
Crew Pairing Optimization with Genetic
Algorithms

Harry Kornilakis and Panagiotis Stamatopoulos

Department of Informatics and Telecommunications
University of Athens

Panepistimiopolis, 157 84 Athens, Greece
{harryk,takis}@di.uoa.gr

Abstract. We present an algorithm for the crew pairing problem, an
optimization problem that is part of the airline crew scheduling proce-
dure. A pairing is a round trip starting and ending at the home base,
which is susceptible to constraints that arise due to laws and regula-
tions. The purpose of the crew pairing problem is to generate a set of
pairings with minimal cost, covering all flight legs that the company has
to carry out during a predefined time period. The proposed solution is a
two-phase procedure. For the first phase, the pairing generation, a depth
first search approach is employed. The second phase deals with the se-
lection of a subset of the generated pairings with near optimal cost. This
problem, which is modelled by a set covering formulation, is solved with
a genetic algorithm. The presented method was tested on actual flight
data of Olympic Airways.

1 Introduction

Given a timetable containing all the flight legs that an airline company must
carry out, the airline crew scheduling problem [8] consists of assigning individual
crew members to flight legs, so that the assignment is legal and crew costs are
minimized. Crew scheduling is separated into two independent subproblems. The
crew pairing problem (CPP), which will be the focus of this paper, is the process
of finding a set of round trips (pairings) starting and ending at the home base,
covering all flight legs that the company has to carry out with a minimal cost.
The crew assignment problem is the assignment of individual crew members to
pairings and it will not be considered here. What we propose in this paper is to
employ a genetic algorithm based approach to deal with the CPP.

The main difficulty of the CPP is the huge size of the search space, which
grows exponentially with the number of flight legs. This means that even for
average sized problems containing a few hundred flight legs, an intractably large
number of legal solutions may exist. Finding the optimal solution among them
may not be possible to do efficiently and often methods that produce only a good
approximation of the optimal solution have to be used. Another consideration
is the nature of the constraints, which are usually based on aviation laws and



regulations and, in general, are non-linear. Such constraints tend to be rather
difficult to model in an algorithm that automatically solves the CPP.

Crew scheduling is an important problem for airline companies. In fact, crew
costs is the second greatest operational expense for airlines, exceeded only by the
cost of fuel consumption [2]. As an example, in [1], it is reported that American
Airlines spent 1.3 billion dollars on crew costs in 1991. Therefore, a low cost
solution to the CPP can save airlines millions of dollars per year. Almost every
major airline is using a system that automates crew scheduling. However, com-
putational tests, conducted with actual data, led to the conclusion that many of
the solutions provided by these systems needed significant improvement [6].

Much work has been done in the past for tackling the CPP. Traditional
approaches are based on Operations Research techniques [19], some of them
exploiting parallelism as well [10]. Various methods based on genetic algorithms
[7,15,16] or neural networks [14] have been also proposed. Finally, Constraint
Programming has been used as a platform for solving the CPP [17], in some
cases combined with parallel processing [11].

The paper is organized as follows. In section 2, we deal with the CPP in
greater depth and in section 3, we present our proposed method for the CPP,
focusing on the optimization procedure and the genetic algorithm that has been
implemented for it. Section 4 presents the experimental results on actual flight
data of Olympic Airways and finally, our conclusions appear in section 5.

2 The Crew Pairing Problem

The objective of the airline crew pairing problem is to minimize costs associated
with assigning crews to flight legs [6]. Every crew has a home base and a pairing
is a round trip, consisting of a sequence of flight legs, which starts and ends at
the crew’s home base. Each pairing is composed of a number of legal workdays,
called duties, which are separated by rest periods. Airline crew pairing seeks to
find a subset of legal pairings such that each flight leg is covered, preferably by
only one crew, and so that the total cost of these pairings is minimal.

In order to be legal, the construction of a pairing must take into account a
number of constraints. Some of these constraints, like the temporal and spatial
constraints, follow directly from the definition of the problem, while others are
results of laws and regulations. Specifically, the following types of constraints
can be identified:

– Temporal constraints: The departure of a flight leg should obviously take
place after the arrival of the previous leg of the pairing. Additionally, a
certain amount of time, called transition time, must pass between the arrival
of a leg and the departure of the next.

– Spatial constraints: For every two consecutive flight legs in a pairing, the
second must depart from the airport that the first arrives at. Also, the first
leg of a legal pairing must depart from the home base of the crew and the
last leg of each pairing must end at the home base.



– Fleet constraints: Cockpit crew is usually designated to operate only one
type of aircraft. Therefore, all flights in a pairing generated for cockpit crew
must be performed by the same type of aircraft. On the other hand, cabin
crew may be placed in any type of aircraft. Consequently, pairings that are
legal for cabin crew may be illegal for cockpit crew, making the cockpit crew
problem easier to solve.

– Constraints due to laws and regulations: In order to be legal, pairings must
follow government laws and collective agreements. These usually define the
maximum duration of a duty, the maximum flight time allowed over a period
of time, the minimum length of the rest period between two duties etc. These
values may vary depending on the length or the destination of a flight leg
and usually are quite different for cockpit and cabin crews.

Another consideration is that it is possible that, besides the crew that is
on duty, other crew members are on a plane, travelling as passengers, in order
to move to a specific airport and continue a round trip. This process is known
as deadheading and is an additional cost to the airline, since deadheaded crews
get normally paid, even though they are not working, and occupy seats that
would otherwise be given to passengers. Obviously, good solutions should avoid
deadheaded flights, however it is not always the case that solutions with no
deadheading exist. It is also possible that a solution with a few deadheaded
flights is better than one with no deadheading. In any case, allowing deadheading
results to a larger space of feasible solutions and finding the optimal solution
becomes harder.

The cost of a solution is another factor that is critical to the problem. Usually
the cost of each pairing is equal to the wages of the crew. This, again, depends
on the policy of the airline company, but, in general, it is a function of the flying
time, the duty time or the number of duties of a pairing. The total cost of a
solution is usually the sum of the costs of all pairings in it, but an additional
penalty for deadheaded flights may be introduced.

Looking at the nature of the constraints and the cost function, it becomes
obvious that modelling them is not a trivial task. In fact, in most cases, it is
impossible to formulate the legal pairings or the cost function as linear equations
and therefore use a linear programming framework to solve the entire problem
directly. For example, a constraint from the scheduling of Olympic Airways that
we used in our test problems was “If a duty starts at a non-domestic airport, it
cannot include the home base as an intermediate stop”.

3 Solving the Crew Pairing Problem

Due to the large size of the search space, the nature of the constraints and the
cost function, which usually are highly non-linear, we follow the approach of
decomposing the CPP in two separate phases [18].

1. The pairing generation, where a large number of legal pairings, composed of
the flight legs in the timetable, is generated and the cost of each pairing is
calculated.



2. The optimization of the solution, where a subset of the generated pairings
is selected, so that every flight leg in the schedule is included in at least one
pairing and the total cost is minimized.

Furthermore, the pairing generation is itself decomposed in the process of
generating a large set of legal duties from the flight legs and in the process of
generating the set of pairings by using the duties previously found (Fig. 1).

Duty Generation

Application
of Constraints

Application
of Constraints

from Duties

Pairing Generation

with Flight Legs
Timetable Set Covering

Problem

Optimization

Solution
FinalPairings

Duties

Pairing Generation

Fig. 1. The parts of the method for solving the CPP

One advantage of this approach is that the constraints and the cost function
are taken into account only during the first phase and therefore the optimiza-
tion is independent of them. In fact, once a large set of legal pairings has been
generated, the second phase can be modelled as a set covering problem, a widely
known combinatorial optimization problem.

3.1 The Pairing Generation

The input to the pairing generation is the set L of all the flight legs that appear
in the timetable. The constraints are defined as a function C : 2L → {0, 1},
where 2L is the powerset of L, C(p) = 1 if p is a legal pairing and C(p) = 0, if
not. We want to generate the set of pairings P = {p ∈ 2L | C(p) = 1} which
contains all pairings that satisfy the constraints. Modelling the constraints as
a function like this makes the checking for the satisfaction of the constraints
independent of the rest of the search.

Unfortunately, the size of the problems that normally arise in airlines is
prohibitive for the complete generation of every valid pairing. For example, in
an average sized problem of 1000 legs, we would have to check 21000 pairings
for validity, so an exhaustive search of the search space is obviously intractable.
Furthermore, the more pairings we generate, the harder the optimization phase,
which as we shall see is an NP-complete problem, becomes. Therefore, we wish
to keep as few pairings as possible for the optimization, also making certain that
these pairing will lead to a solution of high quality after the optimization.

The pairing generation is divided into two parts. During the first part a
depth-first search is used, which systematically forms possible duties (sets of
flight legs), checks if they satisfy the constraints and stores them if they do.
The best of the generated duties are kept and provided as input to the second
part, where a similar process is used to initially generate a large number of legal



pairings and afterwards keep the best of them. During the entire run of the
algorithm, special attention is given so that the number of generated pairings
that contain each flight leg is balanced, i.e. each flight leg is part of almost
as many pairings as any other. It is also important that each flight is part of
a minimum number of pairings, so that not only is the existence of a solution
guaranteed, but also there are multiple choices for the pairing that will be chosen
to cover each flight leg. The presence of such multiple choices leads to greater
diversity in the search space during the optimization phase, making it easier to
find a solution of high quality.

Generation of Duties from Legs. We implement the duty generation as a
depth-first search in the space of all possible subsets of the set L of all flight legs.
Essential to this search is the function we use to model the constraints, which
we shall call validDuty : 2L → {0, 1}×{0, 1}. This function takes as input a set
of flight legs and has two return values. The first return value is equal to 1 if
the input legs form a valid duty that satisfies every constraint in the problem,
otherwise 0 is returned. The second return value is equal to 1 if it is possible to
create a valid duty by adding more legs to the set of input legs. In this case, the
search should continue deeper, otherwise the search should stop and the second
return value of validDuty is 0. A function named searchForDuties that can be
used to search for valid duties is given next.

function searchForDuties(currentDuty, duties)
[keep, continue] <- validDuty(currentDuty)
if keep==1 then insert currentDuty into duties.
if continue==1
For each leg that departs after the arrival of the last leg of
currentDuty and from the same airport do
Insert the leg into currentDuty.
searchForDuties(currentDuty, duties).
remove the leg from currentDuty.

In the above fragment of pseudocode, currentDuty is a set of legs that is
used to represent the duty that is checked for validity. The array duties holds
all the valid duties that have been found. Calling the function searchForDuties
with currentDuty containing only one leg will yield all valid duties that begin
with that leg. Therefore, calling searchForDuties for each leg in L we obtain
every valid duty.

After the completion of the search algorithm, we have generated a very large
number of duties. Using so many duties as input to the next phases of the
pairing generation and the optimization will cause serious performance problems.
Therefore, a subset containing the duties of the highest quality possible should
be chosen and kept. To this end, an algorithm that performs the selection of
the best duties has been implemented. The criterion for keeping or not a duty
is related to how useful this duty will be in the search for an optimal solution to
the CPP. This is decided by a heuristic function, which returns the ratio of the
flight time of the duty over the total duration of the duty.



This completes the duty generation. The set of duties that is kept will be
used as input to the next part of the algorithm, the generation of the pairings.

Generation of Pairings from Duties. The generation of pairings from the
duties is performed, using a depth-first search, in practically the same way as
the generation of duties. The set of legs that were used as input is replaced by
the set of duties and the algorithm instead of generating a set of valid duties
generates a set of valid pairings. Since we gave a detailed description of that
depth-first algorithm in the previous paragraph, we shall not repeat it here.

3.2 The Optimization

Once we have generated a large set of pairings, we continue to the optimization
phase, which is modelled as a set covering problem, defined as follows:

Given a set M with m elements and n subsets Mj ⊆ M with associated costs
cj , j = 1, 2 . . . n, find a subset S of {1, 2 . . . n} such that ⋃

j∈S Mj = M and∑
j∈S cj is minimized.
In other words, we seek a collection of subsets such that every element of

M is contained in a least one selected subset and the total cost of all selected
subsets is minimum.

The correspondence to the optimization phase of the CPP is direct, by setting
M equal to the set of all flight legs and Mj equal to the generated pairings.

Notice that by modelling the problem as a set covering problem, instead
of a set partitioning, we allow solutions which may contain crews travelling as
passengers on some flights. As we have mentioned, this is acceptable and in some
cases it may even yield better solutions than forcing exactly one crew per flight.
Furthermore, it is possible that no feasible solutions exist under the constraint
that each leg is covered exactly once. Set covering has been proven to be NP-
complete [9] and, therefore, no algorithm is known that can find the optimal
solution efficiently, for input data of significant size. In fact, the best reported
methods for exact optimization are based on branch-and-bound and deal with
problems of sizes around 400 rows (flight legs) and 4000 columns (pairings)
[12]. However, the size of problems that commonly arise in airlines is far larger,
reaching thousands of rows and millions of columns. Therefore, in order to tackle
problems of this size, approximate methods are used, which produce solutions
that only approximate the optimal, but can handle large problems efficiently.
In [18] and [4], two such methods are presented and success is reported with
problems of up to 10000 rows and 1000000 columns.

The method we propose is based on [3], where a genetic algorithm is given
that can be used for efficiently solving the set covering problem. We modified this
algorithm to better fit the specific characteristics of the set covering problems
that arise as part of a CPP.

Overview of Genetic Algorithms. Genetic algorithms (GA) are methods for
random search based on the evolutionary process of species found in nature. They



were introduced in 1975 [13] and since then they have been used successively on
a wide range of combinatorial optimization problems.

According to the theory of evolution [5], populations in nature evolve by fol-
lowing the process of natural selection and survival of the fittest. The members
of the population that are able to adjust to changes in the environment are more
likely to survive and reproduce. On the other hand, individuals who are less fit
become extinct. Through this process the genes of the fittest individuals are
passed on to future generations and eventually become predominant as gener-
ations pass. This mix of characteristics from fit ancestors produces even fitter
individuals and in this way species become stronger and better adjusted to the
environment.

Genetic algorithms are based on the simulation of the above process, by tak-
ing an initial population of solutions and applying a number of genetic operators
on it. Each individual of the population is a possible solution to the problem,
encoded as a string (usually binary) called chromosome. Each character of the
chromosome is called a gene. The fitness of each individual is represented by
an objective function, which is a real valued function defined over the set of all
chromosomes. The value of the objective function is representative of the quality
of the corresponding solution. The procedure of combining two members of the
population to produce offsprings is called crossover. Through crossover, individu-
als containing genes from both parents are produced. By combining high quality
solutions we hope that children will inherit the best genes of both parents. In
order to avoid getting stuck in local minima during the search, mutation is used,
i.e. the random change of a few genes of the offspring, after the crossover. Finally,
the new individuals replace the weaker members of the existing population and
this procedure continues until a satisfactory solution is found.

Genetic Algorithm for Crew Pairing Optimization. The method we use
for the set covering problem follows the general framework of GA we presented
previously. Certain modifications and additions have been made to accommodate
with the specifics of the problem, including a method for correcting solutions that
violate constraints, i.e. solutions where there exist flights that are not covered
by any selected pairing, turning them into feasible ones.

A binary string coding is used for chromosomes with each chromosome having
length equal to the number of pairings. Each gene corresponds to one pairing and
when it is 0 it means that the corresponding pairing is not part of the solution. If
the gene is equal to 1, then the corresponding pairing is included in the solution.
The objective function we use to represent the fitness of each individual is

f =
∑

i

cigi + deadheadingPenalty · deadheadedF lights

where ci is the cost of the i-th pairing, gi is the value of the i-th gene of the
solution, deadheadingPenalty is a constant that is used to penalize flights which
are covered more than once in the solution and deadheadedF lights is the number
of such flights.



By using this cost function, we are able to reach solutions that contain low
cost pairings, but also have a low percentage of deadheading, which, as we have
mentioned, poses an additional cost to airlines. Furthermore, we have experi-
mentally noticed that a careful assignment of the constant deadheadingPenalty
may help the genetic algorithm to converge to a high quality solution faster.

The selection of the members of the population that will become parents
is based on their order in the population, sorted in descending order based on
their fitness function. That means that the fittest individual is the most likely to
be selected, the second fittest individual is a little less likely to be chosen, and
so on. Note that the probability of selection depends exclusively on the order
in the population and not on the absolute value of the fitness function for the
individual. In exactly the same way, we choose the member of the population
that will be replaced at every generation. The only difference is that in this case
the individual that is the least fit has the highest probability of being chosen.

Once two parents have been chosen from the population, the crossover op-
eration is performed on them in order to produce a new solution that inherits
characteristics from both parents. We use the uniform crossover operator. This
means that if a gene has the same value in the chromosomes of both parents,
this value is assigned to the same gene of the offspring chromosome. If a gene is
equal to 0 for one parent and equal to 1 for the other, the corresponding gene of
their offspring may become either 0 or 1, with equal probability. The reason for
choosing this variation of the crossover operator was that it provided a better
shuffling of the parents’ genes in forming the offspring.

After crossover has been used to produce a new individual, the mutation
is applied on it. The purpose of mutation is to prevent the search from getting
trapped in the local minima, by randomly altering a few genes of the chromosome
and therefore directing the search towards new areas in the search space. We
propose a method of mutation that depends on the density (the percentage
of genes equal to 1) of the fittest individual of the population. Initially, a fixed
number of genes are randomly selected from the chromosome. These are the genes
that will be mutated. Each of the genes is mutated to 0 with probability equal
to the percentage of 0s in the chromosome of the fittest individual, otherwise it
is mutated to 1. For example, if in the chromosome of the fittest individual 900
genes are 0 and 100 genes are 1, then each gene is mutated to 0 with probability
90% or to 1 with probability 10%. By mutating in this way, we are able to keep
information about the density of fit individuals in the offspring’s chromosome.
Such information is preserved during crossover, but if mutation to 0 and 1 was
made with equal probability, such information, which is quite critical for getting
good results, would be lost.

By looking at the way that crossover and mutation are performed, it is obvi-
ous that after these operations, the new solution will not necessarily be feasible,
i.e. not every flight leg will be present in at least one pairing. In order to avoid
having infeasible solutions in the population, after the mutation, we apply a cor-
rection algorithm on the new chromosome. This algorithm works by changing
the value of some genes to 1 and as a result by adding the corresponding pair-



ings to the solution, until every flight leg is covered and the solution becomes
feasible. For each uncovered leg in the solution, we add a pairing that covers
that leg. A simple heuristic is used to help us select one pairing among all the
pairings which contain that particular leg. That heuristic favours pairings of low
cost that when selected cover as many uncovered legs as possible and as few
legs that have already been covered as possible. For a more detailed and formal
description of the correction method see [3].

One last important thing that should be mentioned about the genetic al-
gorithm is the way that the initial population is created. It is critical to the
performance of the search that the initial population is as diverse as possible,
so that a large part of the search space will be explored early. Therefore, the
best method to initialize the population is one that generates individuals as ran-
domly as possible. Specifically, we randomly insert in the solution new pairings
that don’t have common legs with the other pairings already selected. Then, once
we’ve reached the point where we can’t find such a pairing, we run the correc-
tion algorithm on the solution to make it a feasible one. Through this process,
we obtain a population whose members are feasible solutions of a reasonably
high quality. Furthermore, since a great deal of randomness is present in the
generation of individuals, the population created displays the wished diversity.

Having presented the individual parts of the algorithm, we can now give its
complete description:

Randomly generate an initial population of chromosomes.
Repeat until a satisfactory solution is reached
Select two of the fittest members of the population for parents.
Apply crossover on the parents to produce a child chromosome.
Apply mutation on the child chromosome.
Correct the child chromosome so that it becomes a feasible solution.
Select one of the weakest members of the population to be replaced.
Replace the selected individual with the child.

4 Experimental Results

In order to test the efficiency of the proposed algorithm, we ran it using real input
data from the flight schedule of Olympic Airways. We used the flight schedule
for the 737–200 fleet, for April 1998. The schedule consisted of 2100 flight legs,
passing through 29 different airports. The pairings were generated based on the
regulations of Olympic Airlines for cockpit crews. Examples of the constraints
that were used are the following:

– The minimum transition time between legs in a duty is 45 minutes.
– The flight time of a duty has a maximum value, which is 15 hours for long-
range flights, 9 hours for non-domestic flights and 8 hours for domestic flights.

– At most one duty intersects with any calendar day.

As the cost of each pairing we used the value of the function

floor(1000 · duration of pairing/flight time of pairing)



where duration of pairing is the total time that the pairing started from the be-
ginning of its first duty until the end of its last duty, and flight time of pairing
is the sum of the flight times of all the flight legs in that pairing.

During the pairing generation phase, initially 70358 legal duties were gen-
erated, out of which the 22090 best duties were stored for the next phase. The
average number of flight legs in each of these duties was 3.88 legs per duty. Af-
terwards, using these duties as input we generated 66425 legal pairings and kept
the 11981 best of them. The average cost of each pairing was 6148.24 and it was
composed of 5.3268 flight legs in average. Most of the pairings that were finally
kept were composed of either one or two duties. It is easy to see that this is
a natural consequence of the cost function we used, which significantly favours
smaller pairings.

In the optimization phase, we ran the genetic algorithm to find the best
subset of the 11981 pairings, which covered the 2100 flight legs. After some
experimentation, it was decided to fix the population of each generation to 10
individuals. Increasing the population size led sometimes to better results, but
with a significant decrease in efficiency. In addition, the deadheadingPenalty
parameter of the fitness function was decided, experimentally, to be fixed to
1000, giving a total penalty of around 1% for deadheaded flights to the fitness
of an individual. This contribution, although relatively small, was sufficient to
guide the algorithm to solutions with very few deadheaded flights. The cost of the
best solution found, plotted against the number of generations that have passed,
appears in Fig. 2. The progress of the optimization in greater detail, for various
generations, is shown in Table 1. The table gives the total cost, the number of
pairings and the number of legs covered by more that one pairing (deadheaded
flights) for the best solution of the generation. We can see that as the genetic
algorithm runs, the solution constantly gets better. Even though initially many
flights are deadheaded and the cost is high, eventually after 20000 generations,
we find a solution of zero deadheading and of cost 976004. This requires about
30 minutes of elapsed time on a PC with a 350 MHz Pentium III processor.

950000

1e+06

1.05e+06

1.1e+06

1.15e+06

1.2e+06

1.25e+06

1.3e+06

0 5000 10000 15000 20000

co
st

generations

Fig. 2. The progress of the optimization



Table 1. The best solution of various generations

Generation 100 1000 3000 5000 8000 10000 13000 16000 20000
Cost 1247776 1121057 1064647 1036596 1008276 996994 988418 980344 976004
Pairings 635 592 567 551 537 531 529 526 525
Deadheading 71 10 6 6 4 4 2 0 0

Finally, we’ll compare the result we found with the result found by the project
Parachute [11], a project that combines constraint programming with parallel
processing, in order to automatically solve the crew scheduling problem. We ran
Parachute on the same data set (April 1998) using the same constraints and
the same cost function. The comparative results, showing the total cost of the
solution, the number of pairings in the solution and the number of deadheaded
flight legs, appear in Table 2. Our proposed method gives a solution of cost lower
by 194148 (16.5%) and has no deadheaded flight legs. The running times of both
methods were of the same order of magnitude.

Table 2. Comparison of our method and Parachute

Total Cost No. of Pairings Deadheaded Legs
Our Method 976004 525 0
Parachute 1170152 611 25 (1.1%)

Another comparison we carried out was to test our method with the datasets
that were used by Beasley and Chu in [3]. It has to be noted, though, that
these datasets represented various set covering problems, not necessarily similar
in nature to ones coming from crew pairing problems like the one we faced in
our work. For example, in these datasets, there exists 30–70% of overcovering in
the solutions, while in CPPs the corresponding percentage is 1–5%. In addition,
the density of the set covering problems in [3] is 2–20%, while, normally, in
CPPs, the density is around 1%. However, the results we obtained by running
our method, which is definitely tuned for CPPs, on these set covering problems
were of similar, though not better, quality to those achieved by Beasley and Chu.

5 Conclusions

In this paper, we have given a method that can be used to solve the crew pairing
problem. We separated the problem into two phases, the pairing generation and
the optimization, and we used a depth-first search for the first phase and a genetic
algorithm, extending work by Beasley and Chu, for the second. In order to test
the performance of the algorithm, we ran it with real data from the schedule of
Olympic Airways. The experimental results were very satisfactory, giving a low
cost solution and improving on previous results on the same data set. Therefore,



through this experiment, we have shown that the method we propose can be a
viable solution for the crew pairing process of airlines.

References

1. Anbil R., Gelman E., Patty B., Tanga R. Recent Advances in Crew-Pairing Opti-
mization at American Airlines. Interfaces, 21(1):62–74, 1991.

2. Andersson E., Housos E., Kohl N., Wedelin D. Crew Pairing Optimization. in Yu
G. (ed.) Operations Research in the Airline Industry. Kluwer Academic Publishing,
1997.

3. Beasley J. E., Chu P. C. A Genetic Algorithm for the Set Covering Problem.
European Journal of Operational Research, 94:392–404, 1996.

4. Carpara A., Fischetti M., Toth P. A Heuristic Algorithm for the Set Covering
Problem. Operations Research, 47:730–743, 1999.

5. Darwin C. The Origin of Species. John Murray, 1859.
6. Desaulniers J., Desrosiers J., Dumas Y., Marc S., Rioux B., Solomon M. M., Soumis
F. Crew Pairing at Air France. European Journal of Operational Research, 97:245–
259, 1997.

7. Eremeev A. A Genetic Algorithm with a Non-Binary Representation for the Set
Covering Problem. In Proceedings of Operations Research ’98, pages 175–181, 1999.

8. Etschmaier M. M., Mathaisel D. F. Airline Scheduling: An Overview. Transporta-
tion Science, 19:127–138, 1985.

9. Garey M. R, Johnson D. S. Computers and Intractabitity: A Guide to the Theory
of NP-Completeness. W. H Freeman, 1979.

10. Goumopoulos C., Alefragis P., Housos E. Parallel Algorithms for Airline Crew
Planning on Networks of Workstations. In Proceedings of the International Con-
ference on Parallel Processing, 1998.

11. Halatsis C., Stamatopoulos P., Karali I., Bitsikas T., Fessakis G., Schizas A.,
Sfakianakis S., Fouskakis C., Koukoumpetsos T., Papageorgiou D. Crew Schedul-
ing Based on Constraint Programming: The PARACHUTE Experience. In Pro-
ceedings of the 3rd Hellenic-European Conference on Mathematics and Informatics
HERMIS ’96, pages 424–431, 1996.

12. Hoffman K. L., Padberg M. Solving Airline Crew Scheduling Problems by Branch
and Cut. Management Science, 39:657–682, 1993.

13. Holland J. H. Adaption in Natural and Artificial Systems. MIT Press, 1975.
14. Lagerholm M., Peterson C., Söderberg B. Airline Crew Scheduling Using Potts
Mean Field Techniques. European Journal of Operational Research, 120:81–96,
2000.

15. Marchiori E., Steenbeek A. An Evolutionary Algorithm for Large Scale Set Cov-
ering Problems with Application to Airline Crew Scheduling. In Real-World Ap-
plications of Evolutionary Computing, LNCS 1803, pages 367–381, 2000.

16. Ozdemir H. T., Mohan C. Flight Graph Based Genetic Algorithm for Crew
Scheduling in Airlines. Information Sciences, 133:165–173, 2001.

17. Pavlopoulou C., Gionis A., Stamatopoulos P., Halatsis C. Crew Pairing Optimiza-
tion Based on CLP. In Proceedings of the 2nd International Conference on the
Practical Applications of Constraint Technology PACT ’96, pages 191–210, 1996.

18. Wedelin D. The Design of a 0-1 Integer Optimizer and its Application in the
Carmen System. European Journal of Operational Research, 87:722–730, 1995.

19. Yan S., Tung T.-T., Tu Y.-P. Optimal Construction of Airline Individual Crew
Pairings. Computers and Operations Research, 29:341–363, 2002.


	Introduction
	The Crew Pairing Problem
	Solving the Crew Pairing Problem
	The Pairing Generation
	The Optimization

	Experimental Results
	Conclusions

