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Abstract

Resultants are defined in the toric (or sparse) context in order to exploit the structure of the
polynomials as expressed by their Newton polytopes. Since determinantal formulae are not al-
ways possible, the most efficient general method for computing resultants is by rational formulae.
This is made possible by Macaulay’s famous determinantal formula in the dense homogeneous
case, extended by D’Andrea to the toric case. However, the latter requires a lifting of the Newton
polytopes, defined recursively on the dimension. Our main contribution is a single lifting function
of the Newton polytopes, which avoids recursion, and yields a simpler method for computing
Macaulay-type formulae of toric resultants, in the case of generalized unmixed systems, where all
Newton polytopes are scaled copies of each other. In the mixed subdivision used to construct the
matrices, our algorithm defines significantly fewer cells than D’Andrea’s, though the formulae are
same in both cases. We fully study a bivariate example and sketch how our approach extends to
mixed systems of up to four polynomials, and those whose Newton polytopes have a sufficiently
different face structure.

Keywords Toric resultant, Macaulay formula, Minkowski sum, mixed subdivision, generalized
unmixed system

MSC classification Primary: 68W30, Secondary: 13P15, 14M25, 52B20.

1 Introduction

There are a few symbolic methods for algebraic variable elimination, including Gröbner (or standard)
bases, and resultants. Both have exponential complexity in the number of variables, which is expected
since the problem is NP-hard; but the latter are preferable in certain situations because they eliminate
many variables at one step and can handle symbolic coefficients. Resultants also seem more efficient
for solving certain classes of zero-dimensional algebraic systems. In particular, they reduce system
solving to linear algebra, via matrix formulae, or to solving univariate polynomials, via the rational
univariate representation of all common roots. The resultant generalizes the determinant of the
coefficient matrix in the linear case, and the discriminant of a multivariate polynomial. For more
information, see [CLO05, DE05, Stu02].

The toric (or sparse) resultant captures the structure of the polynomials by combinatorial means
and constitutes the cornerstone of toric elimination theory [GKZ94, Stu02], [CLO05, chap.7], [DE05,
chap.7]. It is an important tool in deriving new, tighter complexity bounds for system solving,
Hilbert’s Nullstellensatz, and related problems. These bounds depend on the polynomials’ Newton
polytopes and their mixed volumes, instead of total degree, which is the only parameter in classical
elimination theory. In particular, if d bounds the total degree of each polynomial, the projective
resultant has complexity roughly dO(n), whereas the toric resultant is computed in time roughly
proportional to the number of integer lattice points in the Minkowski sum of the Newton polytopes.
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The resultant is defined for an overconstrained system of n + 1 polynomials in n variables over
some coefficient ring K. It is the unique, up to sign, integer polynomial over K which vanishes
precisely when the system has a root in some variety X. There are two main cases:

• The projective, or classical, resultant expresses solvability of a system of dense polynomials
fi ∈ K[x1, . . . , xn] in the projective space over the algebraic closure K of K.

• The toric (or sparse) resultant expresses solvability of a system of Laurent polynomials fi ∈
K[x±1

1 , . . . , x±1
n ] over the toric projective variety X defined by the supports of fi, in which the

torus (K)n is a dense subset.

A resultant is most efficiently expressed by a matrix formula: this is a generically nonsingular
matrix, whose determinant is a multiple of the resultant with degree with respect to the coefficients
of one polynomial equal to the corresponding degree of the resultant. For n = 1 there are matrix
formulae named after Sylvester and Bézout, whose determinant equals the resultant. Unfortunately,
such determinantal formulae do not generally exist for n > 1, except for specific cases, e.g. [DD01,
DE03b, EM09, Khe03, KSG04, SZ94]. Macaulay’s seminal result [Mac02] expresses the extraneous
factor as a minor of the matrix formula, for projective resultants of (dense) homogeneous systems,
thus yielding the most efficient general method for computing such resultants. There exists a method
which, given a Macaulay-type formula of the resultant, constructs a determinant which equals the
resultant [KK08].

Matrix formulae for the toric resultant were first constructed in [CE93]. The construction relies
on a lifting of the given polynomial supports, which defines a mixed subdivision of their Minkowski
sum into mixed and non-mixed cells, then applies a perturbation δ so as to define the integer points
that index the matrix. The algorithm was extended in [CE00, CP93, Stu94]. In the case of dense
systems, the matrix coincides with Macaulay’s numerator matrix. As a corollary of this construction,
one obtains a limited version of a toric effective Nullstellensatz [CE00, Sec.8].

Extending the Macaulay formula to toric resultants had been conjectured in [CE00, CLO05,
Emi94, GKZ94, Stu94]; it was a major open problem in elimination theory. We cite [Stu94, p.219],
where Pω,δ is the extraneous factor, and ω denotes the lifting: “It is an important open problem to find
a more explicit formula for Pω,δ in the general toric case. Does there exist such a formula in terms of
some smaller resultants? This problem is closely related to the following empirical observation. For
suitable choice of δ and ω, the matrix Mδ,ω seems to have a block structure which allows to extract
the resultant from a proper submatrix. This leads to faster algorithms for computing the sparse mixed
resultant.”

D’Andrea’s fundamental result [D’A02] answers the conjecture by a recursive definition of a
Macaulay-type formula, see Section 3. But this approach does not offer a global lifting, in order
to address the stronger original Conjecture 1. Let M be a matrix formula, also known as Newton
matrix, and M (nm) its submatrix indexed by points in non-mixed cells of the mixed subdivision.

Conjecture 1. [Emi94, Conj.3.1.19] [CE00, Conj.13.1] There exist perturbation vector δ and n+ 1
lifting functions for which the determinant of matrix M (nm) divides exactly the determinant of
Newton matrix M and, hence, the toric resultant of the given polynomial system is detM/detM (nm).

Our main contribution is to give an affirmative answer to this stronger conjecture by presenting
a single lifting which constructs Macaulay-type formulae for generalized unmixed systems, i.e. when
all Newton polytopes are scaled copies of each other. We state our main result, to be proven in
Section 4:

Theorem 2. Algorithm B of Section 2 constructs a Macaulay-type formula for the toric resultant of
an overconstrained generalized unmixed algebraic system, by means of the lifting function of Defini-
tion 6.

Our method is generalized, in Section 6, to certain mixed systems: those with n ≤ 3, as well as
reduced systems, defined in [Zha98] to possess sufficiently different Newton polytopes. Most of these
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cases have been studied: reduced systems were settled in [D’A01], and bivariate systems (n = 2)
in [DE03a], by directly establishing the extraneous factor. We expect that our approach would
eventually make the single-lifting algorithm applicable to the fully general case.

Using a unique lifting function essentially means that we consider a deformed system, defined
by adding a new variable t so that each input monomial xa gets multiplied by tb, where b ∈ Z

is the lifting value of a ∈ Zn. Such deformations capture the system’s behavior at toric infinity,
hence lie at the heart of most theorems in toric elimination (e.g. sparse homotopies, toric resultants,
the toric Nullstellensatz [Ber75, CE00, CLO05, GKZ94, HS95, Stu94]). Having a unique deformed
system in defining the Macaulay-type formula might allow for further applications of this formula.
Such combinatorial methods constitute one of the two main approaches for studying toric resul-
tants, e.g. [CE00, CLO05, DD01, Min03, Stu94], the other relying on Koszul complexes and their
generalizations, e.g. [DE03b, EM09, Khe03].

D’Andrea’s [D’A02] recursive construction requires one to associate integer points with cells of
every dimension from n to 1. Our method constructs the matrix formula directly, without recursion,
by examining only n-dimensional cells. These are more numerous than the n-dimensional cells in
[D’A02] but our algorithm defines significantly fewer cells totally. The disadvantage of our method
is to consider extra points besides the input supports. Our single lifting algorithm is conceptually
simpler and also easier to implement; see [GLW99], where the authors argue for the advantages
of a single lifting over a recursive one in the context of polyhedral homotopy methods for solving
algebraic systems. Existing public-domain Maple implementations cover only the original Canny-
Emiris method [CE00], either standalone1 or as part of library Multires2.

The rest of the paper is structured as follows. The next section introduces some necessary notions,
and defines the single lifting that produces Macaulay-type formulae. Section 3 recalls the recursive
algorithm of [D’A02], and Section 4 proves the equivalence of the two constructions. Section 5 studies
a bivariate example, and Section 6 sketches the extension of our algorithm to mixed systems.

2 Single lifting construction

This section describes our approach to defining Macaulay-formulae. For any polytopes or point sets
A,B, let 〈A〉 denote the affine span (or hull) of A over R and 〈A,B〉 the affine span of A ∪ B over
R. Let f0, . . . , fn be polynomials with supports A0, . . . , An ⊂ Zn and Newton polytopes

Q0, . . . , Qn ⊂ Rn, Qi = CH(Ai),

where CH(·) denotes convex hull.
Our lifting shall induce a regular and fine (or tight) mixed subdivision of the Minkowski sum

∑n
i=0Qi [CLO05, GKZ94]. Regularity implies the subdivision is in bijective correspondence with

the face structure of the upper (or lower) hull of the Minkowski sum of Q0, . . . , Qn after they are
lifted to Rn+1. Each cell in Rn is written uniquely as the Minkowski sum of faces Fi of the Qi. A
fine subdivision is characterized by an equality between cell dimension and the sum of the faces’
dimensions. We focus on cells of maximal dimension n, and call them maximal or, simply, cells.
We distinguish them as mixed and non-mixed: the former are the Minkowski sum of n edges and
a vertex. Mixed cells are i-mixed if this vertex lies in Ai. The type of a cell is either i-mixed or
non-mixed.

Let Z be the integer lattice generated by
∑n

i=0 Ai. The Minkowski sum
∑n

i=0Qi is perturbed by
a vector δ ∈ Qn, which is sufficiently small with respect to Z, and in sufficiently generic position with
respect to the Qi. The lattice points in E = Z ∩ (

∑n
i=0Qi + δ) are associated to a unique maximal

cell of the subdivision, and this allows us to construct a matrix formula M whose rows and columns
are indexed by these points. In particular, polynomial xp−aijfi fills in the row indexed by the lattice
point p in Definition 3.

1http://www.di.uoa.gr/∼emiris/soft alg.html
2http://www-sop.inria.fr/galaad/logiciels/multires.html
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Definition 3. Let p ∈ E lie in a cell F0 + · · ·+Fn + δ of the perturbed mixed subdivision, where Fi

is a face of Qi. The row content (RC) of p is (i, j), if i ∈ {0, . . . , n} is the largest integer such that
Fi equals a vertex aij ∈ Ai.

Our method is based on the matrix construction algorithm of [CE00, Emi94], see also [CP93,
Stu94] for generalizations. For completeness, we recall the basic steps:

1. Pick (affine) liftings Hi : Z
n → R : Ai → Q, i = 0, . . . , n.

2. Construct a regular fine mixed subdivision of the Minkowski sum
∑n

i=0 Qi using liftings Hi.

3. Perturb the Minkowski sum
∑n

i=0 Qi by a sufficiently small δ ∈ Qn, so that integer points in
∑n

i=0 Qi + δ belong to a unique cell of the subdivision, and assign row content to these points
by Definition 3.

4. Construct resultant matrix M with rows and columns indexed by the previous integer points.

Below, we modify step 1 of this algorithm to use the lifting function of Definition 6, and shall
extend the last step to produce additionally the denominator matrix. We shall refer to the modified
algorithm as Alg. B.

The main idea of both our and D’Andrea’s methods is that one point, say b01 ∈ Q0, is lifted
significantly higher. Then, the 0-summand of all maximal cells is either b01 or a face not containing it.
In D’Andrea’s case, facets not containing b01 correspond to different subsystems where the algorithm
recurses (each time on the integer lattice specified by that subsystem). In designing a unique lifting,
the issue is that points appearing in two of these subsystems may be lifted differently in different
recursions. To overcome this, we introduce several points cijs, each lying in a suitable face of Qi

indexed by s, very close (with respect to Z) to every bij, which is lifted very high at recursion i by
D’Andrea’s method. This captures the multiple roles bij may assume in every recursion step.

Algorithm B. Our algorithm uses E to index the rows (and columns) of the numerator matrix of
our Macaulay-type formula. We now focus on generalized unmixed systems, where

Qi = kiQ ⊂ Rn,

for some n-dimensional lattice polytope Q and ki ∈ N∗, i = 0, . . . , n. Then, the denominator shall be
indexed by points lying in non-mixed cells.

Definition 4. For i = 0, . . . , n − 2, consider any (n − i)-dimensional face F
(i)
s ⊂ Q, where s ranges

over all such faces. Take any vertex bij ∈ F
(i)
s , for any valid j. Let δijs ∈ Qn denote a perturbation

vector such that:

1. bij + δijs lie in the relative interior of kiF
(i)
s ,

2. it is sufficiently small compared to lattice Z, and ‖δijs‖ ≪ ‖δ‖, where ‖ · ‖ is the Euclidean
norm and δ as above, and

3. it is sufficiently generic to avoid all edges in the mixed subdivision of
∑n

i=0 Qi .

Condition 1 of Definition 4 implies that δijs also lies in the relative interior of kiF
(i)
s . We shall

use the perturbation vectors of Definition 4 to define additional points not contained in the input
supports.

Definition 5. We define points cijs ∈ Qi ∩Qn, for i = 0, . . . , n − 2. Firstly, set c011 := b01 + δ011 ∈

Q0 ∩Qn where δ011 satisfies Definition 4. Now let {cijs ∈ kiF
(i)
s } be the set of points defined in Qi,

where s ranges over all (n − i)-dimensional faces F
(i)
s ⊂ Q and j over the set of indices of points in

Qi. Then, let F
(i+1)
u be a facet of F

(i)
s such that:
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1. kiF
(i+1)
u does not contain any of the bij ’s corresponding to the already defined cijs’s, and

2. ki+1F
(i+1)
u does not contain any of the already defined c(i+1)l’s.

For each such facet choose a vertex b(i+1)j ∈ Ai+1, for some j, and a suitable perturbation vector
δ(i+1)ju satisfying Definition 4, and set c(i+1)ju := b(i+1)j + δ(i+1)ju ∈ Qi+1 ∩Qn.

The previous definition implies a many-to-one mapping from the set of cijs’s to that of bij ’s; it

reduces to a bijection when restricted to a fixed face kiF
(i)
s ⊂ Qi containing bij. Condition 1 of

Definition 4 implies that cijs does not lie on a face of dimension < n − i and lies in the interior of

(n− i)-dimensional F
(i)
s . We can reduce the number of the cijs’s in Alg. B, but this would complicate

the subsequent proofs.
For an application of Definition 5 when n = 2 see Figure 1 where Q is the unit square, and also

Figure 7 where Q is a pentagon. In both examples, for illustration purposes, we define points cijs
also on edges of polytope Q1. See also Figure 2 where Q is the unit cube.

Q0 Q1 Q2

Q2Q1Q0

b01

b02 b03

b04

c011

b01 b04

b02 b03

c011

b12 b13 b22 b23

b11 b14 b21 b24

c122

c143

b12 b13 b22 b23

b11 b14 b21 b24

c132
c143

Figure 1: Two scenarios of an application of Def. 5 for 3 unit squares. Facets are numbered clockwise
starting from the left vertical edge

Definition 6. Let h0 ≫ h1 ≫ . . . ≫ hn−1 ≫ 1. Alg. B uses sufficiently random linear functions
Hi, i = 0, . . . , n, such that:

1 ≫ Hi(aij) > 0, and Hi ≫ Ht, i < t,

where aij ∈ Ai and i, t = 0, . . . , n, j = 1, . . . , |Ai|. Alg. B defines global lifting β as follows:

1. cijs 7→ hi, cijs ∈ kiF
(i)
s ⊂ Qi, i = 0, . . . , n − 1; this is called primary lifting.

2. aij 7→ Hi(aij), aij ∈ Ai, i = 0, . . . , n.

Let F β denote face F lifted under β. Now cβtjs, for all valid j, s, is much higher, respectively

lower, than any cβijs, for i > t, respectively i < t. The β-induced subdivision contains edges with

one or two vertices among the cijs, and edges from the Qi. The vertex set of the upper hull of Qβ
i

contains some or all of the cβijs and the lifted vertices of Qi.
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(0, 0, 0)

(0, 0, 1) (1, 0, 1)

(1, 1, 1)
(0, 1, 1)

(0, 1, 0) (1, 1, 0)

(1, 0, 0)

Q0 Q1

c011

c154

c183

c126

(0, 0, 0)

(0, 0, 1) (1, 0, 1)

(1, 1, 1)
(0, 1, 1)

(0, 1, 0) (1, 1, 0)

(1, 0, 0)

Figure 2: Application of Def. 5 when Q is the unit cube. Alg. B defines additional points only in
polytopes Q0 and Q1

When all Qi are simplices, as in the classical dense case, it suffices to apply a primary lifting to one
point of every Qi as in Definition 5. Thus our scheme generalizes the approach by Macaulay [Mac02].

Figure 3 shows the mixed subdivisions of three unit squares and their Minkowski sum, induced
by lifting β. Here, the perturbation vectors are not sufficiently small compared to Z2 for illustration
purposes.

Q0

Q1
Q2

∑2
i=0Qi

Figure 3: The mixed subdivisions of 3 unit squares and their Minkowski sum induced by lifting β

The matrix formula constructed by Alg. B is indexed by all lattice points in E . To decide the
content of each row, every point is associated to a unique (maximal) cell of the mixed subdivision
according to Definition 3. The t-mixed cells contain lattice points as follows:

p ∈ k0E0 + · · ·+ kt−1Et−1 + ctjs + kt+1Et+1 + · · · + knEn ∩ Z,
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for edges Ei ⊂ Q spanning Rn. This gives unique writing

p = p0 + · · ·+ pt−1 + (btj + δtjs) + pt+1 + · · ·+ pn, pi ∈ Ai ∩ Ei.

Hence, the row indexed by p, as with matrix constructions in [CE00, D’A02], contains a multiple of
ft(x):

xp0+···+pt−1+pt+1+···+pnft(x),

and the diagonal element is the coefficient of the monomial with exponent btj in ft(x). Similarly, for
the rows corresponding to lattice points in non-mixed cells.

Let us sketch the asymptotic complexity of our algorithm. Alg. B, implemented by the direct
approach of [CE00], comprises of two main steps. First, the computation of the vertices of each
Qi which is typically dominated. Second, we compute RC for all p ∈ E , which includes the matrix
construction. Both steps can be reduced to linear programming with C constraints in V variables,
and coefficient bitsize B. If we use a poly-time algorithm such as Karmarkar’s [Kar84], the bit
complexity is C5.5V 2B2, where B depends on the bitsize of the input coordinates and of δ, δijs. It is
related to the probability that the chosen perturbations are not sufficiently generic; see [CE00] for
the full analysis.

Let m be the maximum number of vertices of the Qi, r the total number of cijs’s, and let O∗(·)
indicate that we ignore polylog factors. The linear programs have complexity O∗(r2B2) = O∗(mnB2)
because r is bounded by the total number O(m⌊n/2⌋) of faces in Q, which is quite pessimistic. In an
output sensitive manner, r = O(|E|), because the addition of every cijs is made in order to handle
at least one distinct point in E . Hence, the complexity of constructing the Macaulay-type formula
is O∗(|E|3B2). This holds for matrices in sparse and dense representation. For generalized unmixed
systems, one can use |E| = O(knenD) from [CE00, thm.3.10], where k = maxi{ki}, D is the total
degree of the toric resultant as a polynomial in the input coefficients, and e the basis of natural
logarithms.

A better implementation finds RC for one point in a maximal cell, then enumerates all points
in this cell in time proportional to their cardinality multiplied by a polynomial in m,n,B [Emi02,
thm.16]. The neighbours of these points which lie outside the cell will yield new cells, so as to
explore the entire Minkowski sum; detecting new cells does not increase the overall complexity. If
S ≤ |E| is the number of maximal cells containing at least one lattice point, Alg. B has complexity
O∗(Sr2B2+ |E|) = O∗(S|E|2B2), where typically, S ≪ |E|. This may be compared to the complexity
of Alg. A at the end of the next section.

3 Recursive construction

This section discusses D’Andrea’s recursive construction of a Macaulay-type formula [D’A02]. There
are certain free parameters in the algorithm which we specify so as to obtain a version very similar
to our approach.

At the input of the 0-step the algorithm may use an additional polytope mQ, for any m ∈ R,
which we omit by setting m = 0. We describe the t-th recursive step, for t = 0, 1, . . . , n− 1.

Algorithm A. The input are polytopes

l0P
(t), . . . , lt−1P

(t), ktP
(t), . . . , knP

(t) ⊂ Rn−t, li ∈ [0, ki] ∩Q,

the integer lattice L(t) spanned by
∑n

i=tAi ∩ kiP
(t), and perturbation vector δt ∈ Qn−t. Here,

kiP
(t), i ≥ t, is an (n− t)-dimensional face of kiQ, thus P (0) = Q. Also, P (t) is a facet of P (t−1), and

liP
(t), i < t, is homothetic to kiP

(t). These constructions shall be specified at the Recursion Phase.
Also, L(0) = Z and δ0 = δ.
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Construction Phase: Vertex btj ∈ ktP
(t) ∩ At is lifted to 1. We require that btj = ctjs − δtjs,

where s is determined by the face ktP
(t). All other vertices of all input polytopes are lifted to 0. This

is the primary lifting which partitions the Minkowski sum of the input polytopes into a primary cell

l0P
(t) + · · ·+ lt−1P

(t) + btj + kt+1P
(t) + · · ·+ knP

(t) + δt, (1)

of dimension n − t, and several secondary cells. Each secondary cell is defined by an inner normal
v ∈ Qn−t to a facet of ktP

(t) not containing btj .
Polytopes

∑t−1
i=0 liP

(t), kt+1P
(t), . . . , knP

(t) are lifted by applying the restriction of β on them.
We consider β fixed throughout the algorithm. The upper hull of the Minkowski sum of the lifted
polytopes induces a mixed subdivision of

∑t−1
i=0 P

(t)+kt+1P
(t)+ · · ·+knP

(t), which is then perturbed
by δt. The lattice points p of L(t) contained in the perturbed subdivision are assigned RC by
Definition 3. This also assigns RC to points p+ btj contained in the intersection of (1) with L(t). Let
us take care of the cijs. If point p lies in

(F + Ft+1 + · · ·+ Fn + δt) ∩ L(t), (2)

where Fi ⊂ kiQi, i > t, F ⊂
∑t−1

i=0 liP
(t), having RC(p) = (h, j), where Fh = chjs = bhj + δhjs, then

the corresponding matrix row is filled in by xp−bhjfh.
Face F ⊂

∑t−1
i=0 P

(t) in (2), can be written as F = l0F0+ · · ·+ lt−1Ft−1, where Fi ⊂ P (t) for i < t.
Moreover, every cell in (1) is the Minkowski sum of btj and the cell in (2).

Mixed cells of type 0 are defined here as in Section 2. A t-mixed cell with respect to Alg. A, for
t > 0, shall have n− t linear summands from polytopes kt+1P

(t),. . . , knP
(t) and a zero-dimensional

summand from polytope
∑t−1

i=0 liP
(t). This summand can be written as l0p0 + · · · + lt−1pt−1, where

pi ∈ P (t), for i = 0, . . . , t− 1 and lipi stands for a scalar multiple of pi, seen as a vector. This leads
to:

Lemma 7. The maximal cells at step t of Alg. A are, for some j and li ∈ [0, ki], of the form:

l0F0 + · · ·+ lt−1Ft−1 + btj + kt+1Ft+1 + · · ·+ knFn + δt, (3)

where Fi is the projection of a face of the upper hull of P (t) lifted by β, and

dim(〈F0, . . . , Ft−1, Ft+1, Fn〉) = n− t.

Specifically, the t-mixed cells in Alg. A are:

l0p0 + · · · + lt−1pt−1 + btj + kt+1Et+1 + · · · + knEn + δt, (4)

where Et+1, . . . , En are projections of edges on the upper hull of P (t) lifted by β, dim(〈Et+1, . . . , En〉)
= n− t, and points pi ∈ P (t), for i = 0, . . . , t− 1 .

Example 8. Consider the three pentagons of Example 22. In the 0 step of the recursion, b01 is lifted
to 1, while all other vertices of all polygons are lifted to 0. Then, the primary cell is subdivided
using lifting β. The primary and secondary cells are shown in Figure 4, left, in white and grey color
respectively (also in Figure 7). To illustrate Lemma 7, consider cells 1,2 and 3 of the primary cell.
They can be written as

Cell 1: b01 +CH(c122, c143, c154) + b21, non-mixed.

Cell 2: b01 + (c122, c154) + (b21, b21), 1-mixed.

Cell 3: b01 +CH(c122, b11, c154) + b21, non-mixed.

Now, consider the recursion step of Alg. A at the secondary cell of step 0 with respect to vector
(1, 0) shown in Figure 4, right. In this cell the algorithm recurses on a segment containing points
(0, 4), (0, 5), (0, 6), (0, 7). This segment is partitioned into new primary and secondary cells and the
new primary cell is subdivided again using β. The cells are:
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v1
Secondary Cell

Cell 4

Cell 5

{Primary cell

Cell 2

Cell 3

Cell 1

Figure 4: Example 8: 0-step (left) and 1-step of the recursion on secondary cell w.r.t. v1 (right) of
Alg. A

Secondary cell: 29
30b03 + (b12, b13) + b23, 2-mixed.

Cell 4: 29
30 (b02, b03) + b11 + b22, non-mixed.

Cell 5: 29
30b02 + b11 + (b22, b23), 1-mixed.

For details see Example 22.

Recursion Phase: When t = n − 1, the algorithm terminates, since it has reached the Sylvester
case. Otherwise, it recurses: let P (t+1) be the facet of P (t) supported by v. The (perturbed) secondary
cell corresponding to v is

Fv = l0P
(t+1) + · · ·+ lt−1P

(t+1) +CH(btj , ktP
(t+1))

+kt+1P
(t+1) + · · ·+ knP

(t+1) + δt.
(5)

Its associated diameter is
dv = btj · v − min

p∈CH(btj ,ktF )
{p · v} ∈ N∗,

where · stands for inner product. We define two sublattices of L(t): L
(t)
+ is spanned by

∑n
i=t+1 Ai ∩

kiP
(t+1) and L

(t)
v is the sublattice orthogonal to v. They have the same dimension, so we define the

(finite) index indv = [L
(t)
v : L

(t)
+ ], equal to the quotient of the volumes of their base cells. Let q range

over the indv coset representatives for L
(t)
+ in L

(t)
v .

Let lt ∈ [0, kt] take dv distinct values corresponding to different values of p · v for all p ∈
(CH(btj , ktP

(t+1)) + δt) ∩ L(t). Note that ltP
(t+1) is homothetic to ktP

(t+1). Let δ′t ∈ Qn−t be a
translation vector such that ltP

(t+1)+ δ′t contains at least one point in (CH(btj , ktP
(t+1))+ δt)∩L(t).

In particular, ltP
(t+1)+δ′t equals ktP

(t+1) if and only if lt = kt, and vertex btj if and only if lt = 0,
otherwise it equals (CH(btj , ktP

(t+1)) + δt) ∩ H, where H is a hyperplane parallel to a supporting
hyperplane of ktP

(t+1); see [D’A02, lem.3.3]. By abuse of notation, in the rest of this paper we shall
denote H, and the supporting hyperplanes of faces ktP

(t+1) and btj of the previous convex hull, as
〈ltP

(t+1)〉.
Points in (Fv + δt)∩L(t) are partitioned into dv subsets (one per value of lt), called slices, of the

form

l0P
(t+1) + · · ·+ lt−1P

(t+1) + (ltP
(t+1) + δ′t) + kt+1P

(t+1) + · · · + knP
(t+1) + δt ∩ L(t), (6)

9



which can be rearranged as

l0P
(t+1) + · · ·+ ltP

(t+1) + kt+1P
(t+1) + · · ·+ knP

(t+1) + δλ ∩ L(t), (7)

where δλ = δt + δ′t. Moreover, δλ can be decomposed as δvλ + δλv , where δ
v
λ ∈ Qv and δλv ∈ L

(t)
+ ⊗Q.

Now, every point in (7) corresponds to a point in

l0P
(t+1) + · · ·+ ltP

(t+1) + kt+1P
(t+1) + · · · + knP

(t+1) + δλv ∩ (q + L
(t)
+ ),

for some coset representative q. Set δt+1 := δλv − q, L(t+1) := L
(t)
+ , and observe that point p belongs

to (7) if and only if point
p′ := p− δvλ − q (8)

belongs to

l0P
(t+1) + · · ·+ ltP

(t+1) + kt+1P
(t+1) + · · · + knP

(t+1) + δt+1 ∩ L(t+1). (9)

We call this set a piece; δt+1 carries the information to define the piece from the input polytopes and
L(t+1). The algorithm recurses on each of the indv such pieces. The set

l0P
(t+1), . . . , ltP

(t+1), kt+1P
(t+1), . . . , knP

(t+1), δt+1

over L(t+1) is exactly like the original input, only one dimension lower. This completes the algorithm.

Remark 9. Since every point p′ in a piece corresponds bijectively to a point p in a slice via the
monomial bijection (8), we shall often consider a piece as a subset of a slice and omit the translation.

At the end of the recursion, RC is defined on E . Alg. A defines a partition of E in the form of
a collection of mixed subdivisions of primary cells (of decreasing dimension). The edges of the cells
of this partition, coming from polytope Qi, are defined by any point in Ai or among the cijs, for all
valid j, s, and may be multiplied by a rational number in (0, ki].

D’Andrea’s algorithm uses at every construction step the matrix construction algorithm of [CE00],
so its complexity is dominated by O(|E|n) linear programs, since every p ∈ E may require O(n) of
them for its image under RC to be determined. Each linear program has bit complexity O(n7.5m2B2),
by Karmarkar’s algorithm, wherem is the maximum number of vertices of the Qi, and B is the bitsize
of the input coordinates. This process essentially decides in which slice of which secondary cell lies p.
Although this subdivision contains much more cells than Alg. B, the asymptotic analysis indicates
that the latter is competitive for large n; see the end of section 2 for comparing with Alg. A.

4 Equivalence of constructions

This section demonstrates that both approaches define the same Macaulay-formula. Intuitively, the
single-lifting algorithm (Alg. B) has an overall effect very similar to that of Alg. A, since they both
use β. The former partitions E into sets of points in n-dimensional cells and assigns RC, whereas
Alg. A partitions E into subsets which, at step t, lie on the intersection of a (n − t)-dimensional
hyperplane with an n-dimensional cell of β. Note that the intersection itself, as a subset of Rn−t,
does not coincide with the cell of Alg. A. However, their set difference is of infinitesimal volume and
thus contains no lattice points. Although both algorithms use β to subdivide their input polytopes,
they do so in a distinct fashion; Alg. B applies β to every Qi, whereas Alg. A does so recursively to
a different set of polytopes at every step.

In the rest of the paper, for simplicity, we shall omit the translation vectors δt. Moreover, unless
otherwise stated, we shall treat every slice and piece as a polytope and not as the set of points in
the intersection of this polytope with an appropriate lattice. In particular, we shall be interested
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only on the form of a slice or piece as a Minkowski sum of polytopes. The existence of a translation
vector, for this polytope to contain integer points in the considered lattice, shall be implied.

We now establish the correspondence between the two algorithms for t = 0, then generalize to

t > 0. We introduce the notation pr.cell
(X)
i , sec.cell

(X)
i , where i indicates the recursion step of Alg. A

and X ∈ {A,B} indicates the algorithm under consideration. At step 0 of Alg. A, b01 is lifted to 1,
while every other vertex of all input polytopes to 0; this creates a primary cell

pr.cell
(A)
0 := b01 + k1Q+ · · ·+ knQ,

and several secondary cells of the form

sec.cell
(A)
0 := CH(b01, k0P

(1)) + k1P
(1) + · · ·+ knP

(1),

each corresponding to a facet P (1) of Q not containing b01. In Alg. B, c011 plays the role of b01 and
this leads to a group of cells covering the corresponding primary cell

pr.cell
(B)
0 := c011 + k1Q+ · · · + knQ,

and several groups of cells, each group covering

sec.cell
(B)
0 := CH(c011, k0P

(1)) + k1P
(1) + · · ·+ knP

(1),

which is a typical n-dimensional secondary cell with respect to Alg. B. Not all cells in sec.cell
(B)
0 may

have kiP
(1) as a summand. Those who do not, have a summand where some or all of the vertices of

kiP
(1) are replaced by the corresponding additional points cijs from Definition 5.

Remark 10. All cells within pr.cell
(A)
0 and pr.cell

(B)
0 differ only at their first summand; the former

are of the form b01 + F1 + · · ·+ Fn, whereas the latter are c011 + F1 + · · ·+ Fn, where Fi is a face of
Qi, since β is used by both algorithms to subdivide Q1 + · · ·+Qn, and c011 = b01 + δ011.

Lemma 11. pr.cell
(A)
0 ∩ E = pr.cell

(B)
0 ∩ E, and points in this set are assigned the same RC under

both algorithms.

Proof. Recall that δ0 = δ and consider the subdivision of
∑n

i=0Qi induced by β and compare

pr.cell
(A)
0 + δ and c011 +Q1+ · · ·+Qn+ δ = b01+ δ011 +Q1+ · · ·+Qn+ δ. These polytopes differ by

δ011, which is very small. Moreover, by the choice of δ, the boundary of pr.cell
(A)
0 +δ has no points in

Z. Since, by Definition 4, ‖δ‖ ≫ ‖δ011‖, the two polytopes contain the same Z-points. This settles
the first claim. The second claim follows from Remark 10 and the fact that the two subdivisions may
only differ in cells having vertex b01 instead of c011. Since c011 − b01 = δ011 is very small compared
to Z, even these cells contain the same Z-points.

Example 12. Let us return to our running Example 22. It holds that pr.cell
(A)
0 ∩ E = pr.cell

(B)
0 ∩ E .

Now, consider points (8, 1), (7, 2) and (4, 4), see Figures 7,8. They belong to cells of pr.cell
(A)
0 and

pr.cell
(B)
0 as in the following table:

point cell in pr.cell
(A)
0 cell in pr.cell

(B)
0 type RC

(8, 1) b01 + c154 +CH(b22, b24, b25) c011 + c154 +CH(b22, b24, b25) non-mixed (1, 5)

(7, 2) b01 + (c143, c154) + (b23, b24) c011 + (c143, c154) + (b23, b24) 0-mixed (0, 1)

(4, 4) b01 + (c143, c154) + (b22, b23) c011 + (c143, c154) + (b22, b23) 0-mixed (0, 1)

Note that, for simplicity, we have omitted the global perturbation vector δ.
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Each sec.cell
(A)
0 is divided by Alg. A into slices

l0P
(1) + k1P

(1) + · · ·+ knP
(1),

one for each value of l0 ∈ [0, k0]. Each slice is partitioned into pieces on which Alg. A recurses
producing (n− 1)-dimensional primary cell

pr.cell
(A)
1 := l0P

(1) + b1j + k2P
(1) + · · ·+ knP

(1), (10)

and secondary cells

sec.cell
(A)
1 := l0P

(2) + CH(b1j, k1P
(2)) + k2P

(2) + · · ·+ knP
(2). (11)

Every piece of a given slice lies on lattice L(1) and can be thought of as the intersection of a translation
of that slice, regarded as a polytope, with L(1). Recall that, by Remark 9, we shall consider a piece
as subset of a slice.

Similarly to Alg. A, we can partition the corresponding sec.cell
(B)
0 into slices:

l′0P
(1) + k1P

(1) + · · ·+ knP
(1),

by intersecting CH(c011, k0P
(1)) with a hyperplane parallel to (a supporting hyperplane of) k0P

(1).
Recall that we denote this hyperplane as 〈l′0P

(1)〉.

Remark 13. Observe that each slice of sec.cell
(B)
0 (resp. sec.cell

(A)
0 ) parameterized by l′0 (resp. l0), is

homothetic to a facet of this secondary cell, supported by 〈k′0P
(1)〉 (resp. 〈k0P

(1)〉). Moreover, this
homothecy is defined by a homothecy only on the first summand k0P

(1) of this facet.

Example 14. To illustrate Remark 13, consider in our running Example 22 the secondary cell with
respect to Alg. A

Fv3 = CH(b01, k0Fv3) + k1Fv3 + k2Fv3 + δ,

defined by the facet Fv3 = ((3, 0), (1, 2)) of Q supported by v3 = (−1,−1), and its slice

(l0Fv3 + δ′) + k1Fv3 + k2Fv3 + δ, (12)

where l0 =
32
60 and δ′ = ( 7

15 , 0). This slice contains the integer points (11, 0), (10, 1), (9, 2), (8, 3), (7, 4),
(6, 5), (5, 6), (4, 7) and is the dashed segment in Figure 5. It is homothetic to the facet

k0Fv3 + k1Fv3 + k2Fv3 + δ (13)

of Fv3 and the homothecy is defined by the homothecy l0Fv3 + δ′ of the 0-summand k0Fv3 of the
facet, see Figure 5. The second slice of Fv3 is

(

1

30
Fv3 + (

29

30
, 0)

)

+ k1Fv3 + k2Fv3 + δ (14)

and contains integer points (10, 0), (9, 1), (8, 2), (7, 3), (6, 4), (5, 5), (4, 6). It is homothetic to the
facet (13) of Fv3 and the homothecy is defined by the homothecy 1

30Fv3 + (2930 , 0) of the 0-summand
k0Fv3 of the facet, see Figure 5 (dotted segment).

Hyperplanes 〈l′0P
(1)〉 and 〈l0P

(1)〉 are identical; they differ only on the homothecy on k0P
(1)

expressed by l′0 and l0 respectively. Obviously, l′0 ≈ l0 because c011 ≈ b01. Note that we omit the

translation vector so that the slice lies in sec.cell
(B)
0 . Thus, corresponding slices contain the same

points in the lattice L(0) = Z. This, moreover, leads to the following extension of Lemma 11.

Lemma 15. Every maximal cell of the subdivision induced by β on pr.cell
(A)
1 corresponds to the

intersection of a unique maximal cell of the same type in sec.cell
(B)
0 , with a slice defined by hyperplane

〈l′0P
(1)〉, for some l′0. The cells contain the same points in L(1), with the same image under RC.
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v3

+ +Fv3
=

Figure 5: Example 14: The secondary cell w.r.t. (−1,−1) of the 0-step of Alg. A and its two slices

Proof. Any maximal cell in pr.cell
(A)
1 has the form l0F0 + b1j + k2F2 + · · ·+ knFn, where faces Fi ⊂

P (1), i = 0, 2, . . . , n, have dimensions adding up to n−1. Recall pr.cell
(A)
1 lies on a slice of sec.cell

(A)
0

parameterized by the value of l0 hence, when β is employed, it gives rise to the same subdivision
in every such primary cell. By construction, subspace 〈b01, F0〉 is orthogonal and complementary to
〈P (1)〉.

In k1P
(1), point c1js is lifted sufficiently higher than any other, so there exist maximal cells in

sec.cell
(B)
0 that has it as summand. The other summands are induced by β on CH(c011, k0P

(1)),
k2P

(1), . . . , knP
(1). These n-dimensional cells of Alg. B correspond, when intersected with the slice

parameterized by 〈l′0P
(1)〉, to (n − 1)-dimensional cells in pr.cell

(A)
1 . It is straightforward to show

that, for l′0 ∈ [0, k0] and any β-induced cell in this Minkowski sum, its intersection with the slice
defined by 〈l′0P

(1)〉 is a β-induced cell in l′0P
(1) + k2P

(1) + · · ·+ knP
(1)

There exists l′0 ≈ l0 that establishes the Lemma, because β is applied to (n − 1)-dimensional
Minkowski sums which are almost identical, and the effect of b1j and c1js is the same in what
concerns the lattice points in corresponding cells, following the proof of Lemma 11.

Example 16. We shall return to our running example to illustrate Lemma 15. Consider the slice

(l0Fv3 + δ′) + k1Fv3 + k2Fv3 + δ (15)

of the secondary cell with respect to Alg. A

sec.cell
(A)
0 = CH(b01, k0Fv3) + k1Fv3 + k2Fv3 + δ,

where l0 = 32
60 , δ′ = ( 7

15 , 0), δ = (− 1
30 ,−

1
30 ), see also equation (27). This slice is obtained by

intersecting CH(b01, b04, b05) with the hyperplane 〈l0Fv3〉 := 〈3260Fv3 + ( 7
15 , 0)〉, and contains integer

points (11, 0), (10, 1), (9, 2), (8, 3), (7, 4), (6, 5), (5, 6), (4, 7) in L. The corresponding slice of sec.cell
(B)
0

is obtained by intersecting CH(c011, b04, b05) with the hyperplane 〈l′0Fv3〉 := 〈 639
1199Fv3 +(12742725 ,

28
89925 )〉,

see Figure 6 (dotted segment). It contains the same points in L.

Slice (15) of sec.cell
(A)
0 contains two pieces in L(1) := L+ = 〈(9, 0), (7, 2)〉 ∼= 2Z:

piece0 :=
32

60
Fv3 + k1Fv3 + k2Fv3 + (−

17

30
,−

31

30
), (16)

piece1 :=
32

60
Fv3 + k1Fv3 + k2Fv3 + (

13

30
,−

61

30
). (17)
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L(1)
:= L+

piece0

σ2

σ1

L(1)
:= L+

piece1

σ′

2

σ′

1

sec.cell
(B)
0 sec.cell

(B)
0

Figure 6: Example 16: The two pieces of the secondary cell w.r.t. (−1,−1) of Alg. A and the
correspondence between their cells and the cells of the similar secondary cell w.r.t. Alg. B

Piece (16) is partitioned into a primary cell 32
60Fv3 + b15 + k2Fv3 + (−17

30 ,−
31
30 ) and a secondary

cell 32
60b04+k1Fv3 + b24+(−17

30 ,−
31
30). Then, lifting β induces a mixed subdivision on the primary cell

consisting of the cells

σ1 =
32

60
Fv3 + b15 + b25 + (−

17

30
,−

31

30
) and σ2 =

32

60
b04 + b15 + k2Fv3 + (−

17

30
,−

31

30
).

Cell σ1 is non-mixed and contains point (9, 0) ∈ L+, which translates to point (10, 1) ∈ L. This

cell corresponds to the intersection of the slice of sec.cell
(B)
0 , defined by hyperplane 〈l′0Fv3〉, with its

non-mixed cell CH(c011, b04, b05)+ c15+ b25+ δ. Cell σ2 is 1-mixed and contains the point (7, 2) ∈ L+

which translates to the point (8, 3) ∈ L. This cell corresponds to the intersection of the slice of

sec.cell
(B)
0 , defined by hyperplane 〈l′0Fv3〉, with the 1-mixed cell with respect to Alg. B (c011, b04) +

c154 + (b24 + b25) + δ, see Figure 6,(left).
The second piece (17) is partitioned into a primary cell 32

60Fv3 + b15 + k2Fv3 + (1360 ,−
61
30) and a

secondary cell 32
60b04 + k1Fv3 + b24 + (1360 ,−

61
30 ). Lifting β induces a mixed subdivision on the primary

cell consisting of the cells

σ′
1 =

32

60
Fv3 + b15 + b25 + (

13

60
,−

61

30
) and σ′

2 =
32

60
b04 + b15 + k2Fv3 + (

13

60
,−

61

30
).

The former is non-mixed and contains point (11,−2) ∈ L+ corresponding to (11, 0) ∈ L. It cor-

responds to the intersection of the slice cell of sec.cell
(B)
0 , defined by hyperplane 〈l′0Fv3〉, with its

non-mixed cell CH(c011, b04, b05) + c154 + b25 + δ. Cell σ′
2 is 1-mixed and contains the integer point

(9, 0) ∈ L+ corresponding to point (9, 2) ∈ L. It corresponds to the intersection of the slice defined by

hyperplane 〈l′0Fv3〉 with the 1-mixed cell of sec.cell
(B)
0 (c011, b04)+ c154 +(b24+ b25)+ δ, see Figure 6,

(right).

In each sec.cell
(B)
0 we distinguish 2 types of cells: cells in

pr.cell
(B)
1 := CH(c011, k0P

(1)) + c1js + k2P
(1) + · · · + knP

(1), (18)

which, by Lemma 15, contains exactly the integer points in all primary cells of Alg. A of the form (10)
(for each slice/coset), and for each facet P (2) of P (1), cells in

sec.cell
(B)
1 := CH(c011, k0P

(2)) + CH(c1js, k1P
(2)) + k2P

(2) + · · ·+ knP
(2). (19)

14



Note that both pr.cell
(B)
1 and sec.cell

(B)
1 are n-dimensional, whereas pr.cell

(A)
1 and sec.cell

(A)
1 are

(n− 1)-dimensional.

Remark 17. Every maximal cell in sec.cell
(B)
1 must have summands F0 = CH(c011, G0), F1 =

CH(c1js, G1), for some G0 ⊂ k0P
(2) and G1 ⊂ k1P

(2).

A similar argument as in Lemma 15, implies that (19) contains exactly the integer points in the
union of all secondary cells (11) defined over the various values of l0 ∈ [0, k0], for a given j. The
recursion steps of Alg. A, for t ≥ 2 are defined over a chain of facets P (2) ⊃ P (3) ⊃ · · · ⊃ P (n−1).

Hence, every pr.cell
(A)
t , for t > 1, contains integer points in sec.cell

(B)
1 ∩Z. Therefore, we generalize

the correspondence between the two algorithms by focusing on sec.cell
(B)
1 .

Lemma 18. (Main) Every maximal cell of the subdivision induced by β on pr.cell
(A)
t , for t ≥ 2,

corresponds to the intersection of hyperplane 〈l′t−1P
(t)〉, for some l′t−1 ≈ lt−1 ∈ [0, kt−1] ∩ Q, with a

unique maximal cell in sec.cell
(B)
1 , of the same type. The cells contain the same points in lattice L(t)

with the same image under RC.

Proof. Primary cells of step t lie on (n−t)-dimensional slices of the (n−t+1)-dimensional sec.cell
(A)
t−1,

parameterized by the value of lt−1 ∈ [0, kt−1]:

l0P
(t) + · · · + lt−1P

(t) + ktP
(t) + · · ·+ knP

(t). (20)

Similarly to Remark 13, let l0, . . . , lt−1, li ∈ [0, ki]∩Q, define the homothecies on the first t summands

of (20) and the corresponding hyperplanes 〈l0P
(t)〉, . . . , 〈lt−1P

(t)〉. Note, that pr.cell
(A)
t is a subset

of (20) and is subdivided by β into maximal cells of the form (3).

Intersecting sec.cell
(B)
1 with the above hyperplanes, yields a (n− t)-dimensional subset:

l′0P
(t) + · · · + l′t−1P

(t) + ktP
(t) + · · ·+ knP

(t). (21)

This subset can also be obtained by directly intersecting sec.cell
(B)
1 with 〈lt−1P

(t)〉. Now, l′i ≈ li, for
i = 0, 1, . . . , t−1 because cijs ≈ bij . For i = 0, . . . , t−1, each l′i defines a hyperplane 〈l′iP

(t)〉 identical
to 〈liP

(t)〉, except on the homothecy on the i-th summand. Hence, (21) is very similar to (20) in the
sense that they contain the same integer points in L(t) and their volumes differ infinitesimally.

By Definition 5 there exist n-dimensional cells in sec.cell
(B)
1 which have ctjs as a summand. The

intersection of each of these cells with (21) shall also have ctjs as a summand, because this is the
only point lifted highest in P (t). These cells correspond to the primary cell with respect to Alg. A
of the slice (20). Moreover, this intersection is a β-induced cell in (21):

l′0F0 + · · ·+ l′t−1Ft−1 + ctjs + kt+1Ft+1 + · · · + knFn, (22)

which contains the same integer points as (3). Since β is applied on (n − t)-dimensional polytopes
which are almost identical, both (3) and (22) are of the same type.

Corollary 19. Using the notation of Lemma 7, in particular for t-mixed cells of Alg. A in the form
of (4), a t-mixed cell of Alg. B is of the form:

k0E0 + · · ·+ kt−1Et−1 + ctjs + kt+1Et+1 + · · · + knEn + δt ∩ L,

where Ei is the projection of an edge of Qβ,

(a) 〈E0, . . . , Et−1〉 is a t-dimensional space complementary to 〈P (t)〉, and for i < t, kiEi =
(cijs, kipi), where pi ∈ P (i) in Lemma 7, and

(b) edges Et+1, . . . , En are the same as in (4) at Lemma 7.
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Proof. For t = 0, the Corollary follows from Remark 10.
All 1-mixed cells with respect to Alg. B lie in (18), since every maximal cell in it has c1js as a

summand. By Lemma 15, edges k2E2, . . . , knEn span the (n − 1)-dimensional space 〈P (1)〉. Hence,
edge k0E0 has to be of the form (c011, k0p0), where p0 ∈ P (1), by Lemma 15, is as in Lemma 7,(4).

Similarly, Lemma 18 implies that for t > 1, the last (n− t) edges of any t-mixed cell with respect
to Alg. B span the (n − t)-dimensional space 〈P (t)〉, because β induces the same subdivision on the
last n− t summands of (20) and (21). For the cell to be maximal, 〈k0E0, . . . , kt−1Et−1〉 must be a t-
dimensional space complementary to 〈P (t)〉. By construction (see proof of Lemma 18), each kiEi, for
i < t, is an edge in CH(cijs, kiP

(t)) of the form (cijs, kipi), where pi ∈ P (t) is as in Lemma 7,(4).

We now consider non-mixed cells, by extending Corollary 19:

Corollary 20. Consider any non-mixed cell of Alg. A, which has the form of (3) in Lemma 7. It
corresponds to cell:

CH(c011, k0F0) + · · · + CH(c(t−1)js, kt−1Ft−1) + ctjs + kt+1Ft+1 + · · · + knFn,

which is a non-mixed cell defined by β, where

(a) the F0, . . . , Ft−1 are projections of faces in Qβ, for i < t, and

〈CH(c011, k0F0), . . . ,CH(c(t−1)js, kt−1Ft−1)〉

is a t-dimensional space complementary to 〈Ft+1, . . . , Fn〉,

(b) F0, . . . , Ft−1, Ft+1, . . . , Fn are the same in both cells.

For an illustration of Corollaries 20, 19, see Table 1 in our running Example 22. We have shown
that each row of the constructed matrices, indexed by points of E lying in a mixed or non-mixed cell,
is identical for both algorithms, where E is the same pointset for both algorithms.

Theorem 21. The Macaulay-type formula for the toric resultant of generalized unmixed systems
constructed by Alg. B and that constructed by Alg. A, implementing D’Andrea’s approach [D’A02],
are identical.

As a consequence of Theorem 21 and [D’A02, Thm. 3.8], follows Theorem 2.

5 A bivariate example

This section details the following example.

b01

c011
c122

c143

c154

b02

b03 b04

b05
b11

b21

Q0 Q1
Q2

Figure 7: Input polygons of Exam. 22 and their subdivisions induced by the lifting of Def. 6

Example 22. Let n = 2, Q be the pentagon with vertices {(1, 0), (0, 1), (0, 2), (1, 2), (3, 0)}, k0 =
k2 = 1, k1 = 2. The input polygons are Qi = kiQ, i = 0, 1, 2 and the input supports are A0 = A2 =
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{(1, 0), (0, 1), (0, 2), (1, 2), (3, 0)}, and A1 = {(2, 0), (0, 2), (0, 4), (2, 4), (6, 0)}. The lattice generated
by

∑2
i=0 Ai is Z2. The normals to the facets of Q not containing vertex (1, 0) are v1 = (−1, 0),

v2 = (0,−1), v3 = (−1,−1). Let δ = (−1/30, −1/30) be the global perturbation vector. See Figure
7.

v2

v3

v1

Figure 8: Exam. 22: 0-step recursion of Alg. A

v2

v3

v1

Figure 9: Exam. 22: The mixed subdivision in-
duced by Alg. B

Alg. B: We fix vertices of the input polygons in order to define the additional points required
by Definition 6. Let b01 := (1, 0) ∈ Q0, b12 := (0, 2), b14 := (2, 4), b15 := (6, 0) ∈ Q1, and
perturbation vectors δ011 = ( 1

1000 ,
1

1500 ), δ122 = (0, 1
2000 ), δ143 = (− 1

3000 , 0), δ154 = (− 1
2000 ,

1
2000 ). In

the subdivision of
∑2

i=0Qi, consider the integer points and their cells (Figure 9):

point cell in secondary cell w.r.t. v2 under Alg. B type

(1, 7), (2, 7) (c011, (0, 2)) + ((0, 4), c143) + (0, 2) + δ 2-mixed

(3, 7) (c011, (0, 2)) + c143 + ((0, 2), (1, 2)) + δ 1-mixed

where summands come from Q0, Q1, Q2 respectively. These cells together with cell

σ = CH(c011, (0, 2), (1, 2)) + c143 + (1, 2) + δ,

and some infinitesimal cells which do not contain any integer points, correspond to the secondary
cell with respect to v2 of Alg. A, which contains the same integer points. Points (1, 7), (2, 7), (3, 7)
correspond (via an appropriate translation) to points of a piece of the secondary cell on which Alg. A
recurses. Cell σ does not contain any integer points because of the choice of δijs, δ.

Now, consider the points corresponding to a piece of the secondary cell with respect to v3, of
Alg. A, and their cells in the subdivision induced by β under Alg. B:

point cell in secondary cell w.r.t. v3 under Alg. B type

(4, 7), (5, 6), (c011, (1, 2)) + (c154, c143) + (1, 2) + δ 2-mixed
(6, 5), (7, 4)

(8, 3), (9, 2) (c011, (1, 2)) + c154 + ((3, 0), (1, 2)) + δ 1-mixed

(10, 1), (11, 0) CH(c011, (3, 0), (1, 2)) + c154 + (3, 0) + δ non-mixed

Consider the piece of the secondary cell with respect to v1, of Alg. A. Points in it lie in the
following cells of Alg. B:

point cell in secondary cell w.r.t. v1 under Alg. B type

(0, 4) (c011, (0, 1)) + c122 + ((0, 1), (0, 2)) + δ 1-mixed

(0, 5) CH(c011, (0, 1), (0, 2)) + c122 + (0, 2) + δ non-mixed

(0, 6), (0, 7) (c011, (0, 3)) + (c122, (0, 4)) + (0, 2) + δ 2-mixed
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Alg. A: b01 is lifted to 1, all other vertices of all polygons are lifted to 0. This partitionsQ0+Q1+Q2

into a primary cell b01 +Q1 + Q2 and 3 secondary cells corresponding to v1, v2, v3, normals to the
facets of Q0 not containing b01. The Q1, Q2 are lifted using β, which subdivides the primary cell
(Figure 8). This subdivision “coincides” with the restriction in c01 + Q1 + Q2 of the subdivision
by β, except that the latter uses c011 whereas the former uses b01, i.e. the integer points in both
subdivisions are the same and are assigned the same RC.

• We study the Recursion Phase on secondary cell:

Fv1 = CH(b01, k0Fv1) + k1Fv1 + k2Fv1 ,

defined by facet Fv1 = ((0, 1), (0, 2)) ⊂ Q supported by v1, see Figure 10. Now,

A1v1 = {(0, 2), (0, 4)}, A2v1 = {(0, 1), (0, 2)},

and the lattice generated by A1v1 +A2v1 is L+ := 〈(0, 3), (0, 4)〉 ∼= Lv1
∼= Z. The index of L+ in Lv1

is indv1 = 1 and the coset representative for L+ in Lv1 is q0 = (0, 0). The v1-lattice diameter is

dv1 := b01 · v1 − min
p∈CH(b01,k0Fv1

)
p · v1 = 1.

Hence, there is one slice corresponding to one piece. We describe the recursion step on this piece. It

Secondary Cell: 2-mixed

non-mixed

1-mixed

{Primary cell

2-mixed

non-mixed

1-mixed

Figure 10: Example 22: The piece of the secondary cell Fv1 w.r.t. vector v1 = (1, 0) and its mixed
subdivision (left). Also drawn is the corresponding secondary cell and its mixed subdivision w.r.t
Alg. B (right)

contains points corresponding to (0, 4), (0, 5), (0, 6), (0, 7) lying on the slice of Fv1 + δ of the form

(λ̃k0Fv1 + δ′) + k1Fv1 + k2Fv1 + λFv1 + δ.

To define the piece, following notation in [D’A02], the scalar multiple of Fv1 is λ̃Fv1 = 29
30Fv1 and

the translation vector is δ′ := ( 1
30 , 0). Since we do not use an initial additional polytope, λ = 0 and

λv1 := λ+ λ̃ = 29
30 .

Let δλ := δ + δ′ = (0,− 1
30 ), and δλ = δv1λ + δλv1 , where δv1λ = (0, 0) ∈ Qv1 and δλv1 = (0,− 1

30 ) ∈
L+ ⊗Q, hence δ0v1 := δλv1 − q0 = (0,− 1

30 ). So, the slice of Fv1 + δ is

k1Fv1 + k2Fv1 + λv1k0Fv1 + δλ, (23)

and the corresponding piece in L+ is

k1Fv1 + k2Fv1 + λv1k0Fv1 + δ0v1 . (24)
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The bijection between points in (23) and (24) is

p = p̄+ δv1λ + q0 = p̄,

where p ∈ (23) and p̄ ∈ (24). After re-indexing, the input of the recursion step is:
- the polygons Q0 := k1Fv1 , Q1 := k2Fv1 , and Q2 :=

29
30k0Fv1 which is the additional polytope,

- the lattice L(1) := L+ = 〈(0, 3), (0, 4)〉 and
- the perturbation vector δ0 := δ0v1 = (0,− 1

30 ).
In order to be compatible with β, we choose b01 = b12 = (0, 2) and apply the primary lifting.

This partitions Q0 + Q1 + Q2 + δ0 into a primary b01 + Q1 + Q2 + δ0 and a secondary cell Q0 +
(0, 2)+ 29

30 (0, 2)+ δ0. Lifting β induces a mixed subdivision on the primary cell consisting of the cells
b01+(0, 1)+Q2 + δ0 and b01+Q1+

29
30(0, 1)+ δ0 . The former is non-mixed and contains point (0, 5),

corresponding to the same point on the slice, which is also non-mixed under Alg. B. The latter cell
is 0-mixed, hence 1-mixed and contains point (0, 4), corresponding to the same point on the slice,
which is also 1-mixed under Alg. B. The secondary cell Q0 + (0, 2) + 29

30(0, 2) + δ0 is 1-mixed, hence
2-mixed and contains the integer points (0, 6), (0, 7) corresponding to the same points on the slice.
They are also 2-mixed under Alg. B.

• We apply recursion on secondary cell:

Fv2 = CH(b01, k0Fv2) + k1Fv2 + k2Fv2 ,

defined by the facet Fv2 = ((0, 2), (1, 2)) of Q supported by v2, see Figure 11. Now,

A1v2 = {(0, 4), (2, 4)}, A2v2 = {(0, 2), (1, 2)}

and the lattice generated by A1v2 +A2v2 is L+ := 〈(0, 6), (1, 6)〉 ∼= Lv2
∼= Z. The index of L+ in Lv2

is indv2 = 1 and the coset representative for L+ in Lv2 is q0 = (0, 0). The v2-lattice diameter is

dv2 := b01 · v2 − min
p∈CH(b01,k0Fv2

)
p · v2 = 2.

Hence, there are two slices, each containing one piece, and the algorithm recurses on each such piece.
We analyze the recursion step on the piece of the shifted secondary cell Fv2+δ, which contains the

integer points corresponding to the points (1, 7), (2, 7), (3, 7) lying on a slice of the shifted secondary
cell Fv2 + δ of the form

(λ̃k0Fv2 + δ′) + k1Fv2 + k2Fv2 + λFv2 + δ.

L+

slice

piece

Secondary cell

non-mixed

1-mixed

2-mixed

1-mixed 2-mixed
︸ ︷︷ ︸

primary cell

Figure 11: Example 22: A slice of the secondary cell Fv2 w.r.t. vector v2 = (0,−1) containing points
(1, 7), (2, 7), (3, 7) (dotted segment, left subfigure), the corresponding piece and its mixed subdivision
w.r.t. Alg. A. The arrows show the correspondence between points on the slice and points on the
piece. Also depicted is the mixed subdivision of the corresponding secondary cell w.r.t. Alg. B (right
subfigure)

To define this piece we have that Fv2 is λ̃Fv2 = 31
60Fv2 and the translation vector δ′ := (2960 , 0).

Now λ = 0 and hence λv2 := λ + λ̃ = 31
60 . Let δλ := δ + δ′ = ( 9

29 ,−
1
30 ). Then, δλ can be
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written as δλ = δv2λ + δλv2 , where δv2λ = (0, 1) ∈ Qv2 and δλv2 = ( 9
20 ,−

31
30) ∈ L+ ⊗ Q, hence

δ0v2 := δλv2 − q0 = ( 9
20 ,−

31
30 ).

So, the slice of Fv2 + δ is
k1Fv2 + k2Fv2 + λv2k0Fv2 + δλ, (25)

and the corresponding piece in L+ is

k1Fv2 + k2Fv2 + λv2k0Fv2 + δ0v2 . (26)

The bijection between points in (25) and points in (26) is

p = p̄+ δv2λ + q = p̄+ (0, 1),

where p ∈ (25) and p̄ ∈ (26).
After re-indexing, the input of the recursion step is:

- the polygons Q0 := k1Fv2 , Q1 := k2Fv2 , and Q2 :=
31
60k0Fv2 which is the additional polytope,

- the lattice L(1) := L+ = 〈(0, 6), (1, 6)〉 and
- the perturbation vector δ̄ := δ0v2 = ( 9

20 ,−
31
30).

To be compatible with β, we choose b01 = b14 = (2, 4) and apply the primary lifting; this
partitions the Minkowski sum Q0 +Q1 +Q2 + δ̄ into a primary b01 +Q1 +Q2 + δ̄ and a secondary
cell Q0 + (0, 2) + 31

60 (0, 2) + δ̄ . Lifting β induces a mixed subdivision of the primary cell consisting
of the cells b01 + (1, 2) + Q2 + δ̄ and b01 +Q1 +

31
60 (0, 2) + δ̄. The latter is 0-mixed, hence 1-mixed

and contains the integer point (3, 6) corresponding to point (3, 7) on the slice which is also 1-mixed
under Alg. B. The former is non-mixed and does not contain any integer points.

The secondary cell Q0 + (0, 2) + 31
60 (0, 2) + δ̄ is 1-mixed, hence 2-mixed and contains the integer

points (1, 6), (2, 6) corresponding to the points (1, 7), (2, 7) of the slice respectively; they are also
2-mixed under Alg. B.

• The last secondary cell is

Fv3 = CH(b01, k0Fv3) + k1Fv3 + k2Fv3 ,

defined by the facet Fv3 = ((3, 0), (1, 2)) of Q supported by v3 = (−1,−1)., see also Figure 6 and
Example 16. Now,

A1v3 = {(6, 0), (2, 4)}, A2v3 = {(3, 0), (1, 2)},

the lattice generated by A1v3 + A2v3 is L+ := 〈(9, 0), (7, 2)〉 ∼= 2Z and Lv3
∼= Z. The index of L+ in

Lv3 is indv3 = 2 and the cosets representatives for L+ in Lv3 are q0 = (0, 0) and q1 = (−1, 1). The
v3-lattice diameter is

dv3 := b01 · v3 − min
p∈CH(b01,k0Fv3

)
p · v3 = 2.

Hence there are two slices, each corresponding to two pieces, and the algorithm recurses on each such
piece.

We analyze the recursion step on the two pieces that contain integer points corresponding to
points (11, 0), (10, 1), (9, 2), (8, 3), (7, 4), (6, 5), (5, 6), (4, 7) lying on a slice of the shifted secondary
cell Fv3 + δ of the form

(λ̃k0Fv3 + δ′) + k1Fv3 + k2Fv3 + λFv3 + δ.

To define these pieces, we have that the scalar multiple of Fv3 is λ̃Fv3 = 32
60Fv3 and the translation

vector is δ′ := ( 7
15 , 0). Now, λ = 0 and hence λv3 := λ+ λ̃ = 32

60 ; Let δλ := δ + δ′ = (1330 ,−
1
30).

Then, δλ can be written as δλ = δv3λ + δλv3 , where δv3λ = (1, 1) ∈ Qv3 and δλv3 = (−17
30 ,−

31
30) ∈

L+ ⊗Q, hence δ0v3 := δλv3 − q0 = (−17
30 ,−

31
30) and δ1v3 := δλv3 − q1 = (1330 ,−

61
30).

So, the slice of Fv3 + δ is
k1Fv3 + k2Fv3 + λv3k0Fv3 + δλ, (27)
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Table 1: Illustration of Cor. 19 and Cor. 20 for Example 22

Cell w.r.t. Alg. A Corresponding cell w.r.t. Alg. B Type of cell

λ̃(1, 2) + (6, 0) + ((3, 0), (1, 2)) + δ0v3 (c011, (1, 2)) + c154 + ((3, 0), (1, 2)) + δ 1-mixed

λ̃((3, 0), (1, 2)) + (6, 0) + (3, 0) + δ0v3 CH(c011, (1, 2), (3, 0)) + c154 + (3, 0) + δ non-mixed

λ̃(1, 2) + (6, 0) + ((3, 0), (1, 2)) + δ1v3 (c011, (1, 2)) + c154 + ((3, 0), (1, 2)) + δ 1-mixed

λ̃((3, 0), (1, 2)) + (6, 0) + (3, 0) + δ1v3 CH(c011, (1, 2), (3, 0)) + c154 + (3, 0) + δ non-mixed

λ̃(0, 2) + (2, 4) + ((0, 2), (1, 2)) + δ0v2 (c011, (0, 2)) + c143 + ((0, 2), (1, 2)) + δ 1-mixed

λ̃((0, 2), (1, 2)) + (2, 4) + (1, 2) + δ0v2 CH(c011, (1, 2), (0, 2)) + c143 + (1, 2) + δ non-mixed

and the corresponding pieces in L+ are

k1Fv3 + k2Fv3 + λv3k0Fv3 + δ0v3 , (28)

k1Fv3 + k2Fv3 + λv3k0Fv3 + δ1v3 , (29)

The correspondences between points in the slice and points in the pieces are

p = p̄+ δv3λ + q0 = p̄+ (1, 1),

where p ∈ (27) and p̄ ∈ (28), and

p = p̄+ δv3λ + q1 = p̄+ (0, 2),

where p ∈ (27) and p̄ ∈ (29).
After re-indexing, the input of the recursion step is:

- the polygons Q0 := k1Fv3 , Q1 := k2Fv3 , and Q2 :=
32
60k0Fv3 which is the additional polytope,

- the lattice L(1) := L+ = 〈(9, 0), (7, 2)〉 and
- the perturbation vectors δ0 := δ0v3 = (−17

30 ,−
31
30 ) and δ1 := δ1v3 = (1360 ,−

61
30 ).

As β indicates, we choose b01 = b15 = (6, 0) and apply the primary lifting.
For the first piece, the lifting partitions the Minkowski sum Q0 + Q1 + Q2 + δ0 into a primary

b01+Q1+Q2+δ0 and a secondary cell Q0+(1, 2)+ 32
60(1, 2)+δ0. Lifting β induces a mixed subdivision

on the primary cell consisting of the cells b01 + (3, 0) + Q2 + δ0 and b01 + Q1 +
32
60 (1, 2) + δ0. The

former is non-mixed and contains point (9, 0), which corresponds to (10, 1) on the slice which is
also non-mixed under Alg. B. The latter is 0-mixed, hence 1-mixed and contains the point (7, 2)
corresponding to the point (8, 3) in the slice which is also 1-mixed under Alg. B.

The secondary cell Q0 + (1, 2) + 32
60(1, 2) + δ0 is 1-mixed, hence 2-mixed and contains the integer

points (3, 6), (5, 4) corresponding to the points (4, 7), (6, 5) of the slice respectively which are also
2-mixed under Alg. B.

For the second piece, the lifting partitions the Minkowski sum Q0 +Q1 +Q2 + δ1 into a primary
b01+Q1+Q2+δ1 and a secondary cell Q0+(1, 2)+ 32

60(1, 2)+δ1. Lifting β induces a mixed subdivision
on the primary cell consisting of the cells b01 + (3, 0) + Q2 + δ1 and b01 + Q1 +

32
60 (1, 2) + δ1. The

former is non-mixed and contains point (11,−2) corresponding to (11, 0) on the slice which is also
non-mixed under Alg. B, whereas the latter cell is 0-mixed, hence 1-mixed and contains the integer
point (9, 0) corresponding to point (9, 2) on the slice which is also 1-mixed under Alg. B.

The secondary cell Q0 + (1, 2) + 32
60(1, 2) + δ1 is 1-mixed, hence 2-mixed and contains the integer

points (7, 2), (5, 4) corresponding to the points (7, 4), (5, 6) of the slice respectively. These are also
2-mixed under Alg. B.

The second slice of Fv3 + δ is
(

1
30Fv3 + (2930 , 0)

)

+k1Fv3 +k2Fv3 +(− 1
30 ,−

1
30 ), and contains integer

points (10, 0), (9, 1), (8, 2), (7, 3), (6, 4), (5, 5), (4, 6).
Table 1 illustrates corollaries 19 and 20, where the summands come from Q0, Q1 and Q2 respec-

tively. Recall that c011 := (1, 0) + δ011, c143 := (2, 4) + δ143 and c154 := (6, 0) + δ154.
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6 Further work

Let us conclude with some preliminary results on mixed algebraic systems. In studying systems with
different Newton polytopes, we need the following:

Definition 23. The set of polytopes Q1, . . . , Qh ⊂ Rn, s.t. dim(〈Q1, . . . , Qh〉) = h − 1, is essential
if every subset of cardinality j, 1 ≤ j < h spans a space of dimension ≥ j.

The toric resultant is well defined only for essential sets of Newton polytopes. An essential set
defines a Minkowski sum of dimension h− 1 but the converse is not always true.

Alg. A admits one main modification in the mixed case: At the Recursion Phase, the faces Fi ⊂ Qi

supported by vector v are not always the same. Let the input be n + 1 polytopes; we describe the
0-th iteration for simplicity. Consider the n-dimensional secondary cell:

CH(b01, F0) + F1 + · · ·+ Fn ⊂ Rn,

where Fi ⊂ Rn−1. Without loss of generality, let {F1, . . . , Fk} be an essential subset and let L+(k) be
the integer lattice it defines. The algorithm recurses on lattice L+(k) and polytope set (representing
a piece)

CH(b01, F0) ∩ Λ+(k), F1, . . . , Fk, Fk+1 ∩ Λ+(k), . . . , Fn ∩ Λ+(k), (30)

where Λ+(k) ranges over all possible homothetic copies of L+(k) defined by the different cosets of
L+(k) in its saturation, and the different slices that can be defined as intersections with CH(b01, F0).
Alg. A distinguishes two cases, according to whether there is one or more essential subsets of
{F1, . . . , Fn}. In the former case, v and the corresponding secondary cell are called admissible.
For non-admissible cells, all integer points are considered as non-mixed, i.e. treated as if they lied
in non-mixed cells. For admissible cells, integer dFv is defined [D’A02, Sec.4] (cf. [Min03]), and dFv

pieces of the form (30) are (arbitrarily) selected. Lattice points labeled as mixed in these pieces by
the recursive application of Alg. A are labeled as mixed overall, the rest are non-mixed.

Before sketching the extension of our algorithm to the mixed case, let us consider some special
cases. Reduced systems are such that, for any vector v ∈ Rn, there is some i ∈ {1, . . . , n} so that
the face supported by v in Qi is a vertex [D’A01]. For us, it suffices that this holds for any vector
v associated with secondary cells at the 0-th recursion step of Alg. A. For such systems, as well as
for arbitrary systems of three bivariate polynomials (n = 2), the lifting function (31) produces a
Macaulay-type formula [DE03a].

l0 : A0 → {0, 1} li : Ai → R (i ≥ 1)
b01 7→ 1, p 7→ 0, if p /∈ ∪∀vAi,v

b0j 7→ 0, if j 6= 0, p 7→ rp otherwise.
(31)

Here, Ai,v := Ai ∩ Qi,v, where Qi,v is the face of Qi supported by v, and rp is a positive random
number satisfying 0 < rp ≪ 1. It is not difficult to see that our lifting β has an overall effect similar
to that of lifting (31), therefore it also produces a Macaulay-type formula for the previous systems.
For bivariate systems, the idea of the proof is subsumed by that for n = 3 at the end of this section.

For extending Alg. B to the mixed case, we must modify it so that Definition 5 applies to different
polytopes and also up to i = n−1. We sketch a proof that it produces the same matrix as Alg. A, by
extending the correlation between maximal cells, established in the unmixed case. Our proof might
extend to n > 3, but seems complicated; we hope that a more elegant approach is possible.

In non-admissible secondary cells of Alg. A, for any n, we show that both algorithms behave
in the same way, namely that the corresponding lattice points lie in non-mixed cells of Alg. B. We
demonstrate the contrapositive by focusing on a mixed cell of Alg. B and a corresponding secondary
cell of Alg. A, following Lemma 18.

Lemma 24. Every t-mixed cell by Alg. B, when intersected with a (n − t)-dimensional hyperplane
as in Lemma 18, is contained in an admissible secondary cell of step t− 1 of Alg. A.
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Proof. Any t-mixed cell of Alg. B is of the form E0 + · · ·+ Et−1 + atj+ Et+1 + · · · + En, where
atj is either a vertex of Qi or some ctjs in the interior of an (n − t)-dimensional face, and edges
Et+1, . . . , En span an (n − t)-dimensional space. This cell is intersected by a (n − t)-dimensional
hyperplane, similarly to Lemma 18. The intersection is contained in a t-primary cell of Alg. A with
t-summand btj ; it lies in a piece of (t− 1)-secondary cell

F0 + · · · + Ft−2 +CH(b(t−1)h, Ft−1) + Ft + · · ·+ Fn,

where the Fi are faces of the Qi, i = 1, . . . , n, supported by the same vector, with dimFi ≤ n− t. We
claim {Ft, . . . , Fn} contains a unique essential set, with cardinality r+1, spanning an r-dimensional
space, which is defined as follows: Ft and r ≤ n − t faces, denoted, without loss of generality,
Ft+1, . . . , Ft+r, where r is minimal so that dimH = r, for H = 〈Ft, . . . , Ft+r〉.

By hypothesis, dim〈Ft+1, . . . , Fn〉 = n − t, since a subspace is spanned by the Ei and has same
dimension. So subsets indexed in {t + 1, . . . , n} span a space of dimension at least equal to their
cardinality. In addition, none of the Fi, i > t + r is contained in H. So every subset indexed in
{t, . . . , n} containing {t} ∪ J , for J ⊂ {t+ r + 1, . . . , n}, will be of cardinality ≤ r + |J | and span a
space of dimension r + |J |. Hence there are no other essential subsets.

For n = 3, all admissible secondary cells have dFv pieces, since there is no extra artificial polytope
in the input of Alg. A. We distinguish cases on the dimension k − 1 of the space generated by the
essential set {F1, . . . , Fk}, 1 ≤ k ≤ 3, on which the recursion of Alg. A occurs:

1. If k − 1 is 0 or 1, the recursion is either trivial (occurs on a vertex), or corresponds to the
Sylvester case.

2. If k − 1 = 2 and dimFi = 1, i = 1, 2, 3, the two algorithms behave similarly, since Definition 5
defines points c2js in the edges of Q2 and Lemma 18 applies. Notice that dimQ2 ≥ 1; otherwise
the Qi’s would not form an essential set.

3. If k − 1 = 2, then dimFi ∈ {1, 2} for i = 1, 2, 3 and at least one face is two-dimensional. If
dimF1 = 2, then Lemma 18 applies. Otherwise, dimF1 = 1 and dimF2 ≥ 1. Irrespective of
dimF2, the c2js’s play the role of distinguished points and Lemma 18 applies again.
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