On the Use of Fuzzy Logic in a Seller Bargaining Game

Kostas Kolomvatsos
Christos Anagnostopoulos
Stathes Hadjiefthymiades

Pervasive Computing Research Group,
Department of Informatics and
Telecommunications
University of Athens, Greece

COMPSAC 2008

Turku - Finland

Outline

- □ Introduction
- □ Market members
- □ Buyer-Seller Interaction
- □ Seller Behavior
- □ Fuzzy Approach
- □ Results

Introduction

- □ Intelligent Agents
 - Autonomous Software Components
 - Represent users
 - Learn from their owners
- □ Information Markets
 - Places where entities negotiate for the exchange of information goods

Market Member Roles

- Buyers
- □ Sellers
- □ Middle entities (matchmakers, brokers, market entities)
- → Intelligent Agents may represent each of these entities

Buyer-Seller Interaction (1/2)

- □ Can be modeled as a finite horizon Bargaining Game(BG)
- □ No knowledge about the characteristics of the opponent (i.e., the other side) is available
- ☐ The buyer aims to buy the product at the lowest possible price while the seller aims to sell the product at the highest possible price
- □ The buyer has a specific valuation for the product
- ☐ The seller has a specific production cost
- □ The two players have specific deadlines to conclude the transaction

Buyer-Seller Interaction (2/2)

Seller Behavior (1/6)

- □ The seller stays in the game for a specific number of rounds
- □ Profit
 - Profit = price production/retrieval cost
 - The greater the price is the greater the profit becomes

Seller Behavior (2/6)

- □ Pricing Policy
 - Based on: the cost (c), an amount of profit (ε), the proposal's ordinal number (x) and the popularity measure (q):

 $p^{s}(x) = \frac{\varepsilon}{x^{q+1}} + c, \qquad x = 1, 2, \dots$

■ The popularity measure depends on the product's cache ranking and is considered Zipfian

$$q = i^{-k}$$

i denotes the product's ranking and k is the Zipf parameter

Seller Behavior (3/6)

- □ Pricing Policy (continued)
 - The seller behaves as a caching server
 - Products are delivered to interested parties more than once
 - Products are classified according to their popularity

Seller Behavior (4/6)

- □ Pricing Policy (continued)
 - The seller concludes rapidly the game for popular products
 - The seller does not sell the product below cost

Seller Behavior (5/6)

- □ Deadline calculation
 - Based on its pricing function a deadline value could be defined if:

$$\lim_{x \to \infty} \left[\frac{-\varepsilon \cdot (q+1)}{x^{q+2}} \right] = 0$$

Where x is the ordinal number of the proposal $x^{q+2} \approx \alpha \cdot \varepsilon \cdot (q+1) \rightarrow T_s \approx (\alpha \cdot \varepsilon \cdot (q+1))^{\frac{1}{q+2}}$

 \blacksquare Variable α is the patience factor of the seller

Seller Behavior (6/6)

- □ Patience factor
 - based on the policy of the seller
 - indicates the patience of the seller
 - The greater the factor is the more time the seller spends in the game
 - indicates until when the game is meaningful for the seller

Fuzzy Rules (1/3)

- \Box They define the value of α
- □ They deal with:
 - Popularity parameter q
 - □ Very Low: Region A
 - □ Low: Region B
 - □ *Medium: Region C*
 - □ *High: Region D*
 - □ *Very High: Region E*
 - Profit ε (Low, Medium, High)

Fuzzy Rules (2/3)

- Values of α are:
 - Very Low: Very impatient player
 - *Low*: Impatient Player
 - Medium: Neutral about the termination of the game
 - High: Patient player
 - Very High: Very patient player

Fuzzy Rules (3/3)

□ Rule examples:

if (q is very low AND (ε is low OR ε is medium)) then a is very High

if $(q \text{ is } very \text{ } high \text{ AND } (\varepsilon \text{ is } medium \text{ OR } \varepsilon \text{ is } high)) \text{ then } a \text{ is } very \text{ } low$

Results (1/2)

- \square We used $\alpha_{max} = 1000$.
- \Box Our model calculates the appropriate value for α .
- □ The deadline depends on the product's characteristics.

Profit (ε)	Popularity parameter (q)	T_s for $\alpha=50$	New α value	New T _s
5	1	6	89.4	10
5	0.4	8	275	23
10	1	7	15.8	7
10	0.4	10	275	31
10	0.7	9	89.4	15
10	0.2	12	588	56
20	1	9	15.8	9
20	0.4	14	275	42

Results (2/2)

□ The appropriate deadline could be greater or less than the deadline specified using crisp values for α.

Profit (ε)	Popularity parameter (q)	T_s for $\alpha=50$	New α value	New T _s
10	1	10	15.8	7
20	1	13	15.8	9

Thank you!

http://p-comp.di.uoa.gr