
N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 1318–1325, 2004.
© IFIP International Federation for Information Processing 2004

Metadata Design for Introspection-Capable
Reconfigurable Systems

Vangelis Gazis, Nancy Alonistioti, and Lazaros Merakos

Communication Networks Laboratory, Department of Informatics & Telecommunications,
University of Athens, 157 84, Athens, Greece,

{gazis, nancy, merakos}@di.uoa.gr

Abstract. Global vision consensus on the next generation of wireless mobile
communications, broadly termed 4G, sketches a hybrid infrastructure,
comprising different wireless access systems in a complementary manner and
vested with reconfiguration capabilities that facilitate a flexible and dynamic
adaptation of the wireless infrastructure to meet the ever-changing service
requirements. We identify essential metadata classes to support the
reconfiguration of communication systems, introducing a respective object-
oriented UML model. We elaborate on the design rationale that underpins the
UML model, describing its classes and associations and discussing the possible
metadata representation technologies and encoding formats. We proceed to
identify existing metadata standards that are candidate for the representation of
reconfiguration metadata, discussing and evaluating their suitability.
Ultimately, we present a developed reconfiguration metadata description
vocabulary and illustrate its application with an example.

1 Introduction

Over the last decade, the mobile industry has developed into a breeding ground for
innovative wireless access technologies. In addition to second (2G) and third (3G)
generation mobile communication systems, broadband WLAN type systems such as
HIPERLAN/2, IEEE 802.11 and broadcast systems like DAB and DVB-T are
becoming available and short range connectivity systems like Bluetooth are being
developed rapidly. Considering that the observed proliferation of wireless access
technologies is likely to persist and that future mobile devices will need to support
multiple dissimilar wireless access standards, the mobile communication industry has
been focusing on the reconfigurability concept as a technological enabler of future
(multi-standard) mobile systems and radio resource management across different
wireless standards. The now widely accepted vision for reconfigurable systems and
networks sketches a seamless ubiquitous computing and communication
infrastructure where mobile and immobile devices may proactively and/or reactively
adapt their own communication capabilities by dynamically discovering, selecting,
downloading and activating software implementations for the communication
personalities they wish to assume in any given time instance.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 1800 dpi
 Downsampling für Bilder über: 2700 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Nein

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages false
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Average
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Average
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 1800
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Metadata Design for Introspection-Capable Reconfigurable Systems 1319

The rest of the paper proceeds as follows: The next section highlights the
fundamental concepts of reconfiguration, introducing key definitions and providing
an overview of current approaches as well as the related standardization status. Next
we focus in the realm of each individual reconfigurable system and introduce a
generic object-oriented UML model that facilitates discovery of reconfiguration
options (i.e., the reconfiguration space) to support the application of reconfiguration
within and across communication standards. We go on to elaborate on the design
rationale of the UML model, followed by a discussion and brief evaluation of
instrumentation options. Finally, we conclude the paper and highlight directions for
future work.

2 Reconfiguration – Basic Definitions and Standardization Issues

In general, the term reconfiguration refers to the (dynamic) instantiation,
parameterization and inter-connection of protocols (i.e., communication-related
functional entities) within the user, control and management planes of a collection of
operating communication systems in a manageable, consistency-preserving and –
preferably – transparent fashion. For the rest of the paper, the term reconfiguration
will refer to the dynamic adaptation of implementation mappings of internal
(communication) equipment components [1] that does not compromise their
consistency or their ability to provide their services. Leveraging the work of from
early software radio projects in the military domain [2], SDR Forum has pioneered in
exploring reconfiguration in the domain of wireless communications. However, being
the vanguard of reconfiguration developments and the first to define a software radio
architecture [3], seems to have come at the expense of a rather restricted view on
reconfiguration that focuses primarily on the radio domain (e.g., RF processing,
down-conversion, IF processing, A/D conversion, etc) [4]. Soon it was realized that,
restricting the concept of reconfiguration solely to radio-dependent communication
functionality under control of mobile network operators or equipment manufacturers
only, would severely limit its application domain and undercut its beneficial impact
on the long run. Support grew on the viewpoint that the full potential of
reconfiguration would best be served by opening up reconfigurable device capabilities
to the wider service provision process and leveraging technical expertise in third-
parties (e.g., software developers) [5], creating an open market for (software)
implementations of reconfigurable equipment components that will propel the
development of universally reconfigurable mobile systems.

The (now joint) Parlay/OSA standardization initiative has been a major step
forward towards the openness of the mobile value chain and the participation of
multiple players in mobile service provision. However, it did not anticipate the case of
reconfigurable systems; Parlay/OSA consider the network infrastructure as immutable
and specify logical interfaces for invoking the particular functionality it supports.
Although not precluded by their logical architecture, the case of reconfigurable
wireless networks and mobile systems capable of dynamically adapting their internal
instrumentation is beyond the scope of the current standard which does not include
reconfiguration-supporting interfaces. This shortcoming has been identified in [6]

1320 V. Gazis, N. Alonistioti, and L. Merakos

along with the need for appropriate Parlay/OSA extensions to support third-party
driven reconfiguration actions upon the mobile network infrastructure.

Another paramount issue not yet identified in the literature that should be
addressed by standardization, and which is explicitly identified here, concerns the
specification of an appropriate object model for reconfigurable communication
systems. Architectures supporting reconfiguration will require a suitable object-
oriented information model to capture and express the internal organization and
structure of reconfigurable equipment in an abstract, implementation neutral way that
effectively provides the unified view necessary to start specifying a generic
reconfiguration capability. Through object orientation and inheritance, common parts
can be factored out and reused as an abstract foundation model from which wholly
different instrumentation inherit, thereby allowing a fine-grain mix of standardized
behavior with innovative, performance-focused, proprietary instrumentations. Object
orientation does not necessarily restrict the granularity of structural analysis to
individual classes and objects; use of more coarse-grain analysis modules (i.e.,
components) is also possible (and to a large extent desirable).

3 Designing for a Generic Reconfiguration Capability

Reconfigurable systems must be adaptable at two different levels: the base level that
includes the (software-based) instrumentations of communication-related
functionality and the so-called meta-level comprising the (abstract) specifications of
that functionality. That will allow development of architectures supporting adaptation
between different (software-based) instrumentations of communication personality
and across disparate communication personalities (e.g., ad-hoc, cellular, broadcast,
etc) in a uniform way. From that viewpoint, generic support structures like
architectural frameworks for flexibly expressing and circulating reconfiguration-
related metadata become of paramount importance. The next section introduces a
UML model designed to provide suitable metadata abstractions for the development
of manageable reconfigurable communication systems in beyond 3G mobile
networks.

4 Modeling Reconfiguration Metadata

4.1 Metadata Classes

Product, the root abstract class in our model, specifies a ‘marketable’ item (i.e., a
resource that may constitute the subject of an exchange in an economic system),
which can be identified through a textually represented name. It includes a single
(URI-convertible) URL attribute that provides a unique identifier of each individual
product instance as a Web-identifiable resource, thereby streamlining it to the
Semantic Web model and its Resource Description Framework (RDF) [7].

Metadata Design for Introspection-Capable Reconfigurable Systems 1321

RPM CABDEB JAR

Iterator

hasNext()
next()

<<Interface>>

Product

name : String
url : String

getRequiredServiceIterator() : Iterator
getProvidedServiceIterator() : Iterator

Service

descriptor : String

getDescriptorClass() : String
getDescriptor() : String
getRequiringProductIterator() : Iterator
getProvidingProductIterator() : Iterator

0..n

0..n

+requiredByProduct

0..n

+requiredService

0..n

requ irement

0..n

1..n

+providedByProduct

0..n

+providedService

1..n

real izati on

St andard

getSpecificationIterator() : Iterator

DeploymentArtifact

download() : void
install() : void
uninstall() : void

Specification

author : String
version : String
release : String
descript ion : String
summary : S tring

getRequir ingImplementationIterator() : It erator
getProvidingImplementat ionIt erator() : Iterator

0..n

0..n

+referencedSpecifications

0..n

+referencedByStandards 0..n

Implementation

getRequiredSpecificat ionIterator() : Iterator
getProvidedSpecificationIterator() : Iterator
getRequiredImplementationIterator() : Iterator
getDeploy mentArtifactIterator() : Iterator

1..n -deploymentArtifact1..n

0..n0..n

+providedByImplementation

0..n

+providedSpecification

0..n realizationCertificate

0..n
0..n

+requiredByImplementation 0..n
+requi redSpecification

0..n

requi rement Cert if icate

0..n

0.. n

+requiredOtherImplementation

0..n

+requiredByOtherImplementation
0.. n

Thing

getClassName() : St ri ng

requirementImplementation

Fig. 1. The object-oriented information model for reconfiguration metadata.

Service is a subclass of Product that refers to some precisely defined functionality
and has a textual description property. It is meant to provide an abstract yet
unambiguous placeholder for a service’s definition accompanied by a textual
descriptor that might be associated with arbitrary formal semantics, provided those
semantics support a textual representation. It is not particularly important whether a
unique formal format is employed for the service descriptor, since generic adaptation
mechanisms may be used to identify the appropriate handler for each available
format. However, it is of paramount importance that the service descriptor identifies
the service unambiguously, an overlooked issue that is further elaborated on in the
subsection entitled “Metadata encoding”.

Specification is a subclass of Product with additional (textual) attributes, namely
author, version, release, description and summary. Specification provides an abstract
class for commonly representing behavioral and/or functional specifications (e.g., the
specification of a authentication protocol). It is meant to provide a first-class
abstraction for standards developed and published by authoritative bodies, such as the
Universal Mobile Telecommunication System (UMTS) specifications developed and
published by the 3rd Generation Partnership Project (3GPP). Currently, such
specifications are recorded in a documentation system in various human-readable
formats, such as the IETF Request For Comments (RFC) textual system. The lack of a
common (machine-interpretable) format for specifications published by different
authoritative bodies rules out the possibility of having those specifications parsed,
understood and exploited by an intelligent agent in control of reconfigurable
communication capabilities.

1322 V. Gazis, N. Alonistioti, and L. Merakos

Standard is a subclass of specification designed to provide a generic container for
related specification instances, in order to facilitate modeling of specifications that
reference (as opposed to specialize) other specifications, possibly published by a
different authoritative body (to the one that publishes the standard). The 3GPP
specification of the IP Multimedia Subsystem (IMS) in UMTS is an example of a
standard that leverages specifications developed by a different authoritative body (i.e.,
the IETF SIP specification). We stress that, through the Specification and Standard
classes, inheritance-based as well as composition-based modeling of actual
communication standards is supported, thereby rendering the full spectrum of
modeling options available to the designer [8].

Implementation is a subclass of Product that refers to a real-life (software) artifact,
which may realize multiple specifications. It is meant to model the real-life software
instrumentation of a specification but may also be used to represent software-based
functionality that is not associated to a particular specification (e.g., utility
functionality). Given that an implementation may be developed in different
programming languages and supporting technologies (e.g., C, C++, Java, .NET) and
packaged in various deployment formats (e.g., Microsoft CAB, RedHat Linux RPM),
modeling of implementations should provide unified support for different deployment
artifacts through a common base class, such as the DeploymentArtifact abstract class
included in Fig. 1.

4.2 Metadata Associations

A particular specification may depend on the availability of multiple services much as
it may render multiple services. Similarly, a particular implementation, in addition to
the set of services that its associated specifications collectively require and realize,
may depend on the availability of additional services to function properly and may
realize additional services during operation. Because they apply to Specification and
Implementation instances alike, these concerns are expressed through a pair of
associations between the Product and Service classes named requirement and
realization, respectively.

Access to the aforementioned associations is supported based on an application of
the Iterator design pattern [8] that abstracts the implementation details of the
association from client entities. An agent may navigate these associations through an
Iterator instance returned by any of the (getRequiredServiceIterator, getPro-
videdServiceIterator) and (getRequiringProductIterator, getProvidingPro-ductIterator)
method pairs of the Product and Service classes, respectively, rendering client
implementations dependent solely on the Iterator interface, while the supporting
implementation of the navigation facility may vary arbitrarily from a local database
row set to an hyperlinked knowledgebase distributed over the Internet or any suitable
combination. Finally, an implementation may de dependent upon the availability of
other implementations to function properly (e.g., object libraries), a concern
expressed through the requirementImplementation association.

Regarding the relation between Specification and Implementation instances, we
should note that it is not mandatory that an Implementation instance be associated to a

Metadata Design for Introspection-Capable Reconfigurable Systems 1323

Specification instance; it might as well be an implementation of utility functionality
not subject to standardization yet required by other implementations. Thus, the case of
an Implementation unassociated to a Specification instance is considered valid. In the
typical case, however, the association between a Specification and an Implementation
is expressed via the realizationCertificate and requirementCertificate named
(multilateral) associations. The former signifies that the Implementation instance
realizes the behavior of the set of Specification instances, while the latter marks the
dependence of the Implementation instance upon a set of Specification instances.
Agents may navigate the realizationCertificate and requirementCertificate
associations through an Iterator instance returned by any of the
(getRequiredSpecificationIterator, getRequiringImplementationIterator) and (getPro-
videdSpecificationIterator, getProvidingImplementationIterator) method of the
Implementation and Specification classes, respectively.

4.3 Metadata Encoding

The aforementioned UML model provides a common information model for
expressing reconfiguration metadata that may be exploited by a reconfiguration
management process. Considering that reconfiguration metadata may be subject to
processing and exchange in different administrative domains, it should be represented
in an instrumentation-independent format that ensures interoperability. Two
recommendations of the World-Wide-Web Consortium, XML [9] and RDF [10] are
considered as prime candidates for this task. In general, XML is easier to use and
manipulate, while RDF has greater capabilities for expressing semantically rich
information. However, only RDF is capable of unambiguous semantic representation,
since there is an explicit unique interpretation of any RDF data, based on the RDF
Model Theory [11]. Consequently, a certain piece of information can be represented
in RDF in exactly one unique way, while in XML many different representations with
the same meaning are possible [12]. This advantage of RDF comes at the cost of
being more verbose and significantly more complex, making it less attractive for the
vast majority of users and developers [13].

In our approach, all reconfiguration metadata are represented in RDF, while the
vocabulary employed by the RDF representation is a combination of W3C-standard
RDF vocabulary, industry-used vocabularies and an extension vocabulary defined in
an RDF Schema document, all using XML as a serialization format. An extension
vocabulary named RCM that is derived from an isomorphic mapping [14] of the
aforementioned UML model to an RDF Schema document has been developed and
used to describe the UML model classes and associations. To ease prototype
implementation, we chose the widely used the Red Hat Package Manager (RPM)
vocabulary [15], a superset of the Linux Standard Base Specification [16], for
representing the metadata of the DeploymentArtifact class. Reconfiguration metadata
are represented using the RCM extension vocabulary, which, thanks to the namespace
extensibility mechanism of RDF, provides also for integration to the standard RDF
and RPM vocabularies. The text below serves as an illustrative example of our RDF
Schema applied for the case of the 3GPP GTP specification, which is dependent upon
an ITU service identified via its RDF URI.

1324 V. Gazis, N. Alonistioti, and L. Merakos

The primary reason for preferring RDF over XML for metadata representation is
that RDF has been specifically designed for unambiguous representation. Considering
that RDF models can be serialized in XML, RDF provides an ideal instrument for
unambiguously representing reconfiguration metadata whilst supporting their
serialization into an interoperable, machine-interpretable textual format that can be
widely circulated across different administrative domains without alteration of
semantics. Naturally, the higher complexity associated with RDF is the price to pay
for semantic univocality – although we feel that other significant benefits, such as
seamless plug-in to the Semantic Web infrastructure and laying the foundation for a
reconfiguration knowledge base upon which to build self-aware, cognitive
communication systems, offset the cost in the long run.

5 Conclusions

In the forthcoming future, mobile communication devices will be vested with a
cognitive introspective intelligence that monitors its operational context as well as its
own instrumentation, adapting it whenever and wherever it deems necessary and in
any way it sees fit through the dynamic download and assembly of software
components into standard-compliant operating instrumentations. Availability of
appropriate reconfiguration metadata is a prerequisite to the advent of introspective
cognition capabilities and a facilitator of efficient reconfigurations, an issue that has
not been at the focus of mobile communication research. Similarly, efficiency
concerns dealing with the optimality of different metadata representation standards
for the representation of reconfiguration metadata have met little attention in the

Metadata Design for Introspection-Capable Reconfigurable Systems 1325

literature. On the Parlay/OSA initiative front, reconfiguration is yet to be included in
the standardization agenda and the issue of object-oriented models as reconfiguration
enabling frameworks remains in research twilight. We address these issues by
introducing a generic object-oriented model to express reconfiguration metadata that
will enable future systems to evolve not just the instrumentation of their behavior but
the behavior itself, thus facilitating reconfigurations across disparate network
architectures (e.g., ad-hoc, cellular) and deployment topologies. In addition to design
issues, we have discussed and evaluated the potential of existing technologies and
related standards for representing and encoding reconfiguration metadata in a
machine-interpretable format that can be circulated across different administrative
domains without semantic losses. Future extensions of our work will focus on the
development of appropriate algorithms to support service-driven reconfiguration of
mobile communication devices, both for inter- and intra- standard scenarios in order
to assess algorithm complexity and to conduct comparative performance evaluations.

References

1. Tang, Z.: Dynamic reconfiguration of component-based applications in Java, M.Sc. thesis,
MIT, September 2000.

2. Cox, M. C.: Joint tactical radio system (JTRS), presentation available from
http://www.jtrs.sarda.army.mil/.

3. Bickle, J.: Software radio architecture (SRA) 2.0 overview, OMG TC, December 11,
2000, Orlando, Florida.

4. Blust, S. M.: SDR definitions, SDR Forum Plenary & Technical Committee, September 1,
2000.

5. Pereira, J.: Beyond software radio, VTC Fall 1999, Amsterdam, Netherlands, September
22, 1999.

6. Alonistioti, A., Houssos, N., Panagiotakis, S.: A framework for reconfigurable
provisioning of services in mobile networks, International Symposium on
Communications Theory & Applications (ISCTA), Ambleside Cumbria UK (2001).

7. Manola, F., Miller, E.: RDF Primer, see http://www.w3.org/TR/rdf-primer/.
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object Oriented Software, Addison Wesley Longman (1995).
9. XML: Extensible Markup Language home page, see http://www.w3.org/XML/.
10. RDF: Resource Description Framework home page, see http://www.w3.org/RDF/.
11. Hayes, P.: RDF Semantics, see http://www.w3.org/TR/rdf-mt/.
12. Berners Lee, T.: Why RDF model is different from the XML model, W3C discussion note,

see http://www.w3.org/DesignIssues/RDF-XML.html.
13. Butler, M.: Barriers to the real world adoption of Semantic Web technologies, HP Labs

Technical Report, HPL-2002-333, see http://www.hp.com/.
14. Chang, W.: A discussion of the relationship between RDF-Schema and UML, W3C

discussion note, see http://www.w3.org/TR/1998/NOTE-rdf-uml-19980804.
15. Red Hat Package Management format, see http://www.rpm.org/.
16. Linux Standard Base Specification, see http://www.linuxbase.org/.

	1 Introduction
	2 Reconfiguration Œ Basic Definitions and Standardization Issues
	3 Designing for a Generic Reconfiguration Capability
	4 Modeling Reconfiguration Metadata
	4.1 Metadata Classes
	4.2 Metadata Associations
	4.3 Metadata Encoding

	5 Conclusions
	References

