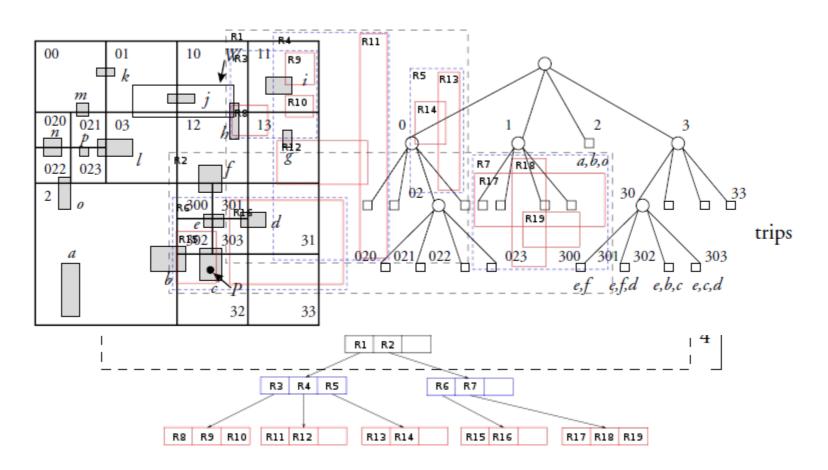
Extended Semantic Web Conference 2012

Implemented Systems

Presenter: Manos Karpathiotakis

Outline

- Relational DBMS with a geospatial extension
- RDF stores with a geospatial component:
 - Research prototypes
 - Commercial systems


How does an RDBMS handle geometries? (1/2)

- Geometries are not explicitly handled by query language (SQL)
- Define datatypes that extend the SQL type system
 - Model geometries using Abstract Data Type (ADT)
 - Hide the structure of the data type to the user
 - The interface to an ADT is a list of operations
 - » For spatial ADTs: Operations defined according to OGC Simple Features for SQL
 - Vendor-specific implementation irrelevant extend SQL with geometric functionality independently of a specific representation/implementation

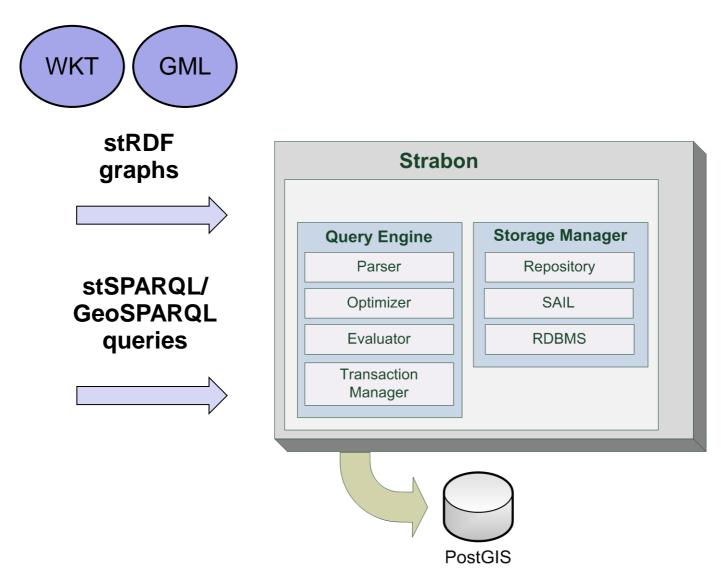
How does an RDBMS handle geometries? (2/2)

- Special indices needed for geometry data types
- Specialised query processing methods

Implemented Systems

- Will examine following aspects:
 - Data model
 - Query language
 - Functionality exposed
 - Coordinate Reference System support
 - Indexing Mechanisms

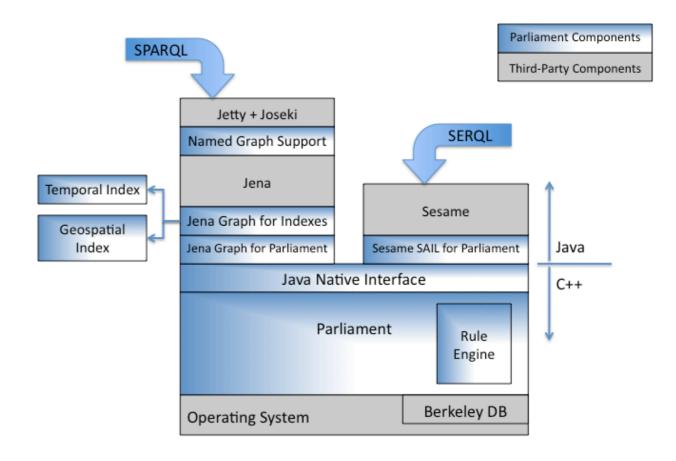
Research Prototypes


- Strabon
- Parliament
- Brodt et al.
- Perry

Strabon

- Storage and query evaluation module for stSPARQL
- Geometries represented using typed literals
 - WKT & GML serializations supported
- Spatial predicates represented as SPARQL functions
 - OGC-SFA, Egenhofer, RCC8 families exposed
 - Spatial aggregate functions
- Support for multiple coordinate reference systems
- GeoSPARQL support
 - Core
 - Geometry Extension
 - Geometry Topology Extension

Strabon - Implementation


Open Source, available from http://www.strabon.di.uoa.gr/

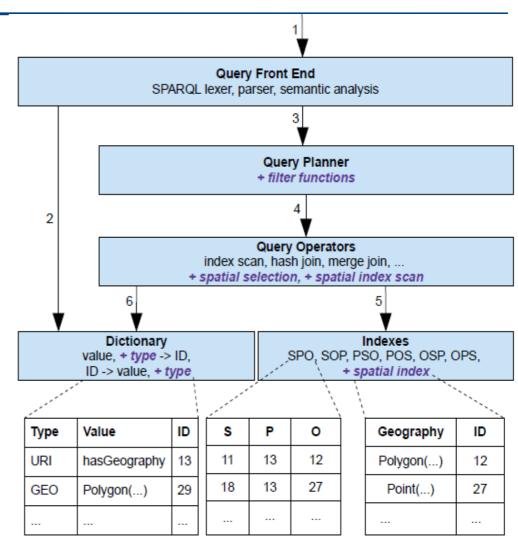
Parliament

- Storage Engine
- Developed by Raytheon BBN Technologies (Dave Kolas)
- First implementation of GeoSPARQL
 - Geometries represented using typed literals
 - WKT & GML serializations supported
 - Three families of topological functions exposed
 - OGC-SFA
 - Egenhofer
 - RCC8
 - Multiple CRS support

Parliament - Implementation

- Rule engine included
- Paired with query processor
- R-tree used

Open Source, available from

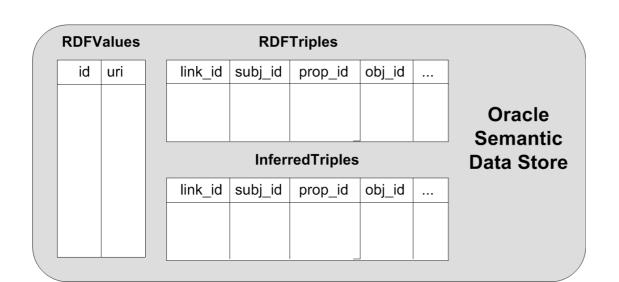

http://www.parliament.semwebcentral.org

Brodt et al.

- Built on top of RDF-3X
- Implemented at University of Stuttgart
- No formal definitions of data model and query language given
- Geometries expressed according to OGC-SFA
 - Typed Literals
 - WKT serialization supported
 - Expressed in WGS84
- Spatial predicates represented as SPARQL filter functions
 - OGC-SFA functionality exposed

Brodt et al. - Implementation

- Focus on spatial query processing and spatial indexing techniques for spatial selections
 - e.g. "Retrieve features located inside a given polygon"
- Naive spatial selection operator
 - Placed in front of the execution plan which the planner returns
- Spatial index (R-Tree) implemented
 - Only utilized in spatial selections


Available upon request

Perry

- Built on top of Oracle 10g
- Implemented at Wright State University
- Implementation of SPARQL-ST
 - Upper-level ontology imposed
- Geometries expressed according to GeoRSS GML
- Spatial and temporal variables introduced
- Spatial and temporal filters used to filter results with spatiotemporal constraints
 - RCC8 calculus
 - Allen's interval calculus

Perry

- Spatiotemporal operators implemented using Oracle's extensibility framework
 - Three spatial operators defined
- Strictly RDF concepts implemented using Oracle's RDF storage and inferencing capabilities
- R-Tree used for indexing spatial objects

SpatialData

value_id	shape	

Available upon request

Commercial RDF Stores

- AllegroGraph
- OWLIM
- Virtuoso
- uSeekM

AllegroGraph

FRANZING.
"WEB 3.0's DATABASE"

- Well-known RDF store, developed by Franz Inc.
- Two-dimensional point geometries
 - Cartesian / spherical coordinate systems supported
- GEO operator introduced for querying
 - Syntax similar to SPARQL's GRAPH operator
 - Available operations:
 - Radius / Haversine (Buffer)
 - Bounding Box
 - Distance
- Linear Representation of data
 - X and Y ordinates of a point are combined into a single datum
- Distribution sweeping technique used for indexing
 - Strip-based index
- Closed source, available from http://www.franz.com/agraph/allegrograph/

OWLIM

- Semantic Repository, developed by Ontotext
- Two-dimensional point geometries supported
 - Expressed using W3C Geo Vocabulary
 - Point Geometries
 - WGS84
- Spatial predicates represented as property functions
 - Available operations:
 - Point-in-polygon
 - Buffer
 - Distance
- Implemented as a Storage and Inference Layer for Sesame
- Custom spatial index used
- Closed Source
 - Free version available for evaluation purposes (http://www.ontotext.com/owlim)

Virtuoso

- Multi-model data server, developed by OpenLink
- Two-dimensional point geometries
 - Typed literals
 - WKT serialization supported
 - Multiple CRS support
- Spatial predicates represented as functions
 - Subset of SQL/MM supported

- R-Tree used for indexing
- Spatial capabilities firstly included in Virtuoso 6.1
- Closed Source
 - Open Source Edition available from http://virtuoso.openlinksw.com/
 - Does not include the spatial capabilities extension

uSeekM

- Add-on library for Sesame-enabled semantic repositories, developed by OpenSahara
- Geometries expressed according to OGC-SFA
 - WKT serialization
 - Only WGS84 supported
- Spatial predicates represented as functions
 - OGC-SFA functionality exposed
 - Additional functions
 - e.g. shortestline(geometry,geometry)
- Implemented as a Storage and Inference Layer (SAIL) for Sesame
 - May be used with RDF stores that have a Sesame Repository/SAIL layer
- R-tree-over-GiST index used (provided by PostGIS)
- Open Source, Apache v2 License
- Available from https://dev.opensahara.com/projects/useekm

System	Language	Index	Geometries	CRS support	Comments on Functionality
Strabon	stSPARQL/ GeoSPARQL*	R-tree-over- GiST	WKT / GML support	Yes	OGC-SFAEgenhoferRCC-8
Parliament	GeoSPARQL	R-Tree	WKT / GML support	Yes	•OGC-SFA •Egenhofer •RCC-8
Brodt et al. (RDF-3X)	SPARQL	R-Tree	WKT support	No	OGC-SFA
Perry	SPARQL-ST	R-Tree	GeoRSS GML	Yes	RCC8
AllegroGraph	Extended SPARQL	Distribution sweeping technique	2D point geometries	Partial	BufferBounding BoxDistance
OWLIM	Extended SPARQL	Custom	2D point geometries (W3C Basic Geo Vocabulary)	No	Point-in-polygonBufferDistance
Virtuoso	SPARQL	R-Tree	2D point geometries (in WKT)	Yes	SQL/MM (subset)
uSeekM	SPARQL	R-tree-over GiST	WKT support	No	OGC-SFA

Conclusions

- Semantic Geospatial Systems:
 - Research Prototypes
 - Commercial Systems

Next topic: Applications of Linked Geospatial Data