keywords. It is used by major news providers like EBU11 and Reuters Media12. For
the needs of the Papyrus project, there was a need for integrating two different parts in
the ontology:

(a) the modeling of the format in which news items are produced by the main news
agencies, i.e., the constructs adopted from NewsML- G2, and

(b) the modeling of concepts present in the news items and relevant to the Papyrus
domains, i.e., Biotechnology and Renewable Energy. These include named entities,
concepts to accommodate domain-specific information, and instances.

9http://www.iptc.org/cms/site/index.html?channel=CH0111
10International Press Telecommunications Council, http://www.iptc.org
11European Broadcasting Union, http://www.ebu.ch/
12http://www.reuters.com/

Charalampos S. Nikolaou 78

http://www.iptc.org/cms/site/index.html?channel=CH0111
http://www.iptc.org
http://www.ebu.ch/
http://www.reuters.com/

Keyword search in RDF databases

Figure 5.2: News ontology structure

The part of the News ontology corresponding to the NewsML-G2 XML standard, rep-
resents ’syntactic’ metadata related to news items packaging and exchange, and it is
omitted from the presentation. More information can be found in the NewsML-G2 web
site. The basic structure of the Papyrus News ontology is illustrated in Figure 5.2; ar-
rows represent is-a relations and named arrows roles. Each news item is identified
by its URI and has a list of related topics that may be themes — those established by
the IPTC categorization13 to be used by the news agencies when annotating their news
content —, or terms — such as named entities, concepts, or slugs, i.e., terms related to
the IPTC subjects. In turn, each term can be described by a set of keywords.

Within Papyrus, the ontology has been largely populated with named entities, domain-
specific concepts and their related keywords specified in three languages, English,
French, and German. The populated concepts are those related to the two main Pa-
pyrus domains, Biotechnology and Renewable Energy, and were retrieved from a se-
lected training document set by using semi-automatic mining techniques on the news
archive content [FGM05, McC96].

5.3.2 The History Ontology

In contrast to the News ontology, which attempts to capture the ‘‘here and now’’ of
everyday events, the History ontology [Kiy] models the history perspective on the events
and issues covered by the news. The History ontology was developed as an extension
to the CIDOC Concept Reference Model14 (CRM) that embraces several good practices of
modeling information in different domains. This ontology focuses on the comprehensive

13http://www.iptc.org/NewsCodes/index.php
14http://cidoc.ics.forth.gr/

Charalampos S. Nikolaou 79

http://www.iptc.org/NewsCodes/index.php
http://cidoc.ics.forth.gr/

Keyword search in RDF databases

representation of the world knowledge, and includes such concepts as Thing, Physical
Man-made Object, Conceptual Object, Primitive Value, and others.

To model the history domain, the CIDOC CRM was extended with domain-specific
knowledge and abstract concepts important for the needs of historians. Three different
groups of concepts were identified in [KST09a], which are presented in the following:

• General historiographical issues that express history research topics, like ‘‘Change
in Science’’, or ‘‘Public opinion’’. These have been modeled as instances of the sub-
concept ‘‘Historiographical Issue’’ of CRM’s concept ‘‘Type’’, and their hierarchy
is expressed by ‘‘narrower-broader’’ CRM’s relations. The main issues that form
the upper level of the hierarchy are: ‘‘Change in Science and Technology’’, ‘‘Con-
troversies and Disputes’’, ‘‘Ethics’’, ‘‘Institutions’’, ‘‘Popularization’’ and ‘‘Research
and Development’’. The source for this categorization has been the journals of
the Society for the History of Technology15 and the History of Science Society16,
Technology and Culture17, and ISIS18, respectively.

• Specific domains of science and technology, like ‘‘Biotechnology’’ or ‘‘Renewable
Energy’’. The domains have been modeled as instances of the sub-concept ‘‘Do-
main’’ of CRM’s concept ‘‘Type’’.

• Specific entities that may be the subject of the research in these domains, like
‘‘Stem cell’’ or ‘‘Wind mill’’, or general concepts like ‘‘Researcher’’. These have been
added as sub-concepts or instances under the most appropriate corresponding
CIDOC sub-concept of ‘‘Persistent Item’’, ‘‘Place’’, or ‘‘Temporal Entity’’.

To fully tailor the ontology to the needs of history, the three aspects mentioned in
Section 5.1 had to be appropriately modeled: time periods, evolution, and multilingual-
ism. This effort was the most challenging aspect of the modeling process. The modeling
of concept and instance change in the ontology is addressed by assigning periods to all
entities and by representing changes from one to the other. Assigned periods allow the
representation of fuzzy time intervals (i.e., the start and end point are intervals) with
days as the minimum granularity [Kiy]. The evolution schema allows the expression of
change through the use of properties like ‘‘split’’, ‘‘merge’’, ‘‘evolve’’, ‘‘detach’’, and ‘‘join’’.
For the example of change in Biotechnology, a set of evolution operators which connect
the concept ‘‘Biotechnology’’ with other concepts that preceded or superseded it have
been defined: ‘‘Fermentation joined Conventional Biotech’’, ‘‘Conventional Biotech be-
came Biotechnology’’, ‘‘Cloning joined Biotechnology’’, and others (see detailed example
in [RVMB09]). Once these evolution operators are defined, they can be used to formulate
and run historical queries about concept changes. More information on the evolution
framework can be found in [RVMB09].

15http://www.historyoftechnology.org/
16http://www.hssonline.org/
17http://etc.technologyandculture.net
18http://www.journals.uchicago.edu/toc/isis/current

Charalampos S. Nikolaou 80

http://www.historyoftechnology.org/
http://www.hssonline.org/
http://etc.technologyandculture.net
 http://www.journals.uchicago.edu/toc/isis/current

Keyword search in RDF databases

For multilingualism we have developed a context-based approach [TVKM10]. In par-
ticular, our approach allows associating terms and concepts under specific contexts
(essentially under different conditions), thus specifying which terms are valid interpre-
tations of other terms in specific contexts. A Term is associated with a Concept through
a TermAssociation. A TermAssociation specifies the context under which this associa-
tion is valid. The context is characterized by its related time, place, language, dialect,
domain, historiographical issues, viewpoint, formality and diatype. In addition, a Ter-
mAssociation has a Confidence value and may carry a Definition.

The advantage of this approach is that history researchers that specify queries using
certain terms will retrieve news items which are valid interpretations under the history
context. For example, a query that uses the English term ‘‘biotechnology’’, will also
retrieve the news items containing the German terms ‘‘biotechnologie’’ and ‘‘biotechnik’’,
on account of being different terms representing the same concept, that of Biotechnology.

Both ontologies have been modeled in RDF and are available for browsing through
the Ontology Browser view of the Papyrus platform. More information can be found
in [Kat, Kiy].

5.3.3 Mapping the History and News Ontologies

The mappings are the tools for bridging information across the two domains. The
Papyrus mapping framework adopts an entity-based data model, which is based on a
dataspace data model like the one in [DKP+09], making the entity the primitive mapped
unit. This facilitates the formulation of the information modeling and of the mappings,
since it is conceptually closer to the way humans are thinking. In terms of the mapping
language, Papyrus adopts an entity-based language that is similar, in spirit, to logical
languages like Datalog [AHV95]. The semantics of the language are, however, funda-
mentally different from Datalog in that it allows the definition of mappings even in the
absence of any schema information. More information on the mapping framework may
be found in [BKTV10].

An example of a simple mapping is the following:

’history:Cloning’(), ’history:Ethics’() ->
’news:Concept_Cloning_00085’()

The domain expert, in this case, has defined that when the user in interested in the
historiographical issue ‘‘Ethics’’ in relation to ‘‘Cloning’’, one of the related news ontology
concepts to be retrieved will be ‘‘Bioethics committee’’ (Concept_Cloning_00085). To
support the construction of complex expressions as mappings, Papyrus offers a graph-
ical mapping interface in which the ontology information is presented as a set of enti-
ties [BKTV10].

Charalampos S. Nikolaou 81

Keyword search in RDF databases

5.4 Conclusions

This chapter presented an overview of the progress made so far within the on-going
EU-funded project Papyrus in relation to providing end user tools and services to support
cross-discipline access to archives, and more specifically, historical research in news
archives. Several Semantic Web concepts, techniques, and tools were presented, that
Papyrus applies and extends to achieve its goals. Papyrus allows the history researcher
to explore both primary and secondary sources which have been structured and unified
through their respective domain ontologies. This coupling addresses a very important
user need, that of bringing together these two different sources.

Papyrus is envisioned as a platform to be deployed on top of existing digital libraries
and archives in conjunctions with platforms like Europeana19, in order to offer advanced
and unified exploration and search functionality to researchers with advanced needs for
information retrieval.

19http://www.europeana.eu/portal/

Charalampos S. Nikolaou 82

http://www.europeana.eu/portal/

Keyword search in RDF databases

Chapter 6

Evaluation

This chapter discusses the evaluation methodology followed in this dissertation and
comments on its results. Chapter 2 showed that the current status of the evaluation
methodologies are far from good without providing any solid and rigid methodology, as
opposed to the respective evaluation process developed in the field of IR. However, this
dissertation does not contribute in any way to this field. Instead, it follows the footsteps
of related work, but conversely tries to extensively evaluate its work both in terms of
efficiency and effectiveness. To this end, it uses three different datasets of various sizes,
which exhibit different qualitative characteristics. Then, based on these datasets, it
measures the performance of the algorithms and the scalability of the keyword search
system, as well as the quality of the results, employing a variety of IR metrics.

The rest of the chapter is organized as follows. Section 6.1 presents the employed
datasets over which the evaluation of the keyword querying system took place. Sec-
tion 6.2 focuses on efficiency; it introduces the dimensions used in the experiments and
presents the respective evaluation results. Section 6.3 is oriented towards effectiveness;
it introduces the employed IR metrics, and presents the respective evaluation results for
the case of the History ontology only1. Last, Section 6.4 concludes the chapter.

6.1 Datasets

6.1.1 History ontology

The History ontology dataset2 is an extension of the CIDOC Concept Reference Model3

(CRM) that embraces several good practices of modeling information in different domains.
It was developed in the context of the Papyrus project (see Chapter 5) and more details
about its content can be found in Subsection 5.3.2.

1This is due to lack in experienced users that are needed to provide relevance judgements. For the case
of History ontology, the historians of the Papyrus project were consulted.

2It is available for browsing at http://igg.di.uoa.gr/PapyrusOntoBrowser using the ‘‘Ontol-
ogy Browser’’ tab.

3http://cidoc.ics.forth.gr/

Charalampos S. Nikolaou 83

http://igg.di.uoa.gr/PapyrusOntoBrowser
http://cidoc.ics.forth.gr/

Keyword search in RDF databases

Table 6.1: Structural statistics for the History ontology dataset.

#Triples #Classes #Properties #Instances Avg. #Instances/Class
8,327 367 727 1,405 4

Table 6.1 shows various statistics concerning its structure. As far as the number of
triples is concerned, it is a rather small ontology. Compared with the number of classes
and properties, it contains a lot of structural information, that is, it contains a great
many classes connected with each other with several properties4. Last, judging by the
number of instances, it is sparsely populated. Such characteristics have a significant
impact on the exploration algorithm, because they lead to a dense summary graph. On
the other hand, its small size allows for a small size in the full-text index, and thus, the
process of keyword interpretation is very fast.

The queries posed to the History ontology dataset have been compiled by expert
historians and can be found in Appendix A.1.

6.1.2 Semantic Web Dog Food Corpus

The Semantic Web Dog Food dataset5 is a corpus containing information on papers
that were presented, people who attended, and, in general, information that has to do
with the main conferences and workshops in the area of Semantic Web research since
2006. The snapshot used in this evaluation covers the period 2006–2010 (until month
September) and was obtained in RDF format6.

Table 6.2: Structural statistics for the Semantic Web Dog Food dataset.

#Triples #Classes #Properties #Instances Avg. #Instances/Class
88,996 96 369 8,580 89

Table 6.2 shows various statistics concerning its structure. As far as the number
of triples is concerned, it is a medium sized ontology. Compared with the number of
classes and properties, it contains a lot of structural information, that is, it contains a
great many classes connected with each other with several properties. Last, judging by
the number of instances, it is well populated. Such characteristics have a significant

4Note that the number of properties reflects those properties that have as domain and range instances
of classes, that is, it does not include properties that have as range literals or other datatypes. This
applies, also, to the tables that follow.

5http://data.semanticweb.org/
6http://data.semanticweb.org/dumps/

Charalampos S. Nikolaou 84

http://data.semanticweb.org/
http://data.semanticweb.org/dumps/

Keyword search in RDF databases

impact on the exploration algorithm, because they lead to a dense summary graph. On
the other hand, its medium size allows for a medium size in the full-text index, and thus,
the process of keyword interpretation is quite fast.

The queries posed to the Semantic Web Dog Food dataset can be found in Ap-
pendix A.2.

6.1.3 DBLP

The DBLP dataset7 contains the computer science bibliography as published in var-
ious conferences, journals, and books. The dataset used in this dissertation is the
snapshot of 14 May, 2010, and was obtained in N-Triples RDF format8.

Table 6.3: Structural statistics for the DBLP dataset.

#Triples #Classes #Properties #Instances Avg. #Instances/Class
55,364,046 12 20 3,609,294 300,775

Table 6.3 shows various statistics concerning its structure. As far as the number
of triples is concerned, it is a big dataset. Compared with the number of classes and
properties, it is very simple in structure, and conversely it is highly populated. Such
characteristics is not expected to have a significant impact on the exploration algorithm,
because they lead to a small summary graph. On the other hand, its big size allows
for a big size in the full-text index, and thus, the process of keyword interpretation is
expected to be time-consuming. Last, due to the fact that the dataset covers a specific
field — which in turn leads to a high number of the same keywords appearing in many
different places in the dataset —, it is highly probable that the small schema graph will
grow in size at query time.

The queries posed to the DBLP dataset can be found in Appendix A.3.

6.2 Measuring Efficiency

The efficiency of the keyword querying system is measured9 both in terms of scala-
bility and performance. For the case of scalability, it is measured against several dimen-
sions, such as load, service, data, geographic, and domain. For the case of performance,
first, the construction and load times of the indexes is measured, and then the query
processing performance, as well as the performance of each query processing task (i.e.,

7http://www.informatik.uni-trier.de/˜ley/db/
8http://dblp.l3s.de/dblp++.php
9It is worth noting, that all measurements reflect the average of the measurements of 5 different runs

of the experiments for each case (either for measuring efficiency, or effectiveness).

Charalampos S. Nikolaou 85

http://www.informatik.uni-trier.de/~ley/db/
http://dblp.l3s.de/dblp++.php

Keyword search in RDF databases

keyword interpretation, graph exploration, query mapping, and entity transformation)
are measured.

6.2.1 Scalability

In the following, load, data, geographic, and domain scalability are analyzed. It is
of great importance to mention here that the RDF store is not considered as part of
the keyword querying system, but instead as a separate data storage backend system
providing access to the RDF data. In this respect, all scalability measures considered
are not presented for the case of the RDF store. The interested reader shall consult the
documents concerning its implementation, namely, the Sesame RDF store.

Load scalability

The keyword system has been designed and implemented to be scalable in load. The
keyword search algorithm is multithreaded keeping the memory consumption for each
query issue at low levels and restricting the number of critical segments to the minimum.

Figure 6.1: Load scalability for the History ontology

To measure load scalability, the keyword system is exposed to an increasing number
of users, each one posing the same set of queries, which are 20 in the number. This set
of queries differs from dataset to dataset and can be found in the Appendix A.

The results for each dataset are shown in Figures 6.1, 6.2, and 6.3. In all cases,
the y axis corresponds to the time (in seconds) each group of users posed the set of

Charalampos S. Nikolaou 86

Keyword search in RDF databases

Figure 6.2: Load scalability for the Semantic Web Dog Food dataset

Figure 6.3: Load scalability for the DBLP dataset

Charalampos S. Nikolaou 87

Keyword search in RDF databases

queries and received the respected results. Both axes are drawn in logarithmic scale.
Judging by these figures, the results are very promising; the keyword querying system
is very scalable in terms of load, even for 512 users. Of course, there is no denying
that the number of queries posed is very small, howbeit, the results are encouraging. In
the special case of the DBLP dataset10, the system does not present a stable scaling. In
particular, the increase in query response time from 1 user to 2 users is very high, while
from 2 to 16 users the system exhibits excellent scaling. Last, from 16 to 32 users the
system exhibits a scale of 1.25, namely, it performs 0.25 worse than the ideal.

Service scalability

From the perspective of the keyword querying system, service scalability amounts to
load scalability. This is because the load for this system corresponds to the number of
its concurrent users. In fact, the load amounts to the number of concurrent queries
issued and, as such, a user is viewed as a query. Therefore, a session is embodied in a
single query.

Data scalability

From the perspective of the keyword querying system, data scalability heavily de-
pends on the memory/CPU requirements of the underlying keyword search algorithm,
as well as the performance characteristics and data scalability of the employed RDF
store. As mentioned before, the scalability of the RDF store should not burden the key-
word system. The latter has been designed with the requirement of storage abstraction
and thus different RDF stores can be employed for storing the RDF data.

The keyword search algorithm employed has been designed and implemented to meet
low memory requirements. The algorithm operates on the schema of the underlying
ontology and thus the memory requirements are insignificant even for very large ontolo-
gies. For example, as of the November 2009, the DBpedia dataset describes 2.9 million
‘‘things’’ [sic] (i.e., resources) with 479 million ‘‘facts’’ [sic] (i.e., triples). From these
resources, 205 are classes which are inter-connected with 1200 properties, 1.170.000
are individuals, and the rest 479 million resources identify links to external images, web
pages, and other datasets. Taking into account that DBpedia is a snapshot of Wikipedia,
which is rapidly evolving, mostly in terms of data entries and not in terms of new knowl-
edge that affects its schema, it is realistic to assume that the aforementioned classes
and properties, which comprise the summary graph, can fit in main memory, and that
do not incur any significant space overhead to the algorithm.

From the perspective of response time, the keyword search algorithm has to be
viewed from the perspective of several tasks taking place upon issuing of a keyword
query. These tasks are presented in great detail in Chapter 3 and are the following:

10Measurements are presented for up to 32 users, because of lack in memory, which is due to the bad
performance of the keyword index.

Charalampos S. Nikolaou 88

Keyword search in RDF databases

1. Derive the entities that syntactically match the query keywords. This task depends
on the scalability of the keyword index employed in the keyword querying system
(details can be found in Chapter 4).

2. Place the matched entities on the summary graph representing deriving the aug-
mented graph, and then perform an exploration of this graph to compute the top-k
subgraphs. This task operates on the schema of the underlying ontology and thus
even for very large ontologies of thousands number of classes, it takes up to a
small number of seconds. For hundreds of classes and properties, it takes some
milliseconds.

3. Map the derived subgraphs to SPARQL queries and evaluate them on the RDF
store. This task depends on the scalability of the RDF store and the type of indexes
that have been created.

4. Transform the subgraphs and the entities derived from task 3 to a list of ranked
entities. This task is very easy to be computed.

Geographic scalability

The keyword querying system has been designed to operate in a centralized envi-
ronment. This means that the RDF data are stored in a single, central place (locally
or remotely to the system). Likewise, the keyword search algorithm implemented has
been designed to operate in a centralized environment too. The effort for extending the
algorithm and adapting it to a distributed setting is foreseen to be long in time and high
in development costs, due to significant architectural changes needed in the keyword
system.

Domain scalability

The keyword querying system is adaptable to any domain and RDF datasets apart
from the datasets employed in this dissertation. The keyword search algorithm operates
on top of an RDF graph, and is not dependent on the domain knowledge that it covers.

6.2.2 Performance

Index Performance

The keyword querying system employs two indexes: keyword, and summary graph.
Both of these indexes are constructed at the time of loading data in Sesame RDF store.
Sesame RDF store provides the native index, which indexes RDF data in files on the
file system and is enabled in every case. To measure the performance of the keyword
and summary graph indexes, we compare their construction times, having as a basis
the construction time of the native index only. We have measured their performance
employing the following combinations of indexes:

Charalampos S. Nikolaou 89

Keyword search in RDF databases

Native. It uses the native index only.

Lucene. It uses the native and the keyword index, which is implemented by LuceneSail.

Inference. It uses the native and the summary graph index.

LuceneInf. It uses the native plus the keyword and summary graph indexes.

Figure 6.4: Comparison of the load times of different index types against various number
of triples (DBLP dataset)

In all above cases, the time performance of building the indexes should be greater
or equal to the time performance of the native index. The choice of measuring the
performance of all these types of indexes is based on comparing their performance not
only against the native index, but also against different combinations of them. It is
noted that the space performance has not been evaluated, because native and keyword
indexes are implemented by others, and summary graph space performance has been
discussed in Chapters 3 and in Section 6.1.

Figure 6.4 compares how the load time of each index is affected by the number of
triples for the DBLP dataset. We have provided such a figure only for the DBLP dataset,
because it is a quite big dataset, and we could partition it in parts of 10 millions of
triples in size. It is evident, that all indexes behave the same up to 20 millions of
triples, and beyond this number they differentiate themselves. Lucene behaves very
well, close to the performance of the Native index, while the Inference index shows a

Charalampos S. Nikolaou 90

Keyword search in RDF databases

sharper differentiation. This is logical, because of the time spent in forward chaining.
Last, LuceneInf exposes slightly worse behaviour than the Inference index because it has
to build the keyword index in addition to forward chaining. Overall, the LuceneInf index,
which is based in a great extend on the Sesame’s forward chaining implementation, is
worse up to a grade of 0.63, i.e.,

Performance of Lucene
Performance of LuceneInf

= 0.63

Figure 6.5: Construction times for each index type for each dataset.

The construction times for each index type and for each dataset are shown in Fig-
ure 6.5. Because, DBLP is a quite big dataset, its index time construction is much more
higher than that of History and Web Dog Food. To have a more detailed view in these
two datasets we have used them together in Figure 6.6.

Besides evaluating the time needed for the index construction, we measure, also, the
time needed to load the summary graph, when the keyword querying system is set into
operation. Figure 6.7 shows such times for our three datasets.

Charalampos S. Nikolaou 91

Keyword search in RDF databases

Figure 6.6: Construction times for each index type for History and Semantic Web Dog
Food datasets.

Figure 6.7: Load times of the summary graph index for each dataset.

Charalampos S. Nikolaou 92

Keyword search in RDF databases

Query time performance

In this subsection, the query time performance is measured, that is, the time that
the keyword querying system takes to answer a query. First, query time performance is
measured along different scoring functions, i.e., the ones mentioned in Subsection 3.3.2.
Then, we compare the time that the query system spends on a query task for a specific
query, and last, we measure the contribution of each query processing task to the overall
query processing time.

Figure 6.8: Query time performance for different scoring functions for the History ontol-
ogy.

For the History ontology, the query time performance for different scoring functions
is shown in Figure 6.8. It is evident that all three scoring functions expose similar
behaviour. Next, Figure 6.9 shows the performance of the query processing tasks for
each query and in combination to the overall query processing performance. We observe
that the graph exploration task is the one which presided over the overall performance
of query processing. This is justified by the characteristics that the History ontology
exhibits (see Subsection 6.1.1): it is a very complex ontology in terms of schema, while
its triples are not of significant number.

Last, Figure 6.10 shows the percentage contribution of each query task to the average
query processing time. This percentage is the average contribution over all queries and
summarizes better Figure 6.9.

For the Semantic Web Dog Food dataset, the query time performance for different
scoring functions is shown in Figure 6.11. It is evident that all three scoring functions
expose similar behaviour, except for the case of the 7th query in which the popularity
score function exhibits poor performance. We claim that this result is an outlier, because

Charalampos S. Nikolaou 93

Keyword search in RDF databases

Figure 6.9: Performance of query tasks for different queries for the History ontology.

Figure 6.10: Percentage of query tasks to overall query processing for the History ontol-
ogy.

Charalampos S. Nikolaou 94

Keyword search in RDF databases

in practice, popularity (the same applies for the case of the path scoring function) must
perform at most as bad as the combine scoring function; the last one is the combination
of the path, keyword, and popularity scoring functions.

Figure 6.11: Query time performance for different scoring functions for the Semantic
Web Dog Food dataset.

Next, Figure 6.12 shows the performance of the query processing tasks for each query
and in combination to the overall query processing performance. The main observation
here is that the task of keyword interpretation competes that of graph exploration, and
there are cases in which it behaves worse. This is justified by the characteristics of the
Semantic Web Dog Food dataset, as mentioned in Subsection 6.1.2; indeed, the dataset
contains many more triples than those of the History ontology, and the summary graph
is of medium size, but much more simpler than that of the History ontology.

Last, Figure 6.13 shows the percentage contribution of each query task to the average
query processing time. This percentage is the average contribution over all queries.
Query mapping and entity transformation preserve their low contribution to the overall
query processing time. In contrast, the contribution of the keyword interpretation’s task
has become greater, while that of the graph exploration’s has become lower. This is in
line with the previous observations.

For the DBLP dataset, the query time performance for different scoring functions
is shown in Figure 6.14. It is evident that all three scoring functions expose similar
behaviour.

Next, Figure 6.15 shows the performance of the query processing tasks for each query
and in combination to the overall query processing performance. The main observation
here is that the task of keyword interpretation is the only one responsible for the query

Charalampos S. Nikolaou 95

Keyword search in RDF databases

Figure 6.12: Performance of query tasks for different queries for the Semantic Web Dog
Food dataset.

Figure 6.13: Percentage of query tasks to overall query processing for the Semantic Web
Dog Food dataset.

Charalampos S. Nikolaou 96

Keyword search in RDF databases

Figure 6.14: Query time performance for different scoring functions for the DBLP
dataset.

time performance of the overall query processing. This is justified by the characteristics
of the DBLP dataset, as mentioned in Subsection 6.1.3; indeed, the dataset contains
tremendously many more triples than those of the History ontology and the Semantic
Web Dog Food dataset, while the summary graph is extremely simple, so the task of
graph exploration is trivial.

Last, Figure 6.16 shows the percentage contribution of each query task to the average
query processing time. This percentage is the average contribution over all queries.
Query mapping and entity transformation preserve their low contribution to the overall
query processing time, but in contrast to previous results, the task of graph exploration
is as easy as that of query mapping. In contrast, the contribution of the keyword
interpretation’s task has become much greater and takes almost all the time spent in
query processing.

Charalampos S. Nikolaou 97

Keyword search in RDF databases

Figure 6.15: Performance of query tasks for different queries for the DBLP dataset.

Figure 6.16: Percentage of query tasks to overall query processing for the DBLP dataset.

Charalampos S. Nikolaou 98

Keyword search in RDF databases

6.3 Measuring Effectiveness

The effectiveness of the keyword system implemented in the context of this disserta-
tion is measured using both measures for unranked retrieval sets and ranked retrieval
results. For the first case, the two most frequent and basic measures for information
retrieval effectiveness are precision and recall. Apart from these two, the F measure is
employed as well. For the second case, the chosen measure is the normalized discounted
cumulative gain (NDCG) [MRS, CMS09]. In the following, definitions for these measures
are given, as well as justifications for their use.

Precision (P) is the fraction of retrieved documents11 that are relevant.

P =
#(relevant items retrieved)

#(retrieved items)
Recall (R) is the fraction of relevant documents that are retrieved.

R =
#(relevant items retrieved)

#(relevant items)
These two measures are very useful in combination, because one may be more im-

portant than the other in many circumstances. For example, typical web servers would
prefer precision to recall on account of examining only the first page of results (high
precision). In contrast, a PC user searching for files in the file system would prefer recall
to precision, on account of being interested in finding all desired files. In general, some-
one would like to get some amount of recall while tolerating only a certain percentage of
irrelevant results.

A single measure that trades off precision versus recall is the F measure, which is
the weighted harmonic mean of precision and recall:

F =
1

α 1
P
+ (1− α) 1

R

=
(β2 + 1)PR

β2P +R
, where β2 =

1− α
α

and α ∈ [0, 1]

The default balanced F measure equally weights precision and recall, which means
making α = 1/2 or β = 1. It is commonly written as F1.

F1 =
2PR

P +R

To evaluate the effectiveness of the ranking mechanism of the keyword search system
the NDCG measure is employed. This measure is designed for situations of nonbinary
notions of relevance (i.e., in the interval [0, 1]), in contrast to the binary notion of rele-
vance (relevant/nonrelevant) on which the precision, recall, and F measures are based.
NDCG is a popular measure for evaluating web search engines and related tasks. It
makes the following assumptions:

11In this dissertation, the notion of a document is casted to that of an entity. In the following, these
terms shall be used interchangeably.

Charalampos S. Nikolaou 99

Keyword search in RDF databases

1. Highly relevant documents are more useful than marginally relevant document.

2. The lower the ranked position of a relevant document, the less useful it is for the
user, since it is less likely to be examined.

NDCG is evaluated over some number k of top search results. The property of
NDCG is that accumulates the scores of the first k top search results penalizing each
one according to its rank position. Most of the times, this penalty is expressed by the
factor 1

log2(1+r)
, where r is the rank position. If the relevance of a document i is expressed

as reli, then the DCG measure at k is given by the following formula:

DCGk =
k∑
i=1

2reli − 1

log2(1 + i)

Another, equivalent expression to the above is the following:

DCGk = rel1 +
k∑
i=2

reli
log2(i)

Figure 6.17: Effectiveness evaluation results for the History ontology.

Comparing a search engine’s effectiveness from one query to the next cannot be
consistently achieved using DCG alone due to the various sizes of the result lists. DCG
can be normalized across queries by sorting documents of a result list by relevance,

Charalampos S. Nikolaou 100

Keyword search in RDF databases

producing an ideal DCG at position k. This is named as IDCG. For a query, the
normalized DCG or NDCG at k is computed as:

NDCGk =
DCGk

IDCGk

Then, the NDCG values for all queries can be averaged to obtain a measure of the
average effectiveness of a search engine’s ranking algorithm. Note that in a perfect
ranking algorithm, the DCG will be the same as the IDCG, producing an NDCG of
1.0. All NDCG calculations are then relative values on the interval [0, 1] and so are
cross-query comparable.

The evaluation results concerning effectiveness are depicted in Figure 6.17.

6.4 Conclusions

This chapter discussed the methodology followed for evaluating the developed key-
word querying system and commented on its outcome. In particular, the evaluation was
conducted on three different datasets, which exhibit different quantitative and qualita-
tive characteristics in terms of, namely, the History ontology — developed in the context
of the Papyrus project —, the Semantic Web Dog Food dataset, and the DBLP dataset.
The keyword querying system evaluated both in terms of efficiency and effectiveness.

Regarding efficiency, the dimensions over which the keyword querying system was
evaluated are scalability and performance. In terms of scalability, load, service, data,
geographic, and domain scalability were considered. In terms of performance, the con-
struction time of keyword/graph indexes, the load time of graph index, and the query
response time were examined. Overall, the keyword querying system is scalable in terms
of load, and exhibits a modest performance. The evaluation outcome identified two query
tasks that have to be improved: keyword interpretation and graph exploration. For the
first, the employed LuceneSail index component has to be substituted with another one.
For the latter, the graph exploration algorithm has to be improved so as to allow for
subgraph sharing between different keyword interpretations avoiding the generation of
duplicates. In general, the employed Sesame RDF store could be substituted with an-
other one, which would allow for using a database backend for storing the RDF data.
Currently, the storage backend is the Sesame’s Native repository, which stores and
indexes RDF data on top of the filesystem. While it supports a database backend in
general, in particular, it does not provide inference support, which is crucial for building
the graph index.

Regarding effectiveness, the employed metrics were precision/recall, the balanced F
measure, and the normalized discounted cumulative gain. Judging by the outcome, the
keyword querying system achieves a fair to good performance.

Charalampos S. Nikolaou 101

Keyword search in RDF databases

Chapter 7

Epilogue

This dissertation studied related work on keyword-based search on structured and
semi-structured data in the last decade, and compared it with that developed in the
field of IR. It discussed the state-of-the-art on evaluating methodologies for systems
providing keyword-search functionality and concluded that it is far from good, without
providing any solid and rigid methodology, as opposed to the respective evaluation pro-
cess developed in the field of IR. Fortunately, this area has already started to attract
the interest of the research community leading to initiatives, such as INEX, and other
interesting and promising evaluation methodologies based on large knowledge bases,
such as Wikipedia. Furthermore, it discussed the new challenges that the research
community around keyword-based search should address. Towards understanding and
fulfilling future requirements, a keyword-based system was designed, implemented, and
extensively evaluated according to current standard methodologies. The dimensions of
the evaluation process were efficiency and effectiveness.

The proposed system is based and improves the work in [TWRC09]. The system
employs a keyword-based query language extended with temporal constructs in the
form of all Allen’s thirteen temporal relations: before, after, overlaps, etc. The system’s
data model is able to capture indefinite temporal information defining the time-limits
over which a certain fact is valid. Indefinite information concerning a time point can be
given as an interval in which the point must lie. In the case of indefinite information
about time intervals, the starting and ending time points of an interval are defined in
the same way.

Next, we discuss directions of our future work, and elaborate on ideas for improving
our system.

7.1 Future Work

Our future work around keyword-based search on RDF databases focuses on the
following aspects:

Keyword index. Implement or reuse another keyword index for RDF literals to improve

Charalampos S. Nikolaou 103

Keyword search in RDF databases

the performance of the keyword interpretation task. Based on the evaluation re-
sults of the DBLP dataset, it is clear that the LuceneSail implementation of a
keyword index does not perform well for datasets containing a large amount of
RDF literals. As another shortcoming of the LuceneSail implementation is that it
does not support the solution sequence modifier, LIMIT , supported in the spec-
ification of SPARQL. The LIMIT modifier could be possibly employed to restrict
the top-k′ keyword interpretations for a specific keyword.

A possible solution on this could be the use of BigOWLIM repository1. BigOWLIM is
a high-performance semantic repository, implemented in Java and packaged as a
Storage and Inference Layer (SAIL) for the Sesame RDF database. Aside from other
special features, it provides full-text search functionality integrating the Lucene
index, and allows powerful hybrid queries to be expressed inside SPARQL queries.
Because of the fact that BigOWLIM is packaged as SAIL, our implementation is
fully-compatible and adaptable.

Graph Exploration. The graph exploration algorithm could be further improved not al-
lowing multiple explorations of the same subgraphs for a specific query. Currently,
multiple keyword interpretations might produce the same subgraphs. This occurs
when two or more keyword interpretations are, for example, instances of the same
classes. Omitting these keyword elements, the other part of the exploration, which
is conducted on the schema graph of the RDF data, is totally the same.

Another direction for graph exploration would be to explore the graph, if possible,
by subgraphs, producing subgraphs in decreasing score order. Currently, graph
exploration is conducted based on the concept of a path, which leads to produced
subgraphs in unordered scores. This makes top-k computation a difficult task.

Schema-agnostic data model. The employed data model in our work is a schema-
aware data model. For the RDF data of an organization, the RDF data exported
from a DBMS, or for RDF data that adhere to a specific schema in general, a
schema-aware data model is the proper one. Conversely, the most appropriate
data model for future demands is the schema-agnostic; the next challenge is the
integration and exploitation of semi-structured data and linked data, stored in
different formats (RDF, XML, tables and records, etc.) and data sources (as ontolo-
gies, knowledge bases, databases, etc.).

Taking into account the evaluation of our work and the experience gained, we aim
at developing a schema-agnostic or a hybrid data model to satisfy future demands.

Keyword-search algorithm modifications. In each current form, the algorithm doing
keyword-search, for a given keyword query, is invoked k′ times, that is, as many
times as the number of keyword interpretations is. One alternative to this would be
to place all interpretations in the summary graph, and then invoke the algorithm

1http://www.ontotext.com/owlim/version-map.html

Charalampos S. Nikolaou 104

http://www.ontotext.com/owlim/version-map.html

Keyword search in RDF databases

just once. Then, a connecting element would be a graph element which is on a
path of at least one keyword interpretation from each keyword of the query. The
trade-off of this approach is that the graph exploration time and space may be
increased dramatically, because of keeping all possible paths for each keyword
interpretation. Certainly, experiments have to be conducted to decide what is the
most efficient approach.

Complexity analysis. Apart from evaluating our system through experimentation, it is
crucial to evaluate it theoretically also. The employed keyword search algorithm
has to be analyzed in terms of time and space complexity.

Identification of keyword phrases in the query. Frequently enough, keyword phrases,
i.e., keywords that should be found together as given in the query, are not enclosed
in quotes. This results in the increase of keyword interpretations, and also in the
ignorance of the underlying semantic linkage of such keywords. Consider for ex-
ample the keyword query ‘‘artificial intelligence’’. The keyword interpretation task
would derive all interpretations for the keyword ‘‘artificial’’, which might be an ar-
tificial lake, barrier, flower, language, respiration, intelligence, satellite, etc., and
then, all interpretations for the keyword ‘‘intelligence’’, such as intelligence service,
latest intelligence, intelligence officer, intelligence quotient, artificial intelligence,
etc. These are the good case interpretations, because they comprise a keyword
phrase with the two keywords being frequently used together. In addition, the
keyword interpretation task would derive other interpretations in which keyword
the ‘‘artificial’’ would be present. Certainly, in the context of a keyword phrase,
such as the above, it is very unlikely that such interpretations would be of any
value. In this respect, a statistical model is needed, such as the n-gram model em-
ployed in the field of IR, which recognizes such keyword phrases and group them
as one. The identification of keyword phrases in the query certainly improves
retrieval effectiveness.

Charalampos S. Nikolaou 105

Keyword search in RDF databases

Appendix A

Queries used in evaluation

A.1 History ontology

The queries posed to the History ontology dataset and their respective answers are
shown in Table A.1 and A.2 respectively. Both sets have been compiled by expert
historians. As far as the answers are concerned, they reflect the entities of the History
ontology, which are relevant to each keyword query.

Table A.1: Queries for the History ontology dataset

Query ID Keyword Query
QH1 cloning ethics
QH2 cloning ‘‘public opinion’’
QH3 cloning controversy
QH4 cloning ‘‘research institutions’’
QH5 ‘‘pharmaceutical industry’’ discovery
QH6 ‘‘stem cell’’ ‘‘public opinion"
QH7 ‘‘stem cell’’ ethics
QH8 ‘‘stem cell’’ controversy
QH9 ‘‘gene therapy’’ discovery
QH10 ‘‘genetically modified organisms’’ artifacts
QH11 biotechnology ‘‘academic disciplines’’
QH12 ‘‘wind power’’ ‘‘climate change’’
QH13 windmill ‘‘public opinion’’
QH14 ‘‘climate change’’ ‘‘public opinion’’
QH15 ‘‘climate change’’ ‘‘public policy’’
QH16 ‘‘pollution’’ ‘‘public policy’’
QH17 recycling ‘‘wind power’’
QH18 ‘‘ecological disasters’’ ‘‘public opinion’’
QH19 ‘‘renewable energy’’ industry

Continued in next page

Charalampos S. Nikolaou 107

Keyword search in RDF databases

Table A.1 – Queries for the History ontology dataset (cont’d)
Query ID Keyword Query
QH20 biofuels controversy

Table A.2: Expected answers for the History ontology
queries

Query ID Expected Entities
QH1 Cloned organism

Cloning
Daniel Callahan
Dolly the Sheep
Grenada Genetics
Hastings Center
Human Cloning
Hwang Woo-suk
Ian Wilmut
Institute of Society Ethics and Life Science
Keith H. S. Campbell
Organism cloning
Panayiotis Zavos
Peter Hoppe

QH2 Alta Genetics
Clone Rights United Front
Injaz
Celera Corporation
Cellular cloning
Cloned organism
Cloning
Cloning of Dolly
Dolly the Sheep
First cat cloning
First cloning of a frog
First cloning of mice
First cow cloning
First gaur ox cloning
First pig cloning
First rabbit cloning
Human Cloning
Hwang Woo-suk
Keith H. S. Campbell

Continued in next page

Charalampos S. Nikolaou 108

Keyword search in RDF databases

Table A.2 – Expected answers for the History ontology queries (cont’d)
Query ID Expected Entities

Organism cloning
Pandora’s box metaphor
Playing God metaphor
Professor Hwang
Tetra, the monkey

QH3 Clone Rights United Front
Cloned organism
Cloning
Cloning Controversy
Cloning of Dolly
Dolly the Sheep
Grenada Genetics
Human Cloning
Hwang Woo-suk
Ian Wilmut
Injaz
Keith H. S. Campbell
Molecular cloning
Organism cloning
Panayiotis Zavos
PPL Therapeutics
Professor Hwang
Robert Briggs
Tetra, the monkey
First cat cloning
First cloning of a frog
First cloning of mice
First cow cloning
First gaur ox cloning
First pig cloning
First rabbit cloning
Human Cloning
Padora’s box metaphor
Risk assessment

QH4 Celera Corporation
Cloning
Cloning of Dolly
Dolly the Sheep
First cat cloning

Continued in next page

Charalampos S. Nikolaou 109

Keyword search in RDF databases

Table A.2 – Expected answers for the History ontology queries (cont’d)
Query ID Expected Entities

First cloning of a frog
First cloning of mice
First cow cloning
First gaur ox cloning
First pig cloning
First rabbit cloning
Grenada Genetics
Human Cloning
Injaz
J. Craig Venter Institute
Organism Cloning
PPL Therapeutics
Tetra, the monkey

QH5 Biochemistry
Biogen Idec, Inc.
Biological engineering
Biotechnology
Biotechnology industry
Cancer
Dechema
Disease
Elmer Gaden
Ernst Chain
Human Disease
J. Craig Venter Institute
Mad cow disease
Molecular biology
Novartis International AG
Pharmaceutical industry
Race
Roslin institute
SARS
Treatment

QH6 Hashmi family
Whitaker family
Hwang Woo-suk
Stem cell
Hans Adolf Eduard Driesch
Discovery of human embryonic stem cell

Continued in next page

Charalampos S. Nikolaou 110

Keyword search in RDF databases

Table A.2 – Expected answers for the History ontology queries (cont’d)
Query ID Expected Entities

Pandora’s box metaphor
Playing God metaphor
Chimera - monster metaphor

QH7 Discovery of human embryonic stem cell
Hashmi family
Whitaker family
Embryologist Ian Wilmut
Embryonic stem cell
Hwang Woo-suk
Institute of Society Ethics and Life Science
Stem cell
Hastings Center

QH8 Hashmi family
Whitaker family
Embryologist Ian Wilmut
Embryonic stem cell
Hwang Woo-suk
Pandora’s box metaphor
Playing God metaphor
Stem cell
Stem cell controversy
Risk assessment

QH9 Alzheimer’s disease
Blue gene metaphor
Criminal gene metaphor
Embryologist Ian Wilmut
Engineering - machine metaphor
Fatty gene metaphor
Gene
Gene shifters metaphor
Gene therapy
Genetic engineering
George Beadle
James A. Shapiro
Ian Wilmut

QH10 Chimera - monster metaphor
Designer metaphor
Gene
Genetic modification

Continued in next page

Charalampos S. Nikolaou 111

Keyword search in RDF databases

Table A.2 – Expected answers for the History ontology queries (cont’d)
Query ID Expected Entities

Genetically modified organism
Genetics

QH11 Biochemistry
Bioinformatics
Biological engineering
Biology
Biology-based technology
Biomedical engineer
Biomedical technology
Biophysics
Biotechnology
Molecular biology

QH12 Atmosphere of Earth
Climate change
Renewable energy
Renewable energy source
Wind farm
Wind farm controversy
Wind power
Wind power industry
Windmill

QH13 Renewable energy
Turbine
Wind farm
Wind farm controversy
Wind power
Wind power industry
Windmill

QH14 Amazon rainforest
Arctic Shrinkage
Climate change
Environmental degradation
Environmental movement
Environmentalism
Glacial Warming
Global Warming
Global warming controversy
Green Party
Greenhouse effect

Continued in next page

Charalampos S. Nikolaou 112

Keyword search in RDF databases

Table A.2 – Expected answers for the History ontology queries (cont’d)
Query ID Expected Entities
QH15 Air pollution

Amazon rainforest
Arctic Shrinkage
Batteries recycling
Climate change
Deforestation
Environmental degradation
Global Warming
Greenhouse effect
Milan Climate Change Conference

QH16 Air pollution
Batteries recycling
Biomedical waste
Chemical pollution
Electronics recycling
Environmental pollution
Environmentalism
Ferrous metals recycling
Glass recycling
Industrial effluents
Industrial waste
Non-ferrous metals recycling
Oil pollution
Paper recycling
Plastics recycling
Pollution
Radioactive pollution
Recycling
Textiles recycling
Timber recycling
Thermal pollution
Water pollution

QH17 Batteries recycling
Electronics recycling
Environmentalism
Ferrous metals recycling
Glass recycling
Non-ferrous metals recycling
Paper recycling

Continued in next page

Charalampos S. Nikolaou 113

Keyword search in RDF databases

Table A.2 – Expected answers for the History ontology queries (cont’d)
Query ID Expected Entities

Plastics recycling
Pollution
Recycling
Textiles recycling
Timber recycling

QH18 Arctic Shrinkage
Chemical pollution
Chernobyl Nuclear Accident
Ecological disaster
Ecosystem
Environmental degradation
Environmental pollution
Global Warming
Greenhouse effect
Industrial waste
Radioactive pollution
Oil pollution

QH19 Biofuel
Biomass
Electric industry
Electric power industry
Electric utility industry
Geothemal power controversy in US, Hawaii
Geothermal power
Hydroelectric plant
Photovoltaic panel
Photovoltaic power station
Power station
Renewable energy
Solar power
Solar power station
Water wheel
Wave farm
Wave power
Wind farm
Wind power industry

QH20 Bioalcohol
Biodiesel
Bioethers

Continued in next page

Charalampos S. Nikolaou 114

Keyword search in RDF databases

Table A.2 – Expected answers for the History ontology queries (cont’d)
Query ID Expected Entities

Biofuel
Biofuel controversy
Biogas
Biomass
First generation biofuel
Second generation biofuel
Third generation biofuel
Fourth generation biofuel
Green Party
Environmental movement
Environmentalism

A.2 Semantic Web Dog Food

The queries posed to the Semantic Web Dog Food dataset are shown in Table A.3.
These queries have been extracted from the query logs of the Semantic Web Dog Food
web site and reflect a part of the top queries posed to this site for the year of 2009. The
author of this dissertation is thankful to Knud Möller, who provided the logs. Expected
answers to these queries are not provided, because of lack in users posing such queries.

Table A.3: Queries for the Semantic Web Dog Food
dataset

Query ID Keyword Query
QH1 ontology engineering
QH2 table top
QH3 Olegas Vasilecas
QH4 semantic web service discovery
QH5 koubarakis idreos
QH6 design semantics
QH7 Test Collection Construction for QA system using Ontology Instance Triplet
QH8 semantic web algorithms
QH9 ontology data integration
QH10 semantic web and models
QH11 collective intelligence
QH12 ontology editor
QH13 interlinking Open Data on the Web
QH14 semantic wiki
QH15 semantic information retrieval

Continued in next page

Charalampos S. Nikolaou 115

Keyword search in RDF databases

Table A.3 – Queries for the Semantic Web Dog Food dataset (cont’d)
Query ID Keyword Query
QH16 linked data + architecture
QH17 automatic name disambiguation
QH18 Positioning
QH19 NLP NLP OR social OR networks
QH20 crawling the semantic web

A.3 DBLP

The queries posed to the DBLP dataset are shown in Table A.4. The first fifteen
queries have been extracted from commonly used queries in related work and 5 PhD
users involved in the author’s institution, while the other five have been compiled by the
author himself. Expected answers to these queries are not provided, because of lack in
users posing such queries.

Table A.4: Queries for the DBLP dataset

Query ID Keyword Query
QH1 jagadish optimization
QH2 jeff dynamic optimal
QH3 abiteboul adaptive algorithm
QH4 hector jagadish performance improving
QH5 krishnamurthy parametric ‘‘query optimization’’
QH6 naughton dewitt ‘‘query processing’’
QH7 divesh jignesh jagadish timber querying xml
QH8 idreos koubarakis tryfonopoulos
QH9 semantic tagging aaai
QH10 multiple instance learning
QH11 gunopulos subspace
QH12 first-order progression
QH13 gunopulos papapetrou matching
QH14 zaniolo ICDE stream
QH15 mohan
QH16 halevy abiteboul
QH17 papadimitriou topological
QH18 k-server koutsoupias
QH19 ioannidis ‘‘parametric query optimization’’
QH20 r-tree sellis

Charalampos S. Nikolaou 116

Keyword search in RDF databases

References

[AAH+10] Lora Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten Teĳe, Heiner
Stuckenschmidt, Liliana Cabral, and Tania Tudorache, editors. The Seman-
tic Web: Research and Applications, 7th Extended Semantic Web Conference,
ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings,
Part II, volume 6089 of Lecture Notes in Computer Science. Springer, 2010.

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In
Aberer et al. [ACN+07], pages 722–735.

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. Dbxplorer: A system
for keyword-based search over relational databases. In ICDE [DBL02], pages
5–16.

[ACD+03] B. Aditya, Soumen Chakrabarti, Rushi Desai, Arvind Hulgeri, Hrishikesh
Karambelkar, Rupesh Nasre, Parag, and S. Sudarshan. User interaction in
the banks system. In Umeshwar Dayal, Krithi Ramamritham, and T. M.
Vĳayaraman, editors, ICDE, pages 786–788. IEEE Computer Society, 2003.

[ACN+07] Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-
Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard,
Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors.
The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Se-
mantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November
11-15, 2007, volume 4825 of Lecture Notes in Computer Science. Springer,
2007.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[All81] James F. Allen. An interval-based representation of temporal knowledge. In
Patrick J. Hayes, editor, IJCAI, pages 221–226. William Kaufmann, 1981.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832–843, 1983.

Charalampos S. Nikolaou 117

Keyword search in RDF databases

[BCT07] K. Bollacker, R. Cook, and P. Tufts. Freebase: A shared database of struc-
tured general human knowledge. In Proceedings of the national conference
on Artificial Intelligence, volume 22, page 1962. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2007.

[BEP+08] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structuring
human knowledge. In Wang [Wan08], pages 1247–1250.

[BG00] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0. Technical report, W3C Recommendation, 2000.

[BHN+02] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases using banks.
In ICDE [DBL02], pages 431–440.

[BHP04] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. Objec-
trank: Authority-based keyword search in databases. In Mario A. Nasci-
mento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A. Blake-
ley, and K. Bernhard Schiefer, editors, VLDB, pages 564–575. Morgan Kauf-
mann, 2004.

[BKTV10] S. Bykau, N. Kiyavitskaya, C. Tsinaraki, and Y. Velegrakis. Bridging the
Gap between Heterogeneous and Semantically Diverse Content of Different
Disciplines. FlexDBIST, August 2010.

[Bud91] R. Bud. Biotechnology in the twentieth century. Social studies of science,
21(3):415–457, 1991.

[BW99] C. Buckley and J. Walz. Smart in trec 8. In Proc. of TREC, 1999.

[BW07] Holger Bast and Ingmar Weber. The completesearch engine: Interac-
tive, efficient, and towards ir& db integration. In CIDR, pages 88–95.
www.crdrdb.org, 2007.

[CMS09] B. Croft, D. Metzler, and T. Strohman. Search engines: Information retrieval
in practice. 2009.

[Coh98] William W. Cohen. Integration of heterogeneous databases without common
domains using queries based on textual similarity. In Laura M. Haas and
Ashutosh Tiwary, editors, SIGMOD Conference, pages 201–212. ACM Press,
1998.

[Coh00] William W. Cohen. Whirl: A word-based information representation lan-
guage. Artif. Intell., 118(1-2):163–196, 2000.

Charalampos S. Nikolaou 118

Keyword search in RDF databases

[COZ07] Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors. Proceedings of
the ACM SIGMOD International Conference on Management of Data, Beĳing,
China, June 12-14, 2007. ACM, 2007.

[CRW05] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard Weikum. Integrat-
ing db and ir technologies: What is the sound of one hand clapping? In
CIDR, pages 1–12, 2005.

[DBL02] Proceedings of the 18th International Conference on Data Engineering, 26
February - 1 March 2002, San Jose, CA. IEEE Computer Society, 2002.

[DBL09] Proceedings of the 25th International Conference on Data Engineering, ICDE
2009, March 29 2009 - April 2 2009, Shanghai, China. IEEE, 2009.

[DCG+08] Pedro DeRose, Xiaoyong Chai, Byron J. Gao, Warren Shen, AnHai Doan,
Philip Bohannon, and Xiaojin Zhu. Building community wikipedias: A
machine-human partnership approach. In ICDE, pages 646–655. IEEE,
2008.

[DKP+09] Nilesh N. Dalvi, Ravi Kumar, Bo Pang, Raghu Ramakrishnan, Andrew
Tomkins, Philip Bohannon, Sathiya Keerthi, and Srujana Merugu. A web
of concepts. In Jan Paredaens and Jianwen Su, editors, PODS, pages 1–12.
ACM, 2009.

[ERS+09] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, Marcin Sydow, and Ger-
hard Weikum. Language-model-based ranking for queries on rdf-graphs. In
David Wai-Lok Cheung, Il-Yeol Song, Wesley W. Chu, Xiaohua Hu, and
Jimmy J. Lin, editors, CIKM, pages 977–986. ACM, 2009.

[FCI10] V. Fernandez, K. Chandramouli, and E. Izquierdo. Exploiting Complemen-
tary Resources for Cross-Discipline Multimedia Indexing and Retrieval. User
Centric Media, pages 109–116, 2010.

[FGM05] Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. Incor-
porating non-local information into information extraction systems by gibbs
sampling. In ACL. The Association for Computer Linguistics, 2005.

[FLS+08] Miriam Fernández, Vanessa Lopez, Marta Sabou, Victoria S. Uren, David
Vallet, Enrico Motta, and Pablo Castells. Semantic search meets the web.
In ICSC, pages 253–260. IEEE Computer Society, 2008.

[FLS+09] M. Fernandez, V. Lopez, M. Sabou, V. Uren, D. Vallet, E. Motta, and
P. Castells. Using TREC for cross-comparison between classic IR and
ontology-based search models at a Web scale. In Workshop: Semantic search
workshop at 18th International World Wide Web Conference. Citeseer, 2009.

Charalampos S. Nikolaou 119

Keyword search in RDF databases

[FR97] Norbert Fuhr and Thomas Rölleke. A probabilistic relational algebra for the
integration of information retrieval and database systems. ACM Trans. Inf.
Syst., 15(1):32–66, 1997.

[Fuh95] Norbert Fuhr. Probabilistic datalog - a logic for powerful retrieval methods.
In Edward A. Fox, Peter Ingwersen, and Raya Fidel, editors, SIGIR, pages
282–290. ACM Press, 1995.

[GHV05] Claudio Gutierrez, Carlos Hurtado, and Ro Vaisman. Temporal RDF. In
European Conference on the Semantic Web (ECSW 05), pages 93–107, 2005.

[GHV07] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Introducing
Time into RDF. IEEE Transactions on Knowledge and Data Engineering,
19(2):207–218, 2007.

[GK02] Norbert Gövert and Gabriella Kazai. Overview of the initiative for the evalua-
tion of xml retrieval (inex) 2002. In Norbert Fuhr, Norbert Gövert, Gabriella
Kazai, and Mounia Lalmas, editors, INEX Workshop, pages 1–17, 2002.

[GKS08] Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Keyword
proximity search in complex data graphs. In Wang [Wan08], pages 927–
940.

[Gra91] Gösta Grahne. The Problem of Incomplete Information in Relational
Databases, volume 554 of Lecture Notes in Computer Science. Springer,
1991.

[HBN+01] Arvind Hulgeri, Gaurav Bhalotia, Charuta Nakhe, Soumen Chakrabarti,
and S. Sudarshan. Keeyword search in databases. IEEE Data Eng. Bull.,
24(3):22–32, 2001.

[HGP03] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient ir-
style keyword search over relational databases. In VLDB, pages 850–861,
2003.

[HKPS06] Vagelis Hristidis, Nick Koudas, Yannis Papakonstantinou, and Divesh Sri-
vastava. Keyword proximity search in xml trees. IEEE Trans. on Knowl. and
Data Eng., 18:525–539, April 2006.

[HLC08a] Yu Huang, Ziyang Liu, and Yi Chen. extract: a snippet generation system
for xml search. Proc. VLDB Endow., 1:1392–1395, August 2008.

[HLC08b] Yu Huang, Ziyang Liu, and Yi Chen. Query biased snippet generation in xml
search. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, SIGMOD ’08, pages 315–326, New York, NY, USA,
2008. ACM.

Charalampos S. Nikolaou 120

Keyword search in RDF databases

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search
in relational databases. In VLDB, pages 670–681. Morgan Kaufmann, 2002.

[HV06] Carlos A. Hurtado and Alejandro A. Vaisman. Reasoning with Temporal
Constraints in RDF. In Principles and Practice of Semantic Web Reasoning,
pages 164–178. Springer, 2006.

[HWY07] Hao He, Haixun Wang, Jun Yang 0001, and Philip S. Yu. Blinks: ranked
keyword searches on graphs. In Chan et al. [COZ07], pages 305–316.

[JCE+07] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yun-
yao Li, Arnab Nandi, and Cong Yu. Making database systems usable. In
Chan et al. [COZ07], pages 13–24.

[Kat] Kiyavitskaya N. Tympas A. Katifori, A. Papyrus deliverable d3.1: Ontologies
for news and historical content.

[Kiy] N. Kiyavitskaya. Documentation on papyrus ontologies. Technical report,
University of Trento, Italy.

[KJ02] Jaana Kekäläinen and Kalervo Järvelin. Using graded relevance assess-
ments in IR evaluation. Journal of the American Society for Information Sci-
ence and Technology, 53(13):1120–1129, 2002.

[Kou94] Manolis Koubarakis. Database models for infinite and indefinite temporal
information. Inf. Syst., 19(2):141–173, 1994.

[KPC+05] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan,
Rushi Desai, and Hrishikesh Karambelkar. Bidirectional expansion for key-
word search on graph databases. In Klemens Böhm, Christian S. Jensen,
Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and Beng Chin Ooi,
editors, VLDB, pages 505–516. ACM, 2005.

[KSI10] Georgia Koutrika, Alkis Simitsis, and Yannis E. Ioannidis. Explaining
structured queries in natural language. In Feifei Li, Mirella M. Moro,
Shahram Ghandeharizadeh, Jayant R. Haritsa, Gerhard Weikum, Michael J.
Carey, Fabio Casati, Edward Y. Chang, Ioana Manolescu, Sharad Mehrotra,
Umeshwar Dayal, and Vassilis J. Tsotras, editors, ICDE, pages 333–344.
IEEE, 2010.

[KST09a] A. Katifori, E. Savaidou, and A. Tympas. Tradeoffs in seeking to automate
historical research in digitized media archives: Historians of media meeting
media informaticians. 2009.

Charalampos S. Nikolaou 121

Keyword search in RDF databases

[KST09b] Akrivi Katifori, Eirini Savaidou, and Aristotle Tympas. Making history
courses relevant and attractive to engineering and science majors by bring-
ing archival research within their reach: The papyrus initiative. In INTED
Conference, Valencia, Spain, March 2009.

[KZGM09] Georgia Koutrika, Zahra Mohammadi Zadeh, and Hector Garcia-Molina.
Data clouds: summarizing keyword search results over structured data.
In Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, EDBT ’09, pages 391–402,
New York, NY, USA, 2009. ACM.

[LLZ07] Yi Luo, Xuemin Lin, Wei Wang 0011, and Xiaofang Zhou. Spark: top-k
keyword query in relational databases. In Chan et al. [COZ07], pages 115–
126.

[LOF+08] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou.
Ease: an effective 3-in-1 keyword search method for unstructured, semi-
structured and structured data. In Wang [Wan08], pages 903–914.

[LS99] O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification. Technical report, W3C Recommendation, 1999.

[LT10] Günter Ladwig and Thanh Tran. Combining query translation with query
answering for efficient keyword search. In Aroyo et al. [AAH+10], pages
288–303.

[LUM06] Yuangui Lei, Victoria S. Uren, and Enrico Motta. Semsearch: A search
engine for the semantic web. In Steffen Staab and Vojtech Svátek, editors,
EKAW, volume 4248 of Lecture Notes in Computer Science, pages 238–245.
Springer, 2006.

[LYMC06] Fang Liu, Clement T. Yu, Weiyi Meng, and Abdur Chowdhury. Effective
keyword search in relational databases. In Surajit Chaudhuri, Vagelis Hris-
tidis, and Neoklis Polyzotis, editors, SIGMOD Conference, pages 563–574.
ACM, 2006.

[McC96] A.K. McCallum. Bow: A toolkit for statistical language modeling, text re-
trieval, classification and clustering, 1996.

[MRS] C.D. Manning, P. Raghavan, and H. Sch
"utze. An introduction to information retrieval.

[MSG+08] E. Minack, L. Sauermann, G. Grimnes, C. Fluit, and J. Broekstra. The
Sesame LuceneSail: RDF Queries with Full-text Search. Technical report,
NEPOMUK Technical Report 2008-1, Feb. 2008 ps Q PC Q SEL Q, 2008.

Charalampos S. Nikolaou 122

Keyword search in RDF databases

[MYP07] Alexander Markowetz, Yin Yang, and Dimitris Papadias. Keyword search on
relational data streams. In Chan et al. [COZ07], pages 605–616.

[NMS+07] Zaiqing Nie, Yunxiao Ma, Shuming Shi, Ji-Rong Wen, and Wei-Ying Ma.
Web object retrieval. In Carey L. Williamson, Mary Ellen Zurko, Peter F.
Patel-Schneider, and Prashant J. Shenoy, editors, WWW, pages 81–90. ACM,
2007.

[PAAG+] J.R. Perez-Aguera, J. Arroyo, J. Greenberg, J. Perez-Iglesias, and V. Fresno.
Using BM25F for Semantic Search.

[PAAG+10] José R. Pérez-Agüera, Javier Arroyo, Jane Greenberg, Joaquı́n Pérez-
Iglesias, and Vı́ctor Fresno. Inex+dbpedia: a corpus for semantic search
evaluation. In Michael Rappa, Paul Jones, Juliana Freire, and Soumen
Chakrabarti, editors, WWW, pages 1161–1162. ACM, 2010.

[PPT10] G. Paci, G. Pedrazzi, and R. Turra. Wikipedia-based approach for linking
ontology concepts to their realisations in text. LREC. To appear, 2010.

[PY08] Ken Q. Pu and Xiaohui Yu. Keyword query cleaning. Proc. VLDB Endow.,
1:909–920, August 2008.

[QYC09] Lu Qin, Jeffrey Xu Yu, and Lĳun Chang. Keyword search in databases:
the power of rdbms. In Ugur Çetintemel, Stanley B. Zdonik, Donald Koss-
mann, and Nesime Tatbul, editors, SIGMOD Conference, pages 681–694.
ACM, 2009.

[QYCT09] Lu Qin, Jeffrey Xu Yu, Lĳun Chang, and Yufei Tao. Scalable keyword search
on large data streams. In ICDE [DBL09], pages 1199–1202.

[RVMB09] Flavio Rizzolo, Yannis Velegrakis, John Mylopoulos, and Siarhei Bykau.
Modeling concept evolution: A historical perspective. In Alberto H. F. Laen-
der, Silvana Castano, Umeshwar Dayal, Fabio Casati, and José Palazzo Mor-
eira de Oliveira, editors, ER, volume 5829 of Lecture Notes in Computer Sci-
ence, pages 331–345. Springer, 2009.

[RW94] S. E. Robertson and S. Walker. Some simple effective approximations to
the 2-poisson model for probabilistic weighted retrieval. In In Proceedings of
SIGIR’94, pages 232–241. Springer-Verlag, 1994.

[RWJ+96] S.E. Robertson, S. Walker, S. Jones, M.M. Hancock-Beaulieu, and M. Gat-
ford. Okapi at trec-3. pages 109–126, 1996.

[Sal81] G. Salton. The smart environment for retrieval system evaluation–
advantages and problem areas. Information retrieval experiment, pages 316–
329, 1981.

Charalampos S. Nikolaou 123

Keyword search in RDF databases

[Sch98] Thomas Schutz. Retrieval of complex objects, considering sgml documents
as example (in german). Master’s thesis, University of Dortmund, Computer
Science Department, 1998.

[SKAI08] Alkis Simitsis, Georgia Koutrika, Yannis Alexandrakis, and Yannis E. Ioan-
nidis. Synthesizing structured text from logical database subsets. In Alfons
Kemper, Patrick Valduriez, Noureddine Mouaddib, Jens Teubner, Mokrane
Bouzeghoub, Volker Markl, Laurent Amsaleg, and Ioana Manolescu, editors,
EDBT, volume 261 of ACM International Conference Proceeding Series, pages
428–439. ACM, 2008.

[SKI08] Alkis Simitsis, Georgia Koutrika, and Yannis E. Ioannidis. Précis: from un-
structured keywords as queries to structured databases as answers. VLDB
J., 17(1):117–149, 2008.

[SKW08] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A large
ontology from wikipedia and wordnet. J. Web Sem., 6(3):203–217, 2008.

[TCRS07] Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer.
Ontology-based interpretation of keywords for semantic search. In Aberer
et al. [ACN+07], pages 523–536.

[TLR] T. Tran, G. Ladwig, and S. Rudolph. iStore: Efficient RDF Data Management
Using Structure Indexes for General Graph Structured Data.

[TMH10] Thanh Tran, Tobias Mathäß, and Peter Haase. Usability of keyword-driven
schema-agnostic search. In Aroyo et al. [AAH+10], pages 349–364.

[Tro08] Raphaël Troncy. Bringing the iptc news architecture into the semantic web.
In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana May-
nard, Timothy W. Finin, and Krishnaprasad Thirunarayan, editors, Interna-
tional Semantic Web Conference, volume 5318 of Lecture Notes in Computer
Science, pages 483–498. Springer, 2008.

[TVKM10] C. Tsinaraki, Y. Velegrakis, N. Kiyavitskaya, and J. Mylopoulos. A Context-
based Model for the Interpretation of Polysemous Terms. ODBASE, 2010.

[TWRC09] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. Top-k
exploration of query candidates for efficient keyword search on graph-shaped
(rdf) data. In ICDE [DBL09], pages 405–416.

[Ull88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
Volume I. Computer Science Press, 1988.

[Voo01] Ellen M. Voorhees. The philosophy of information retrieval evaluation. In
Carol Peters, Martin Braschler, Julio Gonzalo, and Michael Kluck, editors,

Charalampos S. Nikolaou 124

Keyword search in RDF databases

CLEF, volume 2406 of Lecture Notes in Computer Science, pages 355–370.
Springer, 2001.

[Wan08] Jason Tsong-Li Wang, editor. Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada,
June 10-12, 2008. ACM, 2008.

[Web10] William Webber. Evaluating the effectiveness of keyword search. IEEE Data
Eng. Bull., 33(1):54–59, 2010.

[Wei07] Gerhard Weikum. Db&ir: both sides now. In Chan et al. [COZ07], pages
25–30.

[WKRS09] Gerhard Weikum, Gjergji Kasneci, Maya Ramanath, and Fabian M.
Suchanek. Database and information-retrieval methods for knowledge dis-
covery. Commun. ACM, 52(4):56–64, 2009.

[WLP+09] Haofen Wang, Qiaoling Liu, Thomas Penin, Linyun Fu, Lei Zhang, Thanh
Tran, Yong Yu, and Yue Pan. Semplore: A scalable ir approach to search
the web of data. J. Web Sem., 7(3):177–188, 2009.

[WMZ08] William Webber, Alistair Moffat, and Justin Zobel. Statistical power in re-
trieval experimentation. In Proceeding of the 17th ACM conference on Infor-
mation and knowledge management, CIKM ’08, pages 571–580, New York,
NY, USA, 2008. ACM.

[WPZ+06] Shan Wang, Zhaohui Peng, Jun Zhang, Lu Qin, Sheng Wang, Jeffrey Xu Yu,
and Bolin Ding. Nuits: a novel user interface for efficient keyword search
over databases. In Proceedings of the 32nd international conference on Very
large data bases, VLDB ’06, pages 1143–1146. VLDB Endowment, 2006.

Charalampos S. Nikolaou 125

	Title Page
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Prologue
	Introduction
	Keyword search in the Past
	Keyword search in the Present
	Keyword search in the Future
	Objectives and contributions of this dissertation
	Dissertation Outline

	Related Work
	Prerequisite Knowledge
	Data Models
	The RDF framework
	The RDF Schema
	Temporal RDF

	Categorization of keyword-based search approaches
	Data Models
	Schema-aware
	Schema-agnostic

	Structure of the answer
	Exploration Algorithms
	Ranking/Scoring of Answers
	Indexing

	Evaluation Methodologies for keyword search
	Evaluation in unstructured data
	Evaluation in structured and semi-structured data
	XML Evaluation
	Semantic Web Evaluation

	Other Directions to Keyword Search
	Conclusions

	Our approach to keyword-based search
	Contributions to keyword-based Search
	Data Model and Query Language
	Data Model
	Query Language

	The keyword-based Search Algorithm
	Employed Data Structures
	Scoring of graphs
	Overview of the algorithm

	Conclusions

	Implementation
	The Architecture of the Keyword Querying System
	Components
	Query Processor
	Indexer
	RDFStore Connection Manager

	Technical Details
	Conclusions

	The Papyrus Platform
	User Requirements
	Accessing archival content
	Historical research method
	Concept evolution
	Multilingualism

	The Papyrus Platform
	News and History Ontologies
	The News Ontology
	The History Ontology
	Mapping the History and News Ontologies

	Conclusions

	Evaluation
	Datasets
	History ontology
	Semantic Web Dog Food Corpus
	DBLP

	Measuring Efficiency
	Scalability
	Performance

	Measuring Effectiveness
	Conclusions

	Epilogue
	Future Work

	Appendices
	Queries used in evaluation
	History ontology
	Semantic Web Dog Food
	DBLP

	References

