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Mixed Subdivisions

e ThesupportA(f) of a polynomialf is the set of the exponent vectors of its monomials with
nonzero coefficients. Thdewton polytopeV(f) of f is the convex hull of its support.

elet fy,..., fn, ben + 1 Laurent polynomials irC[z1, . .., 7, with symbolic coefficients; ;
and Newton polytopes), ..., P, C R". Suppose’® = Fy+...+ P, C R", isan-dimensional
convex polytope.

e A tight mixed subdivisionof P, is a collection ofn-dimensional convex polytopes, called
cells st.:

1. They form a polyhedral complex that partitioARsand
2. Every cellR 1s a Minkowski sum of faces of the polytopés

R=Fy+--+F, dim(R)=dim(Fy)+---+dim(Fy)=n,

e Definition. A cell R is called:-mixedif it is a Minkowski sum ofn edgest’; C P; and one
vertexv, € F;:
R=FEy+:---4+v;,+ -+ Ep.

e A mixed subdivision is called regular if it can be obtainedhirthe projection of the lower hull
of the Minkowski sum of lifted polytope®; := {(p;,w;(p;)) | p; € F;}. If w; is generic, the
Induced mixed subdivision is tight.

e Two mixed subdivisions are equivalent if they have the same&dcells. We call the equiva-

lence classemixed cell configurations

Mixed and not mixed subdivisions of the Minkowski sum of twahgles.

The Newton Polytope of the Sparse Resultant

e Definition.  The toric or sparse resulta® of polynomialsf;, « = 0,...,n, IS the unigue
(up to sign) irreducible polynomial iZ|c; ;| which vanishes iff thef; have a common root in
(C)".

e A monomial of the sparse resultant is callextremelf its exponent vector is a vertex of the
Newton polytopeV (R) of the resultant.

e Theorem. (Sturmfels) For every generic lifting functian, we obtain an extreme monomial

of R, of the form .
inity,(R) = ¢ H H ngi(R)’
i=0 R
where the second product is overakixed cellsR of the regular tight mixed subdivision of
P =>""yF; induced byw andc; ,. is the coefficient of the monomial gf corresponding to
the vertexv;. The constant is +1 or -1.

e Corollary. There exists a 1-1 and onto correspondence between the extrenmnials and
the mixed cell configurations.

The Cayley Trick

e Given supports, . .., A,, the Cayley embedding introduces a new point set

n
C=k(Ay, Al,...,Ap) = U<AZ x {e;}) c R
1=0

wheree; are an affine basis ®". The dimension of the convex hull &f is d := 2n.
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The image via: of two triangles.

e Theorem. (The Cayley Trick) There exists a bijection between the tightileagmixed subdi-
visions of the Minkowski sun® and the regular triangulations 6f.

Enumeration of Mixed Cell Configurations

e Regular triangulations af’ are in bijection to the vertices of the so callsgtondary polytope
>,(C') of C'. Two vertices in(C') are connected by an edge if they can be obtained from each

other by a local modification callaaistellar flip.
[/ [/

Secondary polytope of a quadrilateral.

e One can enumerate all regular triangulationgoby computing a spanning tree of the sec-
ondary polytope(C'). The algorithm proposed by Imai et. al.[2003] uses reverselsdar
low memory usage.

e \We allow bistellar flips only on suitable circuits, thus obtampia regular triangulation corre-
sponding to a new mixed cell configuration.

e The suitable circuits are characterized by cardinality (oddeseah circuits).

dim(Z)=1 dim(Z2)=2 dim(Z)=1

Odd circuits (left and right figures) and a non suitable circuit.

An Example

o fo=co1a® + coa’, fi = c1,18° + 1 p3% + ¢ 32° € Clal.

e The supportsiy, A, the point set” = k(Ay, A;) and the enumeration of the regular triangu-
lations ofC' corresponding to the mixed cell configurationsfo= F) + P, are shown below.
The circuits on which we perform bistellar flips are depiateded.
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An Application to Implicitization

Input: Parametric representation of a hypersurfgce gég, i=0,...,n, ged(BP(t), Q) = 1.
Output: A superset of the support of the implicit equation.

1. Definef; = z;Q(t)— P;(t) as polynomials int: f; = > ¢;;t% € Clt], ¢; ; generic coefficients.

2. Compute the extreme monomials of the resultanf; afsing our algorithm. Then compute a
superset of the support of the resultant.

3. Transform the set of monomials of the foﬂF{]cZﬁj, to a set of monomials in the;. This Is
equivalent to projecting the Newton polytope of the resultdnf; onto a 2 or 3-dimensional
subspacer( = 2 or 3).

Future Work

e Enumerate only the vertices of the secondary polytap€) that correspond to mixed cell
configurations lying on theilhouetteof N(R) with respect to a canonical projectian

e Equivalently: characterize the circuits that lead to a nextexeon the silhouette.

(o

The projection of step 3 of the implicitization algorithm.




