
Future Work

• Enumerate only the vertices of the secondary polytopeΣ(C) that correspond to mixed cell
configurations lying on thesilhouetteof N(R) with respect to a canonical projectionπ.

• Equivalently: characterize the circuits that lead to a new vertex on the silhouette.
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The projection of step 3 of the implicitization algorithm.

An Application to Implicitization

Input: Parametric representation of a hypersurfacexi =
Pi(t)
Q(t)

, i = 0, . . . , n, gcd(Pi(t), Q(t)) = 1.
Output: A superset of the support of the implicit equation.

1. Definefi = xiQ(t)−Pi(t) as polynomials int: fi =
∑

cijt
aij ∈ C[t], ci,j generic coefficients.

2. Compute the extreme monomials of the resultant offi using our algorithm. Then compute a
superset of the support of the resultant.

3. Transform the set of monomials of the form
∏

c
eij

ij , to a set of monomials in thexi. This is
equivalent to projecting the Newton polytope of the resultant of fi onto a 2 or 3-dimensional
subspace (n = 2 or 3).

An Example

• f0 = c0,1x
a + c0,2x

b, f1 = c1,1x
c + c1,2x

d + c1,3x
e ∈ C[x].

• The supportsA0, A1, the point setC = κ(A0, A1) and the enumeration of the regular triangu-
lations ofC corresponding to the mixed cell configurations ofP = P0 + P1, are shown below.
The circuits on which we perform bistellar flips are depictedin red.
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Enumeration of Mixed Cell Configurations

• Regular triangulations ofC are in bijection to the vertices of the so calledsecondary polytope
Σ(C) of C. Two vertices inΣ(C) are connected by an edge if they can be obtained from each
other by a local modification calledbistellar flip.

Secondary polytope of a quadrilateral.

• One can enumerate all regular triangulations ofC by computing a spanning tree of the sec-
ondary polytopeΣ(C). The algorithm proposed by Imai et. al.[2003] uses reverse search for
low memory usage.

• We allow bistellar flips only on suitable circuits, thus obtaining a regular triangulation corre-
sponding to a new mixed cell configuration.

• The suitable circuits are characterized by cardinality (odd andeven circuits).
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Odd circuits (left and right figures) and a non suitable circuit.

The Cayley Trick

• Given supportsA0, . . . , An, the Cayley embeddingκ introduces a new point set

C := κ (A0, A1, . . . , An) =

n⋃

i=0

(Ai × {ei}) ⊂ R
2n+1,

whereei are an affine basis ofRn. The dimension of the convex hull ofC is d := 2n.
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The image viaκ of two triangles.

• Theorem. (The Cayley Trick) There exists a bijection between the tight regular mixed subdi-
visions of the Minkowski sumP and the regular triangulations ofC.

The Newton Polytope of the Sparse Resultant

• Definition. The toric or sparse resultantR of polynomialsfi, i = 0, . . . , n, is the unique
(up to sign) irreducible polynomial inZ[ci,j] which vanishes iff thefi have a common root in
(C∗)n.

• A monomial of the sparse resultant is calledextremeif its exponent vector is a vertex of the
Newton polytopeN(R) of the resultant.

• Theorem. (Sturmfels) For every generic lifting functionω, we obtain an extreme monomial
of R, of the form

initω(R) = c ·

n∏

i=0

∏

R

c
Vol(R)
i,vi

,

where the second product is over alli-mixed cellsR of the regular tight mixed subdivision of
P =

∑n
i=0 Pi, induced byω andci,vi

is the coefficient of the monomial offi corresponding to
the vertexvi. The constantc is +1 or -1.

• Corollary. There exists a 1-1 and onto correspondence between the extrememonomials and
the mixed cell configurations.

Mixed Subdivisions

• ThesupportA(f ) of a polynomialf is the set of the exponent vectors of its monomials with
nonzero coefficients. TheNewton polytopeN(f ) of f is the convex hull of its support.

• Let f0, . . . , fn, ben + 1 Laurent polynomials inC[x1, . . . , xn] with symbolic coefficientsci,j
and Newton polytopesP0, . . . , Pn ⊂ R

n. SupposeP = P0+. . .+Pn ⊂ R
n, is an-dimensional

convex polytope.

• A tight mixed subdivisionof P , is a collection ofn-dimensional convex polytopesR, called
cells, st.:

1. They form a polyhedral complex that partitionsP and
2. Every cellR is a Minkowski sum of faces of the polytopesPi:

R = F0 + · · · + Fn, dim(R) = dim(F0) + · · · + dim(Fn) = n,

• Definition. A cell R is calledi-mixed if it is a Minkowski sum ofn edgesEj ⊂ Pj and one
vertexvi ∈ Pi:

R = E0 + · · · + vi + · · · + En.

• A mixed subdivision is called regular if it can be obtained from the projection of the lower hull
of the Minkowski sum of lifted polytopeŝPi := {(pi, ωi(pi)) | pi ∈ Pi}. If ωi is generic, the
induced mixed subdivision is tight.

• Two mixed subdivisions are equivalent if they have the same mixed cells. We call the equiva-
lence classesmixed cell configurations.
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Mixed and not mixed subdivisions of the Minkowski sum of two triangles.

Ioannis Z. Emiris, Christos Konaxis
Department of Informatics and Telecommunications,
University of Athens

Computing the Newton Polytope of the Resultant


