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The price of anarchy

Price of anarchy

Equilibria (Nash, correlated, etc) optimize the utility of each player
individually.

They don’t optimize globally

Price of Anarchy → How suboptimal are the equilibria?

Price of anarchy (PoA) - worst equilibrium

Price of stability (PoS) - best equilibrium



Examples - Price of anarchy
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Price of anarchy

The PoA of the Pigou example (on the left) is 4/3

The PoA of the congestion game (on the right) is 2.



Examples - Price of stability
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Price of stability

The PoS of the Pigou example (on the left) is 4/3

The PoS of the congestion game (on the right) is 1.



Atomic congestion games

Definition (Atomic congestion game)

n players

m facilities (or edges)

Each facility e has a cost or latency function ℓe : When k players use
it, the cost is ℓe(k).

Strategy is a set of facilities (or a path)

For a strategy profile the cost of a player is the sum of the cost of the
facilities in his strategy.



Atomic congestion games

Cost of a player

Let A = (A1, . . . ,An) be strategies of the n players.

ne(A) = |{i : e ∈ Ai}| denotes the number of players who use facility
e

The cost of player i is

ci (A) =
∑

e∈Ai

ℓe(ne(A))

The PoA is

maxA: equilibrium

∑

i ci (A)

minP
∑

i ci (P)

The PoS is

minA: equilibrium

∑

i ci (A)

minP
∑

i ci (P)



Non-atomic congestion games

Definition (Non-atomic congestion game)

It is the limit case of atomic games, when the number of players
tends to infinity

It is usually defined on a network

Fixed rates of flow rij between pairs of nodes



PoA and PoS

PoA and PoS of a class of games: What is the maximum PoA and PoS for
the games in the class?

The PoA and PoS are equal for non-atomic congestion games: There
is a unique Nash equilibrium

They may differ in atomic games (many equilibria)



Congestion games - Differences
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Atomic Congestion games: The number of players is finite

Non-atomic congestion games: The number of players is infinite

Major difference: In atomic games, when a player switches strategy it
changes the cost of the facilities.



References

Non-atomic congestion games have been studied for decades

The atomic congestion games were introduced by Rosenthal in 1973

The PoA of was introduced in 1999 (K-Papadimitriou), for simple
weighted atomic games

The PoA of non-atomic congestion games was first studied by
Roughgarden and Tardos in 2000

The PoS was first studied by Anshelevich et al in 2003 for atomic
games with decreasing latency functions.

The PoA and PoS of atomic games for lineal latencies was resolved in
2005 (Christodoulou-K, Awerbuch-Azar-Epstein)



Approximate Nash equilibria

A set of strategies is an ǫ-Nash equilibrium when no player can gain
more than ǫ by switching to another strategy

Additive: ci (A) ≤ ci (A
′

i ,A−i ) + ǫ

Multiplicative ci (A) ≤ (1 + ǫ)ci (A
′

i ,A−i )



Approximate Nash equilibria

Exact Nash equilibria for arbitrary games is PPAD-complete
(Daskalakis-Goldberg-Papadimitriou, Chen-Deng)

Approximate Nash equilibria is in P for ǫ = 0.33 and PPAD-complete
for ǫ = 1/n. Major open open.



Main questions

The PoA (as a function of ǫ) increases. How?

The PoS decreases. How?

By answering these questions we also

recapture almost all known results about the PoA and PoS of atomic
and non-atomic congestion games

shed a new light on them



The price of anarchy

Theorem (No-atomic PoA, polynomial latencies)

{

(1 + ǫ)p+1 for ǫ ≥ (p + 1)1/p − 1

(1/(1 + ǫ)− p/(p + 1)1+1/p)−1 otherwise

Theorem (Atomic PoA)

(1 + ǫ)
(

(z + 1)2p+1 − zp+1 (z + 2)p
)

(z + 1)p+1 − (1 + ǫ) (z + 2)p + (1 + ǫ) (z + 1)p − zp+1

z is the maximum integer with zp+1

(z+1)p ≤ 1 + ǫ.



The price of anarchy
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Non-atomic PoA vs Atomic PoA
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PoS
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PoS - Linear atomic games

Figure: The upper and lower bound of the PoS. The lower line is the Pigou
bound 4

(1+ǫ)(3−ǫ) .



Proof for non-atomic PoA

How to relate an ǫ-Nash flow f to some other feasible flow f ∗?

f ∗ is not necessarily optimal

Theorem

f ǫ− Nash

f ∗ feasible

}

⇒
∑

e∈E

ℓe(fe)fe ≤ (1 + ǫ) ·
∑

e∈E

ℓe(fe)f
∗

e

Proof.

ǫ− Nash ⇒
∑

e∈p

ℓe(fe) ≤ (1 + ǫ) ·
∑

e∈p′

ℓe(fe)

Sum this over all paths p and p′, weighted by fp · fp′ .



Non-atomic PoA (cont.)

To bound the PoA, the only game-theoretic fact we use is the inequality

∑

e∈E

ℓe(fe)fe ≤ (1 + ǫ) ·
∑

e∈E

ℓe(fe)f
∗

e

of the previous theorem!

The rest is based on two ideas:

ignore the outer sum (the topology of the network)

use an appropriate arithmetic inequality



Non-atomic PoA (cont.)

ℓe(fe)fe ≤ (1 + ǫ)ℓe(fe)f
∗

e

We want to bound ℓe(fe)f
∗

e by a linear combination of ℓe(fe)fe and
ℓe(f

∗

e )f
∗

e (the cost of the flows f and f ∗).

We ask: For which α and β:

ℓe(fe)f
∗

e ≤ α · ℓe(fe)fe + β · ℓe(f
∗

e )f
∗

e

Among all pairs that satisfy the inequality, minimize

(1 + ǫ)β

1− (1 + ǫ)α



Non-atomic PoA (cont.)

For polynomials of degree p, le(fe) = f
p
e :

We want to find α and β that satisfy

f pe f
∗

e ≤ αf p+1
e + βf ∗e

p+1

for all nonnegative real values fe and f ∗e , and minimize

(1 + ǫ)β

1− (1 + ǫ)α

The solution to this program (with parameter ǫ) has different solutions for
small ǫ and large ǫ.

ǫ ≥ (1 + p)1/p − 1 α =
p

(p + 1)(1 + ǫ)
β = (1 + ǫ)p PoA = (1 + ǫ)p+1

ǫ ≤ (1 + p)1/p − 1 α =
p

(p + 1)1+1/p
β = 1 PoA = . . .



Non-atomic PoA (cont.)

For ǫ = 0, we recover the known results about the exact Nash equilibria.
For example, for ǫ = 0 and p = 1, we get

α =
1

4
β = 1 PoA =

4

3
,

the influential result of Roughgarden and Tardos.
This also shows that the PoA is (almost) independent of the network
topology.



Non-atomic PoA - Lower bounds

The fact that the price of anarchy is qualitatively different for small and
large ǫ is reflected in the lower bounds too.
For large ǫ, the lower bound is given by the network

1
2m + k

isi

i + m + 1
ti

with m/k ≈ ǫ. The optimal routes counterclockwise and the equilibrium
clockwise.



Non-atomic PoA - Lower bounds

For small ǫ, the situation is more revealing.
The lower bound for exact equilibria is given by the Pigou network:

s t

l(f ) = 1 + ǫ

l(f ) = f

But this gives a lower bound of

4

(1 + ǫ)(3− ǫ)

This is exact only for ǫ = 1!



Non-atomic PoA - Lower bounds

In fact, a more complicated lower bound is needed for ǫ > 0.
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γ is a constant (which depends on ǫ).



How to bound PoS?

Trying to apply the same approach directly to the PoS fails.

We instead use a trick: Instead of bounding the PoS, we bound the
PoA of a subclass of strategies. For this to work we need:

The subclass of strategies is guaranteed to contain an equilibrium
It is not very “large”, so that we can get tight results

Which subclass of strategies? The ones that have minimum

potential.



Potential of atomic games

The potential of an atomic congestion game is defined by

Φe(k) =
k
∑

t=0

ℓe(t)

Φ(A) =
∑

e∈E

Φe(ne(A))

Theorem

If f minimizes the potential then f is a Nash equilibrium.



Potential of non-atomic games

The potential of a non-atomic congestion game is defined a

Φe(fe) =

∫ fe

0
ℓe(t) dt

Φ(f ) =
∑

e∈E

Φe(fe)

Theorem

If f minimizes the potential then f is a Nash equilibrium.



Using the potential to bound the PoS

For exact equilibria, we can bound the PoS by bounding the PoA of
the strategies that minimize the potential.

This is the method implicitly or explicitly of almost all proofs about
the PoS.

But what is the potential for approximate equilibria?



Generalizing the potential - Non-atomic

games

Let φe(fe) be a function which satisfy

le(fe)

(1 + ǫ)
≤ φe(fe) ≤ le(fe),

For ǫ = 0, φe = ℓe .
Define Φe(fe) =

∫ fe
0 φe(t) dt, and Φ(f ) =

∑

e∈E Φe(fe).

Theorem

If a flow f minimizes the potential function Φ(f ), it is an ǫ-Nash
equilibrium.

Furthermore, when the latency functions are nondecreasing, for any other

flow f ′:
∑

e∈E

φe(fe)fe ≤
∑

e∈E

φe(fe)f
′

e



Bounding the PoS - Non-atomic games

The proof has the same structure with the proof about the PoA.

Start with the inequality

∑

e∈E

φe(fe)fe ≤
∑

e∈E

φe(fe)f
′

e

Ignore the outer sum (the topology of the network)

Decide what potential φe to use

Determine the appropriate arithmetical lemma and apply it.



Bounding the PoS - Non-atomic games

When the latency functions are polynomials of degree p

ℓe(fe) =

p
∑

k=0

ae,k f
k
e

we need to decide what potential to use. We let

φe(fe) =

p
∑

k=0

ζkae,k f
k
e

for some ζk that satisfies 1
1+ǫ ≤ ζk ≤ 1

Arithmetical lemma

f ke f
′

e ≤ αk f
k+1
e + βk f

′

e
k+1

where αk
kβk = kk/(k + 1)k+1.



The PoS of non-atomic games

By selecting appropriate the parameters αk , βk , and ζk , we get the bound
of the PoS.
It turns out that the answer is the PoS of the Pigou network.

s t

l(f ) = 1 + ǫ

l(f ) = f p

Thus the Pigou network is the tight example for the PoS, not the PoA.



Atomic games

Exactly the same techniques work for atomic games

However, the proofs for the atomic games are technically more
difficult.

In fact, we need 2 types of inequalities for the PoS of atomic games:

A local one (as in the case of the PoA)
A global one: That the equilibrium has minimum potential (this is not
necessary for the non-atomic case)

The exact PoS stability is still open



Highlights

Atomic games harder than non-atomic games

PoS harder than PoA

The results remain the same for mixed or correlated equilibria (we
simply ignore the probabilities as we ignore the topology of the game).

PoS drops to 1 when ǫ = p.



Open problems about the PoS

Determine the exact PoS for polynomial latencies when p > 1.

Determine the approximate PoS for polynomial latencies (even for
p = 1 is still open)

Determine the PoS for decreasing latency functions.

Determine the PoS in undirected graphs.

In particular, it is still open what is the PoS for undirected graphs with
latencies ℓe(k) = 1/k .
This was posed as an open problem in the first paper about the PoS
(Anshelevich et al)!



Thank you


