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Abstract—The volume of available spatial data that is
generated and collected has significantly increased in the last
few years. A number of applications based on Map-Reduce-
like systems and cloud infrastructure have emerged. These
applications offer a variety of features, however they differ
in terms of spatial functions, partitioning and indexing. In
this paper we present our own implementation that enables
spatial support for distributed execution of spatial SQL queries
as part of the system Exareme. Then, we evaluate some of
the State-of-the-Art existing geospatial distributed systems,
emphasizing on systems based on Apache Spark. We conduct
detailed functional and performance benchmarks that include
corner cases that stress the systems in comparison and reveal
their advantages and weaknesses in both functionality and
performance.
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I. INTRODUCTION

Large amounts of spatial data is currently available
from multiple sources, GPS-enabled mobile phones, Sen-
sor Observation Services, Automatic Identification System
(AIS) sensors used in maritime and many more. This vast
spatial data is collected and analyzed, as for example, the
exploitation of a large volume of historical AIS data to
estimate the location and connections of the major trade
routes [1].

Domain experts (e.g., earth scientists, meteorologists, etc.)
use extensively Geographic Information Systems (GIS) as
they offer a user interface for visualizing spatial data and
performing spatial operations. Spatial data is often stored
in geospatial databases. Decades of research focused in
developing techniques of efficiently storing and querying
geospatial data in relational databases. Most of these research
results were adopted by RDBMSs and currently there is
a variety of open source and commercial RDBMSs with
geospatial support (e.g., PostGIS [2], SpatiaLite [3], Oracle-
Spatial [4]).

In the era of big data and with the contributions of efforts
made by multiple domains, the spatial data is first class
citizen (e.g., Earth observation, AIS tracking etc). Recent
efforts extend distributed frameworks (e.g., Apache Spark
[5], Apache Hadoop [6]) with spatial support. The authors in
[7] reviewed the recent work in the area of big spatial data
according to a set of key components and they are presenting
many of the systems that are supporting them.

Our contributions to the state-of-the-art are the following:
• We describe the development of a spatial extension to

our own Exareme system, to support large-scale spatial
SQL queries.

• We evaluate the performance of our implementation
using the Jackpine Benchmark [8].

This paper is organized as follows. In Section II we
describe the current state-of-the-art in the area of distributed
spatial data management systems which forms the ground on
which our work is built. Next, in Section III we present our
approach for developing a system that enables a combination
of partitioning and indexing mechanisms to support spatial
SQL queries efficiently. In Section IV we perform a functional
and performance evaluation of our implementation compared
with other, state-of-the-art distributed systems that offer
spatial support. Last, in Section V we summarize the findings
of our study.

II. RELATED WORK

Exareme [9] operates as a paralleled RDBMS that uses
a master-worker architecture. Each parallel node is running
an instance of Exareme. The core component of Exareme
is a data flow system named MadIS which is based on an
APSW wrapper of SQLite [10] to process queries over data
that are stored (or can be virtually seen) as tables. To ensure
backwards compatibility with the centralized relational model,
it can be used as centralized DBMS, supporting all SQL-92
functionality that SQLite supports and serves as its back-end.

From a users point of view, the system is used as a
traditional database system: create/drop tables or indexes,
import external data, issue queries, while its language is
based on SQL to express both intra-worker and inter-worker
data-flows described with simple parallelism primitives. It
uses UDFs and an inverted syntax to easily express local
pipelines and complex computations.

Until now, Exareme did not provide geospatial support.
In the following section we describe how we extended it to
support spatial SQL queries efficiently.

Some of the recent renowned systems for distributed spatial
query processing were implemented as extensions for Hadoop
MapReduce such as SpatialHadoop [11], Hadoop-GIS[12],
and Hadoop with ESRI’s spatial extensions [13] supported
with Hive. Hadoop provides a very fault tolerant environment
for parallel execution, but storing intermediate results to disk



increases the execution time for spatial operations. Hence, the
in-memory execution model of Spark became very popular
as it reduces the execution time drastically, compared to
MapReduce jobs [14]. Following to this trend, many Spark-
based systems included geospatial support.

In the context of this work, we will only consider some
notable Spark-based systems, such as STARK [15], GeoSpark
[16], Magellan [17], Spatial-Spark [18] and Simba [19] as
they reportedly achieve better performance [14], [15] than
the Hadoop-based systems.

STARK [15] is built on top of Spark and provides a
domain specific language (DSL) that seamlessly integrates
into any (Scala) Spark program. It also includes an expressive
set of spatio-temporal operators for filter, join with various
predicates as well as k nearest neighbor search. A density
based clustering operator allows to find groups of similar
events.

It is tightly integrated into the Apache Spark API so
that users can directly invoke the spatial-temporal operators
and their RDDs. Spatial-temporal partitioning means that
partitions are created by taking into consideration the location
in space and/or time. This is achieved by creating new data
type and operator classes that make use of already existing
Spark operations, but also extend internal Spark classes.

Two spatial partitioners are implementing Sparks Parti-
tioner interface so that they can be used to spatially partition
an RDD with the RDDs partitionBy method. The Grid
Partitioner is a fixed grid partitioner that divides data space
into a number of intervals per dimension resulting in a grid of
rectangular cells (partitions) with equal dimensions. Because
all cells have equal size, some of them may contain more data
items than others. To overcome this problem, the Cost-Based
Binary Space Partitioner, based on [20] divides the space into
two partitions with equal cost (number of contained items).
When the items of one partition are exceeding a threshold, it
is recursively divided into two partitions of equal cost. This
way, large regions with only a few items will belong to the
same partition, while dense regions are split into multiple
partitions.

STARK uses an R-Tree implementation for indexing the
contents of a partition. In our experiments we use Live
Indexing. While processing a partition for evaluating a
predicate, the contents of that partition are indexed on-the-fly
while the query is evaluated.

Spatial Joins and filters can be called directly as transforma-
tions on standard RDDs. Additionally, it allows defining cus-
tom distance functions and predicates for its operators. More
specifically, it supports the following operators: intersect,
contains and containedBy.

GeoSpark [16] is an in-memory cluster computing frame-
work for processing large-scale spatial data. GeoSpark is
used to load, process, and analyze large-scale spatial data
in Apache Spark. It provides a set of out-of-the-box Spatial
Resilient Distributed Dataset (SRDD) types (e.g., Point

RDD and Polygon RDD) that provide in-house support for
geometrical and distance operations.

GeoSpark partitions Spatial RDDs by creating one global
grid file. The SRDDs are using the Apache Spark layer by
extending Spark’s partitioner. Global grids are low cost in
either file-size or data partitioning but constructing a global
grid file demands multiple coordinate sorting on the same
datasets. In our experiments we used Equalgrid.

Spatial indexing uses the Sort-Tile-Recursive (STR) algo-
rithm. It is a simple and efficient bulk-loading method for
spatial or multidimensional data management using R-tree.
GeoSpark’s index can be persisted either in memory or in
disk for later from the same program.

The following operators are supported as spatial join
conditions: Overlap, Inside, and Disjoint. Construct
operators such as MinimumBoundingRectangle and
group operators such as Union are also supported.

Magellan [17] is a distributed execution engine that extends
Spark SQL to provide a relational abstraction for geospatial
analytics on big data. It uses database techniques like efficient
data layout, code generation and query optimization in order
to optimize geospatial queries. Developers can write either
standard SQL or data frame queries for spatial operations,
while the execution engine efficiently takes care of laying
data out in memory during query processing.

It does not perform spatial partitioning but provides spatial
indexing. It uses a Z-Order Curve, which is finally treated
as a linear or pointer based Quad-Tree. By extending Spark
SQL it inherently supports relational spatial joins. However,
these joins are not handled as spatial joins by default, unless
a spatial join rule is injected. Otherwise, the join will be
evaluated as a Cartesian Join followed by a predicate 1.
Magellan supports the following topological functions that
can be used in SQL queries : Intersects, Contains
and Within.

Spatial-Spark [18] provides a large-scale spatial join query
processing on two leading in memory Big Data systems,
namely Apache Spark and Cloudera Impala [18]. To achieve
this, they focus on data processing on parallel hardware like
multi-core CPUs and GPUs. Spatial-Spark implements an
extension of broadcast join, where the right relation is read
into memory and distributed to all workers. If the relation
is too big to fit in memory then a spatial partitioner is used.
Two different kinds of spatial joins are supported: Broadcast
Spatial Join and Partitioned Spatial Join.

Spatial-Spark can be used via the command line and
run single operations or as a library in Scala programs. It
currently supports the following operators: intersect,
contains, within, within distance, overlaps
and nearest distance.

Simba [19] extends the Spark SQL engine across the
system stack to support rich spatial queries and analytics

1As mentioned in [17] at paragraph Spatial Joins



Table I: Functionality overview

System Spatial Index Spatial Partitioning Language
Exareme R*-Tree Grid SQL
STARK R-Tree Grid DSL
Geospark R-Tree, Quad-Tree Grid Java API
Magellan Z-order SQL
Spatial-Spark R-Tree FGP, BSP, STP Scala

through both SQL and DataFrame query interfaces. Due
to the fact that indexing of more complex geometries than
points (e.g., polygons) has not yet been implemented and due
to its very limited spatial support2 we decided not to include
it in our functionality and performance benchmarking which
is presented in Section IV.

In the aspect of benchmarking, Jackpine Benchmark [8] is
a state-of-the-art benchmark for spatial SQL queries that can
support any database that can be accessed via JDBC. Since
it is considered a robust, state-of-the-art benchmark platform
for spatial databases, our idea is to extend the usages of
its operations into distributed spatial systems to assess the
performance of individual spatial SQL functions.

It is the first time that a well-established benchmark like
Jackpine is used to evaluate the performance of distributed
systems with spatial support.

III. IMPLEMENTATION

As mentioned above, Exareme follows the master-worker
model. In an Exareme cluster, all nodes are running a MadIS
instance. For the parts of the SQL queries that can be run in
parallel, the master node of Exareme distributes these parts
to the workers.

For the spatial extension of Exareme, SpatiaLite [3], [21]
is used instead of SQLite.

Users can define partitioned tables, incorporating
Exareme’s dedicated primitives declaring the property based
on which the table will be partitioned (e.g., a hash value of a
column). A table partition is a set of tuples of a table. When
two tables are partitioned into the same property, resulting
into the same number of partitions that need to be joined,
a direct join can be performed instead of a Cartesian
product. In a direct join, the corresponding partitions of
the two (or more) tables are evaluated in parallel and the
union of the results is returned (elimination of duplicates is
also considered). However, when joining two tables that are
partitioned into different number of partition on the same
property, Exareme performs re-partitioning: One of two tables
will be re-partitioned on-the-fly so that a direct join can be
performed or the join is implemented using Cartesian product.

Partitioning geometries, geometrical objects such as points,
polygons, linestrings etc, is a more challenging task, as ge-

2As noted in [19], at Table 1, row ‘Geometric object‘ and at the
corresponding notation ‘Simba is being extended to support general
geometric objects‘, but until now it supports spatial operations only between
points, p. 3, section 2.4 Spatial Operations

ometries are typically multi-dimensional values and geometric
computations are typically more costly. That could be avoided
if all tables that are expected to be involved in spatial joins
are partitioned into the same number of partitions on the
same property. But this is knowledge that we do not always
have beforehand (i.e., at the time when declaring the tables).

Addressing the need for partitioning geometry data in
a way that the need of re-partitioning is avoided as much
as possible is an even bigger challenging task. When the
key-column is a column containing a geometry object, re-
partitioning is not trivial. Especially when geometries are
polygons, as we should ensure that there are no overlapping
geometries belonging to different partitions either belong in
the same or different geometry tables. Also, when defining
a distributed table, the table(s) that will be joined with it are
not known a-priori.

In literature, several well-known spatial indices have been
employed for data partitioning, either dynamic data structures
such as R-trees [22], quad-trees, k-d trees, or static like grids.
Using a dynamic data structure is not optimal in this setting,
as maintaining a centralized index structure, e.g., an R-tree,
would require that all geometries of all partitions would
be stored in a single R-tree, which is both a performance
overkill and it also introduces a bottle-neck in the distributed
spatial query processing.

Maintaining a distributed dynamic spatial index structure,
however, does not fit our case either, as given the fact that
the number of partitions are defined a-priori, the fact that
all overlapping geometries from all the tables that will be
potentially spatially joined will be located in the same index
node is not ensured.

As we want to avoid as much as possible the need to re-
partition the geometry tables and at the same time to be able
to execute distributed spatial queries, we chose to employ
the following partitioning scheme that combines both static
and dynamic well-known spatial index structures:

• We define a grid that is given to the system as a
configuration parameter. The grid is partitioned into
a number of M×N cells. By this way, all spatial tables
that we want to partition will be partitioned using a
common reference.

• When a table is defined as distributed and partitioned on
the geometry column, it is partitioned in M ×N parts
that correspond to the respective parts of the grid that
the geometries of the table overlap with. If a geometry
overlaps with more than one cells of the grid, it is
replicated to all cells it overlaps with. The grid will be
the same for every new table we want to partition on a
geometry column, so all geometries will be partitioned
having the same reference point: the grid. This is how
we ensure that all geometries in our distributed database
will be located in partitions that correspond to the same
grid cell.

• Exareme by default creates a temporary table for each



partition. In the geospatial case, we build an R-tree index
on each partition. By this way, our whole structure is
essentially a grid of R-trees.

The spatial support that is described above has been
added to the functionality of Exareme not only by changing
the APSW’s underlying SQLite to SpatiaLite but also by
extending Exareme’s UDFs and the Madis Process executor.
The spatial extension of Exareme is available online at:
https://github.com/nkaralis/exareme.

IV. FUNCTIONALITY AND PERFORMANCE BENCHMARK

A. Functionality benchmark

In this section we describe the functionalities of the
main state-of-the-art distributed systems that support spatial
queries and we compare them with our implementation.
Table I briefly describes the indexing and partitioning
mechanisms supported in these systems, as well as the
respective programming languages that they support.

Following Jackpine’s approach, we are using the Di-
mensionally Extended Nine-Intersection Model (DE-9IM)
which proposes the relationships: Equals, Disjoint, Intersects,
Touches, Crosses, Within, Contains and Overlaps. The DE-
9IM has been adopted by the Open Geospatial Consortium.
More specifically, we are using a subset of Jackpine’s micro
benchmark topological relationships among geometric objects
such as polygons, lines and points. The goal of the micro
benchmark is to test the basic topological relationships and
spatial analysis functions. A topological relationship describes
how two spatial objects relate to each other in terms of
topological constraints.

The queries included in the micro benchmark should
provide complete, yet minimal, coverage of topological
relations.

Those concerning topological relations and pair joins are
shown in [8] Table III Micro Benchmark Queries section
Topological relations, all pair joins. Table III shows the data
models that are used for our evaluation.

The supported operations per system are shown in table
II.

B. Performance benchmark

For our experiments we used the Okeanos Cloud Infras-
tructure3. The experiments were executed using a cluster of
3 VMs, consisted by 8 Cores CPU, 8 GB RAM and 60 GB
Storage capacity each with Ubuntu 16.04.4 LTS, Hadoop
2.7.3, and Apache Spark 2.2.0.

The same cluster was used also for the evaluation of
Exareme but without HDFS and Apache Spark. For spatial
support we installed SpatiaLite 4.3.0a, based on SQLite
3.11.0.

Apache Spark’s mechanisms are responsible for the
distribution of the resources and partitioning of data.

3www.okeanos.grnet.gr/

Figure 1. Exareme compared to STARK - Line scalability with indexers

Figure 2. Exareme compared to GeoSpark - Line scalability with indexers

We set the amount of memory for the driver process
(spark.driver.memory) to 10 GB and the default timeout for all
network interactions (spark.network.timeout) to 1000 seconds.
Finally, we set the limit of total size of serialized results of all
partitions for each Spark action (spark.driver.maxResultSize)
to 5 GB. This value was set in order to protect the driver
from out-of-memory errors.

In Exareme, each worker is occupying a VM and consumes
its resources to process the operations. The configuration and
the installation was ready out-of-the-box.

C. Evaluation results

The results of the benchmark queries are described in
this section. In each benchmark we run experiments 4
times, considering the first as the warmup execution and
measuring the average execution time for the last 3 runs.
Each benchmark is run for all systems multiple times
but with different configurations. We used three partition
configurations (None, 8 or 16 partitions) and three core
configurations (8, 16 or 24 Cores) per run. The scenarios are
comprised of 18 pairwise spatial join queries among polygon,
line and point objects as in Table II and the results are shown
categorized by these configurations. For the experiments we
used the indexing and partitioning techniques as shown in
Table I.



Table II: Micro Benchmark supported operations per system (Polygons)

Exareme GeoSpark Stark Magellan Spatial-Spark
Polygon Contains Point Y Y Y Y Y

Polygon Contains Polygon Y Y Y Y
Polygon Disjoint Polygon Y
Polygon Equals Polygon Y

Polygon Overlaps Polygon Y Y
Polygon Touches Polygon Y
Polygon Within Polygon Y Y

Line Crosses Polygon Y
Line Crosses Line Y

Line Intersects Polygon Y Y Y
Line Intersects Line Y Y Y

Line Overlaps Polygon Y Y Y
Line Touches Polygon Y
Line Within Polygon Y Y
Point Equals Point Y

Point Intersects Line Y Y Y
Point Intersects Polygon Y Y Y Y

Point Within Polygon Y Y Y

Table III: Datasets used for micro Benchmark

Dataset name Geometry Cardinality Data file size (Bytes)
edges merge line 5895060 2,034,869,136
pointlm merge point 13441 821,049
arealm merge polygon 5963 3,756,243

Figure 3. Exareme compared to Spatial-Spark - Line scalability with
indexers

Due to space considerations, we could only include part
of the results in the paper. All results are also available
online4. In this paper we decided to present the results of
queries that involve spatial joins with lines because, as in the
respective experiment of the Jackpine benchmark, the lines’
dataset is too big to fit in memory. So, we wanted to examine
the behaviour of the Spark-based systems in this stressed
scenarios in comparison to Exareme. For these queries,
systems like Spatial-Spark and GeoSpark needed to be
configured differently than others. Spatial-Spark’s Broadcast
Spatial Join had to be configured with more partitions and
GeoSpark had to be run with enabled disk persistence for
line objects to avoid error messages for insufficient memory

4https://github.com/kgiann78/GeoSpatial-Distributed-Systems

during tests.
In figures 1, 2 and 3 we provide diagrams of the results

for experiments related to line scalability. Magellan didn’t
return any result on these queries. Diagrams with indexers are
comparing each Spark-based system (shown in each diagram
with a triangle pointer) with Exareme (shown in each diagram
with the star pointer). The values used to produce the results
are referring to experiments with datasets of 8 partitions. This
number has been selected because all systems give useful
results that can be compared to each other.

In STARK we are using live index, which means that in
each experiment it creates an index on the fly. In case a
geometric object extends in multiple partitions, an extent
information is hold for the minimum and maximum values
of the object. The content of a partition is first put into an
R-tree and then, this index is queried using the query object.
These objects may contain extent informations if they belong
to multiple cells of the partition grid. So, the elements of the
R-Tree have to be checked again to see if they really match
the query object.

For small datasets, this performs better but for larger
datasets, depending the query object, it creates some latency
due to the number of elements and the network communica-
tion as it can be seen at experiment Line intersects Polygon
fig. 1.

GeoSpark, is using an R-Tree index per each partition,
after data are partitioned. This is supposed to be fast but
in our experiments it increases the communication between
different partitions. Especially, for larger datasets, it has a
significant performance impact i.e. Line overlaps polygon
fig. 2).

In general, each system performed differently in various
tests. Considering the number of operations, Exareme im-
plements almost all of them, apart of ‘Line Intersects Line‘
which never finished. Exareme’s results are within a steady



range for all different configurations and in most of the
experiments.

Considering the number of operations, Spatial-Spark comes
right after Exareme. When the datasets are small, Spatial-
Spark with Spatial Broadcast Join performes better than
others. Unfortunately, it performes poorly in cases where a
large dataset was member of a spatial operation.

On the other hand, STARK implements less operations
than Exareme and Spatial-Spark but performs better in many
cases. Of course, it should be taken into consideration that
the number of partitions is larger than other systems with the
same nominal number, due to it’s grid partitioning. GeoSpark
and Magellan implement the less operations, without many
differences to Exareme or other systems.

Magellan, provides a clever way to enhance Spark SQL
with spatial support but the lack of spatial partitioning and
the limited number of operations didn’t give much to the
comparisons.

V. CONCLUSIONS

In this paper we introduced an extension to enable spatial
support for the Exareme system and process spatial SQL
queries. We also performed a detailed functional and perfor-
mance evaluation of systems that offer similar functionality.
The outcome of the benchmarks shows that each system
supports different spatial operations that can be used in SQL
queries, with Exareme implementing almost all of them.
Exareme shows stable performance in query execution times,
despite the fact that other systems were too close in execution
times.
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