Incomplete Information in RDF

Charalampos Nikolaou and Manolis Koubarakis

charnik@di.uoa.gr

koubarak@di.uoa.gr

Department of Informatics and Telecommunications National and Kapodistrian University of Athens

Web Reasoning and Rule Systems (RR) 2013 July 27, 2013

Outline

Motivation

Previous work

The RDFⁱ framework

SPARQL query evaluation over RDFⁱ databases

An algorithm for certain answer computation

Preliminary complexity results

Conclusions and future work

Motivation

- Incomplete information is an important issue in many research areas: relational databases, knowledge representation and the semantic web.
- Incomplete information arises in many practical settings (e.g., sensor data). RDF is often used to represent such data.
- Even if initial information is complete, incomplete information arises later on (e.g., relational view updates, data integration, data exchange).
- Although there is much work recently on incomplete information in XML, not much has been done for incomplete information in RDF.

Previous work

Relational

- Relations extended to tables with various models of incompleteness [Imielinski/Lipski '84]
- Complexity results for the associated decision problems [Abiteboul/Kanellakis/Grahne '91]
- Dependencies and updates [Grahne '91]

Previous work

Relational

- Relations extended to tables with various models of incompleteness [Imielinski/Lipski '84]
- Complexity results for the associated decision problems [Abiteboul/Kanellakis/Grahne '91]
- Dependencies and updates [Grahne '91]

XML

- Dynamic enrichment of incomplete information [Abiteboul/Segoufin/Vianu '01,'06]
- General models of incompleteness, query answering, and computational complexity [Barceló/Libkin/Poggi/Sirangelo '09,'10]

Previous work (cont'd)

RDF

- Blank nodes as existential variables in the RDF standard
- SPARQL query evaluation under certain answer semantics (Open World Assumption) [Arenas/Pérez '11]
- Anonymous timestamps in general temporal RDF graphs [Gutierrez/Hurtado/Vaisman '05]
- General temporal RDF graphs with temporal constraints [Hurtado/Vaisman '06]

Previous work (cont'd)

RDF

- Blank nodes as existential variables in the RDF standard
- SPARQL query evaluation under certain answer semantics (Open World Assumption) [Arenas/Pérez '11]
- Anonymous timestamps in general temporal RDF graphs [Gutierrez/Hurtado/Vaisman '05]
- General temporal RDF graphs with temporal constraints [Hurtado/Vaisman '06]

RDFⁱ: It captures incomplete information for property values using constraints. It is for RDF what the c-tables model is for the relational model.

RDFⁱ by example

Example

hotspot1 type Hotspot .
 fire1 type Fire .
hotspot1 correspondsTo fire1 .
 fire1 occuredIn _R1 .

RDFⁱ by example

Example у 19hotspot1 type Hotspot fire1 type Fire 8 hotspot1 correspondsTo fire1 . fire1 occuredIn R1 6 23 x

_R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

RDFⁱ in a nutshell

- Extension of RDF for capturing incomplete information for property values that exist but are unknown or partially known
- Partial knowledge captured by constraints using an appropriate constraint language *L* interpreted over a fixed structure M_L

Syntax

RDF graphs extended to RDFⁱ databases: pair (G, ϕ)

- ► G: RDF graph with a new kind of literals, called e-literals
- ϕ : quantifier-free formula of \mathcal{L}

Semantics

 Possible world semantics as in [Imielinski/Lipski '84] and [Grahne '91]

Constraint languages ${\cal L}$

Examples

ECL

 Equality constraints interpreted over an infinite domain: x EQ y, x EQ c

 Blank nodes as existential variables

Constraint languages $\mathcal L$

Examples

ECL

- Equality constraints interpreted over an infinite domain: x EQ y, x EQ c
- Blank nodes as existential variables

diPCL/dePCL

- ► Difference constraints of the form x - y ≤ c interpreted over the integers or rationals
- Incomplete temporal information [Koubarakis '94]

Constraint languages $\mathcal L$

Examples

ECL

- Equality constraints interpreted over an infinite domain: x EQ y, x EQ c
- Blank nodes as existential variables

TCL

- Topological constraints of non-empty, regular closed subsets of topological space
- Six binary predicates: DC, EC, PO, EQ, TPP, NTPP

diPCL/dePCL

- ► Difference constraints of the form x - y ≤ c interpreted over the integers or rationals
- Incomplete temporal information [Koubarakis '94]

Constraint languages $\mathcal L$

Examples

ECL

- Equality constraints interpreted over an infinite domain: x EQ y, x EQ c
- Blank nodes as existential variables

TCL

- Topological constraints of non-empty, regular closed subsets of topological space
- Six binary predicates: DC, EC, PO, EQ, TPP, NTPP

diPCL/dePCL

- ► Difference constraints of the form x - y ≤ c interpreted over the integers or rationals
- Incomplete temporal information [Koubarakis '94]

PCL

► TCL plus constant symbols representing polygons in Q²

► e.g.,

 $r \text{ NTPP } "x - y \geq 0 \land x \leq 1 \land y \geq 0"$

RDFⁱ: Vocabulary

RDF	RDF ⁱ	L
/ (IRIs)	1	
B (blank nodes)	В	
L (literals)	L	
	C (literals)	constants
	U (e-literals)	variables
M (datatype map)	Μ	
	A (datatypes)	set of sorts

RDFⁱ: Vocabulary

RDF	RDF ⁱ	L
/ (IRIs)	1	
B (blank nodes)	В	
L (literals)	L	
	C (literals)	constants
	U (e-literals)	variables
M (datatype map)	Μ	
	A (datatypes)	set of sorts

$M_{\mathcal{L}}$ interprets the constants of \mathcal{L} in agreement with function 12V of M

RDFⁱ: Syntax

- I: IRIs
- B: blank nodes
- L : literals
- C: constants of \mathcal{L}
- U: e-literals

Definition

• $(s, p, o) \in (I \cup B) \cup I \cup (I \cup B \cup L \cup C \cup U)$ is called an e-triple

RDFⁱ: Syntax

- I : IRIs
- B: blank nodes
- L : literals
- C: constants of \mathcal{L}
- U: e-literals

Definition

- ► $(s, p, o) \in (I \cup B) \cup I \cup (I \cup B \cup L \cup C \cup U)$ is called an e-triple
- If t is an e-triple and θ a conjunction of L-constraints, then the pair (t, θ) is called a conditional triple

RDFⁱ: Syntax

- I : IRIs
- B: blank nodes
- L : literals
- C: constants of \mathcal{L}
- U: e-literals

Definition

- ► $(s, p, o) \in (I \cup B) \cup I \cup (I \cup B \cup L \cup C \cup U)$ is called an e-triple
- If t is an e-triple and θ a conjunction of L-constraints, then the pair (t, θ) is called a conditional triple
- A set of conditional triples is called a conditional graph

RDFⁱ: Syntax (cont'd)

Definition An RDFⁱ database D is a pair $D = (G, \phi)$ where G is a conditional graph and ϕ a Boolean combination of \mathcal{L} -constraints (global constraint)

Example hotspot1 type Hotspot 19fire1 type Fire hotspot1 correspondsTo fire1 _R1 fire1 occuredIn 8 _R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

 $\overline{23}$

 $\overline{6}$

RDFⁱ: Semantics

RDFⁱ: Semantics

Definition

A valuation v is a function from U to C assigning to each e-literal from U a constant from C

Definition

Let G be a conditional graph and v a valuation. Then v(G) denotes the RDF graph

$$\{v(t) \mid (t, \theta) \in G \text{ and } M_{\mathcal{L}} \models v(\theta)\}$$

RDFⁱ: Semantics (cont'd)

From RDFⁱ databases to sets of RDF graphs An RDFⁱ database $D = (G, \phi)$ corresponds to the following set of RDF graphs:

 $\begin{aligned} & \textit{Rep}(D) = \Big\{ H \mid \text{there exists valuation } v \text{ and RDF graph } H \\ & \text{such that } \mathbf{M}_{\mathcal{L}} \models v(\phi) \text{ and } H \supseteq v(G) \Big\} \end{aligned}$

- ▶ Relation ⊇ captures the OWA semantics
- An RDFⁱ database corresponds to an infinite number of RDF graphs

How can we evaluate a query q over an RDFⁱ database D (compute $[\![q]\!]_D$)?

How can we evaluate a query q over an RDFⁱ database D (compute $[\![q]\!]_D$)?

Semantic definition

$$\llbracket q \rrbracket_{\operatorname{Rep}(D)} = \{ \llbracket q \rrbracket_G \mid G \in \operatorname{Rep}(D) \}$$

How can we evaluate a query q over an RDFⁱ database D (compute $[\![q]\!]_D$)?

Semantic definition

$$\llbracket q \rrbracket_{Rep(D)} = \{ \llbracket q \rrbracket_G \mid G \in \underline{Rep(D)} \}$$

How can we evaluate a query q over an RDFⁱ database D (compute $[\![q]\!]_D$)?

Semantic definition

$$\llbracket q \rrbracket_{Rep(D)} = \{ \llbracket q \rrbracket_G \mid G \in \underline{Rep(D)} \}$$

In practice?

- Start with SPARQL algebra of [Pérez/Arenas/Gutierrez '06] with set semantics
- Define SPARQL query evaluation for RDFⁱ databases

From mappings to e-mappings...

$\{ ?F \rightarrow fire1, ?S \rightarrow "x \geq 1 \land x \leq 2 \land y \geq 1 \land y \leq 2" \}$

From mappings to e-mappings...

$$\{ \mathbf{?F} \rightarrow \mathbf{fire1}, \mathbf{?S} \rightarrow \mathbf{"x} \geq 1 \land \mathbf{x} \leq 2 \land \mathbf{y} \geq 1 \land \mathbf{y} \leq 2 \mathbf{"} \}$$

 $\{?F \to fire1, ?S \to _R1\}$

... to conditional mappings

$\{ ?F \rightarrow fire1, ?S \rightarrow "x \geq 1 \land x \leq 2 \land y \geq 1 \land y \leq 2" \}$

... to conditional mappings

$$\left(\{\text{?F} \rightarrow \text{fire1}, \text{?S} \rightarrow "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2"\}, \text{ true}\right)$$

... to conditional mappings

$$\left(\{\texttt{?F} \rightarrow \texttt{fire1}, \texttt{?S} \rightarrow_\texttt{R1}\}, _\texttt{R1} \ \texttt{EQ} " x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2"\right)$$

$$\begin{array}{ll} \left(\{?F \rightarrow \textit{fire1}, & ?S \rightarrow _R1\}, _R1 \ \textit{EQ} "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2"\right) \\ \\ \left(\{ & ?S \rightarrow _R2\}, \ \textit{true} \right) \end{array}$$

$$\begin{array}{l} \left(\{?F \rightarrow \textit{fire1}, ?S \rightarrow _R1\}, _R1 \ \textit{EQ} "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2"\right) \\ \\ \left(\{?S \rightarrow _R2\}, \textit{true} \right) \end{array}$$

$$\left(\{ ?F \rightarrow fire1, ?S \rightarrow R1 \}, R1 EQ "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2" \right)$$
$$(\{ ?S \rightarrow R2 \}, true)$$
$$=$$

$$\begin{array}{ccc} \left(\{ ?F \rightarrow \textit{fire1}, & ?S \rightarrow _R1 \}, _R1 \ EQ \ "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2" \right) \\ & \bowtie \\ \left(\{ & ?S \rightarrow _R2 \}, \ \textit{true} \right) \\ & = \\ \left(\{ ?F \rightarrow \textit{fire1}, & ?S \rightarrow _R1 \}, \ \textit{true} \ \land _R1 \ EQ \ _R2 \ \land \\ _R1 \ EQ \ "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2" \right) \end{array} \right)$$

Operations on conditional mappings

Let Ω_1 and Ω_2 be sets of conditional mappings. We can define the operation of:

- Join $(\Omega_1 \bowtie \Omega_2)$
- Union $(\Omega_1 \cup \Omega_2)$
- Difference $(\Omega_1 \setminus \Omega_2)$
- Left-outer join $(\Omega_1 \bowtie \Omega_2)$

If D is an RDFⁱ database and P a graph pattern, the evaluation of P over D is defined recursively:

Graph pattern evaluation

If D is an RDFⁱ database and P a graph pattern, the evaluation of P over D is defined recursively:

base case:

P is the triple pattern t

recursion:

If D is an RDFⁱ database and P a graph pattern, the evaluation of P over D is defined recursively:

base case:

P is the triple pattern t

recursion:

 $\begin{array}{rcl} P \text{ is } (P_1 \text{ AND } P_2) & \to & \llbracket P_1 \rrbracket_D & \bowtie & \llbracket P_2 \rrbracket_D \\ P \text{ is } (P_1 \text{ UNION } P_2) & \to & \llbracket P_1 \rrbracket_D & \cup & \llbracket P_2 \rrbracket_D \\ P \text{ is } (P_1 \text{ OPT } P_2) & \to & \llbracket P_1 \rrbracket_D & \bowtie & \llbracket P_2 \rrbracket_D \\ P \text{ is } (P_1 \text{ FILTER } R) \\ \text{where } R \text{ is a conjunction of } \mathcal{L}\text{-constraints} \end{array}$

If D is an RDFⁱ database and P a graph pattern, the evaluation of P over D is defined recursively:

base case:

P is the triple pattern t

recursion:

 $\begin{array}{rcl} P \text{ is } (P_1 \text{ AND } P_2) & \to & \llbracket P_1 \rrbracket_D & \bowtie & \llbracket P_2 \rrbracket_D \\ P \text{ is } (P_1 \text{ UNION } P_2) & \to & \llbracket P_1 \rrbracket_D & \cup & \llbracket P_2 \rrbracket_D \\ P \text{ is } (P_1 \text{ OPT } P_2) & \to & \llbracket P_1 \rrbracket_D & \bowtie & \llbracket P_2 \rrbracket_D \\ P \text{ is } (P_1 \text{ FILTER } R) \\ \text{where } R \text{ is a conjunction of } \mathcal{L}\text{-constraints} \end{array}$

Triple pattern evaluation (case 1)

Example Database D

Query q

fire1 occuredIn _R1 .

?F occuredIn ?R

_R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

Triple pattern evaluation (case 1)

Example Database D

Query q

_R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

Answer (set of conditional mappings)

$$\llbracket q \rrbracket_D = \left\{ \left(\{ \mathsf{?F} \to \mathsf{fire1}, \mathsf{?R} \to _R1 \}, \mathsf{true} \right) \right\}$$

Triple pattern evaluation (case 2)

Example Database *D*

fire1 occuredIn $_R1$.

_R1 NTPP "x $\geq 6 \land x \leq 23 \land y \geq 8 \land y \leq 19$ "

Query q ?F occuredIn " $x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2$ " Triple pattern evaluation (case 2)

Example Database D

fire1 occuredIn $_R1$.

Query q ?F occuredIn " $x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2$ "

_R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

Answer (set of conditional mappings)

 $\llbracket q \rrbracket_D = \left\{ \left(\{ ?F \to \text{fire1} \}, _R1 \text{ EQ } "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2" \right) \right\}$

Evaluation of FILTER graph patterns

Example

Database D

fire1 occuredIn $_R1$.

_R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

Query q

?F occuredIn ?R . FILTER (?R NTPP $"x \geq 1 \land x \leq 2 \land y \geq 1 \land y \leq 2")$

Evaluation of FILTER graph patterns

ExampleQuery qDatabase DQuery qfire1 occuredIn _R1 .?F occuredIn ?R ._R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "" $x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2$ ")

Answer

$$\llbracket q \rrbracket_{\mathcal{D}} = \left\{ \left(\{ ?F \to \text{fire1}, ?R \to _R1 \}, \\ _R1 \text{ NTPP } "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2" \right) \right\}$$

SELECT queries

Example Database D

fire1 occuredIn _R1 .

_R1 NTPP "x $\geq 6 \land x \leq 23 \land y \geq 8 \land y \leq 19$ "

Query q

SELECT ?F WHERE { ?F occuredIn ?R . FILTER (?R NTPP "x $\geq 1 \land x \leq 2 \land y \geq 1 \land y \leq 2$ ")}

SELECT queries

Example Database D

fire1 occuredIn R1.

Querv a

SELECT ?F WHERE { ?F occuredIn ?R . _R1 NTPP " $x > 6 \land x < 23 \land y > 8 \land y < 19$ " FILTER (?R NTPP $x > 1 \land x < 2 \land y > 1 \land y < 2$)

Answer (set of conditional mappings)

 $\llbracket q \rrbracket_D = \Big\{ \big(\{ ?F \to \text{fire1} \},$ $R1 \text{ NTPP } "x \ge 1 \land x \le 2 \land y \ge 1 \land y \le 2"$

CONSTRUCT queries

Example Database D

fire1 occuredIn _R1 .

_R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

Query q

CONSTRUCT { ?F type Fire } WHERE { ?F occuredIn ?R

}

CONSTRUCT queries

Example Database D

fire1 occuredIn _R1 .

_R1 NTPP "x $\geq 6 \land x \leq 23 \land y \geq 8 \land y \leq 19$ "

Query q

```
CONSTRUCT { ?F type Fire }
WHERE {
    ?F occuredIn ?R
}
```

Answer (RDFⁱ database)

 $D' = (G', \phi)$ fire1 type Fire . _R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

CONSTRUCT queries

Example Database D

fire1 occuredIn _R1 .

_R1 NTPP "x $\geq 6 \land x \leq 23 \land y \geq 8 \land y \leq 19$ "

Query q

```
CONSTRUCT { ?F type Fire }
WHERE {
 ?F occuredIn ?R
}
```

Answer (RDFⁱ database)

 $D' = (G', \phi)$ fire1 type Fire . .R1 NTPP " $x \ge 6 \land x \le 23 \land y \ge 8 \land y \le 19$ "

Closure property

Does query evaluation compute the correct answer (the answer agrees with the semantic definition)?

Does query evaluation compute the correct answer (the answer agrees with the semantic definition)?

Does query evaluation compute the correct answer (the answer agrees with the semantic definition)?

Does query evaluation compute the correct answer (the answer agrees with the semantic definition)?

Does query evaluation compute the correct answer (the answer agrees with the semantic definition)?

Does query evaluation compute the correct answer (the answer agrees with the semantic definition)?

The following diagram should commute. Does it?

Does query evaluation compute the correct answer (the answer agrees with the semantic definition)?

The following diagram should commute. Does it?

Certain answer to the rescue

Definition The certain answer to query q over a set of RDF graphs G is set

 $\bigcap\{\llbracket q \rrbracket_G \mid G \in \mathcal{G}\}$

Certain answer to the rescue

Definition The certain answer to query q over a set of RDF graphs G is set

 $\bigcap\{\llbracket q \rrbracket_G \mid G \in \mathcal{G}\}$

Using the notion of certain answer we can relax the earlier equality requirement to one that uses Q-equivalence.

Certain answer to the rescue

Definition The certain answer to query q over a set of RDF graphs G is set

 $\bigcap\{\llbracket q \rrbracket_G \mid G \in \mathcal{G}\}$

Using the notion of certain answer we can relax the earlier equality requirement to one that uses Q-equivalence.

Definition

Let Q be a fragment of SPARQL. Two sets of RDF graphs G, \mathcal{H} will be Q-equivalent (denoted by $G \equiv_Q \mathcal{H}$) if they give the same certain answer to every query $q \in Q$

$$\bigcap\{\llbracket q \rrbracket_G \mid G \in \mathcal{G}\} = \bigcap\{\llbracket q \rrbracket_H \mid H \in \mathcal{H}\}\$$

Representation system

Let

- \mathcal{D} be the set of all RDFⁱ databases
- \mathcal{G} be the set of all RDF graphs
- *Rep* : D → G be a function determining the set of possible RDF graphs corresponding to an RDFⁱ database, and
- \mathcal{Q} be a fragment of SPARQL

 $\langle \mathcal{D}, Rep, \mathcal{Q} \rangle$ is a representation system if for all $D \in \mathcal{D}$ and all $q \in \mathcal{Q}$, there exists an RDFⁱ database $[\![q]\!]_D$ such that

 $Rep(\llbracket q \rrbracket_D) \equiv_{\mathcal{Q}} \llbracket q \rrbracket_{Rep(D)}$

Representation system

Let

- \mathcal{D} be the set of all RDFⁱ databases
- \mathcal{G} be the set of all RDF graphs
- ▶ $Rep : D \to G$ be a function determining the set of possible RDF graphs corresponding to an RDFⁱ database, and
- Q be a fragment of SPARQL

 $\langle \mathcal{D}, Rep, \mathcal{Q} \rangle$ is a representation system if for all $D \in \mathcal{D}$ and all $q \in \mathcal{Q}$, there exists an RDFⁱ database $[\![q]\!]_D$ such that

 $Rep(\llbracket q \rrbracket_D) \equiv_{\mathcal{Q}} \llbracket q \rrbracket_{Rep(D)}$

Are there interesting fragments ${\cal Q}$ of SPARQL that lead to a representation system?

Representation systems for RDFⁱ

Theorem

The following fragments of SPARQL can give us representation systems for RDFⁱ (with D and Rep as defined):

- Q^C_{AUF}: CONSTRUCT queries using only AND, UNION, and FILTER graph patterns, and without blank nodes in their templates
- ► Q^C_{WD}: CONSTRUCT queries using only well-designed graph patterns, and without blank nodes in their templates

Well-designed graph patterns [Pérez/Arenas/Gutierrez '06]

- AND, FILTER, OPT fragment
- P FILTER R: safe
- ▶ *P*₁ OPT *P*₂: variables in *P*₂ are **properly scoped**

Representation systems for RDFⁱ (cont'd) Monotonicity

Definition

A fragment Q of SPARQL is monotone if for every $q \in Q$ and RDF graphs G and H such that $G \subseteq H$, it is $[\![q]\!]_G \subseteq [\![q]\!]_H$.

Proposition [Arenas/Pérez '11]

- The fragment of SPARQL corresponding to AND, UNION, and FILTER graph patterns is monotone.
- ► The fragment of SPARQL corresponding to well-designed graph patterns is weakly-monotone (□).

Proposition

Fragments Q_{AUF}^{C} and Q_{WD}^{C} are monotone.

Computing certain answers

- Representation systems guarantee correctness of query evaluation for RDFⁱ and SPARQL
- Query evaluation computes an RDFⁱ database

$$\llbracket q \rrbracket_D = D' = (G', \phi)$$

How could we compute the certain answer?

 $\bigcap Rep(\llbracket q \rrbracket_D)$

Rep([[q]]_D) is infinite!

Computing certain answers (cont'd)

Theorem

For $D = (G, \phi)$ and q from Q_{AUF}^C or Q_{WD}^C , the certain answer of q over D can be computed as follows:

i) compute
$$[\![q]\!]_D = D_q = (G_q, \phi)$$
,

- ii) compute the RDFⁱ database $(H_q, \phi) = ((D_q)^{\mathrm{EQ}})^*$, and
- iii) return the set of RDF triples

 $\{(s, p, o) \mid ((s, p, o), \theta) \in H_q \text{ such that } \phi \models \theta \text{ and } o \notin U\}$

The certainty problem

CERT(q, H, D)

Input

An RDF graph H, a CONSTRUCT query q, and an RDFⁱ database D

Question

Does H belong to the certain answer of q over D?

 $H\subseteq \bigcap \llbracket q \rrbracket_{Rep(D)}?$

The certainty problem

CERT(q, H, D)

Input

An RDF graph H, a CONSTRUCT query q, and an RDFⁱ database D

Question

Does H belong to the certain answer of q over D?

 $H\subseteq \bigcap \llbracket q \rrbracket_{Rep(D)}?$

We study the data complexity of CERT(q, H, D)

- H and D are part of the input
- q is fixed

C. Nikolaou and M. Koubarakis - Incomplete Information in RDF

Deciding the certainty problem

Theorem CERT(q, H, D) is equivalent to deciding whether formula

$$\bigwedge_{t\in H} (\forall_{-}I)(\phi(_{-}I)\supset \Theta(t,q,D,_{-}I))$$

is true

- ▶ _ I is the vector of all e-literals in D
- ► $\Theta(t, q, D, I)$ is of the form $\theta_1 \vee \cdots \vee \theta_k$, where θ_i is a conjunction of \mathcal{L} -constraints

Computational complexity

Problem	L	data complexity
CERT(q, H, D)	ECL/diPCL/dePCL/RCL	coNP-complete
	TCL/PCL (RCC-5)	EXPTIME
Computational complexity

Problem	L	data complexity
CERT(q, H, D)	ECL/diPCL/dePCL/RCL	coNP-complete
	TCL/PCL (RCC-5)	EXPTIME

Problem	combined complexity	data complexity
SPARQL SPARQL _{AUF} SPARQL _{WD}	PSPACE-complete NP-complete coNP-complete	LOGSPACE

Conclusions

RDFⁱ framework

- Modeling of incomplete information for property values
- Formal semantics through possible worlds semantics
- SPARQL query evaluation and certain answer semantics
- Two representation systems for RDFⁱ and SPARQL
- Algorithm for certain answer computation
- Preliminary complexity analysis

Future work

- More general models of incomplete information (subject, predicate)
- More refined complexity results
- Scalable implementation when L expresses topological constraints with/without constants (TCL/PCL)
- Connection with query processing for the topology vocabulary extension of GeoSPARQL
- Probabilistic extension to RDFⁱ
- Data integration theory for linked data (only practice exists so far)
- Connection to geospatial OBDA using DL logics

Thank you

Constraint languages ${\cal L}$

Properties of ${\mathcal L}$

- Many-sorted first-order language
- Interpreted over a fixed (intended) structure $M_{\mathcal{L}}$
- EQ: distinguished equality predicate
- \mathcal{L} -constraints: quantifier-free formulae of \mathcal{L}
- ► Weakly closed under negation: the negation of every atomic *L*-constraint is equivalent to a disjunction of *L*-constraints

Example (classical RDF - OWA) D q spo. CONSTRUCT { s ?p ?o } WHERE { s ?p ?o }

Correctness of SPARQL query evaluation for RDFⁱ (cont'd)

An easy negative example

Example

Let us compare the the set of graphs represented by $[\![q]\!]_D$ with $[\![q]\!]_{Rep(D)}$

Correctness of SPARQL query evaluation for RDFⁱ (cont'd)

An easy negative example

Example

Let us compare the the set of graphs represented by $[\![q]\!]_D$ with $[\![q]\!]_{Rep(D)}$

$$Rep(\llbracket q \rrbracket_D) = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{c}, \mathsf{d}, \mathsf{e}) \end{array} \right\}, \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$

Example

Let us compare the the set of graphs represented by $[\![q]\!]_D$ with $[\![q]\!]_{Rep(D)}$

$$Rep(\llbracket q \rrbracket_D) = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{c}, \mathsf{d}, \mathsf{e}) \end{array} \right\}, \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$
$$\llbracket q \rrbracket_{Rep(D)} = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$

Example

Let us compare the set of graphs represented by $[\![q]\!]_D$ with $[\![q]\!]_{Rep(D)}$

$$Rep(\llbracket q \rrbracket_D) = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{c}, \mathsf{d}, \mathsf{e}) \end{array} \right\}, \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$
$$\llbracket q \rrbracket_{Rep(D)} = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$

There is no $g \in \llbracket q \rrbracket_{Rep(D)}$ containing the triple (c, d, e)!

Example

Let us compare the set of graphs represented by $[\![q]\!]_D$ with $[\![q]\!]_{Rep(D)}$

$$Rep(\llbracket q \rrbracket_D) = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{c}, \mathsf{d}, \mathsf{e}) \end{array} \right\}, \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$
$$\llbracket q \rrbracket_{Rep(D)} = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{p}, \mathsf{o}) \end{array} \right\}, \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$

There is no $g \in \llbracket q \rrbracket_{Rep(D)}$ containing the triple (c, d, e)!

This would work if RDF made the CWA

Example

Let us compare the set of graphs represented by $[\![q]\!]_D$ with $[\![q]\!]_{Rep(D)}$

$$Rep(\llbracket q \rrbracket_D) = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{c}, \mathsf{d}, \mathsf{e}) \end{array} \right\}, \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$
$$\llbracket q \rrbracket_{Rep(D)} = \left\{ \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{p}, \mathsf{o}) \end{array} \right\}, \left\{ \begin{array}{c} (\mathsf{s}, \mathsf{p}, \mathsf{o}) \\ (\mathsf{s}, \mathsf{b}, \mathsf{c}) \end{array} \right\}, \cdots \right\}$$

There is no $g \in \llbracket q \rrbracket_{Rep(D)}$ containing the triple (c, d, e)!

- This would work if RDF made the CWA
- ▶ We know this already from the relational case [Imielinski/Lipski '84]

Computing certain answers

Definitions

Definition (EQ-completion)

The EQ-completed form of $D = (G, \phi)$, denoted by $D^{EQ} = (G^{EQ}, \phi)$, is taken from D by replacing all e-literals $\neg I \in U$ appearing in G by the constant $c \in C$ such that $\phi \models \neg I \in Q c$

Computing certain answers

Definitions

Definition (EQ-completion)

The EQ-completed form of $D = (G, \phi)$, denoted by $D^{EQ} = (G^{EQ}, \phi)$, is taken from D by replacing all e-literals $\neg I \in U$ appearing in G by the constant $c \in C$ such that $\phi \models \neg I \in Q c$

Definition (Normalization)

The normalized form of D is the RDFⁱ database $D^* = (G^*, \phi)$ where G^* is the set

$$\{(t,\theta) \mid (t,\theta_i) \in G \text{ for all } i = 1 \dots n, \text{ and } \theta \text{ is } \bigvee_i \theta_i \}$$

 $G = \{(t, \theta_1), (t, \theta_2), (t', \theta')\}$

$$G^* = \{(\mathbf{t}, \theta_1 \lor \theta_2), (\mathbf{t}', \theta')\}$$