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ABSTRACT
Discovering matching entities in different Knowledge Bases consti-
tutes a core task in the Linked Data paradigm. Due to its quadratic
time complexity, Entity Resolution typically scales to large datasets
through blocking, which restricts comparisons to similar entities.
For Big Linked Data, Meta-blocking is also needed to restructure the
blocks in a way that boosts precision, while maintaining high recall.
Based on blocking and Meta-blocking, JedAI Toolkit implements an
end-to-end ER workflow for both relational and RDF data. However,
its bottleneck is the time-consuming procedure of Meta-blocking,
which iterates over all comparisons in each block. To accelerate it,
we present a suite of parallelization techniques that are suitable for
multi-core processors. We present 2 categories of parallelization
strategies, with each one comprising 4 different approaches that
are orthogonal to Meta-blocking algorithms. We perform extensive
experiments over a real dataset with 3.4 million entities and 13
billion comparisons, demonstrating that our methods can process
it within few minutes, achieving high speedup.
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1 INTRODUCTION
Entity Resolution (ER) constitutes a core task for Semantic Web,
playing a major role in the realization of the fourth Linked Data
principle [8]. Its goal is to identify and interlink (with owl:sameAs

statements) all entity descriptions that pertain to the same real-
world object, but are located in different Knowledge Bases (KBs).
In this way, ER increases the value of Linked Open Data (LOD),
enabling users and applications to use the resulting knowledge
transparently. However, the LOD cloud involves KBs that are inad-
equately linked: less than 10% of them were strongly interlinked
with at least another KB in 2014 [25]. One of the main causes is the
high computational cost of ER, as all entities have to be compared
to each other, yielding a quadratic time complexity.
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s1 

          
ns1:id1 ns1:FullName : “Jim Lloyd Mayer”; 

              ns1: job : “autoseller”; 

              ns1:location “Fifth Ave” . 

ns2:id4 ns2:hasName “Jim Mayer”; 

              ns2:occupation “car-vendor – seller” ;  

              ns2:hasAddres “Fifth Ave” . 

s2 
ns1:id2 ns1:FullName “George Brown”;  

              ns1:job “vehicle vendor”; 

              ns1:location “Fifth Ave” . 

      

s3 
ns1:id3 ns1:FullName “Stephan Jordan”; 

              ns1:job “car seller”; 

              ns1:location “Atlantic Ave” . 

(a) 

t1 

          
ns2:id5 ns2:hasName “George Lloyd Brown”; 

              ns2:occupation “car trader”; 

              ns2:hasAddres “Fifth Ave” . 

t2 

          
ns2:id6 ns2:hasName “Nick Papas”; 

              ns2:occupation “car dealer”; 

              ns2:hasAddres “Fifth Ave” . 

t3 
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Figure 1: (a) Two KBs, S and T , with s1 and s2 matching with
t1 and t2, resp. (b) The blocks produced by Token Blocking.

To enhance the efficiency of ER, blocking is typically used [2, 3].
In essence, blocking groups similar entities into blocks so that it
suffices to execute comparisons only between those co-occurring
in at least one block. In the context of LOD, blocking methods have
to deal with extreme schema heterogeneity (i.e., Variety): there are
∼2,600 diverse vocabularies, but only 109 of them are shared by
more than one KB.1 A simple, yet effective solution is to extract
schema-free signatures from every entity and to create blocks based
on their similarity or equality [19, 22].

As an example, consider the entities in Figure 1(a), where s1
matches with t1 and s2 with t2; Token Blocking [19] creates one
block for every token that appears in the literal values of at least one
entity in each KB, placing all relevant entities in it. The resulting
blocks appear in Figure 1(b); both pairs of matching entities co-
occur in at least one block, at the cost of 25 comparisons.

Such a high computational cost is common for blocking methods
that use schema-free signatures. It is caused by two types of unnec-
essary comparisons [20]: the redundant ones repeatedly compare
the same entities in different blocks, while the superfluous ones
compare non-matching entities. In our example, the comparison
between s1 and t1 in block b2 belongs to the former category, first
executed in b1, and the comparison in b5 to the latter one (s3 , t1).

Both types of unnecessary comparisons can be discarded with
Meta-blocking [3, 5], the current state of the art blocking technique
[22]. Based on the premise that the similarity of entities is reflected
on the blocks they have in common, Meta-blocking restructures a

1http://stats.lod2.eu
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Figure 2: (a) The blocking graph with Jaccard weights that
corresponds to the blocks in Figure 1(b), (b) the pruned
blocking graph when using the average edge weight as
threshold (0.35), (c) the corresponding restructured blocks.

set of blocks in order to reduce the number of comparisons by orders
of magnitude at a small cost in recall (i.e., precision is significantly
enhanced). First, it transforms the blocks into a graph that includes
a node for every entity and an edge for every comparison. Then, it
assigns a weight to every edge that is analogous to the number of
blocks shared by the adjacent entities. Finally, it prunes the edges
with low weights, creating a new block for every retained edge.

Continuing our example, Figure 2(a) depicts the graph corre-
sponding to the blocks in Figure 1(b), with every edge weight
expressing the Jaccard similarity of the set of blocks associated
with its adjacent entities. Figure 2(b) illustrates the pruned blocking
graph that results after discarding the edges with a weight lower
than the average one. The restructured blocks appear in Figure 2(c);
they encompass just 5 comparisons, with two of them involving
the two pairs of matching entities, s1-t1 and s2-t2. Apparently, this
is a major improvement over the original blocks in Figure 1(b) and
the brute-force approach, which executes 9 pair-wise comparisons.

The combination of schema-free blocking methods and Meta-
blocking lies at the core of JedAI Toolkit [23], which applies state-
of-the-art ER methods developed by the database community to the
RDF data of Semantic Web. JedAI can be used in three ways: (i) As
an open-source library that combines these methods into an end-to-
end ER workflow; (ii) As a user-friendly desktop application with a
wizard-like interface that allows even lay users to build complex
ER workflows with out-of-the-box solutions (i.e., without the need
to fine-tune any configuration parameters); (iii) As a workbench
for comparing the performance of various ER workflows over both
structured (CSV, database) and semi-structured (RDF, XML) data.

At the moment, though, JedAI does not scale well to the Volume
of Big Linked Data, i.e., to the large and increasing number and size
of entity descriptions it involves; the LOD cloud alone contains
almost 10,000 KBs with ∼150B triples describing more than 55M
entities1. In fact, Meta-blocking constitutes the bottleneck of JedAI’s
end-to-end ER workflow. The reason is that its computational cost
is analogous to the number of comparisons in the blocks created by
schema-free methods, which grow superlinearly with the number
of entity descriptions, and the average number of blocks per entity,
which grow linearly with the size of entity descriptions [6].

In this work, we enhance the time efficiency of Meta-blocking
through a series of multi-core techniques that parallelize all its
algorithms. Our multi-core techniques make the most of concurrent

execution by involving a single state variable. This simplifies thread
safety and results in a single point of synchronization, where every
thread merely performs a quick, atomic operation. As a result,
our methods exhibit high scalability and very low running times.
Our extensive experiments demonstrate that they are capable of
applying any Meta-blocking method to datasets with millions of
entities and tens of billions of comparisons within a few minutes. In
this way, JedAI is able to make the most of the commodity hardware
that runs it, minimizing its response time without requiring high-
end systems that are able to run MapReduce.

In summary, the contributions of this paper are the following:
• We propose 4 entity-based parallelization strategies, which

rely on the optimized implementation of serialized Meta-blocking,
offering low running times for applications with few available cores.
•We propose 4 block-based parallelization strategies, which rely

on the original implementation of serialized Meta-blocking. They
exhibit almost linear speedup, providing the fastest solution for
applications with many cores.
•We perform exhaustive experiments that apply all paralleliza-

tion strategies to all Meta-blocking algorithms on a dataset with
3 million entities. Our experiments identify the method with the
lowest running time and the highest scalability. Our dataset along
with the testing code (in Java), are publicly available.2

The rest of the paper is organized as follows: in Section 2, we
discuss the main blocking and parallelization methods for ER, while
in Section 3, we provide background knowledge on (Meta-)blocking.
Section 4 introduces our parallelization methods, and Section 5
presents our experimental evaluation. In Section 6, we conclude
the paper along with directions for future work.

2 RELATEDWORK
Blocking methods can be distinguished in two categories. The first
one includes lossless methods, which identify all pairs of entities
that satisfy a set of link specifications. In this category typically fall
schema-based methods that are integrated with Entity Matching,
usually in the context of an ER framework. For example, Silk3
includes MultiBlock [10], while LIMES4 encompasses a series of
blocking methods that rely on metric spaces, like HR3 [16, 17].
These blocking methods typically deal with the Variety of LOD
through user-defined link specifications, which lay the basis for
designing blocking rules of high performance.

The second category involves approximate blocking methods,
which sacrifice a small portion of the duplicate entities in order to
execute a significantly lower number of comparisons. This cate-
gory usually involves stand-alone blocking methods that focus on
the literal values in entity descriptions and deal with the Variety
of LOD through schema-free signatures [3, 19]. In this category
fall practically all blocking methods that are inherently crafted for
relational data [2]. A set of blocking methods for RDF data are dis-
cussed in [3], while [27] presents a more recent approach; initially,
it performs unsupervised learning to identify the most discriminat-
ing properties and then, it extracts blocks from their literal values.
Meta-blocking targets this type of blocking methods.

2http://sourceforge.net/projects/erframework
3http://silkframework.org
4http://aksw.org/Projects/LIMES.html

http://sourceforge.net/projects/erframework
http://silkframework.org
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Figure 3: Formal definition of Meta-blocking weighting schemes.

Another way of enhancing the efficiency of ER is parallelization.
Early works towards this direction include [12, 13]. More recent
approaches are based on the MapReduce framework. For example,
[1] describes an iterative approach that employs partial results of
ER in order to locate new matches. There is also a bulk of work
on parallelizing blocking methods. For relational data, Standard
Blocking and Sorted Neighborhood were adapted to MapReduce in
[14] and [15], respectively. For RDF data, Silk MapReduce [11] and
LIMESMR [9] perform ER over Hadoop, while LIMES is also able
to exploit the massive parallelization capabilities of GPUs [18].

The work closest to ours is Parallel Meta-blocking [6, 7], which
relies on the MapReduce paradigm and Apache Hadoop, in par-
ticular. The map phase creates the edges of the blocking graph or
enriches the description of blocks, while the reduce phase performs
edge weighting and pruning. Yet, Parallel Meta-blocking is orthog-
onal and complementary to our work, as MapReduce supports
multi-core architectures. We also go beyond it in two ways:

(i) Parallel Meta-blocking relies on shared-nothing parallel pro-
cesses that suffer from high disk overhead and high network I/O
latencies. None of these factors affects our multi-core strategies,
since they are designed for in-memory processing, employing mul-
tiple threads with shared memory.

(ii) Our multi-core parallelization strategies are easy to imple-
ment and adjust and have minimum hardware requirements, run-
ning on anymulti-core processor. In contrast, ParallelMeta-blocking
requires significant effort and resources to setup a large infrastruc-
ture that exploits MapReduce. It also needs ample time to optimize
Hadoop, given that there are at least 250 tunable parameters that
affect the performance of a Hadoop cluster [4].
3 PRELIMINARIES
An entity with URI i is symbolized by ei and its description com-
prises all triples of the form <i p o>. Entity Resolution can be
defined as the task of matching all entities from a source KB S with
all entities from the target KB T . Apparently, the computational
cost of this procedure is |S | × |T | comparisons.

Blocking restricts this computational cost by clustering similar
entities into blocks and performing comparisons only between the
co-occurring entities. A set of blocks B is called block collection
and |B | stands for its size. A block with index k is represented
by bk and internally consists of two inner blocks: bk,s ∈ S and
bk,t ∈ T . Both inner blocks should be non-empty. The block size
indicates the number of contained entities, |bk |=|bk,s |+|bk,t |, while
the block cardinality indicates the number of contained compar-
isons, | |bk | |=|bk,s |×|bk,t |. Similarly, we define the cardinality of B
as: | |B | |=

∑
bj ∈B | |bj | |. Bi ⊆ B denotes the blocks involving entity

ei , with |Bi | indicating its size. An individual comparison between
entities ei and ej is symbolized by ci, j .

Meta-blocking is a suite of algorithms that exclusively apply to
redundancy-positive block collections, where the similarity of two
entity profiles is proportional to the number of blocks they have in
common [5, 20, 21]. That is, the more blocks two entities share, the
more likely they are to be matching.

In more detail, Meta-blocking restructures a redundancy-positive
block collection B into a new one with higher precision and equiv-
alent recall. To this end, it operates on the level of individual com-
parisons. Central to this procedure is an undirected bipartite graph,
called blocking graph, where the nodes correspond to entities and
the edges connect those co-occurring in blocks. The blocking graph
is simple, involving no parallel edges between the co-occurring
entities; thus, it eliminates all redundant comparisons.

To discard part of the superfluous comparisons, the edges of the
blocking graph are weighted so as to reflect the similarity of the
blocks shared by adjacent entities. Five generic, schema-agnostic
weighting schemes were proposed in [20]: ARCS, CBS, ECBS, JS,
EJS. Their formal definitions appear in Figure 3(a), whereVB denotes
the total number of nodes in the blocking graph of B and vi the
node degree corresponding to entity ei . In all cases, higher weights
indicate adjacent entities that are more likely to be matching, with
low-weighted edges signaling probably superfluous comparisons.

There are 4 main algorithms for pruning edges with low weights:
•Weight Edge Pruning (WEP) iterates over all edges and discards

those with a weight lower than a global threshold, which is equal
to the average edge weight of the entire blocking graph.
•Weight Node Pruning (WNP) iterates over all nodes and discards

the adjacent edges with a weight lower than a local threshold, which
is equal to the average edge weight in each node neighborhood.
• Cardinality Edge Pruning (CEP) retains the top K weighted

edges of the entire graph, where K =
∑
bi ∈B |bi |/2.

• Cardinality Node Pruning (CNP) retains the top k weighted
edges in the neighborhood of each node, with k =

∑
bi ∈B

|bi |
( |S |+ |T |) .

Theoretically, the node-centric pruning algorithms, WNP and
CNP, might produce restructured blocks that still contain redundant
comparisons: the same edge might be kept in the neighborhoods
of both adjacent entities. In this work, we exclusively consider the
implementation of Redefined Node-centric Pruning [21], which does
not retain such redundant comparisons.

Another approach is Reciprocal Node-centric Pruning [21], which
treats the redundant retained edges as strong indications formatches:
if a pair of entities is reciprocally connected in the pruned blocking
graph that is produced byWNP or CNP, they are highly likely to be
matching; thus, Reciprocal WNP and CNP retain one comparison
only for such entity pairs. We do not consider these two reciprocal
pruning methods, since the parallelization strategies we propose for
WNP and CNP apply equally to them, without any modification.

On the whole, Meta-blocking boosts the precision of redundancy-
positive block collections at a limited cost in their recall [5, 20,
21]. It comprises 4 main pruning algorithms, with CEP and CNP
accommodating applications that aim minimize running time and
maximize precision (e.g., Pay-As-You-Go ER), whileWEP andWNP
accommodate applications emphasizing recall at the cost of higher
running times [21]. Every pruning algorithm can be combined with
5 weighting schemes, thus yielding 20 pruning schemes, in total.
We propose parallelization approaches for all of them.
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4 APPROACH
We now present a set of multi-core techniques for parallelizing the
main pruning algorithms of Meta-blocking. In their description, we
use the terms comparison and blocking graph edge interchangeably.
4.1 Parallelization Strategies
At the core of Meta-blocking lies edge weighting and the estimation
of the number of blocks shared by a pair of neighboring entities, in
particular. Based on the two implementations for this process [21],
we define two categories of parallelization strategies.

The first category involves block-based methods. They iterate
over the input blocks B and for each comparison ci, j in bk ∈ B, they
compute the intersection of the blocks associated with the entities
ei and ej using the Entity Index (this data structure is an inverted
index that associates every entity id with the ids of the blocks that
contain it). Methods of this category parallelize the Original Edge
Weighting approach [21].

The second category comprises entity-based methods. They
iterate over the input KBs and for each entity ei ∈ (S ∪ T ), they
aggregate its neighbors from all associated blocks, Bi . The number
of occurrences of each neighbor is recorded, as it is equal to the
number of common blocks. This category parallelizes the Optimized
Edge Weighting approach [21].

For both categories, we consider 4 parallelization strategies that
essentially rely on the same principle: the computational cost is
split into a set of chunks that are placed in an array, with an index
indicating the next chunk to be processed. Every thread retrieves
the current value of the index and is assigned to process the corre-
sponding chunk. The index is then incremented until it reaches the
end of the chunk array. At that point, it returns a negative value to
every request, thus terminating the respective thread.

This approach has two benefits: (i) There is a single state variable,
the index of the chunk to be processed, which simplifies thread
safety. All chunks can be read from the array by any thread without
affecting the state of the others, as their content is not altered in
any way. (ii) There is a single atomic synchronized operation, the
retrieval of the value of the index. This enhances concurrency, since
each thread holds the lock for rather short time, performing the
costly operation (chunk processing) outside the synchronized block.

In this context, we propose the following four parallelization
strategies. Note that for convenience, we use the term item collec-
tion (I ) to refer either to a block collection or a set of entities. An
individual item with id k is denoted by ik , with | |ik | | symbolizing
the number of comparisons it involves; if the item corresponds to
a block bl , | |ik | | indicates the number of comparisons it involves
(| |ik | |=| |bl | |), while for an entity em , | |ik | | stands for the total num-
ber of comparisons involving em , i.e., | |ik | |=

∑
bn ∈Bm |bn,t | if em ∈ S

and | |ik | |=
∑
bn ∈Bm |bn,s | if em ∈ T . Note also our parallelization

strategies differ in two more respects (in addition to the way they
count common blocks): the definition of the chunks, and the cre-
ation of the chunk array.

(i) Random parallelization. Every chunk corresponds to an
individual item and its position in the array is arbitrarily determined.
Consequently, the computational cost of the individual chunks
differs widely. This may result in consecutive chunks of very low
cost (few comparisons), causing the threads to frequently wait for
the lock, before retrieving the current value of the index. Another

Algorithm 1: Clustering Items Into Partitions.
Input: I the input item collection
Output: P the set of partitions

1 I ′← sort(I ); // sort items in decreasing cardinality

2 i0 ← I ′.remove(0); // remove largest item

3 maxCost ← | |i0 | |; // max comparisons per partition

4 P0 ← {i0 }; // first partition

5 Q ← {P0 }; // priority queue, sorting partitions in increasing cost

6 while I ′ , {} do // while not empty
7 i0 ← I ′.remove(0); // remove current first item

8 Phead ←Q .poll(); // get lowest cost partition

9 totalCost ← | |i0 | | + Phead .currentCost();
10 if totalCost ≤ maxCost then
11 Phead ← Phead ∪ {i0 }; // add to partition

12 else
13 Pi ← {i0 }; // create new partition

14 Q .add(Pi ); // add to queue

15 Q .add(Phead ); // place back to queue

16 returnQ .getElements();

problem is that the largest chunk may be placed in one of the last
positions in the array, thus causing significant waiting time.

(ii)Naive parallelization. The chunks correspond to individual
items, but they are placed in the array in decreasing order of cost:
the first position is occupied by the itemwith the most comparisons,
while the last place contains the item with the least comparisons; in
case of tie, the order is determined arbitrarily. The distribution of
computational costs is heavily skewed towards few comparisons for
both blocks and entities, as shown in Tables 3(a) and (b), respectively.
Hence, the cost assigned to every thread differs substantially at the
beginning of the chunk array, which involves a large part of the
overall comparisons. Significant waiting for the lock is expected
to take place at the end of the chunk array, but there most items
entail just a single comparison.

(iii) Partition parallelization. The idea behind this approach
is to reduce the waiting for the lock by clustering items into larger
chunks that have similar computational costs. We call these chunks
partitions and we derive them from Algorithm 1. This approach
exploits the heavily skewed distribution of comparisons in blocks
and entities: it sorts all items in decreasing cost (Line 1) and sets
the maximum computational cost of every partition equal to the
number of comparisons in the first item (Lines 2-3). It creates a
partition for this item and places it in the priority queue Q , which
sorts all partitions in ascending cost (Lines 4-5); this means that
its head always corresponds to the partition with the least compar-
isons. Then, our algorithm removes iteratively the first item still
in the sorted collection I , i0, and examines whether it fits in the
head partition Phead (Lines 6-10). If it does, i0 is added to Phead
(Line 11); otherwise, if the combined costs of i0 and Phead exceed
the maximum computational cost per partition, a new partition is
created, containing only i0 (Lines 12-13). Both partitions are then
placed back in the queue (Lines 14-15). At the end, the resulting
partitions are placed in the chunk array in decreasing order of cost
so that the processing starts from the largest ones.

The functionality of Algorithm 1 is illustrated in Figure 4(b). It
scales well to large item collections, as its time complexity is domi-
nated by the sorting in Line 1, i.e.,O(|I | ·loд |I |) – the overall cost for
inserting one partition in Q for every item is O(|I | · loд |Q |), where
|Q |(< |I |) stands for the size of the priority queue (i.e., the num-
ber of partitions). Note that Algorithm 1 is inspired from the Load
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Figure 4: (a) Execution plan for all parallelization strategies and pruning algorithms. (b) Applying Algorithm 1 to a set of items
I’, ordered in decreasing computational cost. (c) Applying Algorithm 2 to the same set of items. In (b) and (c), the head of the
priority queue in every iteration is marked with bold and italics.

Algorithm 2: Clustering Items Into Segments.
Input: I the input item collection, N the number of cores
Output: S the set of segments

1 Q ← {}; // priority queue, sorting segments in increasing cost

2 for i ← 1 to N do
3 Q .add(Si ); // add an empty segment per core

4 while I ′ , {} do // while not empty
5 i0 ← I ′.remove(0); // remove first item

6 Shead ←Q .poll(); // get segment with lowest cost

7 Shead ← Shead ∪ {i0 }; // add to segment

8 Q .add(Shead ); // place back to queue

9 returnQ .getElements();

Balancing algorithm of [6], but there it is used only for clustering
blocks into partitions, whereas we apply it to entities, too.

(iv) Segment parallelization. The motivation behind this ap-
proach is to develop a thread confinement (i.e., shared-nothing)
parallelization strategy that eliminates the waiting time for the
lock [24]. This can be accomplished by grouping the input items
into as many clusters as the number of available threads such that
all clusters have the same computational cost. Every cluster is called
segment and its cost is approximately | |I | |/N , where N is the num-
ber of threads and | |I | | stands for the total number of comparisons
in I (i.e., | |I | | =

∑
ik ∈I | |ik | |).

To split the input items into segments, we apply Algorithm 2.
Initially, it creates a priority queue with one empty segment per
thread (Lines 1-3). The queue sorts the segments in increasing cost,
from the least comparisons to the most ones. Then, our algorithm
iterates over the input items and places each of them in the segment
located at the head of the queue (Lines 4-8). The resulting segments
are then placed in the chunk array and each thread undertakes one
of them by retrieving the value of the index just once, at the begin-
ning of its processing. This functionality is illustrated in Figure 4(c).
Note that the input item collection is already ordered in decreasing
cost, but this is not required. Note also that the time complexity of
Algorithm 2 is O(|I |), as it simply iterates over the input items (the
overall cost for inserting a segment for each item into the priority
queue Q is O(|I |·loдN )≈O(|I |), where N is the number of cores).

In total, we propose 8 parallelization strategies for each pruning
algorithm and weighting scheme. The relative performance of every

strategy cannot be determined a-priori, as it depends on the char-
acteristics of the input data. The reason is that the computational
cost of a chunk rarely coincides with the number of comparisons
that are associated with the corresponding entity or block: some
comparisons are skipped, because they are redundant, while others
are quickly pruned, due to their low weights. The higher the por-
tion of unnecessary comparisons is, the less accurate is the a-priori
estimation of the cost of individual chunks and the less balanced is
the workload assigned to each thread in every iteration.

4.2 Multi-core Execution Plan
We now introduce the general parallelization strategy for each
pruning algorithm of Meta-blocking, which applies uniformly to
all parallelization strategies presented above. The execution plan of
this strategy is illustrated in Figure 4(a). It distinguishes the parallel
algorithms into single-stage and two-stage ones, according to the
number of phases they involve.

To the latter category belongs Multi-core Weighted Edge Pruning
(MWEP), as it iterates over the edges of the blocking graph twice:
once for estimating the average weight and once for pruning the
edges that do not exceed it. Similarly, Multi-core Weighted Node
Pruning (MWNP) traverses the nodes of the blocking graph twice:
the first iteration estimates the average edge weight in every node
neighborhood, while the second one prunes all edges below the
threshold in both adjacent node neighborhoods.

In contrast, Multi-core Cardinality Edge Pruning (MCEP) is a
single-stage algorithm: it iterates over the edges of the blocking
graph just once in order to fill a priority queue with the top-K
weighted edges. Multi-core Cardinality Node Pruning (MCNP) also
needs a single iteration over the nodes of the graph to fill a priority
queue with the top-k weighted edges for each entity. BothMCEP
and MCNP determine their cardinality threshold with a quick iter-
ation over the input blocks that does not require parallelization.

In this context, the multi-core execution plan comprises 5 steps:
(i) Initialization. This step is common for all algorithms, build-

ing the chunk array, initializing the index to the first place and
setting off N threads.

(ii) First parallel phase. In this step, each thread executes iter-
atively a parallel task that processes the next available chunk; it
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traverses the comparisons in the chunk and estimates the weight
for every valid (i.e., non-redundant) comparison. Then, it updates
accordingly a set of variables or data structures. • In MWEP, every
thread conveys two local counters: the number of executed com-
parisons and the aggregate weight of the executed comparisons. •
In MWNP, each thread contains two local arrays of size |S |+|T |,
i.e., they have one cell for every input entity. This is necessary for
both block- and entity-based parallelization strategies: in the for-
mer case, a single thread may process comparisons that involve all
input entities, whereas in the latter case, we do not know a-priori
which entities will be assigned to every thread. The first array
accumulates the number of comparisons involving the correspond-
ing entity, while the second one accumulates the respective edge
weights. • InMCEP, each thread maintains a local priority queue
that sorts comparisons in increasing weight (i.e., the head element
corresponds to the edge with the lowest weight) and contains up to
K elements. Every valid comparison is added in the priority queue
and if the overall size of the queue exceeds K , the head element is
removed. • The same procedure applies to the threads of MCNP,
with the only difference being that every thread maintains a priority
queue with k elements for each input entity (k≪K ).

(iii)Merge. This phase aggregates the outcomes of theN threads
after all of them conclude their processing. •MCEP merges the N
priority queues into a single one with the globally top-K weighted
comparisons and returns it as output. •MCNP merges the N pri-
ority queues of every entity to estimate the k adjacent edges with
the highest weights; then, it returns as output all comparisons that
are top-weighted for any of the entities they involve. • InMWEP,
the average edge weight is estimated by dividing the sum of ag-
gregate weights by the sum of executed comparisons. • The same
happens in MWNP, which creates a global array with the average
edge weight in the neighborhood of every entity. For the last two
algorithms, the index is subsequently reset to the first element of
the chunk array and the N threads are restarted.

(iv) Second parallel phase. In this phase, MWEP refines the
input items by retaining locally only the valid comparisons that
exceed the average edge weight. InMWNP, a valid comparison is
retained if it surpasses the weight threshold of any adjacent node.

(v) Second merge. The final step of the two-stage algorithms
assembles the comparisons retained locally in every thread and
returns them as output.

5 EXPERIMENTAL EVALUATION
We now present our experimental evaluation, which applies all
multi-core Meta-blocking algorithms described above in combina-
tion with all parallelization strategies to a large, real LOD dataset.
Its goal is twofold: (i) to identify the most efficient parallelization
strategy in terms of absolute execution time, and (ii) to identify the
strategy that scales better as the number of physical cores increases.
Note that evaluating the performance of Meta-blocking with re-
spect to effectiveness lies out of our scope, as this has already been
examined in a series of previous works, which employed numerous
established datasets [20–22, 26].

Experimental Setup. All methods and experiments were im-
plemented in Java, version 8. All experiments were performed on a
server with Ubuntu 12.04, 32GB RAM and 2 Intel Xeon E5620 pro-
cessors, each having 4 physical cores and 8 logical cores at 2.40GHz.

DBPedia3.0rc DBPedia3.4
Entities 1,190,733 2,164,040
Duplicates 892,579
Triples 1.69·107 3.50·107
Predicates 30,757 52,554
|S | × |T | 2.58·1012

(a)

Input Blocks
Blocks 1,239,066
Matches 890,817
Recall 0.998
Precision 6.86·10−5
| |B | | 1.30·1010

(b)
Table 1: Technical characteristics of (a) theDBPedia versions
that are resolved, and (b) the blocks that are given as input
to Meta-blocking.
For every parallelization strategy, we used 2, 4, 6 and 8 cores. Yet,
we cannot be sure that every thread is assigned to a physical core,
as we did not intervene in the functionality of the operating system.
Therefore, our time measurements offer a pessimistic estimation of
the actual performance of our algorithms. To reduce the effect of ex-
ternal factors (e.g., disk workload), we repeated every measurement
3 times and consider the resulting average performance.

Measures. Our evaluation criteria are the following:
(i) Wall-clock running time (WCT ). This measure estimates the

overhead time of Meta-blocking, i.e., the time that intervenes be-
tween receiving a block collection as input and returning the re-
structured blocks as output. Lower values correspond to higher
efficiency for Meta-blocking. Note that this measure applies both
to serialized and parallel Meta-blocking algorithms.

(ii) Speedup. This measure estimates the scalability of Multi-
core Meta-blocking, expressing the extent to which its wall-clock
running time decreases as we increase the number of available
cores. Assuming a set of core numbers {nmin , . . . ,nmax }, speedup
takes values in the interval [nmin ,nmax ] and is formally defined
it as: speedup(ni )=nmin×WCT (nmin )/WCT (ni ), whereWCT (x) is
the wall-clock running time of multi-core Meta-blocking on top
of x cores. Apparently, the closer speedup is to nmax , the better is
the scalability of multi-core Meta-blocking, with speedup(nmax ) =

nmax corresponding to the ideal case.
Dataset. We perform our experiments on top of the large KB

of DBPedia5, which lies at the center of the LOD cloud [25]. We
actually resolve two snapshots of the English DBPedia Infoboxes
that chronologically differ by 2 years, versions 3.0rc and 3.4. Ta-
ble 1(a) presents their technical characteristics. In total, they involve
almost 3.4 million entities that are described by 52 million triples
and 55,000 distinct predicates. Among them, less than a million are
duplicates, having the same URI in both snapshots. Note that we
use this dataset only to evaluate time efficiency, illustrating the
performance of our parallelization strategies, since the same dataset
has been repeatedly used for assessing effectiveness [20–22, 26].

To extract blocks from this dataset, we apply Token Blocking and
refine its blocks with Block Purging and Block Filtering. The former
discards the blocks that contain more than half the input entities,
while the latter retains every entity in 80% of its smaller blocks. Both
methods are commonly applied to schema-free blocking methods
in order to reduce the total number of block comparisons, | |B | |, to
manageable levels for serialized processing, without any significant
impact on recall [20–22, 26]. The technical characteristics of the
resulting blocks appear in Table 1(b). They achieve almost perfect
recall, while executing two orders of magnitude less comparisons
than the brute-force approach (|S | × |T | in Table 1). However, their
5http://wiki.dbpedia.org

http://wiki.dbpedia.org
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precision remains very low: almost 15,000 comparisons have to be
executed in order to identify a new match.

Qualitative Performance. Due to space restrictions, in the
following we exclusively combine Meta-blocking algorithms with
the top performing weighting scheme, namely ARCS [20, 21]. The
other weighting schemes exhibit similar behavior with respect to
the relative performance of our parallelization strategy.

For the sake of completeness, we present in Table 2 the effec-
tiveness of the four main pruning algorithms in combination with
ARCS. We observe that CEP retains approximately 6 comparisons
per entity for a recall around 79%, while CNP executes less than
10 comparisons per entity for a recall higher than 96%. In this way,
both algorithms raise precision by 3 orders of magnitude. WEP
andWNP maintain the original recall, while saving 1 to 2 orders of
magnitude more comparisons than the brute-force approach; hence,
they raise precision to a similar extent.

Tables 3(a) and (b) present the distributions of computational cost
before and after applying Algorithms 1 and 2 on the input blocks
and entities, respectively. Each distribution is described by the mini-
mum, the median and the maximum comparisons per item or chunk.
The first column in each table sketches the original distributions
of comparisons, which are heavily skewed towards small costs:
most items involve very few comparisons, with their frequency
decreasing as we move to larger comparisons. These distributions
are flattened by Alg. 1, which creates partitions with a cost identi-
cal with the maximum comparisons per block or entity. In total, it
creates 458 and 15,333 partitions for the input blocks and entities,
respectively. In contrast, Alg. 2 distributes the computational cost
evenly among all segments it creates, regardless of the number of
available cores. Note that for each number of cores, its segments
have the same computational cost for blocks and entities.

Time Performance. To assess the time efficiency of our tech-
niques, we estimatedWCT and speedup for all parallelization strate-
gies in combination ARCS and the 4 multi-core Meta-blocking algo-
rithms. The results are depicted in Figure 5. We also reportWCT for
the serialized pruning algorithms in Table 2, while Table 3(a) and
(b) presentsWCT for Algorithms 1 and 2 over blocks and entities,
respectively. We observe the following patterns:

(i) Following the relative performance of Original and Optimized
Edge Weighting, the entity-based strategies are significantly faster
than the corresponding block-based ones with respect toWCT .
This pattern is consistent across all pruning algorithms.

(ii) The block-based strategies consistently achieve a significantly
higher speedup than the entity-based ones. This means that they
scale much better, having the potential to outperform entity-based
strategies with respect toWCT , too, for large numbers of cores. The
reason is that the number of comparisons provides a more reliable
estimation for the computational cost of blocks, than for entities.
For example, it is possible for an entity ei to co-occur with a single
entity ej in 5 blocks, in which case only 1 out of 5 comparisons
involving these two entities is valid and a single edge weight has
to be computed; for an individual block, though, it is very unlikely
that 80% of its comparisons are redundant. As a result, the workload
of blocks is more evenly balanced among the available nodes than
the workload of entities.

CEP CNP WEP WNP
| |B′ | |(×107) 2.11 3.30 14.27 72.21
Recall 0.788 0.963 0.901 0.992
Precision(×10−3) 33.41 26.06 5.64 1.23
WCT (×106 msec) 4.39 12.48 10.96 19.92

Table 2: Performance of the main pruning algorithms in
combination with the ARCS weighting scheme.

Original I Partitions 2-Seg. 4-Seg. 6-Seg. 8-Seg.
Min. 1 2.1·107 6.5·109 3.3·109 2.2·109 1.6·109
Median 2 2.8·107 - 3.3·109 2.2·109 1.6·109
Max. 2.8·107 2.8·107 6.5·109 3.3·109 2.2·109 1.6·109

WCT - 306 66 81 89 106
(a) Blocks

Original I Partitions 2-Seg. 4-Seg. 6-Seg. 8-Seg.
Min. 1 3.0·105 6.5·109 3.3·109 2.2·109 1.6·109
Median 7,019 8.5·105 - 3.3·109 2.2·109 1.6·109
Max. 8.5·105 8.5·105 6.5·109 3.3·109 2.2·109 1.6·109

WCT - 238,064 84 87 99 106
(b) Entities

Table 3: Distribution of comparisons per (a) block and (b)
entity before and after applying Algorithms 1 and 2.WCT is
measured in milliseconds (msec).

(iii) Table 3 shows that Algorithm 2 is much faster than Algo-
rithm 1 over both blocks and entities, due to its lower time complex-
ity (O(|I |) vs. O(|I | log |I |). Algorithm 1 takes significantly more
time for entities than for blocks, as in the former case it produces
30 times more partitions. In contrast, Algorithm 2 is slightly faster
over blocks than over entities, due to the lower number of items
(1.2 million blocks vs. 3.3 million entities, cf. Table 1). Nevertheless,
the running time of both algorithms accounts for a negligible por-
tion of the overallWCT for most parallelization schemes, which
consistently exceeds 106 milliseconds, regardless of the available
cores (cf. the diagrams in the upper row of Figure 5).

(iv) CEP exhibits the lowest speedup across all pruning algo-
rithms, especially for entity-based strategies. The reason is that the
non-parallelizable cost of merging the N priority queues increases
linearly withN , i.e., the number of cores. Especially for entity-based
methods, this cost rises to 20% ofWCT for 8 cores.

(v) Compared to Optimized Edge Weighting, the fastest serial-
ized implementation of Meta-blocking, all parallelization strategies
achieve significantly lower running times than those reported in
Table 2, already for 2 cores.

(vi) Among the eight strategies, entity-based segment paral-
lelization consistently exhibits the best performance with respect
toWCT : it requires less than 30 minutes (1.8·106 milliseconds) to
apply any Meta-blocking algorithm, when using 8 cores. Its advan-
tages are the very low non-parallelizable cost (Algorithm 2) and its
shared-nothing functionality, which avoids waiting for the lock.
6 CONCLUSIONS
In this work, we presented 8 parallelization strategies for perform-
ing Meta-blocking in multi-core settings. Our methods are distin-
guished into block- and entity-based ones, but they all share the
same core functionality: there is a single state variable that is in-
cremented through a single, very fast point of synchronization.
Thus, they achieve high concurrency, reducing the running time
proportionally to the number of available cores. In absolute terms,
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Figure 5:WCT (on the first row) and speedup (on the second row) for all multi-core strategies of the four main Meta-blocking
algorithms in combinationwith theARCSweighting scheme.RB andRE stand for the randomparallelization strategy on blocks
and entities, resp., while Nx , Px and Sx denote the naive, the partition and the segment parallelization strategies, respectively.

entity-based segment parallelization is the fastest approach across
most pruning algorithms and weighting schemes, requiring less
than 30 minutes to process a large dataset with 3.4 million enti-
ties/nodes and 13 billion comparisons/edges. Hence, it offers the
best solution for ER applications with limited resources, like JedAI.

In the future, we plan to integrate Multi-core Meta-blocking
with Parallel Meta-blocking on the basis of advanced MapReduce
frameworks, like Apache Spark and Flink.
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