

A Reconfigurable Middleware for Context-Aware Applications in

Autonomic Computing

Vassilis Papataxiarhis
*
, Vassileios Tsetsos*, George Valkanas*, Corinne Kassapoglou-Faist

†
, Damien Piguet

†
, Stathes

Hadjiefthymiades
*

*Pervasive Computing Research Group, Dept of Informatics and Telecommunications, National and Kapodistrian University of Athens,

Panepistimiopolis, Ilissia, GR-15784, Athens, Greece

Email: {vpap, b.tsetsos, gvalk, shadj}@di.uoa.gr
†CSEM, Centre Suisse d’Electronique et de Microtechnique S.A. Jaquet-Droz 1, CH-2002, Neuchâtel, Switzerland

Email: {corinne.kassapoglou-faist, damien.piguet}@csem.ch

Abstract—The vision of autonomic computing involves distributed

nodes capable of managing and preserving themselves. In practice,

autonomic computing is also strongly connected to the concepts of

mobility and platform heterogeneity since next generation

networks assume different types of mobile nodes that operate inside

ad hoc environments. In such cases where the context changes can

be frequent, the capability of capturing the environmental changes

is crucial. However, it cannot be assumed that all the nodes are

equipped with all possible types of sensors in order to locally

retrieve the required contextual information. Sensor information

exchange between the nodes through efficient data dissemination

mechanisms can further improve the overall awareness of the

network. Another challenging task for autonomic computing

concerns the self-reconfiguration of the autonomous nodes

according to the sensed context. This paper presents the overall

architecture design, the implementation and the evaluation of a

middleware developed in the context of the Integrated Platform for

Autonomic Computing (IPAC). This middleware is targeted to

embedded devices and supports mobile context-aware applications

that render the aforementioned desired behavior. The paper

focuses on two aspects of autonomic computing middleware:
collaborative context-awareness and self-reconfiguration.

Keywords-middleware, autonomic computing, self-adaptation,

collaborative context-awareness

I. INTRODUCTION

Autonomic computing refers to a relatively new paradigm
where computing devices are able to self-tune and operate in
highly dynamic and mobile environments. In autonomic
computing environments, there are some special requirements not
applicable to typical mobile computing case. One of them is the
lack of any type of structured networking. In such environments
nodes do not rely on routing techniques for message exchanging.
Mobility is conceived as random movement or appearance
(switch-on) and disappearance (switch-off) in random places and
times. Applications should be able to operate and communicate
efficiently under such highly varying conditions.

Moreover, since the nodes are in a continuous change of state,
context awareness should be exploited by the running
applications. Towards this direction, readings obtained from
sensing elements constitute data usable by applications. Such
information can be used during application execution or even to
support some fundamental aspects of autonomic computing
paradigm such as the so called self-CHOP features (i.e., self-
configuration, self-healing, self-optimization, self-protection).
Reconfiguration is an important aspect of such systems since we
have changing environment conditions and portable or embedded
devices (e.g., netbooks, smartphones) with limited capabilities.

In this paper we present the middleware design of the IPAC
platform [3]. IPAC aims at delivering a middleware and service

creation environment for developing embedded, intelligent,
collaborative, context-aware services in mobile nodes. IPAC
supports applications that mainly exchange simple data (human-
created messages, sensor values etc.) in very highly dynamic
environments (e.g., vehicular ad hoc networks). The lightweight
IPAC middleware stack provides all services required for the
deployment and execution of diverse applications in a
collaborative nomadic environment. These services are supported
by novel knowledge and ontology engineering techniques, which
deal with interoperability, integration, and reconfiguration
problems that are met in contemporary embedded platforms.
IPAC relies on short range communications (e.g., WiseMac [12])
for the ad hoc realization of dialogs between nodes and on
sensing elements for detecting contextual changes and generating
respective events consumed by the applications. The IPAC
middleware utilizes the Open Service Gateway initiative (OSGi)
framework [6] to facilitate the dynamic distribution and
deployment of its service modules.

The rest of the paper is organized as follows. Section II
presents the related work in the area of middleware for mobile
computing. An overview of the IPAC middleware is discussed in
Section III. Section IV focuses on the collaborative context
awareness aspect of the platform. The knowledge based
reconfiguration mechanism is described in Section V. Section VI
evaluates IPAC in real-case scenarios. The paper concludes with
some directions for future work.

II. PRIOR WORK

Context-aware systems and mobile computing middleware
constitute major subareas where a lot of research work has been
done over the past few years. SENSE (Smart Embedded Network
of Sensing Entities) [7] is working on the creation of a distributed
embedded network consisting of heterogeneous portable devices.
The sensor infrastructure operates in a cooperative fashion to
record a consolidated view. Contrary to IPAC, SENSE does not
exploit high level information (e.g. application requirements) to
enable reconfiguration facilities.

EMMA (Embedded Middleware in Mobility Applications)
[8] aims at the deployment of a creation environment for
embedded software, as well as middleware platform that will
facilitate the cooperation of sensing entities in the domain of
transport applications. Specifically, the project emphasizes the
seamless collaboration of wireless sensing elements in order to
achieve intelligent behavior of cost-effective services. EMMA
services are not based on context-aware information.

DySCAS (Dynamically Self-Configuring Automotive
Systems) [9] aims to develop methods, tools and architectural
guidelines for self-configurable systems in the context of
embedded vehicle electronics, driven by the fact that many
applications could interact with mobile devices. Hence, DySCAS

considers situations such as automatic discovery and use of new
devices connected to a vehicle. Contrary to IPAC, DySCAS does
not investigate any algorithmic solutions in the area of
information dissemination and rumor spreading.

Hydra [10] targets at networked embedded systems providing
an integrated environment that facilitates the development of
mobile applications. The proposed middleware supports both
distributed and centralized architectures, while it does not exploit
any knowledge technologies to drive any adaptation processes.

MASS (Middleware for Adaptive Semantic Support) [5] is an
ontology-based middleware, aiming to enhance the development
of context-aware applications. RDF(S) and OWL ontologies are
used to express semantic information in mobile devices, allowing
for automated reasoning and adaptation according to user profile
and device capabilities. The middleware specifies the means to
access semantic services, accompanied by a matching algorithm
capable of identifying compatible services with user applications.

A notable difference between IPAC and the above efforts is
that the majority lack in adaptation and reconfiguration of both
applications and middleware. According to our knowledge, none
of the existing research or industrial solutions enables a cross-
layer execution and optimization of such reconfiguration
capabilities in the seamless way indicated by the principles of
autonomic computing. The self-reconfiguration processes
performed in the IPAC nodes constitute a novel approach in the
area of embedded systems since they affect several layers
(applications, middleware services and hardware).

III. THE IPAC MIDDLEWARE

In the context of the IPAC platform a number of basic
middleware services have been developed to support a wide
range of application domains (Fig. 1). Here, we provide a brief
explanation of the core IPAC modules.

Figure 1. IPAC Middleware Architecture.

Event Checker Service (ECS). The ECS is responsible for
continuously checking whether the events defined by the
applications occur. An event is an application-specific Prolog-
like conjunctive rule of the form:

(Sensor1 op Value1) ^ (Sensor2 op Value2) ^…^ (Sensor3 op
Value3) � EventName

where op is some comparison operator. The real innovation in the
functionality of ECS is that it implements the concept of
collaborative sensing. If a node is not equipped with the sensors
required to detect the application events, a mechanism for the
exchange of sensor values is exploited. We call such
functionality “context foraging” (Section IV).

Reconfiguration Service. The Reconfiguration service takes
into account the node’s contextual information and adapts the
node behavior and settings accordingly. This adaptation process
affects parameters associated with the functionality of

middleware services (e.g., the transmission rate of information
dissemination algorithms, the device configuration, the user
interaction), network (e.g., all nodes switch to the same
communication interface) and, indirectly, the applications.

Reasoner. This service constitutes the core component for
realizing the autonomic behavior of the IPAC nodes since it is
responsible for performing knowledge-based inferences.
Reasoner drives the self-adaptation process of the IPAC nodes
and checks possible conflicts regarding the resources shared
among the IPAC applications. IPAC middleware takes advantage
of the J2ME (MIDP 2.0, CLDC 1.0) version of Java Internet
Prolog (JIProlog) engine [1], which is a cross platform
framework that enables the development of lightweight reasoning
services on devices with restricted resources. This solution works
better than reasoning over other knowledge representation
methodologies that have been investigated, such as lightweight
ontologies, since no efficient reasoning modules are available for
such formalisms in resource constrained devices [11].

Storage Service. The storage layer consists of the private and
the public segments. The private segment is used by applications
and modules that run on the node and need data storage
functions. The public segment is used for storing measurements
and messages that may be forwarded to other nodes in proximity.

SRCC Proxy and Information Dissemination Service.
IPAC nodes exchange messages using the Short Range
Communication Component (SRCC) Proxy and the Information
Dissemination service. The SRCC Proxy is an abstraction of the
SRC hardware, seamlessly providing basic networking
functionality (e.g., activation of wireless interfaces, transmission
and reception of messages) regardless of the underlying protocol.
The Information Dissemination Service lies on top of it and
implements the adopted dissemination algorithm [2].

SEC Proxy. The Sensing Elements Component (SEC) Proxy
is responsible to manage the sensing devices hosted on the SEC
and make possible their interfacing with the middleware services
in a uniform way. The SEC Proxy performs the following tasks:

1. Discover sensors recently connected onto the node.
2. Configuration of sensors (H/W settings, sampling rate).
3. Data collection from the local sensor elements available.
4. Storage of the acquired sensor data.
Our approach is based on “smart sensors”, which comply

with the IEEE 1451 family of standards [13]. IEEE 1451
describes a set of open and network-independent interfaces for
connecting transducers to instruments, systems and networks. Its
main goals are a) the development of network and vendor
independent transducer interfaces, b) to allow transducers to be
hot-swapped, and c) to minimize manual system configuration.
Each “smart sensor” consists of two main components: a
transducer interface module (TIM) and a network capable
application processor (NCAP). A TIM contains one or more
transducers, signal processing units, A/D and D/A converters and
an interface through which it can communicate with the NCAP.
NCAP is the system that interconnects the TIMs with the user
network or host processor. We have implemented the standard
using the Sun SPOT [14] nodes as TIMs. The sensors of each
TIM are the sensors that each Sun SPOT carries by default along
with some external ones (e.g., GPS) which are connected to
SPOTs through their I/O interfaces. Regarding the NCAP, we
proceeded with a software implementation since no hardware
implementations are available up to now. TIMs and NCAP
communicate through a USB interface while the communication
between the NCAP and the applications is performed through an
HTTP API (invoked by the SEC Proxy). Fig. 2 shows the overall
architecture of an IPAC node equipped with smart sensors.

TCP

HTTP

IPAC HW

OS

IPAC
MW

SEC
Proxy

TIMIPAC APPLICATION

IPAC node

USB

NCAP

Sun SPOT
Java Virtual Machine

IEEE
1451.2

IEEE
1451.0

IEEE
1451.2

IEEE
1451.0

Figure 2. An IEEE 1451-compliant architecture based on Sun SPOTs.

IV. COLLABORATIVE CONTEXT-AWARENESS

Let us assume an architecture where several highly mobile
nodes execute situation-aware applications. These are based on
rules, called Situation Classification Rules (SCR), that have
conditions related to context classes (e.g., Temperature,
Location). An example of such a rule is:

(Temperature>80) ^ (Humidity <10) ^ (Smoke=true) � Fire
The head of the rule (i.e., Fire) is the situation that holds true

if all conditions are satisfied. In order for the nodes to
demonstrate adaptive and context-aware behavior they must have
the necessary contextual values (i.e., instances of context
classes). The concept of collaborative sensing is heavily based on
the assumption that not all nodes have sensors, and context
values, at their disposal which corresponds to a realistic scenario.
Hence, in IPAC we have adopted a collaborative scheme for
context-awareness, termed Context Foraging (CFor) [4]. In CFor,
three types of nodes can be distinguished:

Context Requestors (CR). They request context (sensor)
values from their neighborhood. The Context Request (CReq) is
derived from the conditions of an SCR that cannot be locally
evaluated. Each request has a Spatial Validity (SVCReq) which
is the range within which the context values included in the CReq
are valid. The requests also have a Temporal Validity (TVCReq)
that is the period with which the CReqs are disseminated
according to the adopted probabilistic broadcast scheme.

Context Providers (CP). They transmit sensor values
(Context Responses, CRes) if these match with some registered
CReqs. A context response has also a spatial validity parameter
which is the maximum of the individual spatial validity values
included in the response. Each context provider has an index data
structure used for two purposes: a) as a registry of all context
requests received, and b) as a mechanism that matches events
(fresh sensor values) with CReqs. The main idea is that context
requests will be registered (with their respective timeouts) in this
index. The sensor stream will be also fed into this index so that
sensor values that match some requests generate events that are
disseminated through the network.

contextClass[1]

contextClass[N]

>

<

<=

20 30 33 … …

2:20 2:30 2:40 … …

value

timeout

op: array

FILTERS: array

22

EQUALS: array

2:12

value timeout

100 120 60 … … SV

10

SV

Figure 3. The index used in Context Providers.

The index structure used for the subscription registration and
matchmaking is depicted in Fig. 3. The FILTERS array contains
the context conditions received through incoming CReqs and is
sorted in descending order for the ‘<’ and ‘<=’ operators and in
ascending order for all other operators. Sorted arrays are used
because the readings in this index (new context values, generated

by sensors) are expected to considerably outnumber the updates
(new event subscriptions). The EQUALS array constitutes an
optimization in order to avoid unnecessary filters (e.g., filters that
overlap with the existing ones). SV values denote the spatial
validity parameter of the context responses. Timeout values are
also used to remove filters that their validity has been expired.

Context Relays (CRel). Nodes that do not have the sensors
required by a context request or are not interested in the context
response contents. CRels just forward messages.

The proposed scheme has been evaluated through several
simulations, where we compared it to Context Polling (CPol),
which is a suitable scheme for nomadic computing. IPAC seems
to behave better in all kind of simulated scenarios. Specifically,
the number of messages for CFor is much lower than for CPol,
with insignificant reduction in the situation detection capability
of the nodes. A detailed description of the Context Foraging
scheme and the simulated scenarios can be found in [4].

V. KNOWLEDGE-BASED RECONFIGURATION

A. IPAC Models

Sensor model provides a common vocabulary about sensors
and their features. It defines the basic characteristics of sensors
and the available sensor types (e.g. GPS receiver, smoke
detector). Such type of information is modeled through predicate
hierarchies (taxonomies) in order to take advantage of instances
classification during the execution of reasoning processes.

Node profile defines concepts and relationships that refer to
the basic features of an IPAC node. Some of the metadata
belonging to the node profile are the available communication
interfaces, the available storage space and the supported UIs.

Application profiles. Each application has its own profile that
describes its features, the preconditions for being deployed and
the events that the application is interested in. An application
profile example in terms of Prolog is provided below:

usesInfoFromSensor(appID03, smoke_sensor).
usesInfoFromSensor(appID03, temp_sensor).
requiresUI(appID03, visual).
event(fire_alarm) :- smoke_sensor>=0.7, temp_sensor>=20.
In this example, in case of smoke detection

(probability>=0.7) and of temperature over a limit value (20
degrees), a “fire_alarm” event is raised (application policy).

Reconfiguration policies. Besides the reconfiguration requests
that stem from the applications, IPAC middleware also supports
the execution of policies that enforce updates in its settings in
order to achieve optimal operation of the node. These
dynamically updated policies aim to prevent the appearance of
unacceptable situations that could aggravate the system
functionality or in case the system status is error-prone. Similarly
to the application policies, the reconfiguration policies are
represented in a declarative manner. An example follows:

policy(hasCommInterface,X,ieee_802_11):-
numberOfNeighbors(X,N), N=0, node(X),
hasCommInterface(X,wisemac).
The above policy states that in case there is no other node in

the neighborhood, the communication interface should change to
reach nodes through some other technology.

B. Reconfiguration Functionality

In IPAC, the middleware services that are responsible for
altering the operation/configuration of the node are called
through a central dispatching mechanism, the Reconfiguration
Service. The rationale behind this orientation is that the service
and device settings are shared resources and should be controlled

by a central entity. Moreover, global and cross-layer knowledge
may be necessary for some reconfigurations. Based on these
principles, the reconfiguration workflow is as follows: an
application sends a request for reconfiguration (it may affect a
service, the device settings or the network). There are two main
types of requests: the soft and the hard ones. The former are
associated with some “timeValidity” parameter (e.g., “whenever,
within the next five minutes, the UI is able to switch to sound
mode, do it”). The applications do not require feedback from the
system and should not make any assumptions on such requests.
At the most, they can receive a notification when the requested
change is performed. On the other hand, the hard requests should
be executed immediately (if at all) and the application should
receive some feedback whether the reconfiguration has been
performed or not. Once a reconfiguration request arrives in the
Reconfiguration service, the Reasoner is invoked and decides if it
is consistent with the current system status. If not and it is

• a soft request with “timeValidity” set, then it reschedules
the request and checks it after a specified period of time.

• a hard request, it sends a response “Reconfiguration not
possible” to the Response Queue.

If the modification is possible, a message with the requested
parameters is sent to the Dispatcher Queue. The Reconfiguration
service consumes this message and performs the adaptation. The
result is inserted to the Response Queue (“Success” or “Failure”).
Finally, once a message destined for an application arrives at the
Response Queue, the respective application consumes it and
continues executing its application logic.

An example that describes the main processes of the
reconfiguration phase follows. This scenario assumes that an
IPAC node (e.g., with id node03) supports both visual and audio
UIs. Initially, it is assumed that the visual interface has been
activated. Such knowledge is explicitly captured in the node
profile, through the following Prolog statements:

supportsUI(node03, visual).
supportsUI(node03, audio).
hasUI(node03, visual).
The scenario considers that application A (e.g., with id

app02) is stored on an IPAC node in order to be deployed while
other applications are already running and A requires audio
interface to run properly (e.g., the statement
requiresUI(app02,audio) is part of its profile). First, the
application manager checks whether the requirements of the new
application are consistent with those imposed by the applications
that already run. This is achieved through the Reasoner that
performs a consistency check with the profiles of all currently
running applications. Assuming that there is no inconsistency, the
UI can be switched to audio without any conflicts and a
reconfiguration request is scheduled to perform the desired
action. Similar actions are performed for switching on and off the
communication interfaces and for enabling/disabling sensors.

VI. IPAC IN HUMANITARIAN RELIEF OPERATIONS

A. Scenario Description

This section presents a use-case trial that demonstrates the
capabilities of the platform and helps to evaluate the
requirements, and thus backing up the motivation of this work.
The scenario focuses on the deployment of IPAC in simulated
humanitarian operations in order to provide a much needed
communication infrastructure for the execution of multiple
applications in a collaborative nomadic environment. In this case,
the IPAC infrastructure assumes the role of communication
support between pedestrians, and vehicles, or between static

check points and vehicles or pedestrians of the operations
workforce. The demonstration took place in a wide open area at
the Centro Sicurezza circuit in Turin. All experiments were
performed in ASUS EeePC 900 netbooks with an Intel (R)
Celeron (R) processor running at 900MHz and 1GB of main
memory. These nodes used both IEEE 802.11 and WiseMac
communication interfaces and were equipped with a number of
sensor devices to capture context information.

The scenario concerns the detection of bad weather
conditions while a number of vehicles are moving arbitrarily
inside an area. The weather is characterized by low temperature
and snowfalls and the possibility of ice presence on the road. To
identify hazardous and unsafe conditions in time, IPAC adopted
the context foraging approach (Section IV). Specifically, the
scenario assumes three vehicles that are moving at the same
direction. One of the car nodes is equipped with a camera capable
of detecting road curvature and ice/snow (the vision sensor)
while the remaining nodes are equipped with temperature
sensors. There is also one fixed node along the roadside to relay
information of high priority. The rationale behind this node is to
act as a “beacon” in case of receiving possible alerts or warnings.

The scenario demonstrates a network reconfiguration process
for power saving. Specifically, at the time a node needs to
broadcast longer messages such as sensor measurements, it has to
take advantage of the IEEE 802.11 interface that allows for
transmitting large packets. Hence, it first broadcasts a short
“LEAVE-LOW-POWER” message to the network in order to
enable the activation of the WiFi interface in all the car nodes.
This way, the nodes are capable of transmitting and receiving
sensor measurements. The “LEAVE-LOW-POWER” message
comes with a time validity parameter that is taken as the time-to-
leave (TTL) value of the corresponding IPAC header, which
denotes the time period that the WiFi interface should be active.
When this time validity parameter expires, the network nodes
switch back to low power state (turn the IEEE 802.11 off).

B. Reconfiguration Performance

The reconfiguration process was evaluated though the
following parameters have been quantified in the above scenario:

(a) the response time of the reconfiguration service and

(b) the total time required to perform reconfiguration.
The first measurement concerns the sensitivity of the system

according to context changes. A modification of the environment
(e.g., absence of other nodes in the neighborhood) may lead to
the execution of certain reconfiguration policies (e.g., switch to
another communication interface). Fig. 4 presents the times
between a context change that took place and the corresponding
reconfiguration. Specifically, these are the mean times needed to
perform the node adaptation across several policy checking
periods indicating the degree in which the system is responsive to
context changes. The presented times include (a) the update of
the knowledge base according to the modification, (b) the policy
execution, (c) the check of the applicability of the requested
change, and, (d) the execution of the reconfiguration. Since the
policy execution is performed periodically, the required time is
mostly dependent on the policy checking period. One can
observe that the sum of the above times is approximately the half
of the period used. For example, using a policy checking period
of 1sec, the mean reconfiguration time is 0,54s, while setting the
period to 20s the mean reconfiguration time is 10,425s. This is
anticipated since context changes occur at random. Hence, taking
into account that checking the policies does not require a
significant amount of time, the period can be set to a small value
(e.g., 1s) in order to increase the system throughput.

Regarding the network reconfiguration experiments, the total

time between the initial request and the actual reconfiguration of
the node settings is measured. The clocks of all the nodes
participating to the scenarios had to be synchronized. The
experiments demonstrated that these times mainly depend on the
network traffic (i.e., the time needed for the delivery of the
“reconfiguration” request across the network) and the time
needed inside the middleware services to “encode”/“decode” the
request. In our scenario the total network reconfiguration time
takes about 7,5s and includes the following tasks:

- message delivery by the ECS to the SRCC

- dissemination of the message to the network

- message reception by the SRCC of the second node

- message delivery by the SRCC to the Storage service and
event-based communication with Reconfiguration service

- requested modification takes place (if feasible).

Figure 4. Reconfiguration time w.r.t. policy checking period

C. Network Analytics

In the humanitarian scenario, the IPAC network has 4 nodes.
This paragraph performs an analysis on the way the WiseMac-
based network performed, trying to assess its responsiveness and
detect any possible congestion or message loss. It is based on
message logs collected using a WiseMac sniffer (independent,
passive node). In networks with few nodes we expect a high
retransmission rate in the probabilistic broadcast algorithm
(retransmission probability equal to 0.9 for 4 neighboring nodes).
Retransmissions are controlled on one hand by the retransmission
attempt periods as a function of criticality adopted for the
scenario, the criticality of the messages set by the message sender
entity and the neighbor lifetime. The retransmission attempt
periods were set to 2s, 5s and 10s respectively for high, medium
and low criticality. The neighbor lifetime was set to 10s to
accommodate the application periodicity and mobility.

The scenario starts with subscription of messages (remote
triggers). The node having the vision sensor registers to
temperature measurements, while the other car nodes register to
ice alerts. These messages have a “HIGH” criticality and a very
long TTL, meaning that they are repeated every 5s throughout
the scenario execution. To demonstrate the interface re-
configurability feature, the node having a temperature sensor
emits “LEAVE-LOW-POWER” instructions in order to send the
temperature data through the WiFi interface. The third type of
packets in this scenario contains the temperature measurements
(longer packets). Finally, the ice alert message is a very short
packet. All messages have “HIGH” criticality, causing frequent
repetition attempts. Sniffer logs show an exaggerated importance
of the “LEAVE-LOW-POWER” messages with respect to the ice
alert and temperature value messages. Having few nodes,
message repetitions account for 72% of the circulating packet.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed the IPAC approach for a
middleware able to support context-aware applications for

autonomic computing environments. IPAC enables several
desired features of such applications, such as self-reconfiguration
and collaborative applications. The paper presents the overall
middleware architecture describing the design approaches
followed for the development of the platform and focuses on two
basic aspects: reconfiguration capabilities, and collaborative
context-awareness. The scalability of the platform under realistic
conditions according to an extensive real-case scenario was
shown. Future work includes the improvement of the policy
checking mechanism of IPAC nodes by optimizing the period
parameter and by adopting event-based mechanisms that identify
policy violations (e.g., through database triggers). Finally, we are
planning to port the IEEE 1451 implementation to the Crossbow
motes platform (over TinyOS) in order to test the interoperability
between these two completely different platforms.

ACKNOWLEDGMENT

This work was partially supported by the European
Commission through the FP7 ICT Programme in the scope of the
project IPAC (Integrated Platform for Autonomic Computing),
contract FP7-ICT-224395.

REFERENCES

[1] JIProlog - Java Internet Prolog,
http://www.ugosweb.com/jiprolog/index.aspx

[2] Sekkas, O., Piguet, D., Anagnostopoulos, C., Kotsakos, D., Alyfantis, G.,
Kassapoglou-Faist, C., Hadjiethymiades, S.: Probabilistic Information

Dissemination for MANETs: the IPAC Approach. 20th Tyrrhenian
International Workshop on Digital Communications, Pula, Italy (2009)

[3] Panayiotou, C., Fytros, E., Tsetsos, V., Samaras, G., Hadjiefthymiades, S.,

Piquet, D.: Integrated Platform for Autonomic Computing. Poster paper,
IEEE SECON, Rome, Italy (2009)

[4] Tsetsos, V., Hadjiefthymiades, S.: An Innovative Architecture for Context

Foraging. In: 8th International ACM Workshop on Data Engineering for
Wireless and Mobile Access (MobIDE), Rhode Island, USA (2009)

[5] Corradi, A., Montanari, R., Toninelli, A.: Adaptive Semantic Middleware

for Mobile Environments. Journal of Networks, Academy Publisher, Vol.2
Issue 1 (2007)

[6] OSGi Alliance. About the OSGi service platform. Technical Whitepaper

Available at http://www.osgi.org. (2002)

[7] Bruckner, D., Kasbi, J., Velik, R., Herzner, W.: High-level Hierarchical
Semantic Processing Framework for Smart Sensor Networks. In: IEEE

Human System Interaction Conference 2008, Krakow (2008)

[8] Katramados, I., Barlow, A., Selvarajah, K., Shooter, C., Tully, A., Blythe,

P.T.: Heterogeneous sensor integration for intelligent transport systems.
Road Transport Information and Control, 2008, Manchester, UK (2008)

[9] Anthony, R.: Policy-Based Autonomic Computing with integral support

for Self-Stabilisation. In: International Journal of Autonomic Computing
(IJAC), ISSN (Online): 1741-8577, ISSN (Print): 1741-8569 (2009)

[10] Eisenhauer, M., Rosengren, P., Antolin, P.: HYDRA: A Development

Platform for Integrating Wireless Devices and Sensors into Ambient
Intelligence Systems, In: 20th Tyrrhenian Workshop on Digital

Communications. Pula, Sardinia, Italy (2009)

[11] Papataxiarhis, V., Tsetsos, V., Karali, I., Stamatopoulos, P.,
Hadjiefthymiades, S.: Developing rule-based applications for the Web:

Methodologies and Tools. In: Giurca, A., Gasevic, D., Taveter, K. (eds.)
Handbook of Research on Emerging Rule-Based Languages and

Technologies: Open Solutions and Approaches. Information Science
Reference (2009)

[12] El-Hoiydi, A., Decotignie, J.D.: Wisemac: An ultra low power mac

protocol for the downlink of infrastructure wireless sensor networks. In:
ISCC2004, the 9th IEEE International Symposium on Computers and

Communications, Alexandria, Egypt (2004)

[13] Lee, K.: IEEE 1451: A Standard in Support of Smart Transducer
Networking. In: IEEE Instrumentation and Measurement Technology

Conference Baltimore, MD USA (2000)

[14] Sun SPOT World, http://www.sunspotworld.com/

