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ABSTRACT

The main object of study in this dissertation is the sparse resultant. Resultants are
defined in the sparse (or toric) context in order to exploit the structure of the polynomials
as expressed by their Newton polytopes. We consider sparse elimination theory in order to
describe the Newton polytope of the sparse resultant of a given overconstrained algebraic
system, by enumerating equivalence classes of mixed subdivisions. In particular, we
consider specializations of this resultant to a polynomial in a constant number of variables,
typically up to 3. We sketch an algorithm that avoids computing the entire secondary
polytope; our goal is that it examines only the silhouette of this polytope with respect
to an orthogonal projection. Since determinantal formulae are not always possible, the
most efficient general method for computing resultants is by rational formulae. This is
made possible by Macaulay’s seminal result in the dense homogeneous case, extended by
D’Andrea to the sparse case. However, the latter requires a lifting of the Newton polytopes,
defined recursively on the dimension. We propose a single lifting function of the Newton
polytopes, which avoids recursion, and yields a simpler method for computing Macaulay-
type formulae of sparse resultants, in the case of generalized unmixed systems, where
all Newton polytopes are scaled copies of each other. We fully study a bivariate example
and sketch how our approach extends to mixed systems of up to 4 polynomials, and
those whose Newton polytopes have a sufficiently different face structure. As another
application of sparse elimination, we consider rationally parameterized plane curves,
where the polynomials in the parameterization have fixed supports and generic coefficients.
We determine the vertex representation of the implicit equation’s Newton polygon by
considering mixed subdivisions of the input Newton polygons and regular triangulations
of point sets defined by Cayley’s trick. The implicit polygon is shown to have up to 4, 5,
or 6 vertices.

SUBJECT AREA: Computational Algebraic Geometry
KEYWORDS: sparse resultant, mixed subdivision, triangulation,

Macaulay-type formula , implicitization of parametric curves
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Algebraic Algorithms for polynomial system solving and applications

Chapter 1

Introduction

This chapter introduces the basic concepts of this thesis. First, we define the sparse
resultant of an overconstrained system of equations with symbolic coefficients. Then, we
discuss polytope theory and take a glimpse at the interplay between algebraic geometry
and combinatorial geometry and sketch a subdivision-based method to compute sparse
resultants.

1.1 Sparse elimination

Elimination theory deals with the following problem: given a set of polynomial equations
fi(x; y) = 0, where x = (x1; : : : ; xn) and y = (y1; : : : ; ym), find equations rj(x) = 0, which are
satisfied, for a given x, if and only if there exists a y such that (x; y) is a common solution
of the equations fi(x; y) = 0. It is called elimination theory because we have eliminated
the variables y. There are a few symbolic methods for algebraic variable elimination,
including Gröbner (or standard) bases, and resultants. Both have exponential complexity
in the number of variables, which is expected since the problem is NP-hard; but the
latter are preferable in certain situations because they eliminate many variables at one
step and can handle symbolic coefficients. Resultants also seem more efficient for solving
certain classes of zero-dimensional algebraic systems. In particular, they reduce system
solving to linear algebra, via matrix formulae, or to solving univariate polynomials, via
the rational univariate representation of all common roots. The resultant generalizes
the determinant of the coefficient matrix in the linear case, and the discriminant of a
multivariate polynomial. For more information, see [1, 2, 3].

The sparse (or toric) resultant captures the structure of the polynomials by combi-
natorial means and constitutes the cornerstone of sparse elimination theory [4, 3], [1,
chap.7], [2, chap.7]. It is an important tool in deriving new, tighter complexity bounds
for system solving, Hilbert’s Nullstellensatz, and related problems. These bounds depend
on the polynomials’ Newton polytopes and their mixed volumes, instead of total degree,
which is the only parameter in classical elimination theory. In particular, if d bounds the
total degree of each polynomial, the projective resultant has complexity roughly dO(n),
whereas the sparse resultant is computed in time roughly proportional to the number of
integer lattice points in the Minkowski sum of the Newton polytopes.

Christos Konaxis 17
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The resultant is defined for an overconstrained system of n+ 1 polynomials in n vari-
ables over some coefficient ring K. It is the unique, up to sign, integer polynomial over K
which vanishes precisely when the system has a root in some variety X. There are two
main cases:

• The projective, or classical, resultant expresses solvability of a system of dense poly-
nomials fi 2 K[x1; : : : ; xn] in the projective space over the algebraic closure K of K.

• The sparse resultant expresses solvability of a system of Laurent polynomials fi 2

K[x�1
1 ; : : : ; x�1

n ] over the toric projective variety X defined by the supports of fi, in
which the torus (K)n is a dense subset.

We recall now some crucial notions of sparse elimination theory. Given a polyno-
mial f , its support A(f) is the set of the exponent vectors corresponding to monomials
with nonzero coefficients. Its Newton polytope N (f) is the convex hull of A(f), denoted
CH(A(f)). Newton polytopes are the main tool that allows us to translate algebraic prob-
lems into the language of combinatorial geometry. The Minkowski sum A+B of A;B � Rn

is the set A + B = fa + b j a 2 A; b 2 Bg � Rn: If A;B are convex polytopes, then A + B is
also a convex polytope. In what follows we will denote the support of a polynomial fi as
Ai and its Newton polytope as Qi.

+ =

Figure 1.1: The Minkowski sum of two triangles.

Definition 1.1.1. Given convex polytopes Q1; : : : ; Qn � Rn, their mixed volume is the
unique integer-valued function MV(Q1; : : : ; Qn), which is symmetric, multilinear with re-
spect to Minkowski addition and scalar multiplication, and satisfies MV(Q; : : : ; Q) = n!

Vol(Q), for any lattice polytope Q � Rn, where Vol(�) indicates Euclidean volume.

Sometimes the following is taken as the definition of the mixed volume.

Definition 1.1.2. Given convex polytopesQ1; : : : ; Qn � Rn, their mixed volume MV(Q1; : : : ; Qn)

is the coefficient of the monomial �1 � � ��n in Vol(�1Q1 + � � �+�nQn), considered as a poly-
nomial in �1; : : : ; �n 2 R+.

An equivalent but more algorithmic definition of the mixed volume is given in Subsec-
tion 1.1.1. We shall abuse notation and denote the mixed volume of a family of supports
A1; : : : ; An by MV(A1; : : : ; An) instead of MV(CH(A1); : : : ;CH(An)). The following theorem
shows how the geometry of the Newton polytopes can capture the sparseness of a poly-
nomial system of equations and can be used to predict the number of its solutions. The
theorem is named after Bernstein but it is also known as BKK bound to emphasize the
contribution of Kushnirenko and Khovanskii.

Christos Konaxis 18
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Theorem 1.1.3 (Bernstein). Given Laurent polynomials f1; : : : ; fn over Cwith Newton poly-
topes Q1; : : : ; Qn, the number of their isolated common roots, counted with multiplicities, is
either infinite or does not exceed MV(Q1; : : : ; Qn). For almost all specializations of the coef-
ficients of the fi, the bound is exact.

The Bernstein bound generalizes the Bézout bound, i.e. the product of the degrees of
the polynomials, in the sense that they coincide for a system of dense polynomials. How-
ever, for sparse systems the Bernstein bound is significantly lower than Bézout bound.

Let f0; : : : ; fn be Laurent polynomials in C[x�1
1 ; : : : ; x�1

n ] with supports A0; : : : ; An � Zn

and Newton polytopes Q0; : : : ; Qn. Each polynomial fi can be written as fi =
P

aij2Ai
cijx

aij .
We identify each fi with the vector of its (symbolic) coefficients ci = (ci0; ci1; : : : ; cin) and
the system of all polynomials fi with the vector c = (c0; c1; : : : ; cn). Let Z0 be the set of all
such vectors for which the polynomials have a common root in (C̄�)n and Z be the Zariski
closure of Z. Then Z is an irreducible algebraic variety.

Definition 1.1.4. The sparse resultant R = Res(A0; A1; : : : ; An) of the polynomials fi is
the, unique up to sign, integer polynomial in the coefficients cij, i.e. R 2 Z[c], such that:

1. if Z is of codimension 1, then R is the defining irreducible polynomial of the hyper-
surface Z, and

2. if Z has codimension greater than 1, then R := 1.

Corollary 1.1.5. R = Res(A0; A1; : : : ; An) is a homogenous polynomial in the coefficients
of each polynomial fi, of degree MV�i(Q0; : : : ; Qn), where MVi stands for the mixed volume
MV(Q0; : : : ; Qi�1; Qi+1; : : : ; Qn). The vanishing of R is a necessary and sufficient condition
for the existence of roots in the toric variety defined by the supports Ai.

For dense polynomials fi, i.e. when eachQi is a Minkowski multiple of the unit simplex
in Rn, the sparse resultant coincides with the projective resultant.

Definition 1.1.6. The family of supports Ai of polynomials fi; i = 0; : : : ; n, is essential, if
for the affine lattice

L :=

(
nX
i=0

�iai j ai 2 Ai; �i 2 Z;
nX
i=0

�i = 1

)

generated by the Ai holds that rank(L) = n and rank(L0) � jJ j for every J � f0; 1; : : : ; ng,
where L0 is the affine lattice generated by the family of supports fAj j j 2 Jg.

If every Newton polytope Qi is n-dimensional, then the family of supports Ai is essen-
tial.

Corollary 1.1.7. [3] Consider the family of supports fAigi2I , where I = f0; : : : ; ng. The alge-
braic variety Z has codimension 1 if and only if there exists a unique subset fAjgj2J ; J � I

which is essential. Then, the sparse resultant R = Res(A0; : : : ; An) coincides with the
sparse resultant of the equations ffj : j 2 Jg.

Christos Konaxis 19
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1.1.1 Mixed subdivisions

In this section we introduce our main tool for computing sparse resultants and mixed
volumes. Let Q0; : : : ; Qm be polytopes in Rn with Pi = CH(Ai) and Q their Minkowski sum.
We assume that Q is n-dimensional. We are interested in two main cases: m = n � 1

(well-constrained systems), when we can define the mixed volume MV(Q0; : : : ; Qn�1), and
m = n (overconstrained systems), when we can define the sparse resultant of polynomials
f0; : : : ; fn with Newton polytopes Q0; : : : ; Qn.

A Minkowski cell of Q is any full-dimensional convex polytope B =
Pm

i=0Bi, where each
Bi is a convex polytope with vertices in Ai. We say that two Minkowski cells B =

Pm
i=0Bi

and B0 =
Pm

i=0B
0
i intersect properly when the intersection of the polytopes Bi and B0

i is a
face of both and their Minkowski sum descriptions are compatible, cf. [5].

Definition 1.1.8. [5, Definition 1.1] A mixed subdivision ofQ is any family S of Minkowski
cells which partition Q and intersect properly as Minkowski sums. Some Minkowski cells
are of particular interest.

• (m = n� 1) A cell R is mixed if it is the Minkowski sum of n 1-dimensional segments
Ej � Qj: R = E0 + � � �+ En,

• (m = n) A cell R is mixed, in particular i-mixed or vi-mixed, if it is the Minkowski sum
of n 1-dimensional segments Ej � Qj and one vertex vi 2 Qi: R = E0+� � �+vi+� � �+En.

For mixed subdivisions see also [4, 6]. When m = n � 1 we can easily compute the
mixed volume of polytopes Pi.

Theorem 1.1.9. Given polytopes Q1; : : : ; Qn � Rn and a mixed subdivision of Q = Q1 +

� � � + Qn, the mixed volume MV(Q1; : : : ; Qn) is the sum of the volumes of all mixed cells of
the mixed subdivision.

A mixed subdivision is called regular if it is obtained as the projection of the lower hull
of the Minkowski sum of lifted polytopes cQi := f(pi; !i(pi)) j pi 2 Qig. If the lifting function
! := f!i : : : ; !mg is sufficiently generic, then the induced mixed subdivision is called fine
or tight, and

Pm
i=0 dimBi = dim

Pm
i=0Bi, for every cell

Pm
i=0Bi. This construction method

ensures that the lower hull facets of the Minkowski sum of the lifted polytopes cQi, are
projected bijectively onto Q. Thus, every cell R of the mixed subdivision can be written
uniquely as the Minkowski sum

R = F0 + � � �+ FN � Rn : Fi is a face of Qi; i = 0; 1; : : : ; n:

Two mixed subdivisions are equivalent if they share the same mixed cells. The equivalence
classes are called mixed cell configurations [7].

A monomial of the sparse resultant is called extreme if its exponent vector corresponds
to a vertex of the Newton polytope N(R) of the resultant. Let ! be a sufficiently generic
lifting function. The !-extreme monomial of R, is the monomial with exponent vector
that maximizes the inner product with !; it corresponds to a vertex of N(R) with outer
normal vector !. The following theorem allows us to compute the extreme monomials of
the sparse resultant using regular mixed subdivisions.

Christos Konaxis 20
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Figure 1.2: The mixed subdivision of Fig. 1.1 obtained as the projection of the lower hull of the Mink-
owski sum of the lifted triangles.

Proposition 1.1.10. [6]. For every sufficiently generic lifting function !, we obtain the
!-extreme monomial of R, of the form

�
nY
i=0

Y
R

c
Vol(R)
i;vi

; (1.1)

where Vol(R) is the Euclidean volume of R, the second product is over all vi-mixed cells R
of the regular tight mixed subdivision of P induced by !, and ci;vi is the coefficient of the
monomial of fi corresponding to vertex vi.

Corollary 1.1.11. There exists a surjection from the mixed cell configurations onto the set
of extreme monomials of the sparse resultant.

1.1.2 Triangulations

Another geometric tool we shall use in studying resultants is the set of triangulations of
of a point set. This is closely related to the set of mixed subdivisions of a corresponding
set of supports, as we shall see in the next subsection.

Let A � Rd be a set of points. A triangulation T of A is a collection of cells I � A

with cardinality d + 1 and dimension of CH(I) = d, i.e. I is a simplex in Rd, such thatS
I2T CH(I) = CH(A), and for all I; J 2 T , CH(I \ J) = CH(I) \ CH(J). A triangulation T

is called regular if there exists a lifting vector ! 2 RA such that T is the projection of the
lower (equivalently upper) hull of the set bA = f(a; !(a)) j a 2 Ag to CH(A).

A circuit Z = fz1; : : : ; zkg is a minimal affinely dependent subset of A, satisfying a
unique (up to a constant) affine equation �1z1 + : : : + �kzk = 0, where all �i are nonzero
and

P
�i = 0. Z can be written in the form Z = (Z+; Z�), where Z+ = fzi j �i > 0g and

Z� = fzi j �i < 0g. This is usually called Radon’s property. The induced triangulation T Z

of Z, is the collection of all simplices in T with vertices in Z.
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A circuit Z has exactly two triangulations T Z
+ = fZ n fzig j zi 2 Z+g and T Z

� = fZ n

fzig j zi 2 Z�g. The link of a set � � A in a triangulation T of A is defined as

linkT (�) := f� � A j � \ � = ;; � [ � 2 T g:

Now the bistellar flip on Z can be defined as follows:

Definition 1.1.12. [8] Let T1 be a triangulation of A that contains one of the two trian-
gulations of Z, say T Z

+ . Suppose that all the cells � 2 T Z
+ have the same link L in T1. Then

the circuit Z supports a bistellar flip in T1 which gives triangulation T2:

T2 := T1 n f� [ � j � 2 L; � 2 T Z
+ g [ f� [ � j � 2 L; � 2 T Z

� g:

A bistellar flip between two regular triangulations T1 and T2 can also be understood
as a certain regular subdivision T0 whose only two regular refinements are triangulations
T1 and T2. The following theorem allows us to explore the set of regular triangulations of
a point set using bistellar flips.

Theorem 1.1.13. [4] For every set A of points affinely spanning Rd there is a polytope
Σ(A) in RjAj�d�1, the secondary polytope of A, such that its vertices correspond to the reg-
ular triangulations of A and there is an edge between two vertices if and only if the two
corresponding triangulations are obtained one from the other by a bistellar flip.

Figure 1.3: Secondary polytope of a pentagon

There are two standard methods to construct the secondary polytope of a point set
A. The first one, due to Gelfand, Kapranov and Zelevinskii [4], gives for each vertex vT ,
corresponding to triangulation T of A (not necessarily regular), coordinates:

(vT )i =
X

�:�2T ;i2Vert(�)

Vol(�); i = 1; : : : ; jAj:

The jAj-dimensional vector vT corresponding to every triangulation T of A, is called the
volume vector of T . Then, Σ(A) � RjAj is defined as the convex hull of all the volume
vectors. Volume vectors of triangulations that are not regular fall into the interior of
some face of Σ(A) or the interior of Σ(A). However, the secondary polytope constructed
this way is not full-dimensional but resides in an (jAj � d� 1) - dimensional subspace.

The second method, due to Billera and Sturmfels [9], describes the secondary polytope
as the Minkowski integral of the fibers of the affine projection � : ∆A ! conv(A), where
∆A is a simplex with jAj vertices of dimension jAj � 1, and � bijects the vertices of ∆A to
A.
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1.1.3 The Cayley trick

Given pointsets A0; : : : ; An, the Cayley embedding � introduces a new pointset

C := � (A0; A1; : : : ; An) =

n[
i=0

(Ai � feig) � Z2n+1; (1.2)

where the set of ei is an affine basis of Rn. The dimension of the convex hull of C is D � 2n.

Proposition 1.1.14. [The Cayley Trick] [7, 5] There exists a bijection between the regular
tight mixed subdivisions of the Minkowski sum P =

Pn
i=0CHPi and the regular triangula-

tions of C.

Given a regular triangulation T of C, we obtain the corresponding regular fine mixed
subdivision of polytope P , by intersecting T with the affine subspace Rn � f

P 1
n+1eig or

any other hyperplane in R2n which is not a supporting hyperplane any (Pi). In particular,
the first intersection yields an mixed subdivision of the scaled Minkowski sum 1

n+1

P
Pi,

see Figure 1.4.

Lemma 1.1.15. A cell R is an n-dimensional cell of a mixed subdivision S of the scaled
Minkowski sum

Pn
i=0

1
n+1Pi, if and only if it is the intersectionwith hyperplaneRn�f

P 1
n+1eig,

of a 2n-dimensional cell of a triangulation T of C, which contains at least one point (aij ; ei)
from every set Ai � ei.

Figure 1.4: Application of the Cayley Trick for two triangles.

An algebraic interpretation of the Cayley trick is the following: given n + 1 Laurent
polynomials fi in n variables x1 : : : ; xn with supports Ai and Newton polytopes Pi, we
introduce n+ 1 new variables y0; : : : ; yn and form the auxiliary polynomial

f = y0f0 + y1f1 + � � �+ ynfn:

The support of f is the 2n-dimensional setC of Equation (1.2). Consider theC-discriminant
∆C of the polynomial f [4].

Proposition 1.1.16. [4, Prop. 1.3.1] The sparse resultant R of the polynomials f0; : : : ; fn

equals the A-discriminant ∆A of f .
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1.1.4 Subdivision methods for computing sparse resultants

Let us sketch the algorithm of [10, 11] for constructing a sparse resultant matrix, see
also [12, 6] for generalizations. It is based on and extends the construction of a mixed
subdivision described in Subsection 1.1.1.

Given polynomials f0; : : : ; fn with supports A0; : : : ; An and Newton polytopes Q0; : : : ; Qn,
Qi = CH(Ai), construct a mixed subdivision of Q =

Pn
i=0Qi. Let Z be the integer lattice

generated by
Pn

i=0Ai and . The algorithm uses the information contained in the mixed
subdivision of Q and constructs a square matrix M whose determinant is non-zero if the
fi have generic coefficients, and is divisible by the sparse resultant Res(f0; : : : ; fn).

The mixed subdivision of Q is perturbed by a vector � 2 Qn, which is sufficiently
small with respect to Z, and in sufficiently generic position with respect to the Qi. Every
lattice point p in E := Z \ (

Pn
i=0Qi + �) is then associated to a unique maximal cell of the

subdivision. This allows us to construct an jEj � jEj matrix M whose rows and columns
are indexed by all these points. In particular, polynomial xp�aijfi fills in the row indexed
by the lattice point p in Definition 1.1.17.

Definition 1.1.17. Let p 2 E lie in a cell F0+� � �+Fn+� of the perturbed mixed subdivision,
where Fi is a face of Qi. The row content (RC) of p is (i; j), if i 2 f0; : : : ; ng is the largest
integer such that Fi equals a vertex aij 2 Ai.

Summarizing, the basic steps of the algorithm are:

1. Pick (affine) liftings !i : Z
n ! R : Ai ! Q; i = 0; : : : ; n:

2. Construct a regular fine mixed subdivision of the Minkowski sum
Pn

i=0Qi using
liftings !i.

3. Perturb the Minkowski sum
Pn

i=0Qi by a sufficiently small � 2 Qn, so that integer
points in

Pn
i=0Qi + � belong to a unique cell of the subdivision, and assign row

content to these points by Definition 1.1.17.

4. Construct resultant matrix M with rows and columns indexed by the previous in-
teger points.

1.2 Thesis structure

The next chapter provides methods for the efficient computation of the resultant poly-
topes. We exploit the surjection from the set of mixed cell configurations onto the vertices
of the resultant polytope and, by means of the Cayley Trick, we reduce the problem to
the enumeration of the corresponding equivalence classes of regular triangulations. Then,
we characterize the relevant flips that correspond to edges between two such equivalence
classes.

In Chapter 3 we offer a single lifting function that allows Canny-Emiris algorithm
to construct a Macaulay-type formula for the sparse resultant of polynomial systems
with Newton polytopes that are scaled copies of each other. We illustrate our results by
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studying a bivariate example, and sketch the the extension of our algorithm to mixed
systems.

Finally, Chapter 4 offers a full description of the Newton polygon of the implicit equa-
tion of rational parametric curves, under the assumption of generic coefficients. In the
case of rationally parameterized curves with different denominators (which includes the
case of Laurent polynomial parameterizations), the Cayley trick reduces the problem to
computing regular triangulations of point sets in the plane. If the denominators are iden-
tical, two-dimensional mixed subdivisions are examined.
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Chapter 2

The Newton polytope of the
resultant

2.1 Enumeration of mixed cell configurations

In this section we describe algorithms to compute the Newton polytope of the sparse
resultant, or resultant polytope, of an overconstrained system of polynomials. We rely
on Propositions 1.1.10 and 1.1.14 and following [7] it suffices to enumerate a subset of
the vertices of the secondary polytope associated with the input data, corresponding to
mixed cell configurations. The resultant polytope allows us to compute a superset of the
support of the resultant by considering all integer points contained in it; then we can
reduce the computation of the resultant to linear algebra [13].

Several algorithms and implementations enumerate regular triangulations e.g. PUN-
TOS [14], TOPCOM [15], and the algorithm in [16, 17] which uses reverse search tech-
niques [18] for memory efficiency.

Corollary 1.1.11 establishes a surjection from the set of mixed cell configurations onto
the set of vertices of the resultant polytope. Experiments1 indicate that mixed cell con-
figurations are, depending on the input, much less numerous than mixed subdivisions,
hence the computation of the resultant vertices becomes more efficient if we focus on
the former. The algorithm in [17], enumerating regular triangulations corresponding to
mixed cell configurations, runs in time O(n2s2LP (jCj � 2(n + 1); s)jM j) and space O(ns),
where s bounds the number of simplices of any dimension in a triangulation of C, jM j is
the number of mixed-cell configurations, and LP (m;n) is the time required to solve a lin-
ear programming problem with m variables and n strict inequalities. The same algorithm,
enumerating all regular triangulations, runs in time O(n2s2LP (jCj� 2(n+1); s)jSj), where
jSj is the number of all regular triangulations (equivalently, the number of all regular
mixed subdivisions) of the set C introduced by the Cayley embedding.

We proceed to characterize the circuits of a triangulation that support bistellar flips
that lead from one mixed cell configuration to another. The subgraph of the secondary
polytope with vertices regular triangulations corresponding to mixed cell configurations
and edges corresponding to these special flips between mixed cell configurations, is con-

1See for example the webpage http://ergawiki.di.uoa.gr/index.php/Implicitization

Christos Konaxis 27



Algebraic Algorithms for polynomial system solving and applications

nected.
Consider polynomials f0; : : : fn, with supports A0; : : : ; An � Zn and Newton polytopes

P0; : : : ; Pn � Rn. Let C = � (A0; : : : ; An) be their image under the Cayley embedding and
d = 2n the dimension of C. A mixed subdivision S of A = A0 + : : : + An, corresponds, by
the Cayley trick, to some triangulation T = �(S) of C. A set Z = Z0 + � � �+Zn; Zi � Pi is a
circuit of S, if �(Z) = �(Z0; : : : ; Zn), is a circuit of T . A circuit Z supports a bistellar flip on
S if �(Z) supports a bistellar flip on T , and S0 = flipZ(S) if �(S0) = flip�(Z)(�(S)). By abuse
of notation, the tuple (Z0; : : : ; Zn) shall denote both Z and �(Z); every Zi shall be denoted
as Zi = fzi;1; : : : ; zi;jZijg, where zi;j 2 Ai or zi;j 2 Ai � ei, depending on the setting.

Recall that every (maximal) cell of T = �(S) is a d-dimensional simplex that corre-
sponds to a n-dimensional cell of the mixed subdivision S. A circuit Z � T involves an
i-mixed cell if there exist a cell I in T and a i-mixed cell R = F0 + � � �+ vi + � � �+ Fn in S,
such that Z involves I and I = �(R). As above, we shall denote both R and I by the same
tuple (F0; : : : ; Fn).

The circuits of interest are those that involve an i-mixed cell. The bistellar flip on
every such circuit shall destroy at least one mixed cell and lead to a new mixed cell
configuration.

Now, consider a triangulation T of C and a k-dimensional circuit Z = (Z0; : : : ; Zn) of
T , where k � d. Suppose that T is supported on Z. Let X1; : : : ; Xk be the k-dimensional
simplices of the induced by T triangulation on Z. Definition 1.1.12 implies that every Xi is
a k-dimensional face of a d-dimensional simplex Ui of T . Moreover, there exist Y1; : : : ; Yk �
C n Z, where every Yi is (d� k� 1)-dimensional, such that Ui = CH(Xi [ Yi). If k = d, then
Yi = ; και Ui = Xi. Circuit Z is the convex hull of k+2 affinely dependent vertices, whereas,
every Xi is the convex hull of k+1 affinely dependent vertices. Hence, Z is the convex hull
of k+1 vertices of Xi � Ui and a vertex c /2 Ui lying on the same k-dimensional hyperplane
defined by Xi. This leads to:

Lemma 2.1.1. Let T be a triangulation of C, Z a k-dimensional circuit supported on T ,
and X a cell of T Z of Z. There exists a simplex U = (U0; : : : ; Ur; : : : ; Un) of T , such that X is
a k-face of U , and Z can be written as

Z = (Z0; : : : ; Zr [ fcg; : : : ; Zn); (2.1)

where each Zi is a possibly empty subset of Ui and c 2 (Ar � er) n Ur.

Note that expression (2.1) is not unique, but depends on the simplex X we choose.
Lemma 2.1.1 implies that a circuit involving a mixed cell must contain, in its induced
triangulation, at least one simplex X that is a k-dimensional face of a simplex U = �(R),
where R is a mixed cell. The following theorem extends [7, Thm 5.1] to our setting, i.e.
when we have n + 1 polytopes in Rn. It also provides a combinatorial condition on the
circuits that support bistellar flips between mixed cell configurations.

Theorem 2.1.2. Let Z = (Z0; : : : ; Zn) be a circuit of the triangulation T = �(S) of C, and
R = (F0; : : : ; vs; : : : ; Fn) an s-mixed cell of the mixed subdivision S, where Fi = ffi1; fi2g � Ai,
for i 6= s, is an edge, and vertex vs 2 As. If Z involves �(R), then there exist r 2 N; 0 � r � n;
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Figure 2.1: Lemma 2.1.1: Examples of circuits (in green color) for d = 2; 3 and k = 1; 2. The first and
third circuits are odd, whereas the second is neither even nor odd

and c 2 Ar � er, such that

Zi = Fi � ei or Zi = ;; for i 6= r

and (2.2)

Zr = Fr � er [ fcg or Zr = ffrg [ fcg; fr 2 Fr � er; for i = r:

Proof. Lemma 2.1.1 implies that there exist r 2 N and c 2 Ar � er, such that Z can be
written as

Z = (Z0; : : : ; Zr [ fcg; : : : ; Zn); Zi � Fi � ei:

Z satisfies a unique (up to a nonzero real multiple) affine relation:X
z2Z

�zz = 0; where
X
z2Z

�z = 0 and �z 6= 0; 8z 2 Z: (2.3)

Every z 2 Z is of the form (z0; ei); z
0 2 Ai. By grouping the summands from each support

set Ai, relation (2.3) can be rewritten as:

dX
i=0

0@X
z02Ai

�z0(z
0; ei)

1A = 0; (2.4)

where
Pd

i=0

�P
z02Ai

�z0
�
= 0 and �z0 6= 0; 8i 8z0 2 Ai.

Vectors ei; ej are linear independent, hence, < ei; ej >= 0, for every i 6= j and < ei; ei >=

1. Setting ~0 = (0; : : : ; 0) 2 Rn and forming the inner product of (2.4) with every (~0; ei); i =

0; : : : ; n, we have:X
z02A0

�z0 = 0; : : : ;
X
z02As

�z0 = 0; : : : ;
X
z02As

�z0 = 0; : : : ;
X
z02As

�z0 = 0; (2.5)

which imply that coefficients �z of points z in every Zi add up to zero. This implies that
jZij 6= 1; 8i = 0; : : : ; n. Finally, circuit Z = (Z0; : : : ; Zn) satisfies:

1. i 6= r, then for every Zi
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• jZij = 0() Zi = ; or

• jZij = 2() Zi = Fi � ei.

2. i = r, then for Zr

• jZrj = 2() Zi = ffig [ fcg; fi 2 Fi � ei; c 2 Ar � er or

• jZrj = 3() Zi = Fi � er [ fcg; c 2 Ar � r.

If jZrj = 2, the circuit is called even, and if jZrj = 3, is called odd. Note that Z cannot
contain vertex (vs; es) 2 Fs � es, of the s-mixed cell R, unless s = r and Zr is of the form
Zr = Fs � es [ fcg = f(vs; es); cg.

2.2 Computing silhouettes of Σ(C)

Applications such as the computation of the u-resultant or implicitization of polynomial
parametric curves or surfaces call for the computation of the resultant polytope after
a specialization of some of its indeterminates, i.e. some of the coefficients of the input
polynomials. This reduces to enumerating the vertices lying on the silhouette of the sec-
ondary polytope Σ(C) with respect to some suitably defined projection. For example, the
projection of Σ(C) to R2 solves the problem of implicitization of polynomial curves, the
projection to R3 the one of polynomial surfaces etc. The approach of this section and of
Chapter 4 give the same result for the case of polynomial parametric curves with no con-
stant term, although they use different criteria, the first based on volume vectors and the
latter on combinatorics. The silhouette can be obtained naively by computing all the ver-
tices of Σ(C), then projecting them to the subspace of smaller dimension. For efficiency
we want to enumerate only the vertices lying on a silhouette of Σ(C) with respect to a
projection to be defined by the problem, without computing Σ(C).

In short, we have the following polytope theory problem: We have a high dimensional
polytope Σ(C) which we know only locally. By this we mean that from every vertex we
have an oracle to find the coordinates of all of its neighbours. We want an algorithm to
compute, for a certain projection � to some lower dimension, the projection �(Σ(C)).

2.2.1 The projection of Σ(C) in dimension one

Suppose that we project Σ(C), of dimension D, to a line by deleting all coordinates except
the first one, in every volume vector. Then, the projection of Σ(C) is the convex hull of the
vertices ΦTmax ;ΦTmin of the secondary polytope corresponding to the triangulations Tmax

and Tmin, which maximize and minimize respectively the first coordinate '1 of the volume
vectors. Translating the problem to its algebraic counterpart, we wish to specialize all but
one coefficient appearing in the input polynomials. The Newton polytope of the specialized
resultant is a (possibly degenerate) segment.

Starting from an arbitrary regular triangulation T corresponding to the vertex ΦT of
the secondary polytope, we want to flip monotonically towards the vertices ΦTmax ;ΦTmin.
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For this we can use any algorithm that enumerates regular triangulations modified so as
to apply the criteria described bellow.

Definition 2.2.1. A simplicial complex K in RD is a collection of simplices in RD such
that: (1) the empty set is in K, (2) for any � in K, all faces of � are in K and (3) the
intersection of any two simplices in K is a face of both.

The join K ? L of two simplicial complexes K;L is defined as

K ? L = f� [ � : � 2 K and � 2 Lg:

The volume of a simplicial complex is defined as the sum of the volumes of its simplices.

Lemma 2.2.2. Let T1 be a regular triangulation of C, Z � C a circuit of T1 supporting a
bistellar flip which gives triangulation T2, a1 2 C, and 'T1

1 ; 'T2
1 the coordinates of the volume

vectors of T1 and T2 respectively, corresponding to point a1. Suppose that the simplices of
the induced triangulation T Z

1 of Z are �i; i 2 I. Then a1 is a vertex of every simplex �i, for
i 2 I, if and only if 'T1

1 > 'T2
1 .

Proof. Let T Z
1 ; T Z

2 be the triangulations of Z induced by T1 and T2 respectively, L the
common link of all simplices �1i 2 T

Z
1 , and �2j ; j 2 J the simplices of T Z

2 .
Suppose that a1 is a vertex of every simplex �1i; i 2 I. This implies that a1 is a vertex of

every �1i?�; � 2 L. Thus, ('T1)1 =
P

8i2I;�2L Vol(�1i?�) = Vol(Z?L). Since there is a unique
triangulation of Z, such that a1 is a vertex of all its simplices, the conclusion follows.

For the opposite direction, suppose that there exists a simplex �1k; k 2 I such that a1 is
not one of its vertices. Then a1 is not a vertex of �1k?�; � 2 L and 'T1

1 =
P

8i2Ink;�2L Vol(�1i?

�) < Vol(Z ? L)) = 'T2
1 .

Figure 2.2: Bistellar flips maximizing the coordinate of the volume vector corresponding to the square
vertex

The previous lemma allows us to compute a set of candidate circuits with the property
that flipping on each one of them increases coordinate '1 of the volume vector. Now, we
wish to choose among the candidate circuits the one that gives the triangulation Tr having
volume vector with the maximum '1 coordinate.
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Lemma 2.2.3. Let T be a triangulation of C, Z1; : : : ; Zs be a set of circuits that increase
coordinate '1 of the volume vector, L1; : : : ; Ls their links respectively, and T1; : : : ; Ts the cor-
responding triangulations obtained by performing a bistellar flip on them. If �i 2 T Zi is the
unique simplex, of the same dimension as Zi, not containing vertex a1, then we obtain the
triangulation Tr such that 'Tr

1 = maxf'Tj
1 j j = 1; : : : ; sg; by performing a bistellar flip on

circuit Zr; r 2 f1; : : : ; sg satisfying

Vol(�r ? Lr) = maxfVol(�j ? Lj) j j = 1; : : : ; sg:

Proof. A bistellar flip on each of the candidate circuits Zi in T yields triangulation Ti, in
which point a1 is a vertex of all the simplices in the induced triangulation T Zi

i of Zi. Then
, 'Ti

1 equals the volume of �i ? Li.

The previous results can be modified accordingly to provide the triangulation with
minimum '1-coordinate among all the bistellar neighbours of triangulation T .

In order to compute vertices Tmax and Tmin, we start with an initial triangulation T . A
regularity check should follow the application of any of the previous criteria. Depending
on the setting, the output of these criteria might be the empty set, i.e. there does not
always exists a triangulation adjacent to T , which has strictly greater (or smaller) '1-
coordinate. In such a case, the next vertex to be enumerated is decided by the criteria
of the algorithm of Section 2.1 and the path computed is not strictly monotonic or the
shortest. When there exists a path from T to Tmax (or Tmin), consisting of vertices with a
strictly monotonic sequence of '1-coordinates, then our algorithm provides the shortest
path. The algorithm described has the same space and time complexities as the algorithm
of Section 2.1 in the worst case, but should be more efficient on average.

2.2.2 The projection of Σ(C) in two and three dimensions

Suppose that we project Σ(C), to the plane defined by the first two coordinates '1; '2 of
the volume vectors. Initially we apply the criteria of the previous section in order to find
the vertices of Σ(C) that are extreme with respect to each coordinate. Thus, we compute
triangulations T '1

max; T
'1

min; T
�2

max and T '2

min. Now we have to compute the vertices that fill the
rest of the silhouette of Σ(C). Every combination of our criteria above is not sufficient for
this, as it is illustrated by the following example:

Example 2.2.4. Consider the setting shown in Figure 2.3, where T1; : : : ; T5 are the tri-
angulations corresponding to the vertices of the convex hull of the projection of Σ(C)

to the ('1; '2)-plane. Suppose that given vertex T1, we want to flip towards vertex T3
with maximum '1-coordinate, while staying on the silhouette. Using the criteria devel-
oped for 1-dimensional projections, we can compute only the bistellar neighbors of T1:
T6 = max'2fT j 'T

1 > 'T1
1 g and T7 = min'2fT j 'T

1 > 'T1
1 g, thus, failing to compute vertex

T2.

We can overcome this by switching from combinatorial to geometric criteria. In par-
ticular, we utilize the well known CCW (or Orientation) determinant [19], which decides
the relative orientation of any three points in a plane. Let � : RD 7! R2, be the projection
to the ('1; '2)-plane. Suppose that T1; : : : ; Tk are the bistellar neighbours, with greater '1
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π(T1)

π(T6)

π(T7)
π(T3)

π(T2)

ϕ1

ϕ2

π(T5)

π(T4)

Figure 2.3: Example 2.2.4:A case where every combination of combinatorial criteria fails.

coordinate, of triangulation T
'2

max. A vertex Ti for which CCW(�(T
'2

max); �(Ti); �(Tj)) holds,
for some Tj 2 fT1; : : : ; Tkg, cannot lie on the silhouette of Σ(C) with respect to the projec-
tion �. This is essentially Jarvis’ algorithm for computing the Convex Hull of points in the
plane; it is an instance of the gift-wrapping paradigm [19]. A careful asymptotic analysis
would exploit the local behavior of the CCW.

This discussion can be generalized for the case where we project to a subspace of
dimension three. For this, we use the gift-wrapping algorithm. This is a well-known al-
gorithm with output sensitive complexity. We can also use reverse search to minimize
memory consumption as in [17].
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Chapter 3

Single-lifting Macaulay-type
formulae of generalized unmixed
sparse resultants

A resultant is most efficiently expressed by a matrix formula: this is a generically nonsin-
gular matrix, whose specialized determinant is a multiple of the resultant. Its degree in
the coefficients of one polynomial equals the corresponding degree of the resultant. For
n = 1 there are matrix formulae named after Sylvester and Bézout, whose determinant
equals the resultant. Unfortunately, such determinantal formulae do not generally ex-
ist for n > 1, except for specific cases, e.g. [20, 21, 22, 23, 24, 25]. Macaulay’s seminal
result [26] expresses the extraneous factor as a minor of the matrix formula, for projec-
tive resultants of (dense) homogeneous systems, thus yielding the most efficient general
method for computing such resultants. There exists a method which, given a Macaulay-
type formula of the resultant, constructs a determinant which equals the resultant [27].

Matrix formulae for the sparse resultant were first constructed in [28]. The construc-
tion relies on a lifting of the given polynomial supports, which defines a mixed subdivision
of their Minkowski sum into mixed and non-mixed cells, then applies a perturbation �

so as to define the integer points that index the matrix. The algorithm was extended in
[10, 12, 6]. In the case of dense systems, the matrix coincides with Macaulay’s numer-
ator matrix. As a corollary of this construction, one obtains a limited version of a toric
effective Nullstellensatz [10, Sec.8].

Extending the Macaulay formula to sparse resultants had been conjectured in [10, 1,
11, 4, 6]; it was a major open problem in elimination theory. We cite [6, p.219], where
P!;� is the extraneous factor, and ! denotes the lifting: “It is an important open problem
to find a more explicit formula for P!;� in the general toric case. Does there exist such a
formula in terms of some smaller resultants? This problem is closely related to the following
empirical observation. For suitable choice of � and !, the matrixM�;! seems to have a block
structure which allows to extract the resultant from a proper submatrix. This leads to faster
algorithms for computing the sparse mixed resultant.”

D’Andrea’s result [29] answers the conjecture by a recursive definition of a Macaulay-
type formula, see Section 3.2. But this approach does not offer a global lifting, in order
to address the stronger original Conjecture 3.0.5. Let M be a matrix formula, also known
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as Newton matrix, and M (nm) its submatrix indexed by points in non-mixed cells of the
mixed subdivision.

Conjecture 3.0.5. [11, Conj. 3.1.19] [10, Conj. 13.1] There exist perturbation vector �
and n + 1 lifting functions for which the determinant of matrix M (nm) divides exactly the
determinant of Newton matrix M and, hence, the sparse resultant of the given polynomial
system is detM/detM (nm).

We give an affirmative answer to this stronger conjecture by presenting a single lifting
which constructs Macaulay-type formulae for generalized unmixed systems, i.e. when all
Newton polytopes are scaled copies of each other. We state our main result, to be proven
in Section 3.3:

Theorem 3.0.6. Algorithm B of Section 3.1 constructs a Macaulay-type formula for the
sparse resultant of an overconstrained generalized unmixed algebraic system, by means
of the lifting function of Definition 3.1.3.

Our method is generalized, in Section 3.5, to certain mixed systems: those with n �

3, as well as reduced systems, defined in [30] to possess sufficiently different Newton
polytopes. Most of these cases have been studied: reduced systems were settled in [31],
and bivariate systems (n = 2) in [32], by directly establishing the extraneous factor. We
expect that our approach should make the single-lifting algorithm applicable to the fully
general case.

A single lifting algorithm is conceptually simpler and also easier to implement. In
[33], the authors argue for the advantages of a single lifting over a recursive one in the
context of polyhedral homotopy methods for solving algebraic systems. Using a unique
global lifting function means that we consider a deformed system, defined by adding a
new variable t so that each input monomial xa gets multiplied by yH(a), where H(a) 2 Q

is the lifting value of a 2 Zn. Such deformations capture the system’s behavior at toric
infinity, hence lie at the heart of most theorems in sparse elimination, such as sparse
homotopies, sparse resultants, and the sparse Nullstellensatz [34, 10, 1, 4, 35, 6]. Having
a unique deformed system in defining the Macaulay-type formula may allow for further
applications of this formula.

Our method belongs to the family of combinatorial methods, which use a row content
function for computing sparse resultant formulae, like e.g., [10, 1, 36, 6]. This is the more
direct of the two main classes of constructive methods for sparse resultants, the other
relying on Koszul and Weyman complexes and their variations, see e.g., [21, 23, 25, 20,
24].

D’Andrea’s [29] recursive construction requires one to associate integer points with
cells of every dimension from n to 1. Our method constructs the matrix formula directly,
without recursion, by examining only n-dimensional cells. These are more numerous
than the n-dimensional cells in [29] but our algorithm defines significantly fewer cells to-
tally. The weakness of our method is to consider extra points besides the input supports.
Related implementations have been undertaken in Maple, but cover only the original
Canny-Emiris method [10], either standalone1 or as part of library Multires2. We expect

1http://www.di.uoa.gr/�emiris/soft_alg.html
2http://www-sop.inria.fr/galaad/logiciels/multires.html
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that our algorithm shall lead to an efficient implementation of Macaulay-type formulae.
The work presented in this section has been submitted for publication in [37].

3.1 Single lifting construction

For any polytopes or point sets A;B, let hAi denote the affine span (or hull) of A over R
and hA;Bi the affine span of A [ B over R. Let f0; : : : ; fn be polynomials with supports
A0; : : : ; An � Zn and Newton polytopes

Q0; : : : ; Qn � Rn; Qi = CH(Ai);

where CH(�) denotes convex hull. A monomial with exponent a = (a1; : : : ; an) 2 Z
n shall

be denoted as xa, where x := x1 � � �xn.
Our lifting shall induce a regular and fine (or tight) mixed subdivision of the Minkowski

sum
Pn

i=0Qi.Regularity implies the subdivision is in bijective correspondence with the
face structure of the upper (or lower) hull of the Minkowski sum of Q0; : : : ; Qn after they
are lifted to Rn+1. Each cell in Rn is written uniquely as the Minkowski sum of faces Fi of
the Qi. A fine subdivision is characterized by an equality between cell dimension and the
sum of the faces’ dimensions. We focus on cells of maximal dimension n, and call them
maximal or, simply, cells. We distinguish them as mixed and non-mixed: the former are
the Minkowski sum of n edges and a vertex. Mixed cells are i-mixed if this vertex lies in
Ai. The type of a cell is either i-mixed or non-mixed.

Let Z be the integer lattice generated by
Pn

i=0Ai. The Minkowski sum
Pn

i=0Qi is per-
turbed by a vector � 2 Qn, which is sufficiently small with respect to Z, and in sufficiently
generic position with respect to the Qi. The lattice points in E = Z \ (

Pn
i=0Qi + �) are

associated to a unique maximal cell of the subdivision, and this allows us to construct
a matrix formula M whose rows and columns are indexed by these points. In particular,
polynomial xp�aijfi fills in the row indexed by the lattice point p in Definition 1.1.17.

Our method is based on the matrix construction algorithm of [10, 11], see Section 1.1.4.
Below, we modify step 1 of this algorithm to use the lifting function of Definition 3.1.3,
and shall extend the last step to produce additionally the denominator matrix. We shall
refer to the modified algorithm as Alg. B.

The main idea of both our and D’Andrea’s methods is that one point, say b01 2 Q0,
is lifted significantly higher. Then, the 0-summand of all maximal cells is either b01 or a
face not containing it. In D’Andrea’s case, facets not containing b01 correspond to different
subsystems where the algorithm recurses (each time on the integer lattice specified by
that subsystem). In designing a unique lifting, the issue is that points appearing in two
of these subsystems may be lifted differently in different recursions. To overcome this,
we introduce several points cijs, each lying in a suitable face of Qi indexed by s, very
close (with respect to Z) to every bij, which is lifted very high at recursion i by D’Andrea’s
method. This captures the multiple roles bij may assume in every recursion step.

Algorithm B. Our algorithm directly generalizes the one given in [10, 11], and is based
on the 4 steps described in Section 1.1.4. We modify step (1) and define a new lifting
function; moreover, we describe necessary adjustments to the matrix construction and
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extend step (4) so as to produce the denominator matrix of the Macaulay-type formula.
The following three definitions suffice to specify our algorithm.

We shall use E to index the rows (and columns) of the numerator matrix M , whereas
the denominator shall be indexed by points lying in non-mixed cells. We focus on gener-
alized unmixed systems, where

Qi = kiQ � Rn;

for some n-dimensional lattice polytope Q and ki 2 N
�; i = 0; : : : ; n. Let the vertices of Q be

b0; : : : ; bjAj, where Q = CH(A). We shall denote the vertices of each Qi = kiQ; for i = 0; : : : ; n,
as bi1; : : : ; bijAj. Obviously, bij := kibj.

Definition 3.1.1. For i = 0; : : : ; n � 2, consider any (n � i)-dimensional face F
(i)
s � Q,

where integer s indexes all such faces. Take any vertex bij 2 kiF
(i)
s , for any valid j 2 N.

Let �ijs 2 Qn denote a perturbation vector such that:

1. bij + �ijs lie in the relative interior of kiF
(i)
s ,

2. It is sufficiently small compared to lattice Z, and k�ijsk � k�k, where k � k is the
Euclidean norm and � as above, and

3. It is sufficiently generic to avoid all edges in the mixed subdivision of
Pn

i=0Qi:

For an example of Definition 3.1.1 see Figures 3.1, 3.2, where the (appropriately
translated) �ijs’s are depicted by arrows. We shall use the perturbation vectors of Def-
inition 3.1.1 to define extra points not contained in the input supports. Condition (2) of
Definition 3.1.1 implies that, in the mixed subdivision induced by the single lifting func-
tion � bellow, the cells created by the introduction of the extra points will not contain
integer points after we perturb the mixed subdivision by �. This can be checked at the
end of the construction of the mixed subdivision.

Definition 3.1.2. We define points cijs 2 Qi \ Q
n, for i = 0; : : : ; n � 2. Firstly, set c011 :=

b01 + �011 2 Q0 \ Q
n where �011 satisfies Definition 3.1.1. Now let fcijs 2 kiF

(i)
s g be the set

of points defined in Qi, where s ranges over all (n � i)-dimensional faces F
(i)
s � Q and j

over the set of indices of points in Qi. Then, let F (i+1)
u be a facet of F (i)

s such that:

1. kiF
(i+1)
u does not contain any of the bij ’s corresponding to the already defined cijs’s,

and

2. ki+1F
(i+1)
u does not contain any of the already defined c(i+1)l’s.

For each such facet choose a vertex b(i+1)j 2 Ai+1, for some j, and a suitable perturbation
vector �(i+1)ju satisfying Definition 3.1.1, and set c(i+1)ju := b(i+1)j + �(i+1)ju 2 Qi+1 \Q

n.

The previous definition implies a many-to-one mapping from the set of cijs’s to that
of bij ’s; it reduces to a bijection when restricted to a fixed face kiF

(i)
s � Qi containing bij.

Condition 1 of Definition 3.1.1 implies that cijs does not lie on a face of dimension < n� i

and lies in the interior of (n� i)-dimensional F (i)
s . We can reduce the number of the cijs’s

in Alg. B, but this would complicate the subsequent proofs.
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For an application of Definition 3.1.2 for n = 2 see Figure 3.1 where Q is the unit
square, and also Figure 3.7 where Q is a pentagon. In both examples, for illustration
purposes, we define points cijs also on edges of polytope Q1. See also Figure 3.2, where
Q is the unit cube.

Q0 Q1 Q2

Q2Q1Q0

b01

b02 b03

b04

c011

b01 b04

b02 b03

c011

b12 b13 b22 b23

b11 b14 b21 b24

c122

c143

b12 b13 b22 b23

b11 b14 b21 b24

c132
c134

Figure 3.1: Two scenarios of an application of Def. 3.1.2 for 3 unit squares. Facets are numbered
clockwise starting from the left vertical edge

Q0 Q1

c011

c154 c183

c126

Figure 3.2: Application of Def. 3.1.2 when Q is the unit cube. Alg. B defines additional points only in
polytopes Q0 and Q1

Definition 3.1.3. Let h0 � h1 � : : : � hn�1 � 1. Alg. B uses sufficiently random linear
functions Hi; i = 0; : : : ; n, such that:

1� Hi(aij) > 0; and Hi � Ht; i < t;

where aij 2 Ai and i; t = 0; : : : ; n; j = 1; : : : ; jAij: Alg. B defines global lifting � as follows:

1. cijs 7! hi; cijs 2 kiF
(i)
s � Qi; i = 0; : : : ; n� 1; this is called primary lifting.

2. aij 7! Hi(aij); aij 2 Ai; i = 0; : : : ; n.
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Let F � denote face F lifted under �. Now c
�
tjs, for all valid j; s, is much higher, respec-

tively lower, than any c�ijs, for i > t, respectively i < t. The �-induced subdivision contains
edges with one or two vertices among the cijs, and edges from the Qi. The vertex set of
the upper hull of Q�

i contains some or all of the c
�
ijs and the lifted vertices of Qi.

When all Qi are simplices, as in the classical dense case, it suffices to apply a primary
lifting to one point of every Qi as in Definition 3.1.2. Thus our scheme generalizes the
approach by Macaulay [26].

Figure 3.3 shows the mixed subdivisions of three unit squares and their Minkowski
sum, induced by lifting �. Here, the perturbation vectors are not sufficiently small com-
pared to Z2 for illustration purposes.

Q0

Q1
Q2

∑2
i=0Qi

Figure 3.3: The mixed subdivisions of 3 unit squares and their Minkowski sum induced by lifting �

The matrix formula M constructed by Alg. B is indexed by all lattice points in E. To
decide the content of each row, every point is associated to a unique (maximal) cell of the
mixed subdivision according to Definition 1.1.17. The t-mixed cells contain lattice points
as follows:

p 2 k0E0 + � � �+ kt�1Et�1 + ctjs + kt+1Et+1 + � � �+ knEn \ Z;

for edges Ei � Q spanning Rn. This gives unique writing

p = p0 + � � �+ pt�1 + (btj + �tjs) + pt+1 + � � �+ pn; pi 2 Ai \ Ei:

Hence, the row indexed by p, as with matrix constructions in [10, 29], contains a multiple
of ft(x):

xp0+���+pt�1+pt+1+���+pnft(x);

and the diagonal element is the coefficient of the monomial with exponent btj in ft(x).
Similarly, for the rows corresponding to lattice points in non-mixed cells. The extraneous
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factor detM/Res(f0; : : : ; fn) is the minor of M indexed by points in E lying in non-mixed
cells.

Let us sketch the asymptotic complexity of our algorithm. Alg. B, implemented by the
direct approach of [10], comprises of two main steps. First, the computation of the vertices
of each Qi which is typically dominated. Second, we compute RC for all p 2 E, which
includes the matrix construction. Both steps can be reduced to linear programming with
C constraints in V variables, and coefficient bitsize B. If we use a poly-time algorithm
such as Karmarkar’s [38], the bit complexity is C5:5V 2B2, where B depends on the bitsize
of the input coordinates and of �; �ijs. It is related to the probability that the chosen
perturbations are not sufficiently generic; see [10] for the full analysis.

Let m be the maximum number of vertices of the Qi, r the total number of cijs’s, and
let O�(�) indicate that we ignore polylog factors. The linear programs have complexity
O�(r2B2) = O�(mnB2) because r is bounded by the total number O(mbn/2c) of faces in
Q, which is quite pessimistic. In an output sensitive manner, r = O(jEj), because the
addition of every cijs is made in order to handle at least one distinct point in E. Hence,
the complexity of constructing the Macaulay-type formula is O�(jEj3B2): This holds for
matrices in sparse and dense representation. For generalized unmixed systems, one can
use jEj = O(knenD) from [10, thm.3.10], where k = maxifkig, D is the total degree of
the sparse resultant as a polynomial in the input coefficients, and e the basis of natural
logarithms.

A better implementation finds RC for one point in a maximal cell, then enumerates all
points in this cell in time proportional to their cardinality multiplied by a polynomial in
m;n;B [39, thm.16]. The neighbours of these points which lie outside the cell will yield
new cells, so as to explore the entire Minkowski sum; detecting new cells does not increase
the overall complexity. If S � jEj is the number of maximal cells containing at least one
lattice point, Alg. B has complexity O�(Sr2B2+ jEj) = O�(SjEj2B2), where typically, S � jEj.
This may be compared to the complexity of Alg. A at the end of the next section.

3.2 Recursive construction

We recall D’Andrea’s recursive construction of a Macaulay-type formula [29]. There are
certain free parameters in the algorithm which we specify so as to obtain a version very
similar to our approach.

At the input of the 0-step the algorithm may use an additional polytope mQ, for any
m 2 R, which we omit by setting m = 0. We describe the t-th recursive step, for t =

0; 1; : : : ; n� 1.

Algorithm A. The input are polytopes

l0P
(t); : : : ; lt�1P

(t); ktP
(t); : : : ; knP

(t) � Rn�t; li 2 [0; ki] \Q;

the integer lattice L(t) spanned by
Pn

i=tAi\kiP
(t), and perturbation vector �t 2 Qn�t. Here,

kiP
(t); i � t; is an (n � t)-dimensional face of kiQ, thus P (0) = Q. Also, P (t) is a facet of

P (t�1), and liP
(t); i < t; is homothetic to kiP

(t). These constructions shall be specified at
the Recursion Phase. Also, L(0) = Z and �0 = �.
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Construction Phase: Vertex btj 2 ktP
(t)\At is lifted to 1. We require that btj = ctjs��tjs,

where s is determined by the face ktP (t). All other vertices of all input polytopes are lifted
to 0. This is the primary lifting which partitions the Minkowski sum of the input polytopes
into a primary cell

l0P
(t) + � � �+ lt�1P

(t) + btj + kt+1P
(t) + � � �+ knP

(t) + �t; (3.1)

of dimension n�t, and several secondary cells. Each secondary cell is defined by an inner
normal v 2 Qn�t to a facet of ktP (t) not containing btj.

Polytopes
Pt�1

i=0 liP
(t); kt+1P

(t); : : : ; knP
(t) are lifted by applying the restriction of � on

them. We consider � fixed throughout the algorithm. The upper hull of the Minkowski
sum of the lifted polytopes induces a mixed subdivision of

Pt�1
i=0 P

(t)+kt+1P
(t)+� � �+knP

(t),
which is then perturbed by �t. The lattice points p of L(t) contained in the perturbed
subdivision are assigned RC by Definition 1.1.17. This also assigns RC to points p + btj

contained in the intersection of (3.1) with L(t). Let us take care of the cijs. If point p lies
in

(F + Ft+1 + � � �+ Fn + �t) \ L
(t); (3.2)

where Fi � kiQi; i > t; F �
Pt�1

i=0 liP
(t), having RC(p) = (h; j), where Fh = chjs = bhj + �hjs,

then the corresponding matrix row is filled in by xp�bhjfh.
Face F �

Pt�1
i=0 P

(t) in (3.2), can be written as F = l0F0 + � � �+ lt�1Ft�1, where Fi � P (t)

for i < t. Moreover, every cell in (3.1) is the Minkowski sum of btj and the cell in (3.2).
Mixed cells of type 0 are defined here as in Section 3.1. A t-mixed cell with respect to

Alg. A, for t > 0, shall have n� t linear summands from polytopes kt+1P
(t),: : : , knP (t) and

a zero-dimensional summand from polytope
Pt�1

i=0 liP
(t). This summand can be written as

l0p0 + � � �+ lt�1pt�1, where pi 2 P (t), for i = 0; : : : ; t� 1 and lipi stands for a scalar multiple
of pi, seen as a vector. This leads to:

Lemma 3.2.1. The maximal cells at step t of Alg. A are, for some j and li 2 [0; ki], of the
form:

l0F0 + � � �+ lt�1Ft�1 + btj + kt+1Ft+1 + � � �+ knFn + �t; (3.3)

where Fi is the projection of a face of the upper hull of P (t) lifted by �, and

dim(hF0; : : : ; Ft�1; Ft+1; Fni) = n� t:

Specifically, the t-mixed cells in Alg. A are:

l0p0 + � � �+ lt�1pt�1 + btj + kt+1Et+1 + � � �+ knEn + �t; (3.4)

where Et+1; : : : ; En are projections of edges on the upper hull of P (t) lifted by �, dim(hEt+1,
: : : ; Eni) = n� t, and points pi 2 P (t), for i = 0; : : : ; t� 1 .

Throughout the paper we shall use a running example to illustrate the Lemmas and
Corollaries. The example shall be detailed in Section 3.4.

Example 3.2.2 (Running example). Let n = 2,Q be the pentagon with vertices f(1; 0); (0; 1),
(0; 2); (1; 2), (3; 0)g, k0 = k2 = 1, k1 = 2. The input polygons are Qi = kiQ; i = 0; 1; 2 and
the input supports are A0 = A2 = f(1; 0); (0; 1); (0; 2); (1; 2), (3; 0)g, and A1 = f(2; 0); (0; 2),
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b01

b02

b03 b04

b05
b11

b21

Q0 Q1 Q2

v1

v2

v3

Figure 3.4: Input polygons of Exam. 3.2.2 and their subdivisions induced by the lifting of Def. 3.1.3

(0; 4); (2; 4); (6; 0)g. The lattice generated by
P2

i=0Ai is Z2. The normals to the facets of Q
not containing vertex b01 = (1; 0) are v1 = (�1; 0), v2 = (0;�1), v3 = (�1;�1). Let � = (�1/30,
�1/30) be the global perturbation vector. See Figure 3.4.
In the 0 step of the recursion, b01 is lifted to 1, while all other vertices of all polygons

v1 Secondary Cell

Cell 4

Cell 5

{Primary cell

Cell 2

Cell 3

Cell 1

Figure 3.5: Example 3.2.2: 0-step (left) and 1-step of the recursion on secondary cell w.r.t. v1 (right) of
Alg. A

are lifted to 0. Then, the primary cell is subdivided using lifting �. The primary and sec-
ondary cells are shown in Figure 3.5, left, in white and grey color respectively (also in
Figure 3.8). To illustrate Lemma 3.2.1, consider cells 1,2 and 3 of the primary cell. They
can be written as

Cell 1: b01 + CH(c122; c143; c154) + b21, non-mixed.

Cell 2: b01 + (c122; c154) + (b21; b21), 1-mixed.

Cell 3: b01 + CH(c122; b11; c154) + b21, non-mixed.

Now, consider the recursion step of Alg. A at the secondary cell of step 0 with respect to
vector (1; 0) shown in Figure 3.5, right. In this cell the algorithm recurses on a segment
containing points (0; 4); (0; 5); (0; 6); (0; 7). This segment is partitioned into new primary
and secondary cells and the new primary cell is subdivided again using �. The cells are:
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Secondary cell: 29
30b03 + (b12; b13) + b23, 2-mixed.

Cell 4: 29
30(b02; b03) + b11 + b22, non-mixed.

Cell 5: 29
30b02 + b11 + (b22; b23), 1-mixed.

For details see Example 3.4.1.

Recursion Phase: When t = n � 1, the algorithm terminates, since it has reached the
Sylvester case. Otherwise, it recurses: let P (t+1) be the facet of P (t) supported by v. The
(perturbed) secondary cell corresponding to v is

Fv = l0P
(t+1) + � � �+ lt�1P

(t+1) + CH(btj ; ktP
(t+1))

+kt+1P
(t+1) + � � �+ knP

(t+1) + �t:
(3.5)

Its associated diameter is

dv = btj � v � min
p2CH(btj ;ktF )

fp � vg 2 N�;

where � stands for inner product. We define two sublattices of L(t): L(t)
+ is spanned byPn

i=t+1Ai \ kiP
(t+1) and L

(t)
v is the sublattice orthogonal to v. They have the same dimen-

sion, so we define the (finite) index indv = [L
(t)
v : L

(t)
+ ], equal to the quotient of the volumes

of their base cells. Let q range over the indv coset representatives for L(t)
+ in L

(t)
v .

Let lt 2 [0; kt] take dv distinct values corresponding to different values of p � v for all
p 2 (CH(btj ; ktP

(t+1))+�t)\L
(t). Note that ltP (t+1) is homothetic to ktP

(t+1). Let �0t 2 Q
n�t be

a translation vector such that ltP (t+1)+�0t contains at least one point in (CH(btj ; ktP
(t+1))+

�t) \ L
(t).

In particular, ltP (t+1)+ �0t equals ktP (t+1) if and only if lt = kt, and vertex btj if and only
if lt = 0, otherwise it equals (CH(btj ; ktP

(t+1))+ �t)\H, where H is a hyperplane parallel to
a supporting hyperplane of ktP (t+1); see [29, Lem.3.3]. By abuse of notation, in the rest
of this paper we shall denote H, and the supporting hyperplanes of faces ktP

(t+1) and btj

of the previous convex hull, as hltP (t+1)i.
Points in (Fv+�t)\L

(t) are partitioned into dv subsets (one per value of lt), called slices,
of the form

l0P
(t+1) + � � �+ lt�1P

(t+1) + (ltP
(t+1) + �0t) + kt+1P

(t+1) + � � �+ knP
(t+1) + �t \ L

(t); (3.6)

which can be rearranged as

l0P
(t+1) + � � �+ ltP

(t+1) + kt+1P
(t+1) + � � �+ knP

(t+1) + �� \ L
(t); (3.7)

where �� = �t + �0t. Moreover, �� can be decomposed as �v� + ��v, where �v� 2 Qv and

��v 2 L
(t)
+ 
Q. Now, every point in (3.7) corresponds to a point in

l0P
(t+1) + � � �+ ltP

(t+1) + kt+1P
(t+1) + � � �+ knP

(t+1) + ��v \ (q + L
(t)
+ );
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for some coset representative q. Set �t+1 := ��v � q, L(t+1) := L
(t)
+ , and observe that point p

belongs to (3.7) if and only if point

p0 := p� �v� � q (3.8)

belongs to

l0P
(t+1) + � � �+ ltP

(t+1) + kt+1P
(t+1) + � � �+ knP

(t+1) + �t+1 \ L
(t+1): (3.9)

We call this set a piece; �t+1 carries the information to define the piece from the input
polytopes and L(t+1). The algorithm recurses on each of the indv such pieces. The set

l0P
(t+1); : : : ; ltP

(t+1); kt+1P
(t+1); : : : ; knP

(t+1); �t+1

over L(t+1) is exactly like the original input, only one dimension lower. This completes the
algorithm.

Remark 3.2.3. Since every point p0 in a piece corresponds bijectively to a point p in a slice
via the monomial bijection (3.8), we shall often consider a piece as a subset of a slice and
omit the translation.

At the end of the recursion, RC is defined on E. Alg. A defines a partition of E in the
form of a collection of mixed subdivisions of primary cells (of decreasing dimension). The
edges of the cells of this partition, coming from polytope Qi, are defined by any point in Ai

or among the cijs, for all valid j; s, and may be multiplied by a rational number in (0; ki].
D’Andrea’s algorithm uses at every construction step the matrix construction algo-

rithm of [10], so its complexity is dominated by O(jEjn) linear programs, since every p 2 E

may require O(n) of them for its image under RC to be determined. Each linear program
has bit complexity O(n7:5m2B2), by Karmarkar’s algorithm, where m is the maximum
number of vertices of the Qi, and B is the bitsize of the input coordinates. This process
essentially decides in which slice of which secondary cell lies p. Although this subdivision
contains much more cells than Alg. B, the asymptotic analysis indicates that the latter
is competitive for large n; see the end of section 3.1 for comparing with Alg. A.

3.3 Equivalence of constructions

Intuitively, the single-lifting algorithm (Alg. B) has an overall effect very similar to that of
Alg. A, since they both use �. The former partitions E into sets of points in n-dimensional
cells and assigns RC, whereas Alg. A partitions E into subsets which, at step t, lie on
the intersection of a (n� t)-dimensional hyperplane with an n-dimensional cell of �. Note
that the intersection itself, as a subset of Rn�t, does not coincide with the cell of Alg. A.
However, their set difference is of infinitesimal volume and thus contains no lattice points.
Although both algorithms use � to subdivide their input polytopes, they do so in a distinct
fashion; Alg. B applies � to every Qi, whereas Alg. A does so recursively to a different set
of polytopes at every step.

In the rest of the chapter, for simplicity, we shall omit the translation vectors �t. More-
over, unless otherwise stated, we shall treat every slice and piece as a polytope and not
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as the set of points in the intersection of this polytope with an appropriate lattice. In
particular, we shall be interested only on the form of a slice or piece as a Minkowski sum
of polytopes. The existence of a translation vector, for this polytope to contain integer
points in the considered lattice, shall be implied.

We now establish the correspondence between the two algorithms for t = 0, then
generalize to t > 0. We introduce the notation pr:cell

(X)
i ; sec:cell

(X)
i , where i indicates the

recursion step of Alg. A and X 2 fA;Bg indicates the algorithm under consideration. At
step 0 of Alg. A, b01 is lifted to 1, while every other vertex of all input polytopes to 0; this
creates a primary cell

pr:cell
(A)
0 := b01 + k1Q+ � � �+ knQ;

and several secondary cells of the form

sec:cell
(A)
0 := CH(b01; k0P

(1)) + k1P
(1) + � � �+ knP

(1);

each corresponding to a facet P (1) of Q not containing b01. In Alg. B, c011 plays the role of
b01 and this leads to a group of cells covering the corresponding primary cell

pr:cell
(B)
0 := c011 + k1Q+ � � �+ knQ;

and several groups of cells, each group covering

sec:cell
(B)
0 := CH(c011; k0P

(1)) + k1P
(1) + � � �+ knP

(1);

which is a typical n-dimensional secondary cell with respect to Alg. B. Not all cells in
sec:cell

(B)
0 may have kiP

(1) as a summand. Those who do not, have a summand where
some or all of the vertices of kiP (1) are replaced by the corresponding additional points
cijs from Definition 3.1.2.

Remark 3.3.1. All cells within pr:cell
(A)
0 and pr:cell

(B)
0 differ only at their first summand;

the former are of the form b01 + F1 + � � � + Fn, whereas the latter are c011 + F1 + � � � + Fn,
where Fi is a face of Qi, since � is used by both algorithms to subdivide Q1+ � � �+Qn, and
c011 = b01 + �011.

Lemma 3.3.2. pr:cell(A)
0 \ E = pr:cell

(B)
0 \ E, and points in this set are assigned the same

RC under both algorithms.

Proof. Recall that �0 = � and consider the subdivision of
Pn

i=0Qi induced by � and com-
pare pr:cell(A)

0 + � and c011+Q1+ � � �+Qn+ � = b01+ �011+Q1+ � � �+Qn+ �. These polytopes
differ by �011, which is very small. Moreover, by the choice of �, the boundary of pr:cell(A)

0 +�

has no points in Z. Since, by Definition 3.1.1, k�k � k�011k, the two polytopes contain the
same Z-points. This settles the first claim. The second claim follows from Remark 3.3.1
and the fact that the two subdivisions may only differ in cells having vertex b01 instead of
c011. Since c011� b01 = �011 is very small compared to Z, even these cells contain the same
Z-points.

Example 3.3.3 (Running example (cont’d)). Let us return to our running example. It
holds that pr:cell(A)

0 \ E = pr:cell
(B)
0 \ E. Now, consider points (8; 1); (7; 2) and (4; 4), see

Figures 3.9 and 3.10. They belong to cells of pr:cell(A)
0 and pr:cell

(B)
0 as in the following

table:
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point cell in pr:cell
(A)
0 cell in pr:cell

(B)
0 type RC

(8; 1) b01 + c154 + CH(b22; b24; b25) c011 + c154 + CH(b22; b24; b25) non-mixed (1; 5)

(7; 2) b01 + (c143; c154) + (b23; b24) c011 + (c143; c154) + (b23; b24) 0-mixed (0; 1)

(4; 4) b01 + (c143; c154) + (b22; b23) c011 + (c143; c154) + (b22; b23) 0-mixed (0; 1)

Note that, for simplicity, we have omitted the global perturbation vector �.

Each sec:cell
(A)
0 is divided by Alg. A into slices

l0P
(1) + k1P

(1) + � � �+ knP
(1);

one for each value of l0 2 [0; k0]. Each slice is partitioned into pieces on which Alg. A
recurses producing (n� 1)-dimensional primary cell

pr:cell
(A)
1 := l0P

(1) + b1j + k2P
(1) + � � �+ knP

(1); (3.10)

and secondary cells

sec:cell
(A)
1 := l0P

(2) + CH(b1j ; k1P
(2)) + k2P

(2) + � � �+ knP
(2): (3.11)

Every piece of a given slice lies on lattice L(1) and can be thought of as the intersection of
a translation of that slice, regarded as a polytope, with L(1). Recall that, by Remark 3.2.3,
we shall consider a piece as subset of a slice.

Similarly to Alg. A, we can partition the corresponding sec:cell
(B)
0 into slices:

l00P
(1) + k1P

(1) + � � �+ knP
(1);

by intersecting CH(c011; k0P
(1)) with a hyperplane parallel to (a supporting hyperplane of)

k0P
(1). Recall that we denote this hyperplane as hl00P

(1)i.

Remark 3.3.4. Observe that each slice of sec:cell(B)
0 (resp. sec:cell(A)

0 ) parameterized by
l00 (resp. l0), is homothetic to a facet of this secondary cell, supported by hk00P

(1)i (resp.
hk0P

(1)i). Moreover, this homothecy is defined by a homothecy only on the first summand
k0P

(1) of this facet.

Example 3.3.5 (Running example (cont’d)). To illustrate Remark 3.3.4, consider in our
running example the secondary cell with respect to Alg. A

Fv3 = CH(b01; k0Fv3) + k1Fv3 + k2Fv3 + �;

defined by the facet Fv3 = ((3; 0); (1; 2)) of Q supported by v3 = (�1;�1), and its slice

(l0Fv3 + �0) + k1Fv3 + k2Fv3 + �; (3.12)

where l0 = 32
60 and �0 = ( 7

15 ; 0). This slice contains the integer points (11; 0); (10; 1), (9; 2),
(8; 3); (7; 4), (6; 5); (5; 6); (4; 7) and is the dashed segment in Figure 3.6. It is homothetic to
the facet

k0Fv3 + k1Fv3 + k2Fv3 + � (3.13)
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of Fv3 and the homothecy is defined by the homothecy l0Fv3 + �0 of the 0-summand k0Fv3
of the facet, see Figure 3.6. The second slice of Fv3 is�

1

30
Fv3 + (

29

30
; 0)

�
+ k1Fv3 + k2Fv3 + � (3.14)

and contains integer points (10; 0); (9; 1); (8; 2); (7; 3); (6; 4); (5; 5); (4; 6). It is homothetic to
the facet (3.13) of Fv3 and the homothecy is defined by the homothecy 1

30Fv3 + (2930 ; 0) of
the 0-summand k0Fv3 of the facet, see Figure 3.6 (dotted segment).

v3

+ +Fv3 =

Figure 3.6: Example 3.3.5: The secondary cell w.r.t. (�1;�1) of the 0-step of Alg. A and its two slices

Hyperplanes hl00P
(1)i and hl0P

(1)i are identical; they differ only on the homothecy on
k0P

(1) expressed by l00 and l0 respectively. Obviously, l00 � l0 because c011 � b01. Note that
we omit the translation vector so that the slice lies in sec:cell

(B)
0 . Thus, corresponding

slices contain the same points in the lattice L(0) = Z. This, moreover, leads to the following
extension of Lemma 3.3.2.

Lemma 3.3.6. Every maximal cell of the subdivision induced by � on pr:cell(A)
1 corresponds

to the intersection of a unique maximal cell of the same type in sec:cell
(B)
0 , with a slice

defined by hyperplane hl00P
(1)i, for some l00. The cells contain the same points in L(1), with

the same image under RC.

Proof. Any maximal cell in pr:cell
(A)
1 has the form l0F0+ b1j +k2F2+ � � �+knFn, where faces

Fi � P (1); i = 0; 2; : : : ; n, have dimensions adding up to n� 1. Recall pr:cell(A)
1 lies on a slice

of sec:cell(A)
0 parameterized by the value of l0 hence, when � is employed, it gives rise to

the same subdivision in every such primary cell. By construction, subspace hb01; F0i is
orthogonal and complementary to hP (1)i.

In k1P
(1), point c1js is lifted sufficiently higher than any other, so there exist maximal

cells in sec:cell
(B)
0 that has it as summand. The other summands are induced by � on

CH(c011; k0P
(1)), k2P (1); : : : , knP (1). These n-dimensional cells of Alg. B correspond, when

intersected with the slice parameterized by hl00P
(1)i, to (n�1)-dimensional cells in pr:cell

(A)
1 .

It is straightforward to show that, for l00 2 [0; k0] and any �-induced cell in this Minkowski
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sum, its intersection with the slice defined by hl00P
(1)i is a �-induced cell in l00P

(1)+k2P
(1)+

� � �+ knP
(1)

There exists l00 � l0 that establishes the Lemma, because � is applied to (n � 1)-
dimensional Minkowski sums which are almost identical, and the effect of b1j and c1js is
the same in what concerns the lattice points in corresponding cells, following the proof
of Lemma 3.3.2.

L(1) := L+

piece0

σ2

σ1

L(1) := L+

piece1

σ′2

σ′1

sec.cell
(B)
0 sec.cell

(B)
0

Figure 3.7: Example 3.3.7: The two pieces of the secondary cell w.r.t. (�1;�1) of Alg. A and the corre-
spondence between their cells and the cells of the similar secondary cell w.r.t. Alg. B

Example 3.3.7 (Running example (cont’d)). We shall return to our running example to
illustrate Lemma 3.3.6. Consider the slice

(l0Fv3 + �0) + k1Fv3 + k2Fv3 + � (3.15)

of the secondary cell with respect to Alg. A

sec:cell
(A)
0 = CH(b01; k0Fv3) + k1Fv3 + k2Fv3 + �;

where l0 = 32
60 ; �

0 = ( 7
15 ; 0); � = (� 1

30 ;�
1
30), see also equation (3.27). This slice is obtained

by intersecting CH(b01; b04; b05) with the hyperplane hl0Fv3i := h3260Fv3+( 7
15 ; 0)i; and contains

integer points (11; 0); (10; 1); (9; 2); (8; 3); (7; 4); (6; 5), (5; 6), (4; 7) in L. The corresponding slice
of sec:cell(B)

0 is obtained by intersecting CH(c011, b04; b05) with the hyperplane hl00Fv3i :=

h 639
1199Fv3 + (12742725 ;

28
89925)i; see Figure 3.6 (dotted segment). It contains the same points in L.

Slice (3.15) of sec:cell(A)
0 contains two pieces in L(1) := L+ = h(9; 0); (7; 2)i �= 2Z:

piece0 :=
32

60
Fv3 + k1Fv3 + k2Fv3 + (�

17

30
;�

31

30
); (3.16)

piece1 :=
32

60
Fv3 + k1Fv3 + k2Fv3 + (

13

30
;�

61

30
): (3.17)

Piece (3.16) is partitioned into a primary cell 32
60Fv3 + b15 + k2Fv3 + (�17

30 ;�
31
30) and a

secondary cell 32
60b04 + k1Fv3 + b24 + (�17

30 ;�
31
30): Then, lifting � induces a mixed subdivision
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on the primary cell consisting of the cells

�1 =
32

60
Fv3 + b15 + b25 + (�

17

30
;�

31

30
) and �2 =

32

60
b04 + b15 + k2Fv3 + (�

17

30
;�

31

30
):

Cell �1 is non-mixed and contains point (9; 0) 2 L+, which translates to point (10; 1) 2 L.
This cell corresponds to the intersection of the slice of sec:cell(B)

0 , defined by hyperplane
hl00Fv3i, with its non-mixed cell CH(c011; b04; b05)+c15+b25+�: Cell �2 is 1-mixed and contains
the point (7; 2) 2 L+ which translates to the point (8; 3) 2 L. This cell corresponds to the
intersection of the slice of sec:cell(B)

0 , defined by hyperplane hl00Fv3i, with the 1-mixed cell
with respect to Alg. B (c011; b04) + c154 + (b24 + b25) + �; see Figure 3.7,(left).

The second piece (3.17) is partitioned into a primary cell 32
60Fv3 + b15 + k2Fv3 + (1360 ;�

61
30)

and a secondary cell 32
60b04 + k1Fv3 + b24 + (1360 ;�

61
30): Lifting � induces a mixed subdivision

on the primary cell consisting of the cells

�01 =
32

60
Fv3 + b15 + b25 + (

13

60
;�

61

30
) and �02 =

32

60
b04 + b15 + k2Fv3 + (

13

60
;�

61

30
):

The former is non-mixed and contains point (11;�2) 2 L+ corresponding to (11; 0) 2 L.
It corresponds to the intersection of the slice cell of sec:cell(B)

0 , defined by hyperplane
hl00Fv3i, with its non-mixed cell CH(c011; b04; b05) + c154 + b25 + �: Cell �02 is 1-mixed and
contains the integer point (9; 0) 2 L+ corresponding to point (9; 2) 2 L. It corresponds to
the intersection of the slice defined by hyperplane hl00Fv3iwith the 1-mixed cell of sec:cell(B)

0

(c011; b04) + c154 + (b24 + b25) + �; see Figure 3.7, (right).

In each sec:cell
(B)
0 we distinguish 2 types of cells: cells in

pr:cell
(B)
1 := CH(c011; k0P

(1)) + c1js + k2P
(1) + � � �+ knP

(1); (3.18)

which, by Lemma 3.3.6, contains exactly the integer points in all primary cells of Alg. A
of the form (3.10) (for each slice/coset), and for each facet P (2) of P (1), cells in

sec:cell
(B)
1 := CH(c011; k0P

(2)) + CH(c1js; k1P
(2)) + k2P

(2) + � � �+ knP
(2): (3.19)

Note that both pr:cell
(B)
1 and sec:cell

(B)
1 are n-dimensional, whereas pr:cell(A)

1 and sec:cell
(A)
1

are (n� 1)-dimensional.

Remark 3.3.8. Every maximal cell in sec:cell
(B)
1 must have summands F0 = CH(c011; G0),

F1 = CH(c1js; G1), for some G0 � k0P
(2) and G1 � k1P

(2).

A similar argument as in Lemma 3.3.6, implies that (3.19) contains exactly the integer
points in the union of all secondary cells (3.11) defined over the various values of l0 2
[0; k0], for a given j. The recursion steps of Alg. A, for t � 2 are defined over a chain of
facets P (2) � P (3) � � � � � P (n�1). Hence, every pr:cell

(A)
t , for t > 1, contains integer points

in sec:cell
(B)
1 \Z. Therefore, we generalize the correspondence between the two algorithms

by focusing on sec:cell
(B)
1 .

Lemma 3.3.9. (Main) Every maximal cell of the subdivision induced by � on pr:cell
(A)
t ,

for t � 2, corresponds to the intersection of hyperplane hl0t�1P
(t)i, for some l0t�1 � lt�1 2

[0; kt�1]\Q, with a unique maximal cell in sec:cell
(B)
1 , of the same type. The cells contain the

same points in lattice L(t) with the same image under RC.
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Proof. Primary cells of step t lie on (n� t)-dimensional slices of the (n� t+1)-dimensional
sec:cell

(A)
t�1, parameterized by the value of lt�1 2 [0; kt�1]:

l0P
(t) + � � �+ lt�1P

(t) + ktP
(t) + � � �+ knP

(t): (3.20)

Similarly to Remark 3.3.4, let l0; : : : ; lt�1; li 2 [0; ki]\Q, define the homothecies on the first
t summands of (3.20) and the corresponding hyperplanes hl0P (t)i; : : : ; hlt�1P

(t)i. Note, that
pr:cell

(A)
t is a subset of (3.20) and is subdivided by � into maximal cells of the form (3.3).

Intersecting sec:cell(B)
1 with the above hyperplanes, yields a (n�t)-dimensional subset:

l00P
(t) + � � �+ l0t�1P

(t) + ktP
(t) + � � �+ knP

(t): (3.21)

This subset can also be obtained by directly intersecting sec:cell
(B)
1 with hlt�1P

(t)i. Now,
l0i � li, for i = 0; 1; : : : ; t�1 because cijs � bij. For i = 0; : : : ; t�1, each l0i defines a hyperplane
hl0iP

(t)i identical to hliP (t)i, except on the homothecy on the i-th summand. Hence, (3.21)
is very similar to (3.20) in the sense that they contain the same integer points in L(t) and
their volumes differ infinitesimally.

By Definition 3.1.2 there exist n-dimensional cells in sec:cell
(B)
1 which have ctjs as a

summand. The intersection of each of these cells with (3.21) shall also have ctjs as a
summand, because this is the only point lifted highest in P (t). These cells correspond to
the primary cell with respect to Alg. A of the slice (3.20). Moreover, this intersection is a
�-induced cell in (3.21):

l00F0 + � � �+ l0t�1Ft�1 + ctjs + kt+1Ft+1 + � � �+ knFn; (3.22)

which contains the same integer points as (3.3). Since � is applied on (n� t)-dimensional
polytopes which are almost identical, both (3.3) and (3.22) are of the same type.

Corollary 3.3.10. Using the notation of Lemma 3.2.1, in particular for t-mixed cells of
Alg. A in the form of (3.4), a t-mixed cell of Alg. B is of the form:

k0E0 + � � �+ kt�1Et�1 + ctjs + kt+1Et+1 + � � �+ knEn + �t \ L;

where Ei is the projection of an edge of Q�,

(a) hE0; : : : ; Et�1i is a t-dimensional space complementary to hP (t)i, and for i < t; kiEi =

(cijs; kipi), where pi 2 P (i) in Lemma 3.2.1, and

(b) edges Et+1; : : : ; En are the same as in (3.4) at Lemma 3.2.1.

Proof. For t = 0, the Corollary follows from Remark 3.3.1.
All 1-mixed cells with respect to Alg. B lie in (3.18), since every maximal cell in it has

c1js as a summand. By Lemma 3.3.6, edges k2E2; : : : ; knEn span the (n � 1)-dimensional
space hP (1)i. Hence, edge k0E0 has to be of the form (c011; k0p0), where p0 2 P (1), by
Lemma 3.3.6, is as in Lemma 3.2.1,(3.4).

Similarly, Lemma 3.3.9 implies that for t > 1, the last (n � t) edges of any t-mixed
cell with respect to Alg. B span the (n � t)-dimensional space hP (t)i, because � induces
the same subdivision on the last n� t summands of (3.20) and (3.21). For the cell to be
maximal, hk0E0; : : : ; kt�1Et�1i must be a t-dimensional space complementary to hP (t)i. By
construction (see proof of Lemma 3.3.9), each kiEi, for i < t, is an edge in CH(cijs; kiP

(t))

of the form (cijs; kipi), where pi 2 P (t) is as in Lemma 3.2.1,(3.4).
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We now consider non-mixed cells, by extending Corollary 3.3.10:

Corollary 3.3.11. Consider any non-mixed cell of Alg. A, which has the form of (3.3) in
Lemma 3.2.1. It corresponds to cell:

CH(c011; k0F0) + � � �+ CH(c(t�1)js; kt�1Ft�1) + ctjs + kt+1Ft+1 + � � �+ knFn;

which is a non-mixed cell defined by �, where

(a) the F0; : : : ; Ft�1 are projections of faces in Q�; for i < t, and

hCH(c011; k0F0); : : : ;CH(c(t�1)js; kt�1Ft�1)i

is a t-dimensional space complementary to hFt+1; : : : ; Fni,

(b) F0; : : : ; Ft�1; Ft+1; : : : ; Fn are the same in both cells.

For an illustration of Corollaries 3.3.10, 3.3.11 see Table 3.1 in our running Exam-
ple 3.4.1. We have shown that each row of the constructed matrices, indexed by points
of E lying in a mixed or non-mixed cell, is identical for both algorithms, where E is the
same pointset for both algorithms.

Theorem 3.3.12. The Macaulay-type formula for the sparse resultant of generalized un-
mixed systems constructed by Alg. B and that constructed by Alg. A, implementing D’Andrea’s
approach [29], are identical.

Proof. We have shown that pointset E indexing the matrices is the same for both algo-
rithms. Moreover, the previous lemmas and corollaries imply that each row of the con-
structed matrices, indexed by points of E lying in a mixed or non-mixed cell, is identical
for both algorithms.

As a consequence of Theorem 3.3.12 and [29, Thm. 3.8], follows Theorem 3.0.6.

3.4 A bivariate example

This section details the running example.

b01

c011
c122

c143

c154

b02

b03 b04

b05
b11

b21

Q0 Q1 Q2

Figure 3.8: Input polygons of Exam. 3.4.1 and their subdivisions induced by the lifting of Def. 3.1.3
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Example 3.4.1. Let n = 2, Q be the pentagon with vertices f(1; 0); (0; 1); (0; 2); (1; 2), (3; 0)g,
k0 = k2 = 1, k1 = 2. The input polygons are Qi = kiQ; i = 0; 1; 2 and the input supports
are A0 = A2 = f(1; 0); (0; 1); (0; 2); (1; 2), (3; 0)g, and A1 = f(2; 0); (0; 2), (0; 4); (2; 4); (6; 0)g. The
lattice generated by

P2
i=0Ai is Z2. The normals to the facets of Q not containing vertex

(1; 0) are v1 = (�1; 0), v2 = (0;�1), v3 = (�1;�1). Let � = (�1/30, �1/30) be the global
perturbation vector. See Figure 3.4.

v2

v3
v1

Figure 3.9: Exam. 3.4.1: 0-step recursion of
Alg. A

v2

v3
v1

Figure 3.10: Exam. 3.4.1: The mixed subdivision
induced by Alg. B

Alg. B: We fix vertices of the input polygons in order to define the additional points
required by Definition 3.1.3. Let b01 := (1; 0) 2 Q0, b12 := (0; 2); b14 := (2; 4), b15 := (6; 0) 2

Q1, and perturbation vectors �011 = ( 1
1000 ;

1
1500), �122 = (0; 1

2000), �143 = (� 1
3000 ; 0), �154 =

(� 1
2000 ;

1
2000), see Figure 3.8. In the subdivision of

P2
i=0Qi, consider the integer points and

their cells (Figure 3.10):

point cell in secondary cell w.r.t. v2 under Alg. B type
(1; 7); (2; 7) (c011; (0; 2)) + ((0; 4); c143) + (0; 2) + � 2-mixed
(3; 7) (c011; (0; 2)) + c143 + ((0; 2); (1; 2)) + � 1-mixed

where summands come from Q0; Q1, Q2 respectively. These cells together with cell

� = CH(c011; (0; 2); (1; 2)) + c143 + (1; 2) + �;

and some infinitesimal cells which do not contain any integer points, correspond to the
secondary cell with respect to v2 of Alg. A, which contains the same integer points. Points
(1; 7); (2; 7), (3; 7) correspond (via an appropriate translation) to points of a piece of the sec-
ondary cell on which Alg. A recurses. Cell � does not contain any integer points because
of the choice of �ijs, �.

Now, consider the points corresponding to a piece of the secondary cell with respect
to v3, of Alg. A, and their cells in the subdivision induced by � under Alg. B:

point cell in secondary cell w.r.t. v3 under Alg. B type
(4; 7); (5; 6), (c011; (1; 2)) + (c154; c143) + (1; 2) + � 2-mixed
(6; 5), (7; 4)
(8; 3); (9; 2) (c011; (1; 2)) + c154 + ((3; 0); (1; 2)) + � 1-mixed
(10; 1); (11; 0) CH(c011; (3; 0); (1; 2)) + c154 + (3; 0) + � non-mixed
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Consider the piece of the secondary cell with respect to v1, of Alg. A. Points in it lie in
the following cells of Alg. B:

point cell in secondary cell w.r.t. v1 under Alg. B type
(0; 4) (c011; (0; 1)) + c122 + ((0; 1); (0; 2)) + � 1-mixed
(0; 5) CH(c011; (0; 1); (0; 2)) + c122 + (0; 2) + � non-mixed
(0; 6); (0; 7) (c011; (0; 3)) + (c122; (0; 4)) + (0; 2) + � 2-mixed

Alg. A: b01 is lifted to 1, all other vertices of all polygons are lifted to 0. This partitions
Q0+Q1+Q2 into a primary cell b01+Q1+Q2 and 3 secondary cells corresponding to v1; v2;

v3, normals to the facets of Q0 not containing b01. The Q1; Q2 are lifted using �, which
subdivides the primary cell (Figure 3.9). This subdivision “coincides” with the restriction
in c01+Q1+Q2 of the subdivision by �, except that the latter uses c011 whereas the former
uses b01, i.e. the integer points in both subdivisions are the same and are assigned the
same RC.

� We study the Recursion Phase on secondary cell:

Fv1 = CH(b01; k0Fv1) + k1Fv1 + k2Fv1 ;

defined by facet Fv1 = ((0; 1); (0; 2)) � Q supported by v1, see Figure 3.11. Now,

A1v1 = f(0; 2); (0; 4)g; A2v1 = f(0; 1); (0; 2)g;

and the lattice generated by A1v1 + A2v1 is L+ := h(0; 3); (0; 4)i �= Lv1
�= Z: The index of L+

in Lv1 is indv1 = 1 and the coset representative for L+ in Lv1 is q0 = (0; 0). The v1-lattice
diameter is

dv1 := b01 � v1 � min
p2CH(b01;k0Fv1 )

p � v1 = 1:

Hence, there is one slice corresponding to one piece. We describe the recursion step on

Secondary Cell: 2-mixed

non-mixed

1-mixed

{Primary cell

2-mixed

non-mixed

1-mixed

Figure 3.11: Example 3.4.1: The piece of the secondary cell Fv1 w.r.t. vector v1 = (1; 0) and its mixed
subdivision (left). Also drawn is the corresponding secondary cell and its mixed subdivision w.r.t Alg. B
(right)
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this piece. It contains points corresponding to (0; 4); (0; 5), (0; 6), (0; 7) lying on the slice of
Fv1 + � of the form

(�̃k0Fv1 + �0) + k1Fv1 + k2Fv1 + �Fv1 + �:

To define the piece, following notation in [29], the scalar multiple of Fv1 is �̃Fv1 = 29
30Fv1 and

the translation vector is �0 := ( 1
30 ; 0). Since we do not use an initial additional polytope,

� = 0 and �v1 := �+ �̃ = 29
30 .

Let �� := � + �0 = (0;� 1
30), and �� = �v1� + ��v1, where �v1� = (0; 0) 2 Qv1 and ��v1 =

(0;� 1
30) 2 L+ 
Q, hence �0v1 := ��v1 � q0 = (0;� 1

30). So, the slice of Fv1 + � is

k1Fv1 + k2Fv1 + �v1k0Fv1 + ��; (3.23)

and the corresponding piece in L+ is

k1Fv1 + k2Fv1 + �v1k0Fv1 + �0v1 : (3.24)

The bijection between points in (3.23) and (3.24) is

p = p̄+ �v1� + q0 = p̄;

where p 2 (3:23) and p̄ 2 (3:24). After re-indexing, the input of the recursion step is:
- the polygons Q0 := k1Fv1 ; Q1 := k2Fv1, and Q2 :=

29
30k0Fv1 which is the additional polytope,

- the lattice L(1) := L+ = h(0; 3); (0; 4)i and
- the perturbation vector �0 := �0v1 = (0;� 1

30).
In order to be compatible with �, we choose b01 = b12 = (0; 2) and apply the primary

lifting. This partitions Q0 +Q1 +Q2 + �0 into a primary b01 +Q1 +Q2 + �0 and a secondary
cell Q0 + (0; 2) + 29

30(0; 2) + �0. Lifting � induces a mixed subdivision on the primary cell
consisting of the cells b01 + (0; 1) +Q2 + �0 and b01 +Q1 +

29
30(0; 1) + �0. The former is non-

mixed and contains point (0; 5), corresponding to the same point on the slice, which is
also non-mixed under Alg. B. The latter cell is 0-mixed, hence 1-mixed and contains point
(0; 4), corresponding to the same point on the slice, which is also 1-mixed under Alg. B.
The secondary cell Q0 + (0; 2) + 29

30(0; 2) + �0 is 1-mixed, hence 2-mixed and contains the
integer points (0; 6); (0; 7) corresponding to the same points on the slice. They are also
2-mixed under Alg. B.

� We apply recursion on secondary cell:

Fv2 = CH(b01; k0Fv2) + k1Fv2 + k2Fv2 ;

defined by the facet Fv2 = ((0; 2); (1; 2)) of Q supported by v2, see Figure 3.11. Now,

A1v2 = f(0; 4); (2; 4)g; A2v2 = f(0; 2); (1; 2)g

and the lattice generated by A1v2 + A2v2 is L+ := h(0; 6); (1; 6)i �= Lv2
�= Z: The index of L+

in Lv2 is indv2 = 1 and the coset representative for L+ in Lv2 is q0 = (0; 0). The v2-lattice
diameter is

dv2 := b01 � v2 � min
p2CH(b01;k0Fv2 )

p � v2 = 2:

Hence, there are two slices, each containing one piece, and the algorithm recurses on
each such piece.
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We analyze the recursion step on the piece of the shifted secondary cell Fv2 + �, which
contains the integer points corresponding to the points (1; 7); (2; 7); (3; 7) lying on a slice
of the shifted secondary cell Fv2 + � of the form

(�̃k0Fv2 + �0) + k1Fv2 + k2Fv2 + �Fv2 + �:

L+

slice

piece

Secondary cell

non-mixed

1-mixed

2-mixed

1-mixed 2-mixed︸ ︷︷ ︸
primary cell

Figure 3.12: Example 3.4.1: A slice of the secondary cell Fv2 w.r.t. vector v2 = (0;�1) containing points
(1; 7); (2; 7); (3; 7) (dotted segment, left subfigure), the corresponding piece and its mixed subdivision
w.r.t. Alg. A. The arrows show the correspondence between points on the slice and points on the piece.
Also depicted is the mixed subdivision of the corresponding secondary cell w.r.t. Alg. B (right subfigure)

To define this piece we have that Fv2 is �̃Fv2 = 31
60Fv2 and the translation vector �0 :=

(2960 ; 0). Now � = 0 and hence �v2 := � + �̃ = 31
60 . Let �� := � + �0 = ( 9

29 ;�
1
30). Then, �� can

be written as �� = �v2� + ��v2, where �v2� = (0; 1) 2 Qv2 and ��v2 = ( 9
20 ;�

31
30) 2 L+ 
Q, hence

�0v2 := ��v2 � q0 = ( 9
20 ;�

31
30).

So, the slice of Fv2 + � is

k1Fv2 + k2Fv2 + �v2k0Fv2 + ��; (3.25)

and the corresponding piece in L+ is

k1Fv2 + k2Fv2 + �v2k0Fv2 + �0v2 : (3.26)

The bijection between points in (3.25) and points in (3.26) is

p = p̄+ �v2� + q = p̄+ (0; 1);

where p 2 (3:25) and p̄ 2 (3:26).
After re-indexing, the input of the recursion step is:

- the polygons Q0 := k1Fv2 ; Q1 := k2Fv2, and Q2 :=
31
60k0Fv2 which is the additional polytope,

- the lattice L(1) := L+ = h(0; 6); (1; 6)i and
- the perturbation vector �̄ := �0v2 = ( 9

20 ;�
31
30).

To be compatible with �, we choose b01 = b14 = (2; 4) and apply the primary lifting;
this partitions the Minkowski sum Q0 +Q1 +Q2 + �̄ into a primary b01 +Q1 +Q2 + �̄ and
a secondary cell Q0 + (0; 2) + 31

60(0; 2) + �̄ . Lifting � induces a mixed subdivision of the
primary cell consisting of the cells b01+(1; 2)+Q2+ �̄ and b01+Q1+

31
60(0; 2)+ �̄. The latter is

0-mixed, hence 1-mixed and contains the integer point (3; 6) corresponding to point (3; 7)
on the slice which is also 1-mixed under Alg. B. The former is non-mixed and does not
contain any integer points.
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The secondary cell Q0 +(0; 2)+ 31
60(0; 2)+ �̄ is 1-mixed, hence 2-mixed and contains the

integer points (1; 6); (2; 6) corresponding to the points (1; 7); (2; 7) of the slice respectively;
they are also 2-mixed under Alg. B.

� The last secondary cell is

Fv3 = CH(b01; k0Fv3) + k1Fv3 + k2Fv3 ;

defined by the facet Fv3 = ((3; 0); (1; 2)) of Q supported by v3 = (�1;�1), see Figure 3.7 and
Example 3.3.7. Now,

A1v3 = f(6; 0); (2; 4)g; A2v3 = f(3; 0); (1; 2)g;

the lattice generated by A1v3 + A2v3 is L+ := h(9; 0); (7; 2)i �= 2Z and Lv3
�= Z. The index

of L+ in Lv3 is indv3 = 2 and the cosets representatives for L+ in Lv3 are q0 = (0; 0) and
q1 = (�1; 1). The v3-lattice diameter is

dv3 := b01 � v3 � min
p2CH(b01;k0Fv3 )

p � v3 = 2:

Hence there are two slices, each corresponding to two pieces, and the algorithm recurses
on each such piece.

We analyze the recursion step on the two pieces that contain integer points corre-
sponding to points (11; 0); (10; 1); (9; 2), (8; 3); (7; 4), (6; 5); (5; 6), (4; 7) lying on a slice of the
shifted secondary cell Fv3 + � of the form

(�̃k0Fv3 + �0) + k1Fv3 + k2Fv3 + �Fv3 + �:

To define these pieces, we have that the scalar multiple of Fv3 is �̃Fv3 = 32
60Fv3 and the

translation vector is �0 := ( 7
15 ; 0). Now, � = 0 and hence �v3 := �+ �̃ = 32

60 ; Let �� := � + �0 =

(1330 ;�
1
30).

Then, �� can be written as �� = �v3� +��v3, where �v3� = (1; 1) 2 Qv3 and ��v3 = (�17
30 ;�

31
30) 2

L+ 
Q, hence �0v3 := ��v3 � q0 = (�17
30 ;�

31
30) and �1v3 := ��v3 � q1 = (1330 ;�

61
30).

So, the slice of Fv3 + � is

k1Fv3 + k2Fv3 + �v3k0Fv3 + ��; (3.27)

and the corresponding pieces in L+ are

k1Fv3 + k2Fv3 + �v3k0Fv3 + �0v3 ; (3.28)

k1Fv3 + k2Fv3 + �v3k0Fv3 + �1v3 ; (3.29)

The correspondences between points in the slice and points in the pieces are

p = p̄+ �v3� + q0 = p̄+ (1; 1);

where p 2 (3:27) and p̄ 2 (3:28), and

p = p̄+ �v3� + q1 = p̄+ (0; 2);
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where p 2 (3:27) and p̄ 2 (3:29).
After re-indexing, the input of the recursion step is:

- the polygons Q0 := k1Fv3 ; Q1 := k2Fv3, and Q2 :=
32
60k0Fv3 which is the additional polytope,

- the lattice L(1) := L+ = h(9; 0); (7; 2)i and
- the perturbation vectors �0 := �0v3 = (�17

30 ;�
31
30) and �1 := �1v3 = (1360 ;�

61
30).

As � indicates, we choose b01 = b15 = (6; 0) and apply the primary lifting.
For the first piece, the lifting partitions the Minkowski sum Q0 + Q1 + Q2 + �0 into a

primary b01 +Q1 +Q2 + �0 and a secondary cell Q0 + (1; 2) + 32
60(1; 2) + �0. Lifting � induces

a mixed subdivision on the primary cell consisting of the cells b01 + (3; 0) + Q2 + �0 and
b01+Q1+

32
60(1; 2)+�0. The former is non-mixed and contains point (9; 0), which corresponds

to (10; 1) on the slice which is also non-mixed under Alg. B. The latter is 0-mixed, hence
1-mixed and contains the point (7; 2) corresponding to the point (8; 3) in the slice which
is also 1-mixed under Alg. B.

The secondary cell Q0+(1; 2)+ 32
60(1; 2)+ �0 is 1-mixed, hence 2-mixed and contains the

integer points (3; 6); (5; 4) corresponding to the points (4; 7); (6; 5) of the slice respectively
which are also 2-mixed under Alg. B.

For the second piece, the lifting partitions the Minkowski sum Q0+Q1+Q2+ �1 into a
primary b01 +Q1 +Q2 + �1 and a secondary cell Q0 + (1; 2) + 32

60(1; 2) + �1. Lifting � induces
a mixed subdivision on the primary cell consisting of the cells b01 + (3; 0) + Q2 + �1 and
b01+Q1+

32
60(1; 2)+ �1. The former is non-mixed and contains point (11;�2) corresponding

to (11; 0) on the slice which is also non-mixed under Alg. B, whereas the latter cell is
0-mixed, hence 1-mixed and contains the integer point (9; 0) corresponding to point (9; 2)
on the slice which is also 1-mixed under Alg. B.

The secondary cell Q0+(1; 2)+ 32
60(1; 2)+ �1 is 1-mixed, hence 2-mixed and contains the

integer points (7; 2); (5; 4) corresponding to the points (7; 4); (5; 6) of the slice respectively.
These are also 2-mixed under Alg. B.

The second slice of Fv3 + � is
�

1
30Fv3 + (2930 ; 0)

�
+ k1Fv3 + k2Fv3 + (� 1

30 ;�
1
30), and contains

integer points (10; 0); (9; 1); (8; 2); (7; 3); (6; 4); (5; 5); (4; 6).
Table 3.1 illustrates corollaries 3.3.10 and 3.3.11, where the summands come from

Q0; Q1 and Q2 respectively. Recall that c011 := (1; 0) + �011; c143 := (2; 4) + �143 and c154 :=

(6; 0) + �154.

Table 3.1: Illustration of Cor. 3.3.10 and Cor. 3.3.11 for Example 3.4.1

Cell w.r.t. Alg. A Corresponding cell w.r.t. Alg. B Type of cell
�̃(1; 2) + (6; 0) + ((3; 0); (1; 2)) + �0v3 (c011; (1; 2)) + c154 + ((3; 0); (1; 2)) + � 1-mixed
�̃((3; 0); (1; 2)) + (6; 0) + (3; 0) + �0v3 CH(c011; (1; 2); (3; 0)) + c154 + (3; 0) + � non-mixed
�̃(1; 2) + (6; 0) + ((3; 0); (1; 2)) + �1v3 (c011; (1; 2)) + c154 + ((3; 0); (1; 2)) + � 1-mixed
�̃((3; 0); (1; 2)) + (6; 0) + (3; 0) + �1v3 CH(c011; (1; 2); (3; 0)) + c154 + (3; 0) + � non-mixed
�̃(0; 2) + (2; 4) + ((0; 2); (1; 2)) + �0v2 (c011; (0; 2)) + c143 + ((0; 2); (1; 2)) + � 1-mixed
�̃((0; 2); (1; 2)) + (2; 4) + (1; 2) + �0v2 CH(c011; (1; 2); (0; 2)) + c143 + (1; 2) + � non-mixed

3.5 Conclusion and Further work

Let us conclude with some preliminary results on mixed algebraic systems.
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The sparse resultant is well defined only for essential sets of Newton polytopes, see
Definition 1.1.6. An essential set defines a Minkowski sum of dimension h � 1 but the
converse is not always true.

Alg. A admits one main modification in the mixed case: At the Recursion Phase, the
faces Fi � Qi supported by vector v are not always the same. Let the input be n+ 1 poly-
topes; we describe the 0-th iteration for simplicity. Consider the n-dimensional secondary
cell:

CH(b01; F0) + F1 + � � �+ Fn � Rn;

where Fi � Rn�1. Without loss of generality, let fF1; : : : ; Fkg be an essential subset and
let L+(k) be the integer lattice it defines. The algorithm recurses on lattice L+(k) and
polytope set (representing a piece)

CH(b01; F0) \ Λ+(k); F1; : : : ; Fk; Fk+1 \ Λ+(k); : : : ; Fn \ Λ+(k); (3.30)

where Λ+(k) ranges over all possible homothetic copies of L+(k) defined by the different
cosets of L+(k) in its saturation, and the different slices that can be defined as intersec-
tions with CH(b01; F0). Alg. A distinguishes two cases, according to whether there is one
or more essential subsets of fF1; : : : ; Fng. In the former case, v and the corresponding
secondary cell are called admissible. For non-admissible cells, all integer points are con-
sidered as non-mixed, i.e. treated as if they lied in non-mixed cells. For admissible cells,
integer dFv is defined [29, Sec.4] (cf. [36]), and dFv pieces of the form (3.30) are (arbitrarily)
selected. Lattice points labeled as mixed in these pieces by the recursive application of
Alg. A are labeled as mixed overall, the rest are non-mixed.

Before sketching the extension of our algorithm to the mixed case, let us consider
some special cases. Reduced systems are such that, for any vector v 2 Rn, there is some
i 2 f1; : : : ; ng so that the face supported by v in Qi is a vertex. For us, it suffices that this
holds for any vector v associated with secondary cells at the 0-th recursion step of Alg. A.
Reduced systems were settled by D’Andrea (personal communication) by directly estab-
lishing the extraneous factor. For reduced systems, as well as for arbitrary systems of
three bivariate polynomials, the lifting function (3.31), specified by D’Andrea and Emiris
(personal communication), produces a Macaulay-type formula:

l0 : A0 ! f0; 1g li : Ai ! R (i � 1)

b01 7! 1; p 7! 0; if p /2 [8vAi;v

b0j 7! 0; if j 6= 0; p 7! rp otherwise:
(3.31)

Here, Ai;v := Ai \ Qi;v, where Qi;v is the face of Qi supported by v, and rp is a positive
random number satisfying 0 < rp � 1: It is not difficult to see that our lifting � has an
overall effect similar to that of lifting (3.31), therefore it also produces a Macaulay-type
formula for the previous systems. For bivariate systems, the idea of the proof is subsumed
by that for n = 3 at the end of this section.

For extending Alg. B to the mixed case, we must modify it so that Definition 3.1.2 ap-
plies to different polytopes and also up to i = n�1. We sketch a proof that it produces the
same matrix as Alg. A, by extending the correlation between maximal cells, established
in the unmixed case. Our proof might extend to n > 3, but seems complicated; we hope
that a more elegant approach is possible.
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In non-admissible secondary cells of Alg. A, for any n, we show that both algorithms
behave in the same way, namely that the corresponding lattice points lie in non-mixed
cells of Alg. B. We demonstrate the contrapositive by focusing on a mixed cell of Alg. B
and a corresponding secondary cell of Alg. A, following Lemma 3.3.9.

Lemma 3.5.1. Every t-mixed cell by Alg. B, when intersected with a (n� t)-di-mensional
hyperplane as in Lemma 3.3.9, is contained in an admissible secondary cell of step t � 1

of Alg. A.

Proof. Any t-mixed cell of Alg. B is of the form E0 + � � �+ Et�1 + atj+ Et+1 + � � �+En, where
atj is either a vertex of Qi or some ctjs in the interior of an (n � t)-dimensional face, and
edges Et+1; : : : ; En span an (n� t)-dimensional space. This cell is intersected by a (n� t)-
dimensional hyperplane, similarly to Lemma 3.3.9. The intersection is contained in a
t-primary cell of Alg. A with t-summand btj; it lies in a piece of (t� 1)-secondary cell

F0 + � � �+ Ft�2 + CH(b(t�1)h; Ft�1) + Ft + � � �+ Fn;

where the Fi are faces of the Qi, i = 1; : : : ; n, supported by the same vector, with dimFi �

n�t. We claim fFt; : : : ; Fng contains a unique essential set, with cardinality r+1, spanning
an r-dimensional space, which is defined as follows: Ft and r � n�t faces, denoted without
loss of generality Ft+1; : : : ; Ft+r, where r is minimal so that dimH = r, forH = hFt; : : : ; Ft+ri.

By hypothesis, dimhFt+1; : : : ; Fni = n � t, since a subspace is spanned by the Ei and
has same dimension. So subsets indexed in ft + 1; : : : ; ng span a space of dimension at
least equal to their cardinality. In addition, none of the Fi; i > t + r is contained in H.
So every subset indexed in ft; : : : ; ng containing ftg [ J, for J � ft + r + 1; : : : ; ng, will be
of cardinality � r + jJ j and span a space of dimension r + jJ j. Hence there are no other
essential subsets.

For n = 3, all admissible secondary cells have dFv pieces, since there is no extra
artificial polytope in the input of Alg. A. We distinguish cases on the dimension k � 1 of
the space generated by the essential set fF1; : : : ; Fkg; 1 � k � 3, on which the recursion of
Alg. A occurs:

1. If k � 1 is 0 or 1, the recursion is either trivial (occurs on a vertex), or corresponds
to the Sylvester case.

2. If k � 1 = 2 and dimFi = 1; i = 1; 2; 3, the two algorithms behave similarly, since
Definition 3.1.2 defines points c2js in the edges of Q2 and Lemma 3.3.9 applies.
Notice that dimQ2 � 1; otherwise the Qi’s would not form an essential set.

3. If k�1 = 2, then dimFi 2 f1; 2g for i = 1; 2; 3 and at least one face is two-dimensional.
If dimF1 = 2, then Lemma 3.3.9 applies. Otherwise, dimF1 = 1 and dimF2 � 1. Irre-
spective of dimF2, the c2js’s play the role of distinguished points and Lemma 3.3.9
applies again.
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Chapter 4

The Newton polygon of the implicit
equation of rational parametric
curves

Implicitization is the problem of switching from a parametric representation of a hyper-
surface to an algebraic one. It is a fundamental question with several applications. Here
we consider the implicitization problem for a planar curve, where the polynomials in its
parameterization have fixed Newton polytopes. We determine the vertices of the Newton
polygon of the implicit equation, or implicit polygon, without computing the equation,
under the assumption of generic coefficients relative to the given supports, i.e. our re-
sults hold for all coefficient vectors in some open dense subset of the coefficient space.
The support of the implicit equation, or implicit support, is taken to be all interior points
inside the implicit polygon.

This problem was posed in [40] but has received much attention lately. According
to [41], “apriori knowledge of the Newton polytope would greatly facilitate the subsequent
computation of recovering the coefficients of the implicit equation […] This is a problem of
numerical linear algebra …”. Reducing implicitization to linear algebra is also the premise
of [13, 42]. Of course, this can be nontrivial if coefficients are not generic. Another poten-
tial application of knowing the implicit polygon is to approximate implicitization, see [43].

Our approach considers the symbolic resultant which eliminates the parameters and,
then, is specialized to yield an equation in the implicit variables. This method applies,
more generally, to applications, including the computation of the u-resultant or the offset
of a parametric curve or surface, where the resultant coefficients are polynomials in a
few variables, and we wish to study the resultant as a polynomial in these variables.

Previous work includes [42, 44], where an algorithm constructs the Newton polytope
of any implicit equation. That method had to compute all mixed subdivisions, then ap-
plies cor. 1.1.11. In [4, chapter 12], the authors study the resultant of two univariate
polynomials and describe the facets of its Newton polytope. In [45], the extreme mono-
mials of the Sylvester resultant are described. The approaches in [42, 4] cannot exploit
the fact that the denominators in a rational parameterization may be identical.

By employing tropical geometry, [41, 46] compute the implicit polytope for any hyper-
surface parameterized by Laurent polynomials. In particular, in [46] the implicit polytope
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is characterized as the mixed fiber polytope of the input polytopes and software TrIm of-
fers implementations of tropical implicitization to compute it. Their theory extends to
arbitrary implicit ideals. They give a generically optimal implicit support; for curves, the
support is described in [41, example 1.1]. Their approach also handles rational param-
eterizations with the same denominator by homogenizing the parameter as well as the
implicit space. The implicit equation is homogeneous, hence its Newton polytope lies in
a hyperplane.

More recently, in [47] the problem was solved in an abstract way by means of com-
posite bodies and mixed fiber polytopes. In [48] the normal fan of the implicit polygon is
determined. This is computed by the multiplicities of any parameterization of the ratio-
nal plane curve. The authors reduce the problem to studying the support function of the
implicit polytope and counting the number of solutions of a certain system of equations.
The latter is solved by applying a refinement of the Kushnirenko-Bernstein formula for
the computation of the isolated roots of a polynomial system in the torus, given in [49].
As a corollary, they obtain the optimal implicit polygon in the case of generic coefficients.
They also address the inverse question, namely when can a given polygon be the Newton
polygon of an implicit curve. They show that the variety of rational curves with given
Newton polytope is unirational.

In [50], we computed the Newton polytope of specialized resultants while avoiding
to compute the entire secondary polytope; our approach was to examine the silhouette
of the latter with respect to an orthogonal projection. This method is revisited in [51]
by studying output-sensitive methods to compute the resultant polytope. We also pre-
sented a method to compute the vertices of the implicit polygon of polynomial or rational
parametric curves, when denominators differ. In [52] we give the final result. We also in-
troduced a method and gave partial results for the case when denominators are equal; the
latter method is described in final form in the present article. Our main contribution is to
determine the vertex structure of the implicit polygon of a rational parameterized planar
curve, or implicit vertices, under the assumption of generic coefficients. If the coefficients
are not sufficiently generic, then the computed polygon contains the implicit polygon. In
the case of rationally parameterized curves with different denominators (which includes
the case of Laurent polynomial parameterizations), the Cayley trick reduces the problem
to computing regular triangulations of point sets in the plane. If the denominators are
identical, two-dimensional mixed subdivisions are examined; we show that only subdivi-
sions obtained by linear liftings are relevant. These results also apply if the two parametric
expressions share the same numerator, or the numerator of one equals the denominator
of the other. We prove that, in these cases, only extremal terms matter in determining
the implicit polygon as well as in ensuring the genericity hypothesis on the coefficients.

The following proposition collects our main corollaries regarding the shape of the im-
plicit polygon in terms of corner cuts on an initial polygon. A corner cut on a polygon P

is a line that intersects the polygon, excluding one vertex while leaving the rest intact. �
is the implicit equation and N(�) is the implicit polygon.

Proposition 4.0.2. N(�) is a polygon with one vertex at the origin and two edges lying on
the axes. In particular, for polynomial parameterizations, N(�) is a right triangle with at
most one corner cut, which excludes the origin. For rational parameterizations with equal
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denominators, N(�) is a right triangle with at most two cuts, on the same or different cor-
ners. For rational parameterizations with different denominators, N(�) is a quadrilateral
with at most two cuts, on the same or different corners.

Example 4.0.3. Consider the plane curve parameterized by:

x =
t6 + 2t2

t7 + 1
; y =

t4 � t3

t7 + 1
;

Theorem 4.2.11 yields vertices (7; 0); (0; 7); (0; 3); (3; 1); (6; 0), which define the actual im-
plicit polygon (see Figure 4.1, left) because the implicit equation is

� = �32y4 � 30x3y2 � x4y � 12x2y2 � 3x3y � 7x6y � 2x7 + 20xy3 + 280x2y5

�73y4x� 70x4y3 � 22x3y3 � 49x5y2 � 21x4y2 + 11x5y + 216y5 + 129y7

�248y6 + 70xy6 + 185xy5 + 24y3 + 100xy4 + 43x2y3 + 72x2y4 + 3x6:

(4.1)

Changing the coefficient of t2 to -1, leads to an implicit polygon with four cuts which is
contained in the polygon predicted by Theorem 4.2.11. This shows the importance of the
genericity condition on the coefficients of the parametric polynomials. See Example 4.2.21
for details.

An instance where the implicit polygon has 6 vertices is:

x =
t3 + 2t2 + t

t2 + 3t� 2
; y =

t3 � t2

t� 2
:

Our results in Section 4.1 yield implicit vertices (0; 1); (0; 3); (3; 0); (1; 3); (2; 0), (3; 2) which
define the actual implicit polygon (see Figure 4.1, right). See Example 4.1.10 for details.

1

3

7

763

3

2

1

1 2 3

Figure 4.1: The implicit polygons of the curves of Example 4.0.3

Let h0; : : : ; hn 2 C[t1; : : : ; tr] be polynomials in parameters ti. The implicitization prob-
lem is to compute the prime ideal I of all polynomials � 2 C[x0; : : : ; xn] which satisfy
�(h0; : : : ; hn) � 0 in C[t1; : : : ; tr]. We are interested in parametric curves where r = n = 1,
and generalize hi to be rational expressions in C(t). Then I = h�i is a principal ideal. Note
that � 2 C[x0; x1] is uniquely defined up to sign. The xi are called implicit variables, A(�) is
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the implicit support and N(�) is the implicit polygon. Usually a rational parameterization
of a plane curve may be defined by

xi =
Pi(t)

Qi(t)
; i = 0; 1; gcd(Pi(t); Qi(t)) = 1; (4.2)

where the denominators may be equal. All polynomials have fixed supports. We assume
that the parameterization is proper i.e. the degree of the induced rational map equals 1.
This avoids, e.g., having all terms in ta for some a > 1. This assumption is justified by
the fact that every rational plane curve has a proper parameterization and there are
algorithms for computing it (see [53]).

Define f0 = x0Q0(t) � P0(t); f1 = x1Q1(t) � P1(t) 2 C[t]. Then the following proposition
gives an explicit formula for the implicit equation of the parametric curve in terms of a
Sylvester resultant.

Proposition 4.0.4. [54] Let f0; f1 2 C[t] be non-zero univariate polynomials as above. Then

Rest(f0(t); f1(t)) = c � �(x0; x1)
q; c 2 C;

where q is the degree of the parameterization.

Since Rest(f0(t); f1(t)) is not identically zero, we can compute N(�) as the Newton
polytope of a specialized resultant. Furthermore, since the parameterization is proper,
then (cf. [55])

degxi(�(x0; x1)) = maxfdegt(Pj(t)); degt(Qj(t))g; fi; jg = f0; 1g:

The implicit supports predicted solely by degree bounds are typically larger than optimal.

4.1 Rational parameterizations with different
denominators

We now turn to the case of rationally parameterized curves, with different denominators.
We have

f0(t) = xQ0(t)� P0(t); f1(t) = yQ1(t)� P1(t) 2 (C[x; y])[t]; gcd(Pi; Qi) = 1;

where all polynomials have fixed supports and generic coefficients with respect to these
supports. Let cij (0 � j � mi), qij (0 � j � ki) denote the coefficients of polynomials Pi(t)
and Qi(t), and Ni = A(Pi); Di = A(Qi) their supports respectively; note that for i = 1; 2,
Ni 6= ; and Di 6= ;. Then, the supports of f0; f1 are

A0 = N0 [D0 = f0; a01; : : : ; a0ng and A1 = N1 [D1 = f0; a11; : : : ; a1mg;

where the a0i and a1j are sorted in ascending order; it holds that a00 = a10 = 0 because
gcd(Pi; Qi) = 1. Elements of A0; A1 are embedded by the Cayley embedding � in R2. The
embedded points are denoted by (a0i; 0); (a1i; 1); by abusing notation, we shall omit the
second coordinate.
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Recall that each p 2 A0 corresponds to a monomial of f0. The corresponding coeffi-
cient either lies in C, or is a monomial q0ix, or a binomial q0ix + c0j, where q0i; c0j 2 C.
The resultant Res(f0; f1) is a polynomial in x; y; cij ; qij. We consider the specialization of
coefficients cij ; qij in order to study �; this specialization yields the implicit equation. The
relevant terms are products of one polynomial in x and one in y. The former is the product
of powers of terms of the form q0ix or q0ix+c0j ; the y-polynomial is obtained analogously.
The exponents in A0 and A1 relevant to the implicit polygon are the ones corresponding
to coefficients which are non-constant polynomials in x. These exponents fall into two
different categories: the exponents in D0 and those in D0nN0; the latter contains the expo-
nents corresponding to coefficients which are monomials in x. An analogous description
holds for the second polynomial.

We need consider only i-mixed cells associated with a vertex coming from Di or Di n

Ni. For any triangulation, these mixed cells correspond either to triangles with vertices
fa0i; a1`; a1rg, where `; r 2 f0; : : : ;mg, or to fa0`; a0r; a1jg, where `; r 2 f0; : : : ; ng. Given a
triangulation, we set

e0 =
X
i;`;r

Vol(a0i; a1`; a1r); e1 =
X
`;r;j

Vol(a0`; a0r; a1j); (4.3)

where i; j range over all elements of D0 or D0 nN0 and D1 or D1 nN1, respectively, and we
sum up the normalized volumes of mixed triangles.

In the following, we use the upper (lower, resp.) hull of a convex polygon in R2 w.r.t.
some direction v 2 R2. Let us consider the unbounded convex polygons defined by the
computed upper and lower hulls. The union of these two unbounded polygons is the
implicit Newton polygon.

Lemma 4.1.1. Consider all points (e0; e1), defined by expressions (4.3), over all possible
triangulations. The polygon defined by the upper hull of points (e0; e1) w.r.t. to vector (0; 1),
where the corresponding vertex comes from Di; i = 0; 1, and the lower hull of points (e0; e1)

w.r.t. to vector (0; 1), where the corresponding vertex comes from Di n Ni; i = 0; 1, equals
the implicit polygon N(�).

Proof. Consider the extreme terms of the resultant, given by Proposition 1.1.10. After
the specialization of the coefficients, those associated with i-mixed cells having a vertex
p 2 Ni nDi contribute only a coefficient in C to the corresponding term of �. This is why
they are not taken into account in (4.3).

Now consider triangles with vertices from Di. By maximizing e0 or e1, as defined
in (4.3), it is clear that we shall obtain the maximum possible exponents in the terms
which are polynomials in x and y respectively, hence the largest degrees in x; y in �. Un-
der certain genericity assumptions, we shall obtain all vertices in the implicit polygon,
which appear in its upper hull with respect to vector (0; 1).

Triangles with vertices from Di nNi minimize the powers of coefficients corresponding
to monomials in the implicit variables. All other coefficients are in C or are binomials in
x (or y), so they contain a constant term, hence their product will contain a constant,
assuming generic coefficients in the parametric equations. Therefore these are vertices
on the lower hull with respect to (0; 1).
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4.1.1 The implicit vertices

For any p 2 Ai; i = 0; 1, let XDi
(p) and XDinNi

(p) be the characteristic functions of the sets
Di and Di n Ni: XDi

(p) = 1 if p 2 Di; and XDi
(p) = 0 otherwise; similarly, XDinNi

(p) = 1 if
p 2 Di nNi; and XDinNi

(p) = 0 otherwise.
Now we give formulas for the coordinates of the vertices of N(�). The vertices computed

are not necessarily distinct; they lie on the lines e0 = 0; e0 = a1m; e1 = 0 and e1 = a0n.

Theorem 4.1.2.
(i) The maximum exponent of x in the implicit equation is emax

0 = a1m:When this is attained,
the maximum exponent of y is

emax
1 jemax

0
= max(D0)�min(D0) + XD1(0) �min(D0) + XD1(a1m) � (a0n �max(D0));

and the minimum exponent of y is

emin
1 jemax

0
= XD1nN1(0) �min(D0 nN0) + XD1nN1(a1m) � (a0n �max(D0 nN0)):

(ii) The maximum exponent of y in the implicit equation is emax
1 = a0n:When this is attained,

the maximum exponent of x is

emax
0 jemax

1
= max(D1)�min(D1) + XD0(0) �min(D1) + XD0(a0n) � (a1m �max(D1));

and the minimum exponent of x is

emin
0 jemax

1
= XD0(0) �min(D1) + XD0(a0n) � (a1m �max(D1))+Y

j�0

XD0(a0j) � (max(D1)�min(D1)):

(iii) The minimum exponent of x in the implicit equation is emin
0 = 0. When this is attained,

the maximum exponent of y is

emax
1 jemin

0
= max(N0 nD0)�min(N0 nD0) + XD1(0) �min(N0 nD0)+

XD1(a1m) � (a0n �max(N0 nD0));

and the minimum exponent of y is

emin
1 jemin

0
= XD1nN1(0) �min(N0) + XD1nN1(a1m) � (a0n �max(N0)):

(iv) The minimum exponent of y in the implicit equation is emin
1 = 0. When this is attained,

the maximum exponent of x is

emax
0 jemin

1
= max(N1)�min(N1) + XD0nN0(0) �min(N1)+

XD0nN0(a0n) � (a1m �max(N1));

and the minimum exponent of x is

emin
0 jemin

1
= XD0nN0(0) �min(N1) + XD0nN0(a0n) � (a1m �max(N1)):

Christos Konaxis 66



Algebraic Algorithms for polynomial system solving and applications

Proof. We shall prove only case (i), the rest are either symmetric, or similar.
Since the vertex corresponding to the maximum exponent of y when the maximum

exponent of x is attained belongs to the upper hull of the implicit polygon, the exponents
are obtained by mixed triangles in eq. (4.3) where i; j range over all elements of D0, D1,
respectively. The maximum possible exponent of x is a1m, and this is attained by a trian-
gulation in which the entire segment [0; a1m] is visible by any element of D0; recall D0 6= ;.
Then, the maximum exponent of y is attained from any triangulation such that a maxi-
mum part of segment [0; a0n] is visible from some points in D1. A triangulation achieving
the maximum exponent of y given in the theorem is shown in Figure 4.2, left subfigure
(note that a1i may coincide with 0 or a1m); recall D1 6= ;.

We will show that this exponent of y is the maximum that can be achieved. Since
all points to the left of min(D0) do not contribute to the exponent of x in eq. (4.3), any
triangulation obtaining the maximum exponent of x (i.e., a1m) cannot contain edges con-
necting these points to points in A1. Then, since we have triangles, 0 2 A1 is connected
to a point in A0 which should in fact belong to D0; if 0 62 D1, 0 should be adjacent to
min(D0), in order that the part of segment [0; a0n] visible by 0 is minimized. A similar ar-
gument holds for a1m; note that all the points to the right of max(D0) do not contribute
to the exponent of x in eq. (4.3).

The vertex corresponding to the minimum exponent of y when the maximum exponent
of x is attained belongs to the lower hull of the implicit polygon, hence the exponents are
obtained by mixed triangles in eq. (4.3) where i; j range over all elements of D0 n N0,
D1 n N1, respectively. Then, the minimum exponent of y stated in the theorem can be
achieved by the triangulations shown in Figure 4.2; the center figure corresponds to the
case that a1m 2 N1, the right to the case that a1m 2 D1 n N1. As above, in order to attain
the maximum exponent of x, 0 2 A1 is connected to a point in A0 which should in fact
belong to D0 nN0; if 0 2 D1 nN1, the minimum is obtained if 0 is connected to minD0 nN0;
this leads to the first term of the expression of the exponent in the theorem. The second
term is obtained by a similar argument for a1m.

Remark 4.1.3. The product
Q

j�0XD0(a0j) is equal to 1 if D0 = A0 and is equal to 0 oth-
erwise. Note that similar products do not exist in the expressions of emin

1 jemax
0

, emin
1 jemin

0
,

and emin
0 jemin

1
, since in these cases the products would be

Q
j�0XD1nN1(a1j) in the first and

second case, and
Q

j�0XD0nN0(a0j) in the third case; in either case, the product is equal
to 0 since Di nNi 6= Ai.

0 a1m ∈ D1 \N1

0

a1i ∈ N1

a0n

0 a1m ∈ N1

0 min(D0 \N0) max(D0 \N0)a0nmax(D0 \N0)min(D0 \N0)

0

0 a0n

a1ma1i ∈ D1

min(D0) max(D0)

Figure 4.2: The triangulations of C in Thm. 4.1.2 giving vertices emax
1 jemax0

and emin
1 jemax0

; the color of
the disks (black, grey, white) indicates membership (belongs, does not belong, may belong, respectively)
to Di or Di nNi
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Theorem 4.1.2 yields a set of eight (not necessarily distinct) possible vertices for N(�).
Consider the rectangle ABCD, with vertices defined by the intersections of lines e0 =

0; e0 = a1m; e1 = 0, and e1 = a0n; in particular, A = (0; 0), B = (0; a0n), C = (a1m; a0n), and
D = (a1m; 0). N(�) is defined from this rectangle after an appropriate number of corner
cuts.

In order to have a cut, a term XA(t) � r in the expression of emin
i j� yields the condition

“t 2 A and r 6= 0,” whereas the same term in the expression of emax
i j� yields the condition

“t 62 A and r 6= 0.” Then, the following follows from Theorem 4.1.2:

Corollary 4.1.4. The conditions for a cut in each of the four corners of ABCD are:

• cut at A: (0 2 D0 nN0 and 0 2 D1 nN1) or (a0n 2 D0 nN0 and a1m 2 D1 nN1);

• cut at B: (0 2 D0 and 0 2 N1 nD1) or (a0n 2 D0 and a1m 2 N1 nD1);

• cut at C: (0 2 N0 nD0 and 0 2 N1 nD1) or (a0n 2 N0 nD0 and a1m 2 N1 nD1);

• cut at D: (0 2 N0 and 0 2 D1 nN1) or (a0n 2 N0 and a1m 2 D1 nN1).

From this corollary and from the fact that if D0 = A0, then emax
0 jemax

1
= emax

0 jemax
1

= a1m,
we have:

Corollary 4.1.5. There can be at most two corner cuts in different corners of rectangle
ABCD, defined by the vertices of Theorem 4.1.2 which do not coincide.

Now, suppose that there is only one corner cut in rectangle ABCD. Then, there may
exist an additional vertex of N(�) which does not follow from Theorem 4.1.2. We define:

�A = det
�
a0n �max(N0) a1m �max(N1)

min(N0) min(N1)

�
; (4.4)

�B = det
�
a0n �max(N0 nD0) a1m �max(D1)

min(N0 nD0) min(D1)

�
: (4.5)

Moreover, �C is defined by replacing the sets Ni by the sets Di in Equation (4.4) and
�D is defined by replacing the set N0 nD0 by the set D0 nN0, and the set D1 by the set N1

in Equation (4.5).

Theorem 4.1.6. Suppose that the vertices of Theorem 4.1.2 yield only one corner cut in
rectangle ABCD. Then, the implicit polygon is equal to the cut rectangle ABCD unless:

(i) cut at A: 0; a0n 2 D0 nN0 and 0; a1m 2 D1 nN1 and �A 6= 0, in which case there exists a
vertex p s.t.

p = (min(N1); a0n �max(N0)) if �A < 0; and

p = (a1m �max(N1);min(N0)) if �A > 0:

(ii) cut at B: 0; a0n 2 D0 and 0; a1m 2 N1 n D1 and �B 6= 0, in which case there exists a
vertex p s.t.

p = (min(D1);max(N0 nD0)) if �B < 0; and

p = (a1m �max(D1); a0n �min(N0 nD0)) if �B > 0:
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(iii) cut at C: 0; a0n 2 N0 nD0 and 0; a1m 2 N1 nD1 and �C 6= 0, in which case there exists a
vertex p s.t.

p = (a1m �min(D1);max(D0)) if �C < 0; and

p = (max(D1); a0n �min(D0)) if �C > 0:

(iv) cut at D: 0; a0n 2 N0 and 0; a1m 2 D1 n N1 and �D 6= 0, in which case there exists a
vertex p s.t.

p = (min(D0 nN0);max(N1)) if �D < 0; and

p = (a0n �max(D0 nN0); a1m �min(N1)) if �D > 0:

Proof. We prove only case (ii). The other cases are either similar or symmetric.
Suppose that Theorem 4.1.2 yields a cut in the rectangle ABCD, excluding vertex B.

Then, Corollary 4.1.4 implies that 0 2 D0 and 0 2 N1 nD1, or a0n 2 D0 and a1m 2 N1 nD1.
Let us consider the case in which 0 2 D0, 0 2 N1 nD1, and (a0n 62 D0 or a1m 62 N1 nD1 or

both). Then, emax
1 jemin

0
= a0n �min(N0 nD0) and emin

0 jemax
1

= min(D1) yielding the vertices
(0; a0n � min(N0 n D0)) and (min(D1); a0n). Suppose, for contradiction, that there exists
a triangulation T corresponding to a point pT = (xT ; yT ) with xT < min(D1) and yT >

a0n � min(N0 n D0). Consider the edges a0i-a1j of T ; as these edges do not cross, they
can be ordered from left to right. The leftmost edge is 0-0 with 0 2 D0 and 0 2 N1 n D1.
Let a0i-a1j be the leftmost edge such that either a0i 62 D0 or a1j 62 N1 n D1; exactly one of
these two conditions will hold, since any two consecutive such edges share an endpoint.
If a0i 62 D0, then all the points 0; : : : ; a1j 2 N1 n D1, and thus no portion of the segment
[0; a0i] contributes to the y-coordinate yt of pT , i.e., yT � a0n � a0i � a0n �min(N0 nD0), a
contradiction. Similarly, if a1j 62 N1nD1, that is, a1j 2 D1, then all the points 0; : : : ; a0i 2 D0,
and thus the entire segment [0; a1j ] contributes to the x-coordinate xt, i.e., xT � a1j �

min(D1), a contradiction again. Therefore, the cut in the rectangle ABCD that excludes
vertex B is the only possible one and the implicit polygon equals the polygon defined by
the rectangle and the corner cut. The case in which a0n 2 D0, a1m 2 N1 nD1, and (0 62 D0

or 0 62 N1 nD1 or both) is right-to-left symmetric yielding a similar result.
Finally, we consider the case in which 0; a0n 2 D0 and 0; a1m 2 N1nD1. Then, emax

1 jemin
0

=

max(N0 n D0) �min(N0 n D0) and emin
0 jemax

1
= min(D1) + a1m �max(D1) leading to points

q1 = (0;max(N0 n D0) �min(N0 n D0)) and q2 = (min(D1) + a1m �max(D1); a0n). Consider
the points p1 = (min(D1);max(N0 n D0)) and p2 = (a1m �max(D1); a0n �min(N0 n D0)). It
is not difficult to see that one can obtain triangulations corresponding to these points.
Points q1, q2, p1; p2 form a parallelogram which degenerates to a line segment if �B = 0;
otherwise, p1 (p2, resp.) is above the line through q1; q2 if �B < 0 (�B > 0, resp.).

Without loss of generality, assume �B < 0. We will show that q1p1 is an edge of
N(�); suppose, for contradiction, that there exists a triangulation T corresponding to a
point pT = (xT ; yT ) which has xT < min(D1), yT > max(N0nD0)�min(N0nD0) and lies above
the line through q1; p1. Since 0 2 D0 and 0 2 N1nD1, we consider the ordered edges a0i-a1j of
T (from left to right) and as above we show that either the entire segment [0;min(D1)] con-
tributes to the x-coordinate of pT or no part of the segment [0;min(N0 nD0)] contributes to
its y-coordinate; the former is in contradiction with the fact that xT < min(D1), and thus
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the latter case holds. Moreover, by considering the edges a0i-a1j of T from right to left, we
can show that either the entire segment [max(D1); a1m] contributes to the x-coordinate
of pT or no part of the segment [max(N0 n D0); a0n] contributes to its y-coordinate; the
latter case, in conjunction with the latter case of the previous observation, is in contra-
diction with yT > max(N0 n D0) �min(N0 n D0), and hence the former case holds. Thus,
xT � a1m �max(D1) and yT � a0n �min(N0 nD0). For pT to be above the line through q1

and p1, it should hold that

yT � (max(N0 nD0)�min(N0 nD0))

xT
>

min(N0 nD0)

min(D1)
;

this is not possible because

yT � (max(N0 nD0)�min(N0 nD0))

xT
�
a0n �max(N0 nD0)

a1m �max(D1)

and �B < 0 =)
a0n �max(N0 nD0)

a1m �max(D1)
<

min(N0 nD0)

min(D1)
:

Therefore, the segment q1p1 is an edge of N(�). For �B < 0, in a similar fashion we can
show that the segment q2p1 is also an edge of N(�). The cases for �B > 0 are symmetric
involving point p2.

Example 4.1.7.

x =
a+ t2

ct
; y =

b

dt
; a; b; c; d 6= 0:

With generic coefficients, the denominators are different. The input supports are N0 =

f0; 2g; N1 = f0g; D0 = D1 = f1g. Theorem 4.1.2 yields points (1; 1), (1; 1), (0; 2), (0; 2), (0; 2),
(0; 0), (0; 0), (0; 0), in the order stated by the theorem, which define the actual implicit
polygon since � = ad2y2 � bcdxy + b2 .

Example 4.1.8.

x =
t7 + t4 + t3 + t2

t3 + 1
; y =

t5 + t4 + t

t5 + t2 + 1
:

The input supports are N0 = f2; 3; 4; 7g; N1 = f1; 4; 5g; D0 = f0; 3g and D1 = f0; 2; 5g. The-
orem 4.1.2 yields points (5; 7); (5; 0); (5; 7); (0; 7); (0; 7); (0; 2), (5; 0); (1; 0) in the order stated
by the theorem. These points define the actual implicit polygon.

Example 4.1.9. For the unit circle, x = 2t/(t2+1); y = (1�t2)/(t2+1), the supports areN0 =

f1g; D0 = f0; 2g, and N1 = D1 = f0; 2g. The set C = �(A0; A1) has 5 triangulations shown in
Figure 4.3 which, after applying Proposition 1.1.10, give the terms y2� 1; x2y2� 2x2y+x2

and x2y2+2x2y+x2. This method yields points (2; 2); (2; 0); (0; 2); (0; 0). By degree bounds, we
end up with vertices (2; 0); (0; 2); (0; 0). Interestingly, to see the cancellation of term x2y2 it
does not suffice to consider only terms coming from extremal monomials in the resultant.
See Example 4.2.18 for a treatment taking into account the identical denominators.

Example 4.1.10. Consider the parameterization

x =
t3 + 2t2 + t

t2 + 3t� 2
; y =

t3 � t2

t� 2
:
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10 10 10 10 10

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

(y − 1)(y + 1) (y − 1)2x2 x2(y + 1)2 (y − 1)(y − 1)x2 x2(y + 1)(y + 1)

Figure 4.3: The triangulations of C in Example 4.1.9, and the corresponding terms

The supports are N0 = f1; 2; 3g; D0 = f0; 1; 2g, and N1 = f2; 3g; D1 = f0; 1g. Theorem 4.1.2
yields points (3; 2); (3; 0); (1; 3); (0; 3); (0; 3); (0; 1); (3; 0); (2; 0); in the order stated by the theo-
rem, which define the actual implicit polygon. The implicit polygon is shown in Figure 4.1,
right.

4.2 Rational parameterizations with equal
denominators

We study rationally parameterized planar curves, when both denominators are the same.

x =
P0(t)

Q(t)
; y =

P1(t)

Q(t)
; gcd(Pi(t); Q(t)) = 1; Pi; Q 2 C[t]; i = 0; 1; (4.6)

where the Pi; Q have fixed supports and generic coefficients. If some Pi(t); Q(t) have a
nontrivial GCD, then common terms are divided out and the problem reduces to the case
of different denominators. In general, the Pi; Q are Laurent polynomials, but this case
can be reduced to the case of polynomials by shifting the supports.

The results of this section are useful if the two parametric expressions have the same
numerator and different denominators. Then, we consider implicit variables x�1; y�1,
compute the implicit polygon, and transform it so as to yield the implicit polygon of
the original problem. Similarly, if the numerator of one parametric expression equals the
denominator of the other, then we can again apply the tools of this section.

Considering the more general case of different denominators does not lead to optimal
implicit support, because this does not exploit the fact that the coefficients of Q(t) are
the same in the polynomials xQ � P0; yQ � P1. Therefore, we introduce a new variable r

and consider the following system

f0 = xr � P0(t); f1 = yr � P1(t); f2 = r �Q(t) 2 C[t; r]: (4.7)

By eliminating t; r the resultant gives, for generic coefficients, the implicit equation in
x; y. Consider the parameterization

� : P! P2 : (t : t0) 7! (x0 : x1 : x2) = (P h
0 : P h

1 : Qh); (4.8)

where Ph
0 ; P

h
1 ; Q

h are the homogenizations of P0; P1; Q. The resultant of polynomials de-
fined by equations (4.8) is homogeneous in x0; x1; x2 and generically equals the implicit
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equation Φ 2 C[x0; x1; x2] of parameterization � . The resultant of polynomials (4.7) is the
de-homogenization of Φ. Let the input supports be

Bi = A(Pi); i = 0; 1; B2 = A(Q); where Bi = fbiL; : : : ; biRg; i = 0; 1; 2;

where indices L;R denote the leftmost and rightmost points respectively, i.e., biL; biR are
the minimum and maximum points respectively in Bi. The supports of the fi are

A0 = fa00; a0L; : : : ; a0Rg; A1 = fa10; a1L; : : : ; a1Rg; A2 = fa20; a2L; : : : ; a2Rg 2 N
2;

where

• each point ai0 = (0; 1), for i = 0; 1; 2, corresponds to the unique term in fi which
depends on r,

• each other point ait, for t 6= 0, is of the form (bit; 0), for one bit 2 Bi.

One could think that index L = 1 whereas each R equals the cardinality of the respective
Bi. By the above hypotheses A2 or both A0; A1 contain (0; 0).

Lemma 4.2.1. MVR(Bi [ Bj) = MVR2(Ai; Aj); i; j 2 f0; 1; 2g, where MVRd denotes mixed
volume in Rd.

Proof. Let CH(Bi) = [mi; li], CH(Bj) = [mj ; lj ] be intervals in N. If mi � mj and li � lj,
then MVR(Bi [Bj) = lj �mi. Consider a mixed subdivision of Ai +Aj, with unique mixed
cell ((0; 1); (mi; 0)) + ((0; 1); (lj ; 0)), hence MVR2(Ai; Aj) = lj �mi: If mi � mj � lj � li, then
MVR(Bi[Bj) = li�mi, and a similar subdivision as above yields a unique mixed cell with
this volume. The rest of the cases are symmetric.

In what follows, we shall make use of integer u = maxfb0R; b1R; b2Rg:
Let Ci =CH(Ai) and consider the mixed subdivisions of C = C0+C1+C2. The following

points lie on the boundary of C: (u; 2); (0; 3); (0; 2); (b0L+ b1L+ b2L; 0) and (b0R+ b1R+ b2R; 0).
The vertices e0; e1; e2 of implicit Newton polytope N(Φ) correspond to monomials in

x0; x1; x2; the power of each xi is determined by the volumes of ai0-mixed (or simply i-
mixed) cells, for i = 0; 1; 2. This leads us to computing mixed subdivisions of three poly-
gons in the plane.

Lemma 4.2.2. [Cell types] In any mixed subdivision of C, the i-mixed cells, with vertex
summand ai0, for some i 2 f0; 1; 2g, have an edge summand (aj0; ajh), i 6= j; h > 0. Their
second edge summand is from Bl, where fi; j; lg = f0; 1; 2g and classifies the i-mixed cells
in two types:
(I) If it is (al0; alm), where alm = (blm; 0), then the cell vertices are (0; 3), (bjh; 2), (blm; 2),
(bjh + blm; 1), provided bjh 6= blm.
(II) If it is (alt; alm), where alt = (blt; 0); alm = (blm; 0), then the cell vertices are (blt; 2), (blm; 2),
(bjh + blt; 1); (bjh + blm; 1).

Proof. Any mixed cell has two non-parallel edge summands, hence one of the edges is
(aj0; ajh) for some i 6= j; h > 0. The rest of the statements follow from the definition of a
mixed subdivision.
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Observe that for every type-II cell, there is a non-mixed cell with vertices (0; 3), (blt; 2); (blm; 2).

Example 4.2.3. We consider the folium of Descartes:

x =
3t2

1 + t3
; y =

3t

1 + t3
) � = x3 + y3 � 3xy = 0:

Now f0 = xr � 3t2; f1 = yr � 3t; f2 = r � (t3 + 1). Figure 4.4 shows the Newton polygons, C
and two mixed subdivisions. The shaded triangle is the only unmixed cell with nonzero
area; it is a copy of C2. The first subdivision shows two cells of type I, of area 1 and 2,
which yield factors x and y2 respectively, to give term xy2. The second subdivision has
one cell of type II and area 3, which yields term x3. We shall obtain an optimal support
in example 4.2.19. Now, u = 3 which equals the total degree of �.

uu

(II)

(I) (I)

Figure 4.4: Example 4.2.3: polygons Ci, and two mixed subdivisions of C

Consider segment E defined by vertices (0; 2); (u; 2) in C.

Lemma 4.2.4. The resultant of the fi’s 2 C[t; r] defined by equations (4.7) is homogeneous,
of degree u, w.r.t. the coefficients of the ai0, for i = 0; 1; 2.

Proof. Consider any mixed subdivision of C and the cells of type I and II. Consider these
cells as closed polygons: We claim that their union contains segment E. Then, it is easy
to see that the total volume of these cells equals u.

Consider the closed cells that intersect E. If the intersection lies in the cell interior,
then it is a parallelogram, hence it is mixed and its vertex summand is (0; 1), thus it is of
type I. If the intersection is a cell edge, say (akl; akm), for k 2 f0; 1; 2g and 1 � l < m, then
the cell above E is unmixed, namely a triangle with basis (akl; akm) and apex at (0; 3). In
this case, the cell below E is mixed of type II.

Generically, u equals the total degree of every term in the implicit equation �(x; y)

w.r.t. x; y and the coefficient of r in f2. The degree of Φ(x0; x1; x2) is u.
In the following, we focus on segment E and subsegments defined by points (bit; 2) 2

L; i 2 f0; 1; 2g. Usually, we shall omit the ordinate, so the corresponding segments will be
denoted by [bjt; bkl]. We say that such a segment contributes to some coordinate ei when
a i-mixed cell of the mixed subdivision contains this segment. Moreover,

• a type-I, i-mixed cell ai0 + (aj0; ajt) + (ak0; akl) is identified with segment [bjt; bkl].
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• a type-II, i-mixed cell ai0 + (ajt; ajs) + (ak0; akl) is identified with segment [bjt; bjs] and
the coordinate ei to which it contributes.

We show that one needs to examine only subsegments defined by endpoints biL; biR 2

Bi. This is equivalent to saying that it suffices to consider mixed subdivisions induced
by linear liftings.

Theorem 4.2.5. Let S be a mixed subdivision of C0 + C1 + C2, where an internal point
bi 2 Bi defines a 0-dimensional face (bi; 2) = (bi; 0) + (0; 1) + (0; 1) 2 L. Then, the point of
N(�) obtained by S cannot be a vertex because it is a convex combination of points obtained
by other mixed subdivisions defined by points of B0; B1; B2 which are either endpoints, or
are used in defining S except from (bi; 2).

The theorem is established by Lemmas 4.2.6, 4.2.7 and 4.2.8. We shall construct
mixed subdivisions that yield points in the ekej-plane whose convex hull contains the
initial point. All cells of the original subdivision which are not mentioned are taken to
be fixed, therefore we can ignore their contribution to ek; ej. All convex combinations in
these lemmas are decided by the 3� 3 orientation determinant (cf. Expression (4.10)).

Lemma 4.2.6. [II-II] Consider the setting of Theorem 4.2.5 and suppose that (bi; 2) is a
vertex of two adjacent type II cells. Then, the theorem follows.

Proof. If both cells are j-mixed, then the same point in ekej-plane is obtained by one j-
mixed cell equal to their union, fi; j; kg = f0; 1; 2g. If the cells are j- and k-mixed, then
there are two mixed subdivisions yielding points in the ekej-plane, which define a segment
that contains the initial point. The subdivisions have one j-mixed or one k-mixed cell
respectively, intersecting the entire subsegment.

Lemma 4.2.7. [I-I] Consider the setting of Theorem 4.2.5 and suppose that (bi; 2) is a
vertex of two adjacent type I cells. Without loss of generality, these are k- and j-mixed
cells, fi; j; kg = f0; 1; 2g. Then, the theorem follows.

Proof. Let [bjl; bi]; [bi; bkt] be the subsegments defined on E by the two mixed cells, and let
�; � be their respective lengths. Since bi is internal, biR lies to its right-hand side and biL

lies to its left-hand side.
Case biR < bkt and biL > bjl. Let 
 = bi�biL and � = biR�bi. The initial point (�; �) shall be

enclosed by two points. The mixed subdivision with type-I cells corresponding to [bjl; biR]

and [biR; bkt] yields point (�+ �; � � �). The subdivision with type-I cells corresponding to
[bjl; biL]; [biL; bkt] yields point (�� 
; � + 
).

Case biR < bkt and biL < bjl. Let 
 = bjl � biL and � = biR � bi < �. The initial point is
(�+ vk; � + vj), where vk; vj � 0 is the contribution to ek; ej respectively from subsegment
[biL; bjl], and vk+vj � 
. Now consider 3 mixed subdivisions on [biL; bkt]: The first containing
the type-II k-mixed cell [biL; biR] and the type-I j-mixed cell [biR; bkt] gives point (� + 
 +

�; � � �). The second containing the type-I j-mixed cell [biL; bkt] gives point (0; � + � + 
).
The third containing the type-I i-mixed cell [bjl; bkt] and the initial cells in [biL; bjl], gives
(vk; vj).

Case biR > bkt and biL > bjl. Let 
 = bi � biL < � and � = biR � bkt. The initial point
is (� + vk; � + vj), where vk; vj � 0 is the contribution to ek; ej respectively from [bkt; biR],
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and vk + vj � �. Now consider 3 mixed subdivisions on [bjl; biR]: The first containing the
type-I i-mixed cell [bjl; bkt] and the initial cells in [bkt; biR], gives point (vk; vj). The second
containing the type-I k-mixed cell [bjl; biR], gives point (�+ � + �; 0). The third containing
the type-I k-mixed cell [bjl; biL] and the type-II j-mixed cell [biL; biR], gives (�� 
; �+ 
+ �).

Case biR > bkt and biL < bjl. Let 
 = bjl � biL and � = biR � bkt. The initial point is
(�+vk+uk; �+vj+uj), where vk; vj � 0 is the contribution to ek; ej respectively from [bkt; biR],
and vk + vj � �. Similarly, uk; uj � 0 is the contribution to ek; ej respectively from [biL; bjl],
and uk + uj � 
. Now consider 3 mixed subdivisions on [biL; biR]: The first containing the
type-II k-mixed cell [biL; biR], gives point (�+�+
+�; 0). The second containing the type-II
j-mixed cell [biL; biR], gives point (0; �+ � + 
 + �). The third containing the type-I i-mixed
cell [bjl; bkt] and the initial cells in [biL; bjl] and [bkt; biR], gives point (vk + uk; vj + uj).

β

β − δ

vj

vk α

S1

S2

S3

S

ek

ej

α + γ + δ α + β + γα + γ

β + γ

α + β + γ bi bkt
S

S1

S2

S3
ei

ej

ek ej

ek ejvk, vj

vk, vj

βγ α

biL bjl

biR

δ

Figure 4.5: The three points that enclose the point given by S and the corresponding mixed subdivisions
for the second case of Lem. 4.2.7

Lemma 4.2.8. [I-II] Consider the setting of Theorem 4.2.5 and suppose that (bi; 2) is a
vertex of two adjacent type II and I cells. Without loss of generality, these are k- and j-
mixed cells, fi; j; kg = f0; 1; 2g. Then, the theorem follows.

Proof. Let [bil; bi]; [bi; bkt] be the subsegments defined on E by the two mixed cells, and
let �; � be their respective lengths. Since bi is internal, biR lies to its right-hand side.
Moreover, the initial k-mixed cell implies the existence of 1-dimensional face (bi; 2)+ak0+

Ejl, for some edge Ejl = (aj0; ajl) � Bj. The initial j-mixed cell implies the existence of
1-face (bi; 2) + aj0 + Ekt, for edge Ekt = (ak0; akt) � Bk. The second 1-face cannot be to the
left of the first one, hence bjl � bkt. Hence, bjL � bkt.

Case biR � bkt. The initial point (�; �) shall be enclosed by two points. The mixed
subdivision with type-I cell [bil; bkt] yields point (0; �+�). The subdivision with type-II and
type-I cells corresponding to [bil; biR]; [biR; bkt] sets ek > �; ej < �, where ek + ej = �+ �.

Christos Konaxis 75



Algebraic Algorithms for polynomial system solving and applications

Case biR > bkt and bjL > bil. Consider subsegment [bil; biR]: the initial point is (�+vk; �+

vj), where vk; vj � 0 is the contribution to ek; ej respectively from subsegment [bkt; biR], and
vk + vj � 
 = biR � bkt. Now consider 3 mixed subdivisions on [bil; biR]: One k-mixed cell
[bil; biR] gives point (� + � + 
; 0). One j-mixed cell [bil; bkt] and the initial cells in [bkt; biR]

give (vk; �+�+ vj). One k-mixed cell [bil; bjL], one i-mixed cell [bjL; bkt] and the initial cells
in [bkt; biR] give (ek + vk; vj), for some ek � �+ �.

Case biR > bkt and bjL � bil is established analogously to the previous ones.

In the next lemma and corollary, we shall determine certain points in N(Φ). We shall
later see that among these points lie the vertices of N(Φ) and, therefore, from these
points we can recover the vertices of N(�). Recall that MVi =MVR2(Aj ; Ak), where fi; j; kg =
f0; 1; 2g.

Lemma 4.2.9. Given supports B0; B1; B2, let btL = minfbiL; bjLg, bmR = maxfbiR, bjRg and
∆ = [btL; bmR], for i 6= j 2 f0; 1; 2g and t;m 2 fi; jg not necessarily distinct. Set e� = j∆j,
where � 2 f0; 1; 2g n fi; jg, and ei = ej = 0. Then, add btL to e� , where � 2 fi; jg n ftg, and
add u� bmR to e�, where � 2 fi; jg n fmg. Then, (e0; e1; e2) is a vertex of N(Φ).

Proof. Clearly ∆ =CH(Bi [ Bj) � [0; u], so MV� = j∆j. It is possible to construct a mixed
subdivision that yields the implicit vertex. If t 6= m, then the mixed subdivision contains
a type-I mixed cell (at0; atL)+(am0; amRm)+a�0 which intersects segment E at subsegment
[btL; bmR]. This contributes MV� = bmR�btL to e�. There is a type-I cell (a�0; a�L)+(at0; atL)+

a�0 which intersects E at subsegment [0; btL]. This contributes btL to e� . Similarly, we
assign the area u� bmR of the type-I cell (a�0; a�R) + (am0; amRm) + a�0 to e�.

If t = m, then ∆ is an edge of one of the initial Newton segments, say Bt, and ∆ =

[btL; btR]. The mixed subdivision contains the type-II mixed cell (a�0; a�L) + (atL; atR) + a�0

which contributes MV� = j∆j = btR � btL to e�. There are also two type-I cells intersecting
E at its leftmost and rightmost subsegments, as in the previous case. Since t = m, we
have � = � , hence et = 0.

The type-I mixed cells in any of the above mixed subdivisions vanish when btL = 0 or
bmR = u. Notice that ei + ej + e� = u and since e� is maximized, (e0; e1; e2) defines a vertex
of N(Φ) � R3.

Ai
Aλ Ai

i = t 6= m = jt = m = j

Aj
AλAj

Figure 4.6: Lemma 4.2.9: the mixed subdivisions for a certain choice of Bi’s and cases t = m and t 6= m

The following corollary is proven similarly.
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Corollary 4.2.10. Under the notation of Lemma 4.2.9 consider the following definition:

1. btL = minfbiL; bjLg; bmR = minfbiR; bjRg, provided that b�R = u.

2. btL = maxfbiL; bjLg; bmR = maxfbiR; bjRg, provided that b�L = 0.

3. btL = maxfbiL; bjLg; bmR = minfbiR; bjRg, provided that btL � bmR, b�R = u and b�L = 0.

Let ∆ = [�tL; �mR] and in each case, define integers e0; e1; e2 as in Lemma 4.2.9. Then,
(e0; e1; e2) is a vertex of N(Φ).

4.2.1 The implicit vertices

Overall, there are three cases for the relative positions of the Bi:

1. CH(Bi [Bj) = [0; u] for all pairs i; j.

2. CH(Bj [Bl) = CH(Bi [Bl) = [0; u] 6= CH(Bi [Bj).

3. CH(Bi [Bj) = [0; u] 6= CH(Bl [Bt) for t = i; j.

Orthogonally, we can distinguish the following two cases:
(A) there exists at least one CH(Bi) = [0; u],
(B) none of the Bi’s satisfies CH(Bi) = [0; u].

In case (B), every union Bi[Bj contains either 0 or u. Cases (1B) and (3A) cannot exist,
which leaves four cases overall. In the sequel, we let Eit denote a segment (ai0; ait) � Bi.

Theorem 4.2.11. [case (A)] Recall that u = maxfb0R; b1R; b2Rg: If all unions CH(Bi [ Bj) =

[0; u]; i 6= j, then the implicit polygon N(�) is a triangle with vertices (0; 0), (0; u), (u; 0).
Otherwise, if exactly one support, say Bk; k 2 f0; 1; 2g, equals [0; u], then N(�) has up to five
vertices (e0; e1) which can be read of from the following set of (ei; ej ; ek) vectors:

f((u; 0; 0); (0; u; 0); (0; u� biR + biL; biR � biL); (bjL; u� biR; 0);

(u� bjR + bjL; 0; bjR � bjL)g;

where fi; j; kg = f0; 1; 2g, assuming i; j are chosen so that

biL(u� bjR) � bjL(u� biR): (4.9)

Proof. First is the case (1A), established by Lemma 4.2.9. The second statement concerns
case (2A): By switching i and j, assumption (4.9) can always be satisfied. Unless Bi � Bj

or Bj � Bi, this assumption holds simply by choosing i; j so that bjL � biL.
The vertices (u; 0; 0); (0; u; 0) are obtained by Lemma 4.2.9, applied to CH(Bj [Bk) and

CH(Bi[Bk) respectively. The third point is obtained by a mixed subdivision with two type-
I cells EiL+ aj0 +EkL; EiR+ aj0 +EkR, which contribute the lengths of [bkL; biL]; [biR; bkR] to
ej, and one type-II cell Ei0 + Ejt + ak0, contributing the length of [biL; biR] to ek, where Ei0

is the horizontal edge of Ai and t 2 fL;Rg; see Figure 4.7. By switching i and j we define
a subdivision that yields the fifth point.

The fourth point is obtained by a subdivision with 3 type-I cells: ai0 +EjL+EkL; EiR+

aj0+EkR and EiR+EjL+ak0, which contribute to ei; ej and ek respectively, see Figure 4.7.
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ei

bjL

u− bjR + bjL

ej

ej ek ej

ei eiek

ubjL bjR

u− biR

biL biR

u

u− biR + biL

ei ek ej

bjL biR

Figure 4.7: The implicit polygon in case (2A), in the eiej-plane, and the subdivisions of the proof of
Thm. 4.2.11

It suffices to show that the line defined by this and the third point supports the implicit
polygon. An analogous proof then shows that the line defined by this and the fifth point
also supports the polygon, and the theorem follows. Our claim is equivalent to showing

det

24 bjR u� biR 1

0 u� biR + biL 1

ei ej 1

35 � 0, biL(ei � bjL) � bjL(u� biR � ej): (4.10)

We consider the rightmost subsegment on E, where one endpoint is bkR = u. This con-
tributes to either ei or ej an amount equal to the length of a subsegment extending at
least as far left as bjR or biR, respectively. Symmetrically, the leftmost subsegment has
endpoint bkL = 0 and contributes to ei or ej the length of a subsegment extending at
least as far right as bjL or biL, respectively. In general, there are four cases, depending on
the contribution of the rightmost and leftmost subsegments. The last case is infeasible if
Bi; Bj have no overlap.

If the rightmost subsegment contributes to ej then ej � u � biR. If the leftmost sub-
segment contributes to ej then this contribution is at least biL, hence ej � u � biR + biL,
where ei � 0. Otherwise, the leftmost subsegment contributes to ei, thus ei � bjL. In both
cases, inequality (4.10) follows.

If the rightmost subsegment contributes to ei then ei � u � bjR. If the leftmost sub-
segment also contributes to ei, then ei � u � bjR + bjL. Using also ej � 0, it suffices to
prove biL(u � bjR) � bjL(u � biR). Otherwise, the leftmost subsegment contributes to ej,
so ej � biL, and it suffices to prove biL(u � bjR � bjL) � bjL(u � biR � biL). Both sufficient
conditions are equivalent to assumption (4.9).
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Theorem 4.2.12. [case (B)] Recall that u = maxfb0R; b1R; b2Rg: If none of the Bt’s is equal
to [0; u], then we may choose fi; j; kg = f0; 1; 2g such that:

0 < biL � biR = u; 0 = bjL � bjR < u; 0 � bkL � bkR � u; Bk 6= [0; u]:

Then, N(�) has at most 5 or 4 vertices, depending on whether bkL is positive or 0. In the
former case, the vertices (e0; e1) can be read of from the following set of (ei; ej ; ek) vectors:

f(bjR; 0; u� bjR); (bkR; u� bkR; 0); (bkL; u� bkL; 0); (0; u� biL; biL); (0; 0; u); g

and, in the latter case, the third and fourth vertices are replaced by (0; u; 0).

By Lemma 4.2.4, at every point ek = u � ei � ej. The theorem is established by the
following two lemmas.

Lemma 4.2.13. [case (2B)] Suppose bkL = 0 in Theorem 4.2.12 and w.l.o.g. assume bjR �
bkR. Then, N(�) has up to 4 vertices (e0; e1) which can be read of from the following set of
(ei; ej ; ek) vectors:

f(bjR; 0; u� bjR); (bkR; u� bkR; 0); (0; u; 0); (0; 0; u)g:

Proof. The last two vertices follow from Lemma 4.2.9, applied to Bi; Bk and Bi; Bj, respec-
tively. The same lemma, applied to Bj ; Bk, yields the second vertex and Corollary 4.2.10
applied to Bj ; Bk, yields the first vertex. It suffices to show that any point (ei; ej) 2

N(�) defines a counter-clockwise turn in the eiej-plane, when appended to (bjR; 0) and
(bkR; u� bkR). This is equivalent to proving

det

24 bjR 0 1

bkR u� bkR 1

ei ej 1

35 � 0, ej(bkR � bjR) � (u� bkR)(ei � bjR): (4.11)

Rightmost segment [bkR; biR = u] cannot contribute to ei, since each corresponding mixed
cell has an edge summand from Ai. If the segment lies in a j-mixed cell, then ej � u� bkR

and ei � bkR, and inequality (4.11) is proven. Otherwise, at least a subsegment contributes
to a k-mixed cell.

If this subsegment contains bkR, then it must extend at least to the next endpoint lying
left of bkR, hence to bjR or biL. In the latter case, the subsegment to the left of biL cannot
contribute to ei. Thus, in any case, ei � bjR, so (4.11) is proven.

If none of the above happens, then the subsegment contributing to ek does not contain
bkR, so the only way for the k-mixed cell to be defined is to have biL lie in (bkR; biR) and
k-mixed cell intersecting E at [biL; biR]. Then, [bkR; biL] contributes to ej, so the j-mixed
cell intersects E at [bkt; biL], where t 2 fL;Rg. If bkt = bkL, then ei = 0 and (4.11) is proven.

Otherwise, bkt = bkR. The j-mixed cell is of type I and implies that the 1-dimensional
face (biL; 2) + EkR belongs to the subdivision, see Lemma 4.2.2. The k-mixed cell is of
type II, with some edge summand Ejt � Aj, which implies that the 1-face (biL; 2) + Ejt is
in the subdivision and cannot lie to the left of the previous 1-face. Since bjR � bkR, we
have bkR = bjR, hence ei � bjR.
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Lemma 4.2.14. [case (3B)] Suppose bkL > 0 in Theorem 4.2.12. Then, N(�) has up to 5
vertices (e0; e1) which can be read of from the following set of (ei; ej ; ek) vectors:

f(bjR; 0; u� bjR); (bkR; u� bkR; 0); (bkL; u� bkL; 0); (0; u� biL; biL); (0; 0; u)g:

Proof. The last vertex follows from Lemma 4.2.9, applied to Bi; Bj. We shall prove that the
first two points are vertices. When bjR � bkR, the first point is obtained by Lemma 4.2.9
applied to Bj ; Bk, and the second one by Corollary 4.2.10 applied to Bj ; Bk, and vice versa
when bjR < bkR. The third and fourth vertices are established analogously, by considering
Bi; Bk.

Our proof shall establish inequality (4.11). If bjR � bkR, this is similar to the proof
of Lemma 4.2.13. Otherwise, bkR < bjR, and the rightmost segment [bjR; biR = u] cannot
contribute to ei. If it contributes to ek only, then ek � u � bjR so ei + ej � bjR and (4.11)
follows.

If it contributes to ej only, the union of the corresponding j-mixed cells intersect E
at a segment with an endpoint to the left of bjR, namely bkt; t 2 fL;Rg, or biL. In the
former case, ei � bkR and ej � u� bkR. In the latter case, [0; biL] contributes to ek only, so
ei = 0; ej = u� biL. In both cases, (4.11) follows readily.

Lastly, [bjR; biR] might be split into subsegments [bjR; biL]; [biL; biR], contributing to ek; ej

respectively. The corresponding cells are of type I and type II, the latter having an edge
summand from Ak. This requires the subdivision to have j-faces (biL; k)+EjR and (biL; 2)+

Ekt; t 2 fL;Rg, where the first lies to the left of the second, see Lemma 4.2.2. This cannot
happen because bkR < bjR.

Now we consider the case of polynomial parameterizations x = P0(t); y = P1(t): Let
Bi = fbiR; : : : ; biRg; i = 0; 1; be the supports of polynomials P0; P1. The following is an
immediate corollary of Theorems 4.2.11 and 4.2.12 when B2 = f0g.

Corollary 4.2.15. If P0 or P1 (or both) contain a constant term, then the implicit polygon is
the triangle with vertices (0; 0), (b1R; 0), (0; b0R). Otherwise, P0; P1 contain no constant terms,
and the implicit polygon is the quadrilateral with vertices (b1L; 0), (b1R; 0), (0; b0R), (0; b0L).

(0, b0L)

(b1L, 0) (b1R, 0)

(0, b0R)

Figure 4.8: The implicit polygon of a polynomially parameterized curve
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We use [45, prop. 15] to arrive at the following; recall that the implicit equation is
defined up to a sign. Let c 2 f�1; 1g; the coefficient of xa1m is c(�1)(1+a0n)a1mca0n1m and that
of ya0n is c(�1)a0n(1+a1m)ca1m0n .

Corollary 4.2.16. There exists c 2 f�1; 1g s.t. the coefficient of xa1m is c(�c1m)a0n and that
of ya0n is c(�c0n)a1m .

We give certain examples of polynomial parameterizations, all leading to optimal im-
plicit supports.

Example 4.2.17. Parameterization x = y = t yields implicit equation � = x � y. Our
method yields vertices (1; 0) and (0; 1) which are optimal.

Parameterization x = 2t3 � t + 1; y = t4 � 2t2 + 3 yields implicit equation � = 608 �

136x+ 569y + 168y2 � 72x2 � 32xy � 4x3 � 16x2y � x4 + 16y3. Our method yields the vertices
(0; 0); (4; 0); (0; 3) which are optimal. The degree bounds describe a larger quadrilateral with
vertices (0; 0); (4; 0); (1; 3); (0; 3). Corollary 4.2.16 predicts, for x4, coefficient (�1)16 = 1, and
for y3, coefficient (�1)1524 = �16, up to a fixed sign which equals �1 in �(x; y).

For the Fröberg-Dickenstein example [44, Exam.3.3],

x = t48 � t56 � t60 � t62 � t63; y = t32;

our method yields vertices (32; 0); (0; 48); (0; 63), which define the optimal polygon. Here the
degree bounds describe the larger quadrilateral with vertices (0; 0); (32; 0), (32; 31); (0; 63).

Parameterization x = t+ t2; y = 2t� t2 yields implicit equation � = 6x�3y+x2+2xy+y2.
Corollary 4.2.15 yields vertices (1; 0); (2; 0); (0; 2); (0; 1), which define the actual implicit
polygon. Here the degree bounds imply a larger triangle, with vertices (0; 0); (2; 0); (0; 2).
Corollary 4.2.16 predicts, for x2 and y2, coefficients (�1)6(�1)2 = 1 and (�1)6(1)2 = 1

respectively.

Example 4.2.18. [Cont’d from Example 4.1.9] For the unit circle, x = 2t/(t2 + 1); y =

(1� t2)/(t2 + 1); we have f0 = xt2 � 2t+ x; f1 = (y+ 1)t2 + (y � 1). In Lemma 4.2.9, the sets
B0 = f1g; B1 = f0; 2g; B2 = f0; 2g yield implicit vertices (2; 0); (0; 2); (0; 0), corresponding to
terms x2; y2; 1 in � and, hence, an optimal support. See Example 4.1.9 for a treatment
assuming different denominators.

Example 4.2.19. [Cont’d from Example 4.2.3] For the folium of Descartes

x =
3t2

t3 + 1
; y =

3t

t3 + 1
) � = x3 + y3 � 3xy = 0;

see Figure 4.4. Now, B0 = f2g; B1 = f1g; B2 = f0; 3g, hence this is case (A). In Theo-
rem 4.2.11, we set i = 0; j = 1; k = 2 and obtain, implicit vertices in the order stated
by the theorem: (3; 0), (0; 3), (1; 1), (0; 3) corresponding to terms x3; y3; y3; xy; x3, hence an
optimal support.

If we do not account for the same denominators, use degree bounds alone, or project
the Sylvester resultant, we obtain the additional vertex (0; 0) which leads to a support
with 5 extra points.
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Example 4.2.20.

x =
2t3 + t+ 1

t2 + 1
; y =

t4 + t3 � 1

t2 + 1
;

hence B0 = f0; 1; 3g; B1 = f0; 3; 4g; B2 = f0; 2g, so this is case (2A) with B1 = [0; u]. In
Theorem 4.2.11, we set i = 0; j = 2 and obtain the vectors (ei; ej) = (e0; e2) = (4; 0),
(0; 4), (0; 1), (0; 3), (2; 0), in the order stated by the theorem. This yields the implicit points
(e0; e1) = (4; 0), (0; 0), (0; 3), (0; 1), (2; 2), hence vertices (4; 0), (0; 0), (0; 3), (2; 2). These define
the optimal polygon because the implicit equation is

� = 59� 21x+ 110y + 52y2 � 13x2 � 48xy + 5x3 � 5x2y � x4 + 8y3 � 2x2y2 + 2x3y � 12xy2:

If we do not exploit the identical denominators and use the method for different denom-
inators, we obtain points (4; 2), (2; 3), (4; 0), (0; 0) and (0; 3) which define a polygon that
contains the implicit polygon. Taking into account the degree bound (total degree=4),
rules out points (4; 2) and (2; 3), and introduces point (1; 3), yielding a smaller polygon
that still contains the implicit polygon.

Example 4.2.21. [Cont’d from Example 4.0.3]

x =
t6 + 2t2

t7 + 1
; y =

t4 � t3

t7 + 1
;

hence B0 = f2; 6g; B1 = f3; 4g; B2 = f0; 7g, so this is case (2A) with B2 = [0; u]. In Theo-
rem 4.2.11, we set i = 0; j = 1 and obtain the implicit points (e0; e1) = (7; 0); (0; 7); (0; 3); (3; 1); (6; 0),
in the order stated by the theorem. The first 3 points follow from Lemma 4.2.9, while the
last 2 follow from Corollary 4.2.10(2) and (3) respectively, applied to B0; B1. These are
also the implicit vertices and define the actual polygon because the implicit equation is
eq. (4.1). In Figure 4.1 is shown the implicit polygon. Changing the coefficient of t2 to
�1, leads to an implicit polygon with six vertices (1; 3); (0; 4); (0; 6); (2; 5); (7; 0); (4; 1), is con-
tained in the polygon predicted by Theorem 4.2.11. This shows the importance of the
genericity condition on the coefficients of the parametric polynomials.

4.3 Conclusion and Further work

In conclusion, we have proven that in all cases only the extremal terms matter, both in
determining the implicit polygon as well as in ensuring the genericity hypothesis on the
coefficients.

It is possible to use our results in deciding which polygons can appear as Newton
polygons of plane curves, and which parameterization is possible in the generic case.
In particular, Corollary 4.2.15 and Corollary 4.2.16 imply that the Newton polygon of
polynomial curves always has one vertex on each axis. These vertices define the edge
that equals the polygon’s upper hull in direction (1; 1). The rest of the edges form the
lower hull. If the implicit polygon is a segment, then the implicit polygon cannot contain
interior points. Similar results hold for curves parameterized by Laurent polynomials.

We have shown that the case of common denominators reduces to a particular system
of 3 bivariate polynomials, where only linear liftings matter. An interesting open question
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is to examine to which systems of general dimension this observation holds, since it
simplifies the enumeration of mixed subdivisions and, hence, of the extreme resultant
monomials. In particular, we may ask whether this holds whenever the Newton polytopes
are pyramids, or for systems with separated variables.

Another interesting question is whether we can extend our methods to the implicit
polytope of a rational surface. Lastly, by approximating the given polygon by one of the
polygons described above, one might formulate a question of approximate parameteriza-
tion.
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