Data Models and Query Languages for Linked Geospatial Data

Manolis Koubarakis, Kostis Kyzirakos and Charalampos Nikolaou

Dept. of Informatics and Telecommunications National and Kapodistrian University of Athens

Tutorial Organization

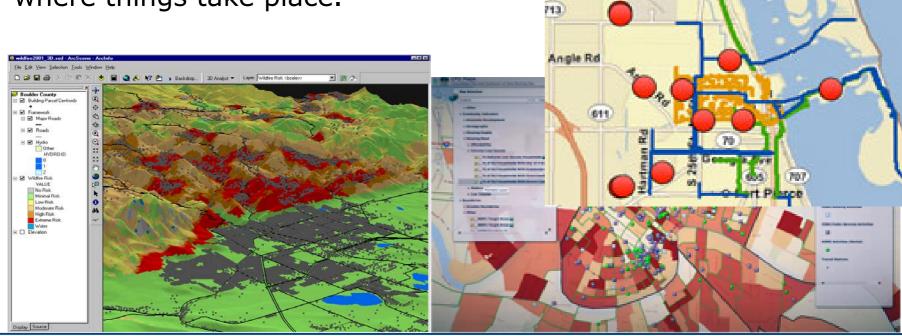
- **14:30 14:45** Introduction
- 14:45 15:15 Background in geospatial data modeling
- 15:15 16:00 Geospatial data in RDF stSPARQL
- 16:00 16:30 Coffee break
- 16:30 16:45 Geospatial data in RDF GeoSPARQL
- **16:45 17:00** Implemented RDF Stores with geospatial support
- **17:00 17:50** Geospatial information with description logics, OWL and rules
- 17:50 18:00 Conclusions, questions, discussion

Introduction

Presenter: Manolis Koubarakis

Dept. of Informatics and Telecommunications National and Kapodistrian University of Athens

Outline


- Why should you be interested in geospatial information?
- Why should you attend this tutorial?

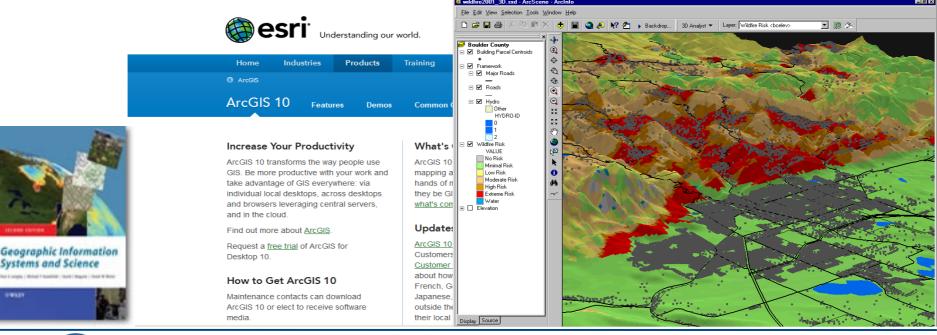
Why Geospatial Information?

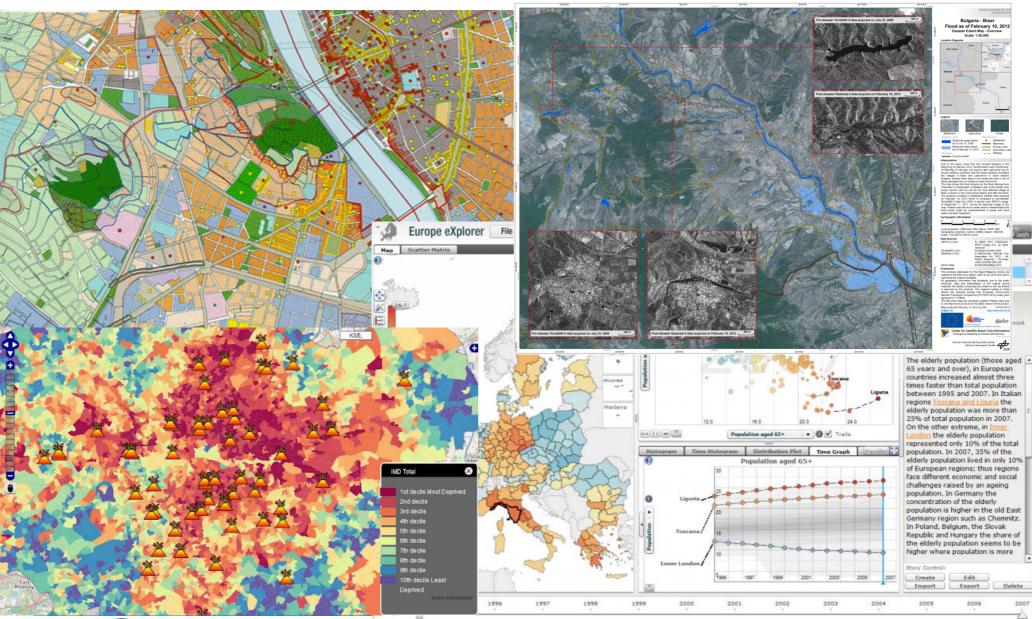
Geospatial, and in general **geographical,** information is very important in reality: everything that happens, happens somewhere (**location**).

Decision making can be substantially improved if we know

where things take place.

Geography


- From <u>http://en.wikipedia.org/wiki/Geography</u>
 - Geography is the science that studies the lands,
 the features, the inhabitants and the phenomena of
 the Earth.
 - From the Greek word γεωγραφία (geographia)
 which means "describing the Earth".

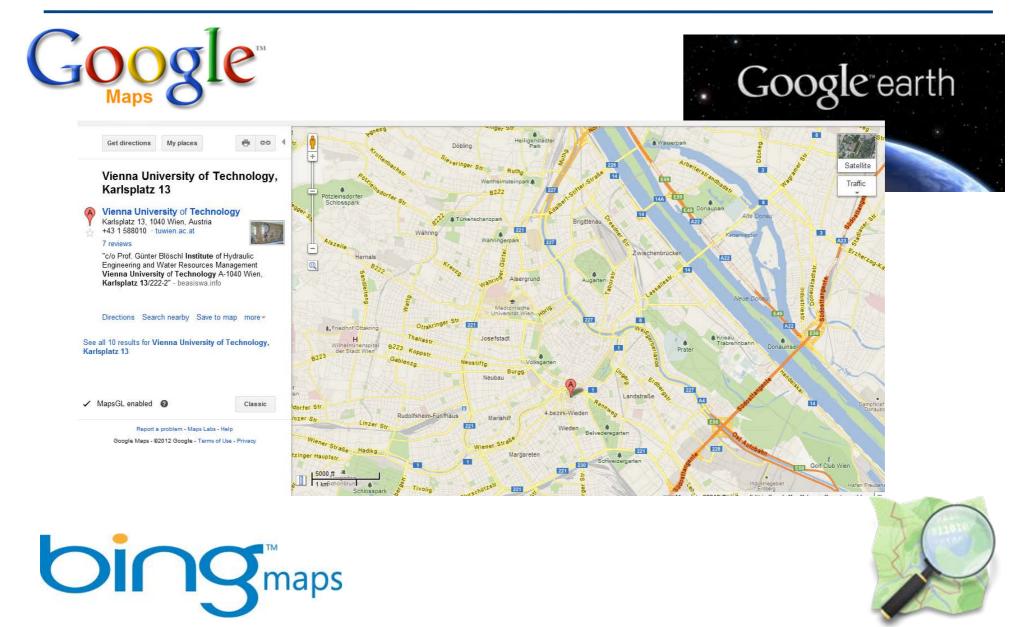

Geographical Information Systems and Science

- A **geographical information system (GIS)** is a system designed to capture, store, manipulate, analyze, manage, and present all types of geographical data.
- GIS science is the field of study for developing and using GIS.

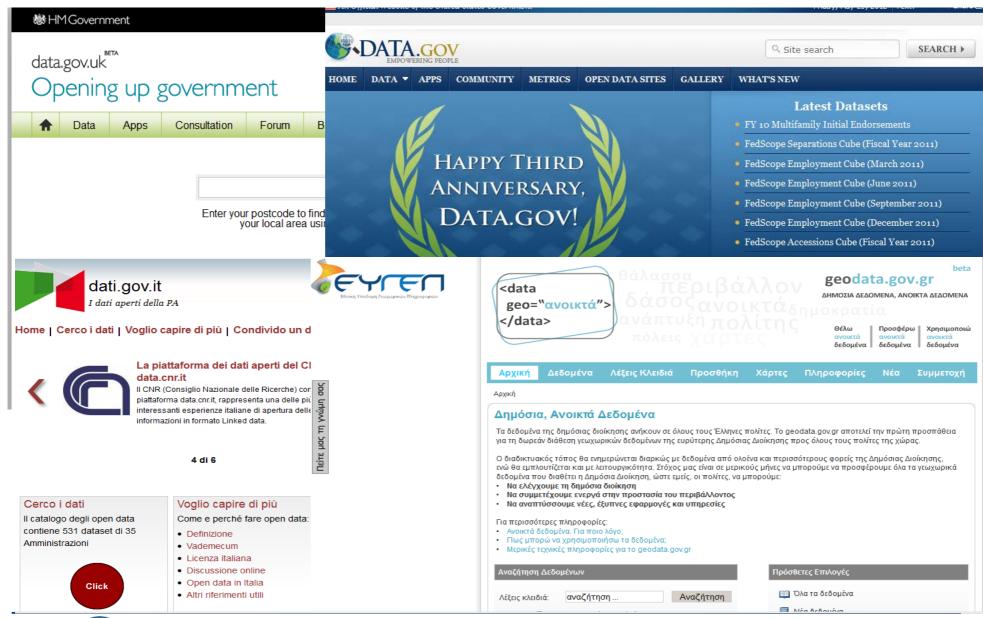
Combining GIS Data for Decision Making

TELEIOS

Reasoning Web 2012 – Summer School Data Models and Query Languages for Linked Geospatial Data

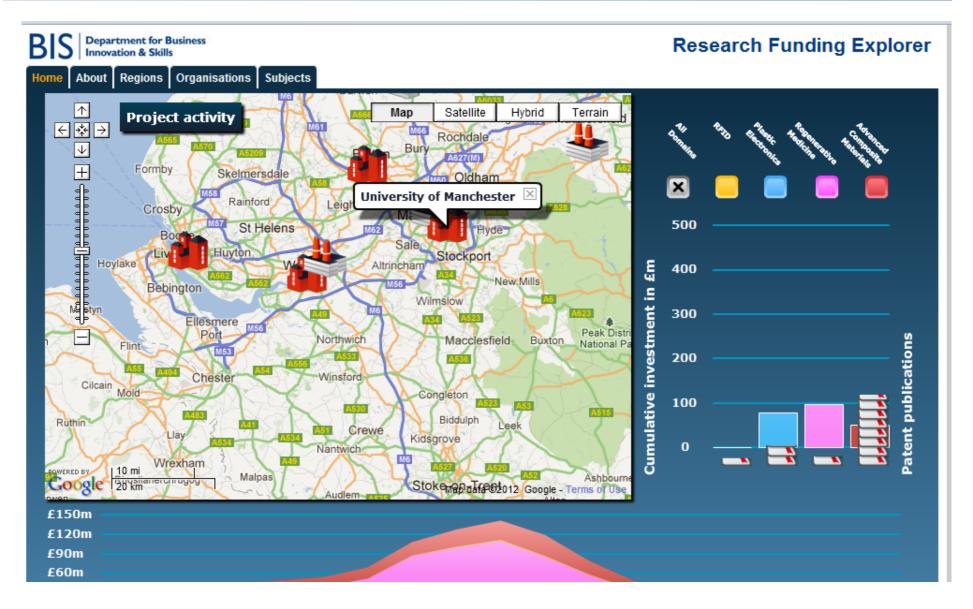

8

- Lots of **geospatial data is available on the Web** today.
- Lots of **public data** coming out of open government initiatives is **geospatial**.
- Lots of the above data is quickly being transformed into linked data!
 - People have started building **applications** utilizing linked data.


•

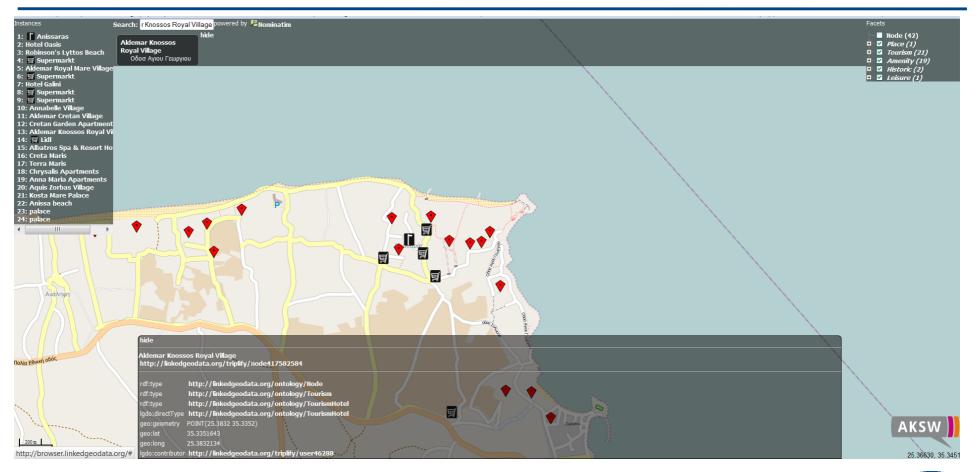
Geospatial data on the Web

Open Government Data



Linked geospatial data – Ordnance Survey

Linked geospatial data – Research Funding Explorer



Linked geospatial data – Spain

Linked geospatial data – Open Street Map

TELEI

Conclusions

Introduction

- Why should you be interested in geospatial information?
- Why should you attend this tutorial?

Next topic: Background in geospatial data modeling

Background in geospatial data modeling

Presenter: Manolis Koubarakis

Dept. of Informatics and Telecommunications National and Kapodistrian University of Athens

Outline

- Basic GIS concepts and terminology
- Geographic space modeling paradigms
- Geospatial data standards

Basic GIS Concepts and Terminology

- Theme: the information corresponding to a particular domain that we want to model. A theme is a set of **geographic** features.
- **Example:** the countries of Europe

Basic GIS Concepts (cont'd)

Geographic feature or geographic object: a domain entity that can have various attributes that describe spatial and nonspatial characteristics.

Example: the country Greece with attributes

- Population
- Flag
- Capital
- Geographical area
- Coastline
- Bordering countries

Basic GIS Concepts (cont'd)

Geographic features can be **atomic** or **complex.**

Example: According to the Kallikratis administrative reform of 2010, Greece consists of:

- 13 **regions** (e.g., Crete)
- Each region consists of **perfectures** (e.g., Heraklion)
- Each perfecture consists of **municipalities** (e.g., Dimos Chersonisou)

Basic GIS Concepts (cont'd)

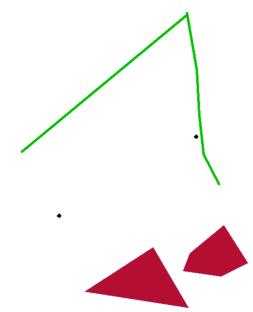
The spatial characteristics of a feature can involve:

- **Geometric information** (location in the underlying geographic space, shape etc.)
 - Topological information (containment, adjacency etc.).

Municipalities of the perfecture of Heraklion:

1. Dimos Irakliou

٠


- 2. Dimos Archanon-Asterousion
- 3. Dimos Viannou
- 4. Dimos Gortynas
- 5. Dimos Maleviziou
- 6. Dimos Minoa Pediadas
- 7. Dimos Festou
- 8. Dimos Chersonisou

Geometric Information

Geometric information can be captured by using geometric primitives (**points**, **lines**, **polygons**, etc.) to approximate the spatial attributes of the real world feature that we want to model.

Geometries are associated with a **coordinate reference system** which

describes the coordinate space in which the geometry is defined.

Topological Information

- Topological information is **inherently qualitative** and it is expressed in terms of **topological relations** (e.g., containment, adjacency, overlap etc.).
- Topological information can be **derived from geometric information** or it might be captured by **asserting explicitly the topological relations** between features.

Topological Relations

- The study of topological relations has produced a lot of interesting results by researchers in:
 - GIS
 - Spatial databases
 - Artificial Intelligence (qualitative reasoning and knowledge representation)

The 4-intersection model

- The **4-intersection model** has been defined by Egenhofer and Franzosa in 1991 based on previous work by Egenhofer and colleagues.
- It is based on **point-set topology.**
- Spatial regions are defined to be non-empty, proper subsets of a topological space. In addition, they must be closed and have connected interiors.

Topological relations are the ones that are invariant under topological homeomorphisms.

٠

4IM and 9IM

The 4-intersection model can captures **topological relations** between two spatial regions *a* and *b* by considering **whether the intersection of their boundaries and interiors is empty or non-empty**.

The **9-intersection model** is an extension of the 4-intersection model (Egenhofer and Herring, 1991).

9IM captures topological relations between two spatial regions *a* and *b* by considering whether the intersection of their boundaries, interiors and **exteriors** is empty or non-empty.

DE-9IM

- The **dimensionally extended 9-intersection model** has been defined by Clementini and Felice in 1994.
- It is also based on the **point-set topology** of R² and deals with **"simple", closed geometries (areas,** lines, points).
- Like its predecessors (4IM, 9IM), it can also be extended to **more complex geometries** (areas with holes, geometries with multiple components).

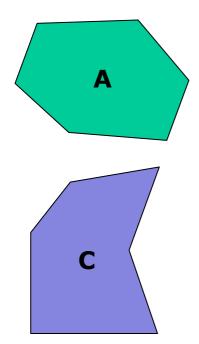
DE-9IM

It captures topological relationships between two geometries *a* and *b* in R² by considering the dimensions of the intersections of the boundaries, interiors and exteriors of the two geometries:

$$\text{DE-9IM}(a,b) = \begin{bmatrix} \dim(I(a) \cap I(b)) & \dim(I(a) \cap B(b)) & \dim(I(a) \cap E(b)) \\ \dim(B(a) \cap I(b)) & \dim(B(a) \cap B(b)) & \dim(B(a) \cap E(b)) \\ \dim(E(a) \cap I(b)) & \dim(E(a) \cap B(b)) & \dim(E(a) \cap E(b)) \end{bmatrix}$$

• The dimension can be **2**, **1**, **0** and **-1** (dimension of the empty set).

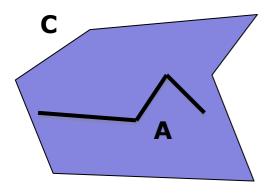
DE-9IM


Five jointly exclusive and pairwise disjoint (JEPD) relationships between two different geometries can be distinguished (**disjoint, touches, crosses, within, overlaps**).

The model can also be defined using an appropriate **calculus of geometries** that uses these 5 binary relations and boundary operators.

See the paper: E. Clementini and P. Felice. A Comparison of Methods for Representing Topological Relationships. Information Sciences 80 (1994), pp. 1-34.

Example: A disjoint C


	I(C)	B (C)	E(C)
I(A)	F	F	*
B (A)	F	F	*
E(A)	*	*	*

Notation: • T = { 0, 1, 2 }

* * = don't care = { -1, 0, 1, 2 }

Example: A within C

	I(C)	B (C)	E(C)
I(A)	Т	*	F
B (A)	*	*	F
E(A)	*	*	*

Notation equivalent to 3x3 matrix:

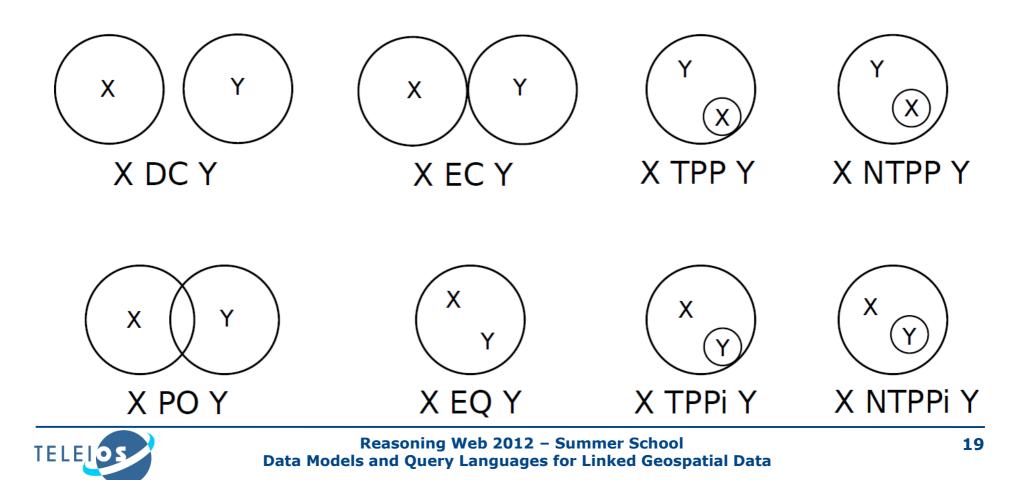
- String of 9 characters representing the above matrix in row major order.
- In this case: T*F**F***

DE-9IM Relation Definitions

Beziehung	Definition	Beispiele
A disjoint B	FF* FF* FF* ***	A B
A touches B (d(A) > 0 ∨ d(B) > 0)	$\begin{bmatrix} \mathbf{F} \mathbf{T}^* \\ * * * \\ * * * \end{bmatrix} \lor \begin{bmatrix} \mathbf{F}^* * \\ \mathbf{T}^* * \\ * * * \end{bmatrix} \lor \begin{bmatrix} \mathbf{F}^* * \\ * \mathbf{T}^* \\ * * * \end{bmatrix}$	
A crosses B (d(A) < d(B))	T * T * * * * * * * * *	
A crosses B (d(A) = d(B) = 1)	0 * * * * * * * *	X
A within B	T * F * * F * * *	•
A overlaps B ($d(A) = d(B)$, $d(A) \neq 1$, $d(B) \neq 1$)	T * T * * * T * *	
A overlaps B ($d(A) = d(B) = 1$)	1 * T * * * T * *	\checkmark

The Region Connection Calculus (RCC)

- The primitives of the calculus are **spatial regions**. These are non-empty, regular subsets of a topological space.
 - The calculus is based on a single binary predicate C that formalizes the "connectedness" relation.
 - *C(a,b)* is true when the closure of *a* is connected to the closure of *b* i.e., they have at least one point in common.
 - It is axiomatized using first order logic.
 - See the original paper by Randell, Cui and Cohn (KR 1991).

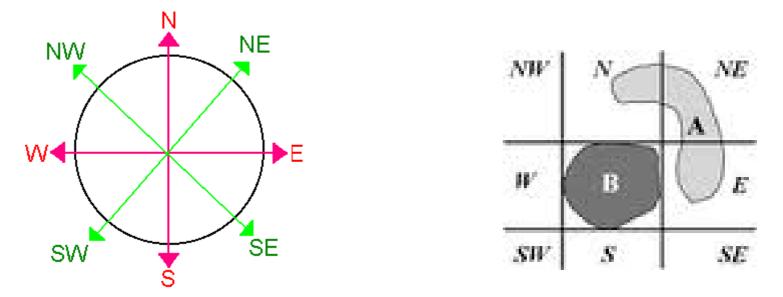


•

٠

• This is a set of **eight JEPD binary relations** that can be defined in terms of predicate *C*.

- The RCC-5 subset has also been studied. The granularity here is coarser. The boundary of a region is not taken into consideration:
 - No distinction among DC and EC, called just DR.
 - No distinction among TPP and NTPP, called just PP.

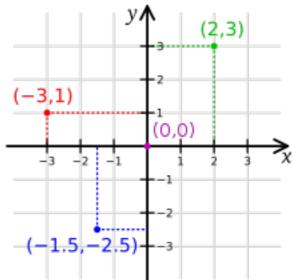

RCC-8 and RCC-5 relations **can also be defined using point-set topology**, and there are very close connections to the models of Egenhofer and others.

٠

More Qualitative Spatial Relations

Orientation/Cardinal directions (left of, right of, north of, south of, northeast of etc.)

Distance (close to, far from etc.). This information can also be **quantitative**.


٠

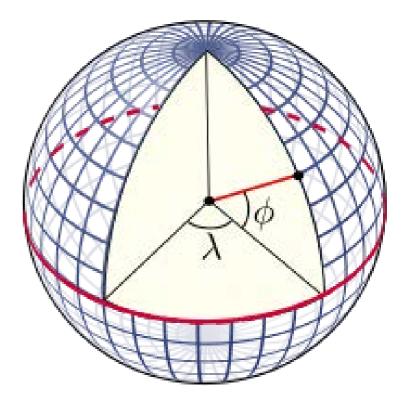
٠

Coordinate Systems

- **Coordinate:** one of *n* scalar values that determines the position of a point in an *n*-dimensional space.
- **Coordinate system:** a set of mathematical rules for specifying how coordinates are to be assigned to points.

Example: the Cartesian coordinate system

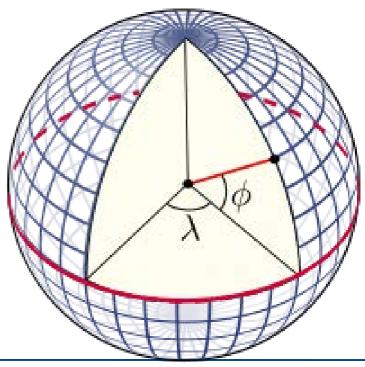
٠


Coordinate Reference Systems

- Coordinate reference system: a coordinate system
 that is related to an object (e.g., the Earth, a planar
 projection of the Earth, a three dimensional
 mathematical space such as R³) through a datum
 which specifies its origin, scale, and orientation.
- The term **spatial reference system** is also used.

Geographic Coordinate Reference Systems

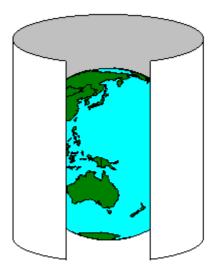
These are 3-dimensional coordinate systems that utilize **latitude** (ϕ) , **longitude** (λ) , and optionally **geodetic height** (i.e., elevation), to capture geographic locations on Earth.

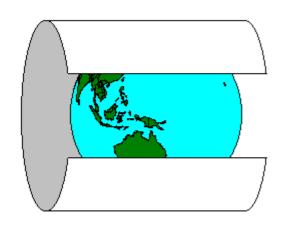


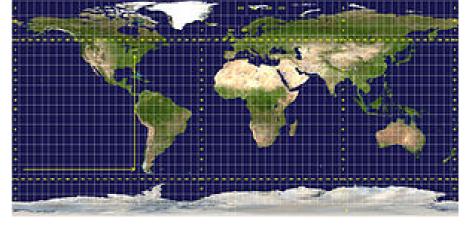
The World Geodetic System

The **World Geodetic System (WGS)** is the most well-known geographic coordinate reference system and its latest revision is **WGS84.**

Applications: cartography, geodesy, navigation (GPS), etc.




Projected Coordinate Reference Systems


Projected coordinate reference system: they transform the 3dimensional approximation of the Earth into a 2-dimensional surface (distortions!)

Example: the Universal Transverse Mercator (UTM) system

Mercator projection

Transverse Mercator projection

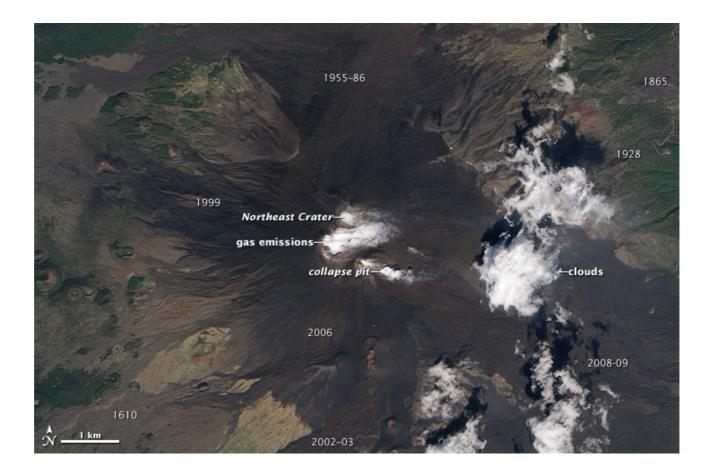
Coordinate Reference Systems (cont'd)

- There are well-known ways to **translate** between coordinate reference systems.
 - Various authorities maintain lists of coordinate reference systems. See for example:
 - OGC <u>http://www.opengis.net/def/crs/</u>
 - European Petroleum Survey Group

http://www.epsg-registry.org/

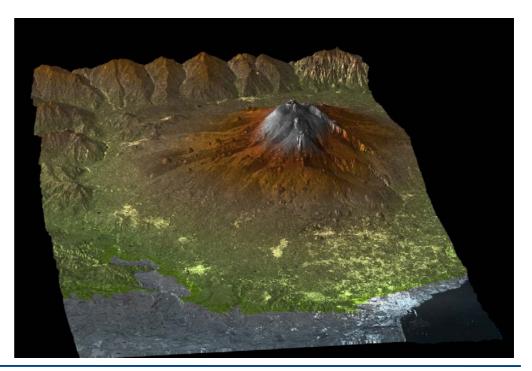
Geographic Space Modeling Paradigms

 Abstract geographic space modeling paradigms: discrete objects vs. continuous fields


Concrete representations: tessellation vs. vectors vs. constraints

Abstract Modeling Paradigms: Feature-based

Feature-based (or entity-based or object-based). This kind of

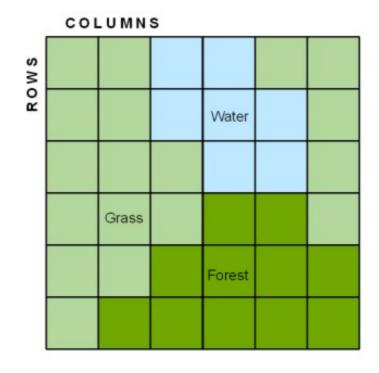

modeling is based on the concepts we presented already.

Abstract Modeling Paradigms: Field-based

- Each point (x, y) in geographic space is associated with one or several attribute values defined as **continuous functions** in xand y.
- **Examples:** elevation, precipitation, humidity, temperature for each point (x,y) in the Euclidean plane.

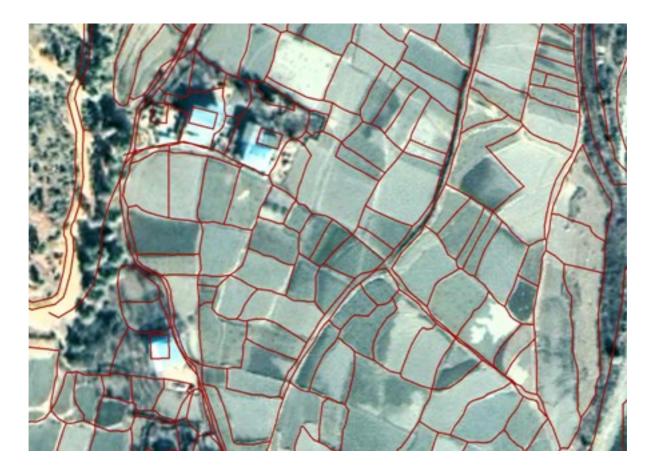
From Abstract Modeling to Concrete Representations

Question: How do we represent the **infinite objects** of the abstract representations (points, lines, fields etc.) **by finite means** (in a computer)?

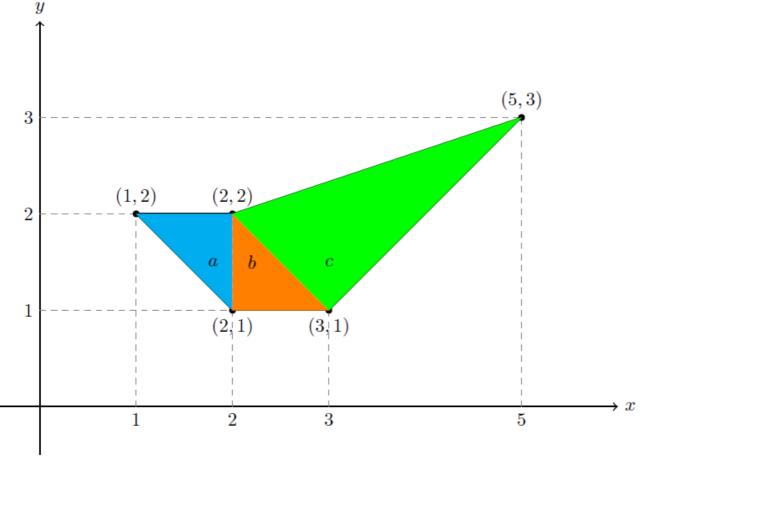

Answers:

- Approximate the continuous space (e.g., ℝ²) by a discrete one (ℤ²).
- Use **special encodings**

Approximations: Tessellation


- In this case a **cellular decomposition of the plane** (usually, a grid) serves as a basis for representing the geometry.
 - **Example:** raster representation (fixed or regular tesselation)

Cadastral map (irregular tessellation) overlayed on a satellite image.



Special Encodings: Vector Representation

- In this case objects in space are represented using **points** as primitives as follows:
 - A **point** is represented by a tuple of coordinates.
 - A **line segment** is represented by a pair with its beginning and ending point.
 - More complex objects such as arbitrary lines, curves, surfaces etc. are built recursively by the basic primitives using constructs such as lists, sets etc.
 - This is the approach **used in all GIS and other popular systems today. It has also been standardized** by various international bodies.

Example

[(1,2) (2,2) (5,3) (3,1) (2,1) (12)]

Special Encodings: Constraint Representation

In this case objects in space are represented by quantifier free

formulas in a constraint language (e.g., linear constraints).

 $(y+x \ge 3 \land x \le 2 \land y \le 2) \lor (y+x \le 4 \land x \ge 2 \land y \ge 1) \lor (y \ge 3 \land x \le 5 \land y - \frac{x}{3} \le \frac{4}{3})$

Constraint Databases

- The constraint representation of spatial data was the focus of much work in **databases, logic programming and AI** after the paper by Kanellakis, Kuper and Revesz (PODS, 1991).
- The approach was very fruitful theoretically but was not adopted in practice.
- See the book by Revesz for a tutorial introduction.

Geospatial Data Standards

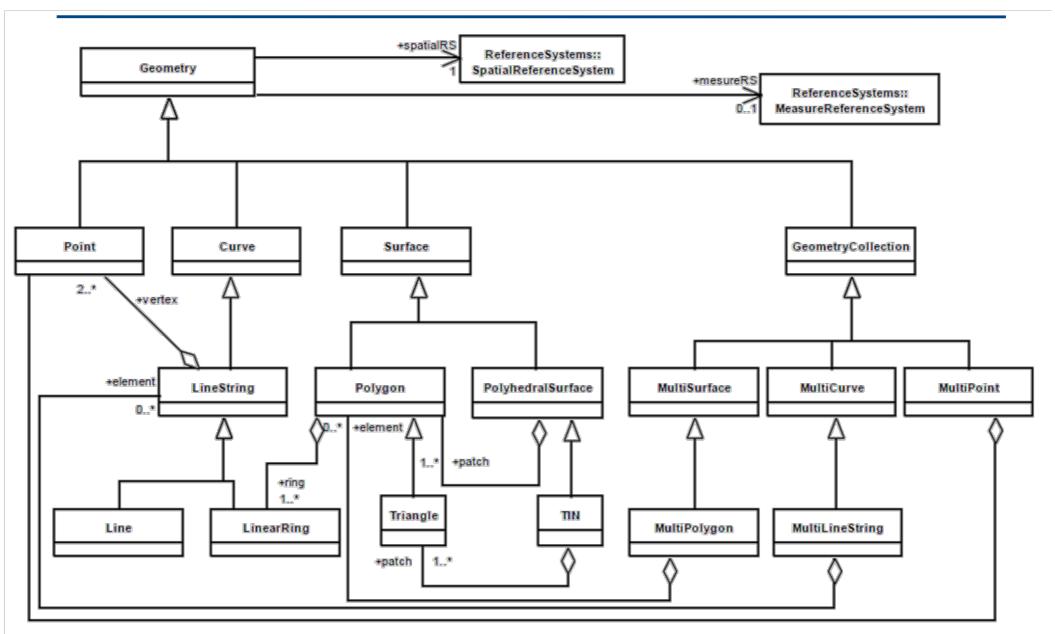
The **Open Geospatial Consortium (OGC)** and the **International Organization for Standardization (ISO)** have

developed many geospatial data standards that are in wide use today. In this tutorial we will cover:

- Well-Known Text
- Geography Markup Language
- **OpenGIS Simple Feature Access**

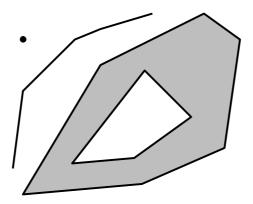
Well-Known Text (WKT)

WKT is an OGC and ISO standard for representing **geometries**, **coordinate reference systems**, and **transformations** between coordinate reference systems.


WKT is specified in **OpenGIS Simple Feature Access - Part 1: Common Architecture** standard which is the same as the **ISO 19125-1** standard. Download from

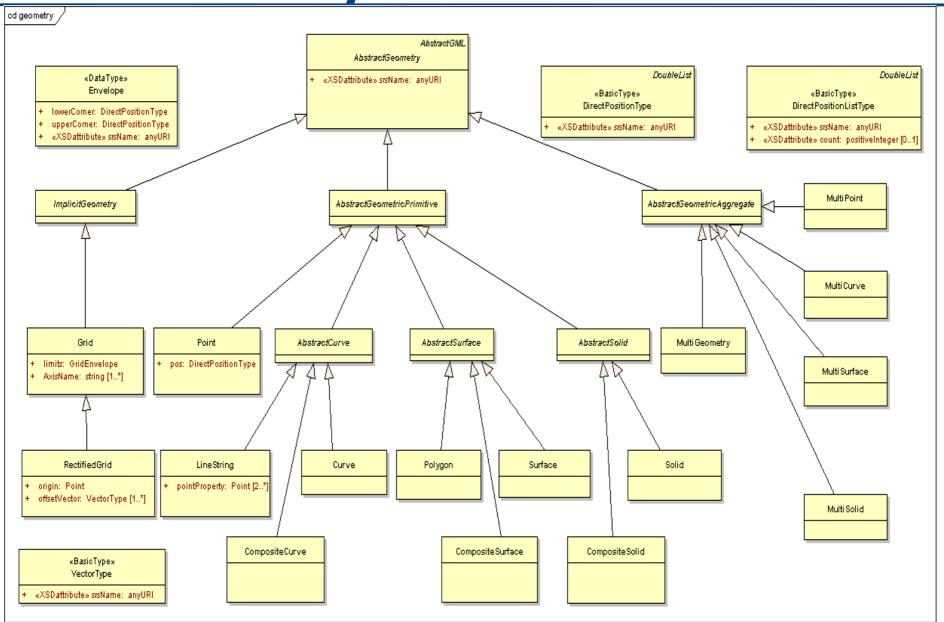
http://portal.opengeospatial.org/files/?artifact_id=25355 .

This standard concentrates on **simple features:** features with all spatial attributes described piecewise by a straight line or a planar interpolation between sets of points.



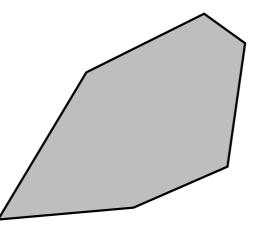
WKT Class Hierarchy

WKT representation:



Geography Markup Language (GML)

- **GML** is an **XML-based encoding standard** for the representation of geospatial data.
- GML provides XML schemas for defining a variety of concepts: geographic features, geometry, coordinate reference systems, topology, time and units of measurement.
- **GML profiles** are subsets of GML that target particular applications.
 - **Examples**: Point Profile, GML Simple Features Profile etc.



GML Simple Features: Class Hierarchy

GML representation:

<gml:Polygon gml:id="p3" srsName="urn:ogc:def:crs:EPSG:6.6:4326">
 <gml:exterior>
 <gml:LinearRing>
 <gml:coordinates>
 5,5 28,7 44,14 47,35 40,40 20,30 5,5
 </gml:coordinates>
 </gml:coordinates>
 </gml:LinearRing>
 </gml:LinearRing>
 </gml:LinearRing>
 </gml:exterior>
</gml:Polygon>

OpenGIS Simple Features Access (cont'd)

OGC has also specified a standard for the storage, retrieval, query and update of sets of simple features using relational DBMS and SQL.

This standard is "**OpenGIS Simple Feature Access - Part 2: SQL Option**" and it is the same as the **ISO 19125-2** standard. Download from <u>http://portal.opengeospatial.org/files/?artifact_id=25354</u>.

Related standard: ISO 13249 SQL/MM - Part 3.

OpenGIS Simple Features Access (cont'd)

The standard covers two implementations options: (i) using **only the SQL predefined data types** and (ii) using **SQL with geometry types**.

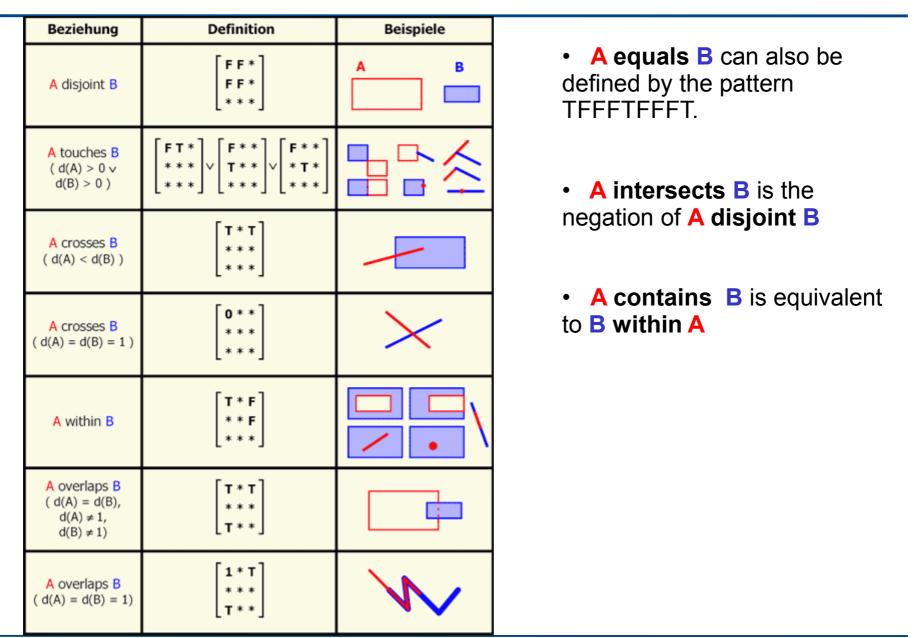
SQL with geometry types:

- We use the WKT geometry class hierarchy presented earlier to define **new geometric data types for SQL**
- We define new **SQL functions on those types**.

SQL with Geometry Types -Functions

Functions that **request or check properties** of a geometry:

- ST Dimension (A:Geometry): Integer
- ST_GeometryType(A:Geometry):Character Varying
- ST_AsText(A:Geometry): Character Large Object
- ST_AsBinary(A:Geometry): Binary Large Object
- ST_SRID(A:Geometry): Integer
- ST_IsEmpty(A:Geometry): Boolean
- ST_IsSimple(A:Geometry): Boolean


SQL with Geometry Types – Functions (cont'd)

Functions that test **topological relations** between two geometries using the **DE-9IM**:

- ST_Equals (A:Geometry, B:Geometry):Boolean
- ST_Disjoint(A:Geometry, B:Geometry):Boolean
- ST_Intersects (A:Geometry, B:Geometry):Boolean
- ST_Touches (A:Geometry, B:Geometry):Boolean
- ST_Crosses (A:Geometry, B:Geometry):Boolean
- ST_Within(A:Geometry, B:Geometry):Boolean
- ST_Contains (A:Geometry, B:Geometry):Boolean
- ST_Overlaps (A:Geometry, B:Geometry):Boolean
- ST_Relate(A:Geometry, B:Geometry, Matrix: Char(9)):Boolean

DE-9IM Relation Definitions

SQL with Geometry Types – Functions (cont'd)

- Functions for **constructing new geometries** out of existing ones:
 - ST Boundary (A:Geometry) : Geometry
 - ST_Envelope (A:Geometry) :Geometry
 - ST_Intersection (A:Geometry, B:Geometry):Geometry
 - ST_Union (A:Geometry, B:Geometry):Geometry
 - ST_Difference(A:Geometry, B:Geometry):Geometry
 - ST_SymDifference(A:Geometry, B:Geometry):Geometry
 - ST_Buffer(A:Geometry, distance:Double):Geometry

Geospatial Relational DBMS

The OpenGIS Simple Features Access Standard is today been used in all **relational DBMS with a geospatial extension.**

- The **abstract data type mechanism** of the DBMS allows the representation of all kinds of geospatial data types supported by the standard.
- The query language (SQL) offers the **functions** of the standard for querying data of these types.

•

Conclusions

Background in geospatial data modeling:

- Why geographical information?
- Geographical Information Science and Systems
- Geospatial data on the Web and linked geospatial data
- Abstract geographic space modeling paradigms: discrete objects vs. continuous fields
- Concrete representations: tessellation vs. vectors vs. constraints
- Geospatial data standards

Next topic: Geospatial data in the Semantic Web

Background in geospatial data modeling

Presenter: Manolis Koubarakis

Dept. of Informatics and Telecommunications National and Kapodistrian University of Athens

Outline

- Basic GIS concepts and terminology
- Geographic space modeling paradigms
- Geospatial data standards

Basic GIS Concepts and Terminology

- Theme: the information corresponding to a particular domain that we want to model. A theme is a set of **geographic** features.
- **Example:** the countries of Europe

Basic GIS Concepts (cont'd)

Geographic feature or geographic object: a domain entity that can have various attributes that describe spatial and nonspatial characteristics.

Example: the country Greece with attributes

- Population
- Flag
- Capital
- Geographical area
- Coastline
- Bordering countries

Basic GIS Concepts (cont'd)

Geographic features can be **atomic** or **complex.**

Example: According to the Kallikratis administrative reform of 2010, Greece consists of:

- 13 **regions** (e.g., Crete)
- Each region consists of **perfectures** (e.g., Heraklion)
- Each perfecture consists of **municipalities** (e.g., Dimos Chersonisou)

Basic GIS Concepts (cont'd)

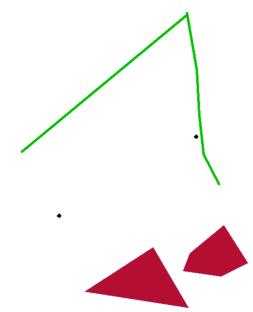
The spatial characteristics of a feature can involve:

- **Geometric information** (location in the underlying geographic space, shape etc.)
 - Topological information (containment, adjacency etc.).

Municipalities of the perfecture of Heraklion:

1. Dimos Irakliou

٠


- 2. Dimos Archanon-Asterousion
- 3. Dimos Viannou
- 4. Dimos Gortynas
- 5. Dimos Maleviziou
- 6. Dimos Minoa Pediadas
- 7. Dimos Festou
- 8. Dimos Chersonisou

Geometric Information

Geometric information can be captured by using geometric primitives (**points**, **lines**, **polygons**, etc.) to approximate the spatial attributes of the real world feature that we want to model.

Geometries are associated with a **coordinate reference system** which

describes the coordinate space in which the geometry is defined.

Topological Information

- Topological information is **inherently qualitative** and it is expressed in terms of **topological relations** (e.g., containment, adjacency, overlap etc.).
- Topological information can be **derived from geometric information** or it might be captured by **asserting explicitly the topological relations** between features.

Topological Relations

- The study of topological relations has produced a lot of interesting results by researchers in:
 - GIS
 - Spatial databases
 - Artificial Intelligence (qualitative reasoning and knowledge representation)

The 4-intersection model

- The **4-intersection model** has been defined by Egenhofer and Franzosa in 1991 based on previous work by Egenhofer and colleagues.
- It is based on **point-set topology.**
- Spatial regions are defined to be non-empty, proper subsets of a topological space. In addition, they must be closed and have connected interiors.

Topological relations are the ones that are invariant under topological homeomorphisms.

٠

4IM and 9IM

The 4-intersection model can captures **topological relations** between two spatial regions *a* and *b* by considering **whether the intersection of their boundaries and interiors is empty or non-empty**.

The **9-intersection model** is an extension of the 4-intersection model (Egenhofer and Herring, 1991).

9IM captures topological relations between two spatial regions *a* and *b* by considering whether the intersection of their boundaries, interiors and **exteriors** is empty or non-empty.

DE-9IM

- The **dimensionally extended 9-intersection model** has been defined by Clementini and Felice in 1994.
- It is also based on the **point-set topology** of R² and deals with **"simple", closed geometries (areas,** lines, points).
- Like its predecessors (4IM, 9IM), it can also be extended to **more complex geometries** (areas with holes, geometries with multiple components).

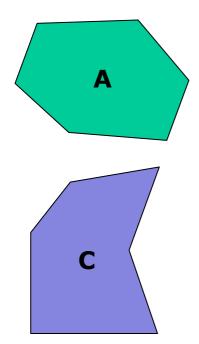
DE-9IM

It captures topological relationships between two geometries *a* and *b* in R² by considering the dimensions of the intersections of the boundaries, interiors and exteriors of the two geometries:

$$\text{DE-9IM}(a,b) = \begin{bmatrix} \dim(I(a) \cap I(b)) & \dim(I(a) \cap B(b)) & \dim(I(a) \cap E(b)) \\ \dim(B(a) \cap I(b)) & \dim(B(a) \cap B(b)) & \dim(B(a) \cap E(b)) \\ \dim(E(a) \cap I(b)) & \dim(E(a) \cap B(b)) & \dim(E(a) \cap E(b)) \end{bmatrix}$$

• The dimension can be **2**, **1**, **0** and **-1** (dimension of the empty set).

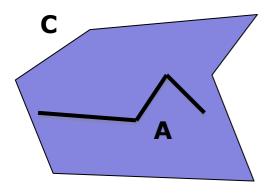
DE-9IM


Five jointly exclusive and pairwise disjoint (JEPD) relationships between two different geometries can be distinguished (**disjoint, touches, crosses, within, overlaps**).

The model can also be defined using an appropriate **calculus of geometries** that uses these 5 binary relations and boundary operators.

See the paper: E. Clementini and P. Felice. A Comparison of Methods for Representing Topological Relationships. Information Sciences 80 (1994), pp. 1-34.

Example: A disjoint C


	I(C)	B (C)	E(C)
I(A)	F	F	*
B (A)	F	F	*
E(A)	*	*	*

Notation: • T = { 0, 1, 2 }

* * = don't care = { -1, 0, 1, 2 }

Example: A within C

	I(C)	B (C)	E(C)
I(A)	Т	*	F
B (A)	*	*	F
E(A)	*	*	*

Notation equivalent to 3x3 matrix:

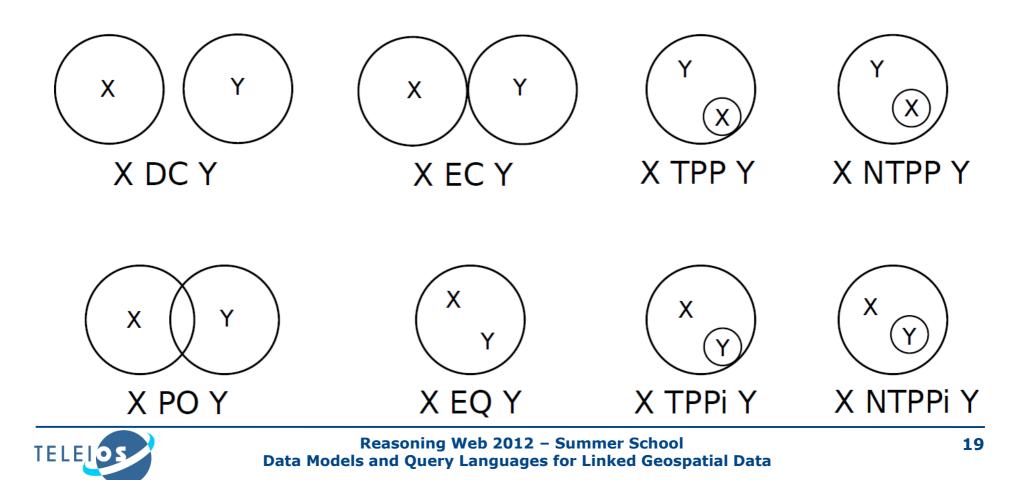
- String of 9 characters representing the above matrix in row major order.
- In this case: T*F**F***

DE-9IM Relation Definitions

Beziehung	Definition	Beispiele
A disjoint B	FF* FF* FF* ***	A B
A touches B (d(A) > 0 ∨ d(B) > 0)	$\begin{bmatrix} \mathbf{F} \mathbf{T}^* \\ * * * \\ * * * \end{bmatrix} \lor \begin{bmatrix} \mathbf{F}^* * \\ \mathbf{T}^* * \\ * * * \end{bmatrix} \lor \begin{bmatrix} \mathbf{F}^* * \\ * \mathbf{T}^* \\ * * * \end{bmatrix}$	
A crosses B (d(A) < d(B))	T * T * * * * * * * * *	
A crosses B (d(A) = d(B) = 1)	0 * * * * * * * *	X
A within B	T * F * * F * * *	•
A overlaps B ($d(A) = d(B)$, $d(A) \neq 1$, $d(B) \neq 1$)	T * T * * * T * *	
A overlaps B ($d(A) = d(B) = 1$)	1 * T * * * T * *	\checkmark

The Region Connection Calculus (RCC)

- The primitives of the calculus are **spatial regions**. These are non-empty, regular subsets of a topological space.
 - The calculus is based on a single binary predicate C that formalizes the "connectedness" relation.
 - *C(a,b)* is true when the closure of *a* is connected to the closure of *b* i.e., they have at least one point in common.
 - It is axiomatized using first order logic.
 - See the original paper by Randell, Cui and Cohn (KR 1991).

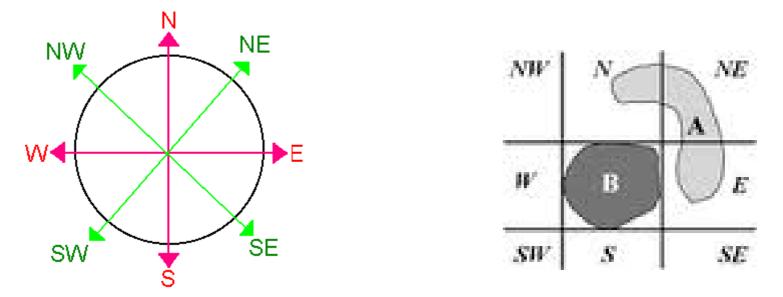


•

٠

• This is a set of **eight JEPD binary relations** that can be defined in terms of predicate *C*.

- The RCC-5 subset has also been studied. The granularity here is coarser. The boundary of a region is not taken into consideration:
 - No distinction among DC and EC, called just DR.
 - No distinction among TPP and NTPP, called just PP.

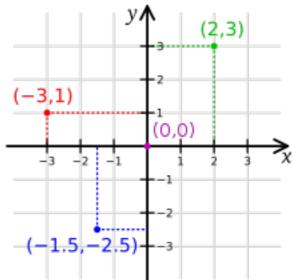

RCC-8 and RCC-5 relations **can also be defined using point-set topology**, and there are very close connections to the models of Egenhofer and others.

٠

More Qualitative Spatial Relations

Orientation/Cardinal directions (left of, right of, north of, south of, northeast of etc.)

Distance (close to, far from etc.). This information can also be **quantitative**.


٠

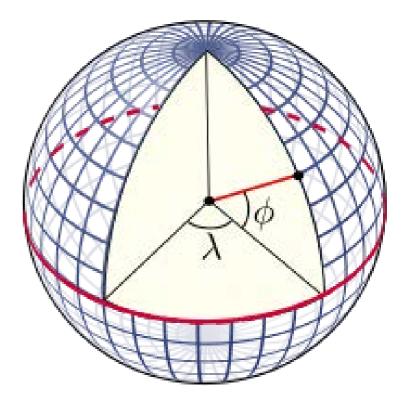
٠

Coordinate Systems

- **Coordinate:** one of *n* scalar values that determines the position of a point in an *n*-dimensional space.
- **Coordinate system:** a set of mathematical rules for specifying how coordinates are to be assigned to points.

Example: the Cartesian coordinate system

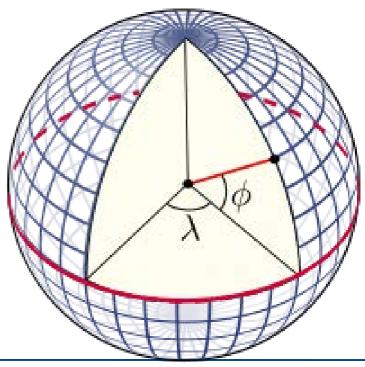
٠


Coordinate Reference Systems

- Coordinate reference system: a coordinate system
 that is related to an object (e.g., the Earth, a planar
 projection of the Earth, a three dimensional
 mathematical space such as R³) through a datum
 which specifies its origin, scale, and orientation.
- The term **spatial reference system** is also used.

Geographic Coordinate Reference Systems

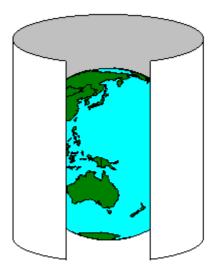
These are 3-dimensional coordinate systems that utilize **latitude** (ϕ) , **longitude** (λ) , and optionally **geodetic height** (i.e., elevation), to capture geographic locations on Earth.

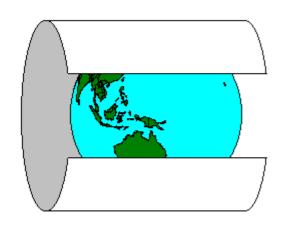


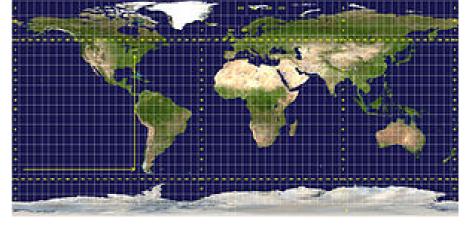
The World Geodetic System

The **World Geodetic System (WGS)** is the most well-known geographic coordinate reference system and its latest revision is **WGS84.**

Applications: cartography, geodesy, navigation (GPS), etc.




Projected Coordinate Reference Systems


Projected coordinate reference system: they transform the 3dimensional approximation of the Earth into a 2-dimensional surface (distortions!)

Example: the Universal Transverse Mercator (UTM) system

Mercator projection

Transverse Mercator projection

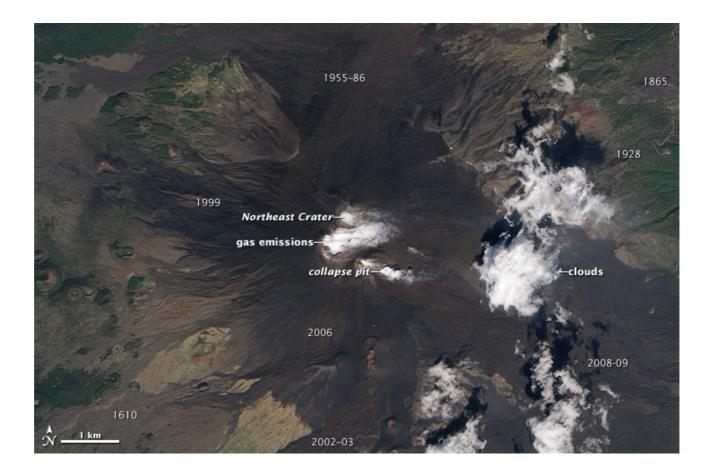
Coordinate Reference Systems (cont'd)

- There are well-known ways to **translate** between coordinate reference systems.
 - Various authorities maintain lists of coordinate reference systems. See for example:
 - OGC <u>http://www.opengis.net/def/crs/</u>
 - European Petroleum Survey Group

http://www.epsg-registry.org/

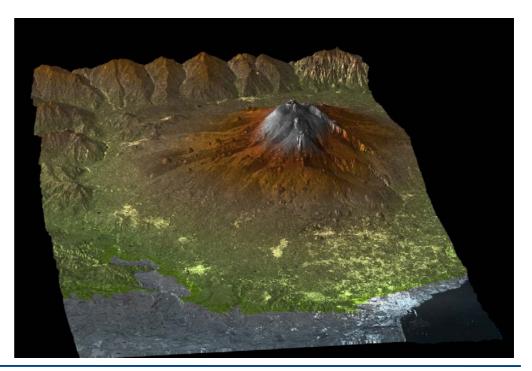
Geographic Space Modeling Paradigms

 Abstract geographic space modeling paradigms: discrete objects vs. continuous fields


Concrete representations: tessellation vs. vectors vs. constraints

Abstract Modeling Paradigms: Feature-based

Feature-based (or entity-based or object-based). This kind of

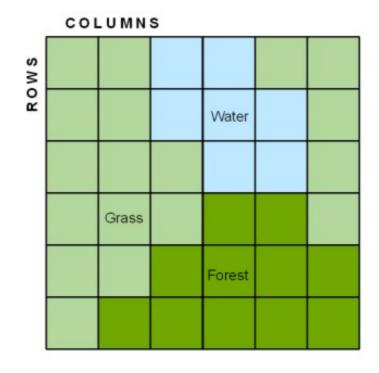

modeling is based on the concepts we presented already.

Abstract Modeling Paradigms: Field-based

- Each point (x, y) in geographic space is associated with one or several attribute values defined as **continuous functions** in xand y.
- **Examples:** elevation, precipitation, humidity, temperature for each point (x,y) in the Euclidean plane.

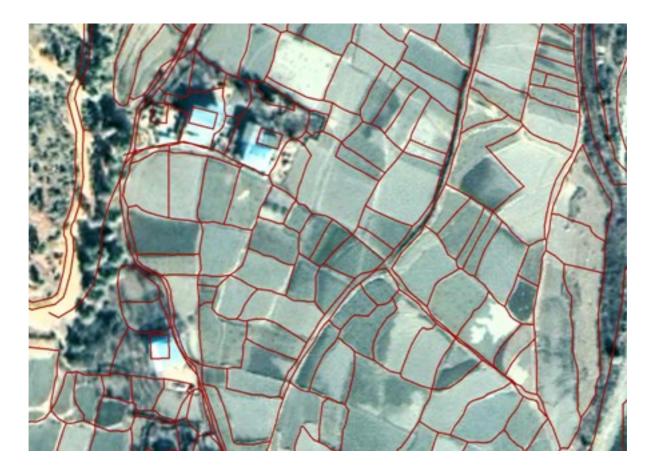
From Abstract Modeling to Concrete Representations

Question: How do we represent the **infinite objects** of the abstract representations (points, lines, fields etc.) **by finite means** (in a computer)?

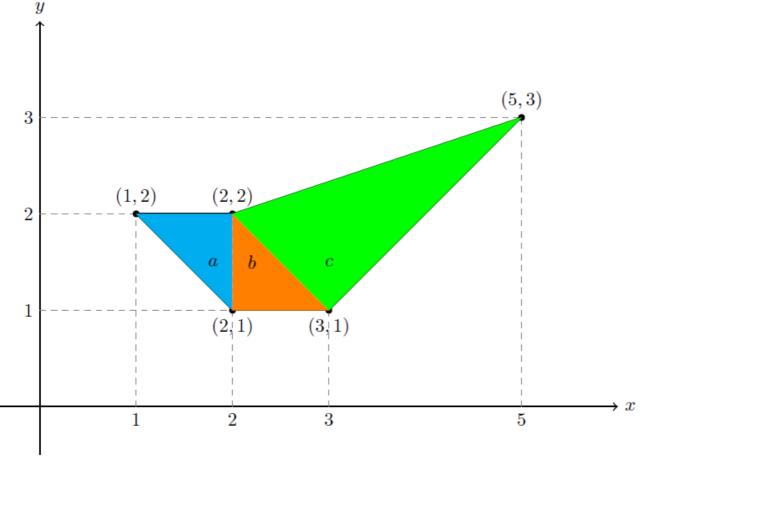

Answers:

- Approximate the continuous space (e.g., ℝ²) by a discrete one (ℤ²).
- Use **special encodings**

Approximations: Tessellation


- In this case a **cellular decomposition of the plane** (usually, a grid) serves as a basis for representing the geometry.
 - **Example:** raster representation (fixed or regular tesselation)

Cadastral map (irregular tessellation) overlayed on a satellite image.



Special Encodings: Vector Representation

- In this case objects in space are represented using **points** as primitives as follows:
 - A **point** is represented by a tuple of coordinates.
 - A **line segment** is represented by a pair with its beginning and ending point.
 - More complex objects such as arbitrary lines, curves, surfaces etc. are built recursively by the basic primitives using constructs such as lists, sets etc.
 - This is the approach **used in all GIS and other popular systems today. It has also been standardized** by various international bodies.

Example

[(1,2) (2,2) (5,3) (3,1) (2,1) (12)]

Special Encodings: Constraint Representation

In this case objects in space are represented by quantifier free

formulas in a constraint language (e.g., linear constraints).

 $(y+x \ge 3 \land x \le 2 \land y \le 2) \lor (y+x \le 4 \land x \ge 2 \land y \ge 1) \lor (y \ge 3 \land x \le 5 \land y - \frac{x}{3} \le \frac{4}{3})$

Constraint Databases

- The constraint representation of spatial data was the focus of much work in **databases, logic programming and AI** after the paper by Kanellakis, Kuper and Revesz (PODS, 1991).
- The approach was very fruitful theoretically but was not adopted in practice.
- See the book by Revesz for a tutorial introduction.

Geospatial Data Standards

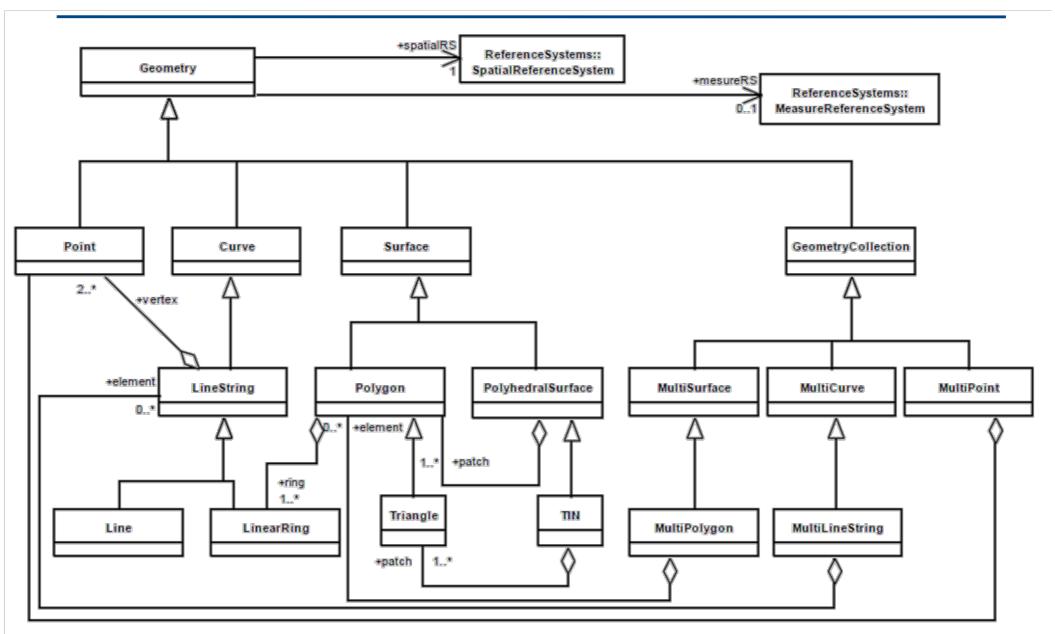
The **Open Geospatial Consortium (OGC)** and the **International Organization for Standardization (ISO)** have

developed many geospatial data standards that are in wide use today. In this tutorial we will cover:

- Well-Known Text
- Geography Markup Language
- **OpenGIS Simple Feature Access**

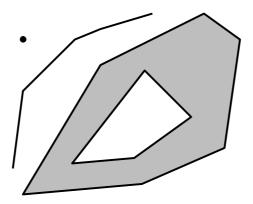
Well-Known Text (WKT)

WKT is an OGC and ISO standard for representing **geometries**, **coordinate reference systems**, and **transformations** between coordinate reference systems.


WKT is specified in **OpenGIS Simple Feature Access - Part 1: Common Architecture** standard which is the same as the **ISO 19125-1** standard. Download from

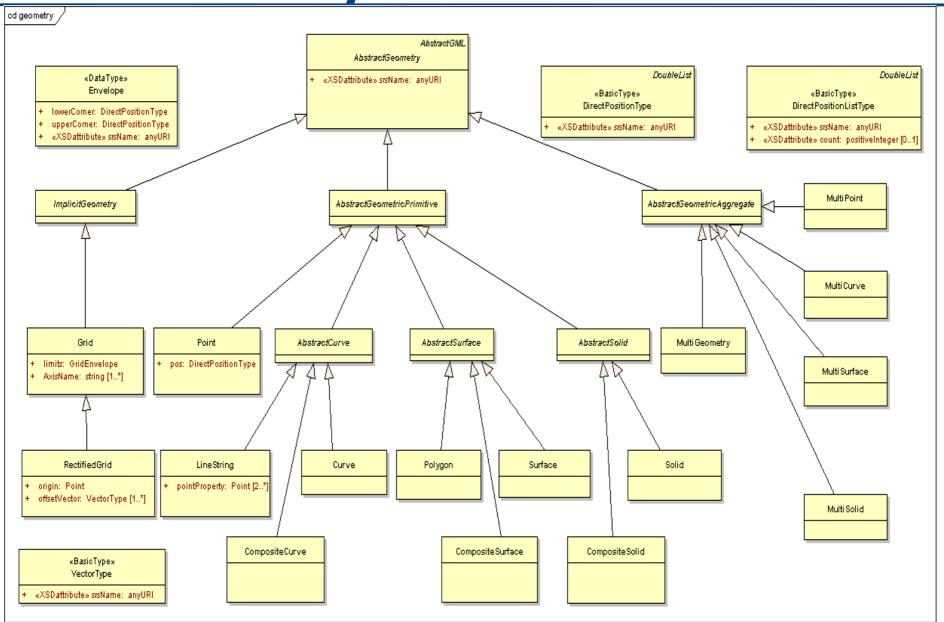
http://portal.opengeospatial.org/files/?artifact_id=25355 .

This standard concentrates on **simple features:** features with all spatial attributes described piecewise by a straight line or a planar interpolation between sets of points.



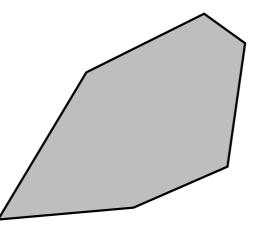
WKT Class Hierarchy

WKT representation:



Geography Markup Language (GML)

- **GML** is an **XML-based encoding standard** for the representation of geospatial data.
- GML provides XML schemas for defining a variety of concepts: geographic features, geometry, coordinate reference systems, topology, time and units of measurement.
- **GML profiles** are subsets of GML that target particular applications.
 - **Examples**: Point Profile, GML Simple Features Profile etc.



GML Simple Features: Class Hierarchy

GML representation:

<gml:Polygon gml:id="p3" srsName="urn:ogc:def:crs:EPSG:6.6:4326">
 <gml:exterior>
 <gml:LinearRing>
 <gml:coordinates>
 5,5 28,7 44,14 47,35 40,40 20,30 5,5
 </gml:coordinates>
 </gml:coordinates>
 </gml:LinearRing>
 </gml:LinearRing>
 </gml:LinearRing>
 </gml:exterior>
</gml:Polygon>

OpenGIS Simple Features Access (cont'd)

OGC has also specified a standard for the storage, retrieval, query and update of sets of simple features using relational DBMS and SQL.

This standard is "**OpenGIS Simple Feature Access - Part 2: SQL Option**" and it is the same as the **ISO 19125-2** standard. Download from <u>http://portal.opengeospatial.org/files/?artifact_id=25354</u>.

Related standard: ISO 13249 SQL/MM - Part 3.

OpenGIS Simple Features Access (cont'd)

The standard covers two implementations options: (i) using **only the SQL predefined data types** and (ii) using **SQL with geometry types**.

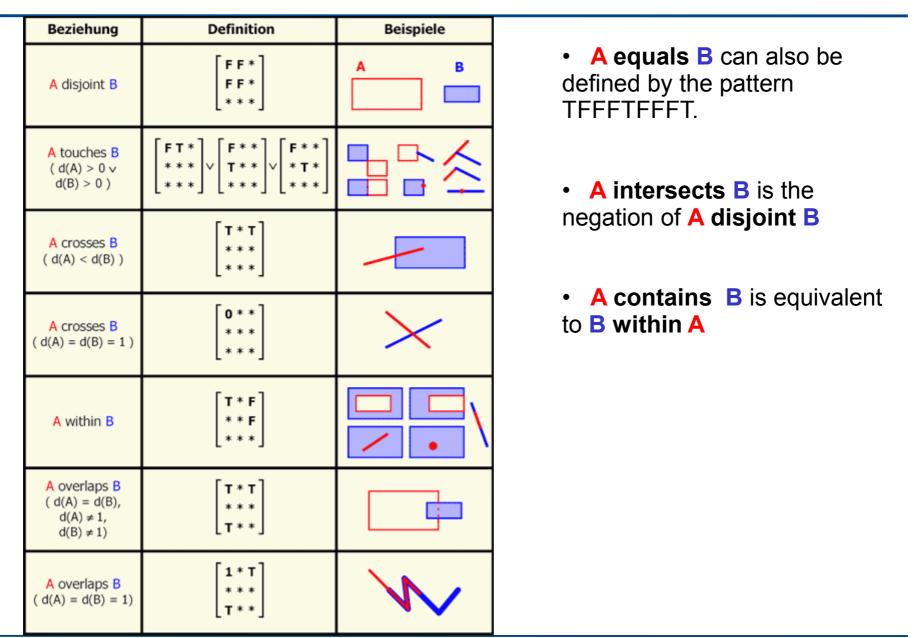
SQL with geometry types:

- We use the WKT geometry class hierarchy presented earlier to define **new geometric data types for SQL**
- We define new **SQL functions on those types**.

SQL with Geometry Types -Functions

Functions that **request or check properties** of a geometry:

- ST Dimension (A:Geometry): Integer
- ST_GeometryType(A:Geometry):Character Varying
- ST_AsText(A:Geometry): Character Large Object
- ST_AsBinary(A:Geometry): Binary Large Object
- ST_SRID(A:Geometry): Integer
- ST_IsEmpty(A:Geometry): Boolean
- ST_IsSimple(A:Geometry): Boolean


SQL with Geometry Types – Functions (cont'd)

Functions that test **topological relations** between two geometries using the **DE-9IM**:

- ST_Equals (A:Geometry, B:Geometry):Boolean
- ST_Disjoint(A:Geometry, B:Geometry):Boolean
- ST_Intersects (A:Geometry, B:Geometry):Boolean
- ST_Touches (A:Geometry, B:Geometry):Boolean
- ST_Crosses(A:Geometry, B:Geometry):Boolean
- ST_Within(A:Geometry, B:Geometry):Boolean
- ST_Contains (A:Geometry, B:Geometry):Boolean
- ST_Overlaps (A:Geometry, B:Geometry):Boolean
- ST_Relate(A:Geometry, B:Geometry, Matrix: Char(9)):Boolean

DE-9IM Relation Definitions

SQL with Geometry Types – Functions (cont'd)

- Functions for **constructing new geometries** out of existing ones:
 - ST Boundary (A:Geometry) : Geometry
 - ST_Envelope (A:Geometry) :Geometry
 - ST_Intersection (A:Geometry, B:Geometry):Geometry
 - ST_Union (A:Geometry, B:Geometry):Geometry
 - ST_Difference(A:Geometry, B:Geometry):Geometry
 - ST_SymDifference(A:Geometry, B:Geometry):Geometry
 - ST_Buffer(A:Geometry, distance:Double):Geometry

Geospatial Relational DBMS

The OpenGIS Simple Features Access Standard is today been used in all **relational DBMS with a geospatial extension.**

- The **abstract data type mechanism** of the DBMS allows the representation of all kinds of geospatial data types supported by the standard.
- The query language (SQL) offers the **functions** of the standard for querying data of these types.

•

Conclusions

Background in geospatial data modeling:

- Why geographical information?
- Geographical Information Science and Systems
- Geospatial data on the Web and linked geospatial data
- Abstract geographic space modeling paradigms: discrete objects vs. continuous fields
- Concrete representations: tessellation vs. vectors vs. constraints
- Geospatial data standards

Next topic: Geospatial data in the Semantic Web

