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Abstract—The Internet of Things will comprised of billions of 

devices that will be randomly placed, forming a dense and 

unstructured network environment with overlapping wireless 

topologies. The management of the available network resources 

and the control of the increased signaling traffic are crucial for 

the reliable and efficient provision of novel services. The 

grouping of involved entities into clusters will be a promising 

approach for solving locally and autonomously these issues. This 

paper proposes the SYSTAS algorithm for the distributed 

discovery and formation of clusters in small-world graphs of 

fixed wireless nodes by exploiting local topology knowledge and 

without having any information about the expected number of 

clusters. The density of the network graph, the interactions 

among participating nodes and the model of preferential 

attachment are used by the proposed scheme. The effectiveness of 

SYSTAS is evaluated using different topologies; experimental 

evaluation demonstrates that SYSTAS results are comparable or 

outperform other clustering algorithms. 

 
Keywords— wireless network; IoT; autonomous systems; 

clusters; modularity; 

I.  INTRODUCTION 

The Internet of Things (IoT) will merge computing and 
communication capabilities with physical processes to support 
healthcare, automotive systems, smart cities, robotics etc. All 
these novel services require a communication framework that 
will enable the collaboration of involved objects, satisfying the 
Quality of Service (QoS) requirements (e.g., reliability, 
latency), which in many cases are strict. The interactions and 
the collaboration of hundreds or even thousands of entities 
create a complex environment, where scarce radio resources 
should be effectively managed, without increasing the control 
signaling overhead. Thus, while we are moving towards IoT 
world, autonomicity is required for the evolution of 
management and control functionalities of networks that 
operate in a dynamic and dense environment [1]. 

An autonomous communication system is capable of 
monitoring its network-related state and modifying it based on 
specified policy rules, thresholds or business goals with the 
minimal involvement of human administrators. A key design 
issue for the deployment of an autonomous communication 
system is the selection among a) a centralized, b) a distributed, 
c) or even a hybrid approach. A centralized solution facilitates 
optimal decision making due to the more holistic view of the 
network status, but comprises a single point of failure since 
scalability, computational, local optimization and local search 

issues arise. Although a fully distributed solution can cope with 
these issues it requires continuous coordination of various 
nodes, both spatially and temporally so as to avoid conflicts or 
dependencies. In order to address the disadvantages while in 
parallel capitalize on the key advantages of both paradigms, a 
hybrid approach that is based on the formation of clusters 
(groups) could be adopted. Nodes that support Device-to-
Device (D2D) communication, IoT objects, and small cells are 
examples of wireless nodes that could form clusters for various 
group-based network functionalities e.g., group-based resource 
allocation, group-based access control [2], [3]. 

Clustering is a multidisciplinary research field, which has 
been studied by different research communities, e.g., mobile ad 
hoc networks (MANETs), Wireless Sensor Networks (WSN), 
graph theory and data mining. Various algorithms have been 
proposed for clusters discovery/formation (cf. Section II). The 
majority of MANET clustering algorithms is distributed, but 
they establish clusters focusing on specific applications or 
performance improvements operations (e.g., low-maintenance, 
mobility-aware clustering, energy-efficiency, load-balancing, 
etc). Additionally in many cases the formed clusters overlap 
and the maximum distance from the head node is pre-defined. 
Graph theory algorithms are effective, but they require global 
knowledge (i.e. a fully described graph) in order to discover the 
appropriate clusters. Finally, many of the data mining 
clustering algorithms are centralized, while in the case of 
distributed schemes it is necessary to indicate the number of 
expected clusters, before running the algorithm. In our context, 
the devices of an IoT environment form small-world graphs, 
and existing clustering algorithms have not been designed to 
support management and control functions. Considering the 
above as well as the structural properties of random graphs, an 
application-neutral, distributed cluster discovery algorithm is 
required that will operate by exploiting local information and 
will be agnostic towards the expected number of clusters. 

In this paper, we propose SYSTAS, a novel algorithm for 
the distributed discovery of clusters of wireless nodes based on 
physical network topology features. SYSTAS identifies 
clusters by exploiting the density of the network graph, the 
interactions among nodes and the preferential attachment 
model. SYSTAS efficiently leads to the specification of 
clusters, which consist of simple members and a head node. 
The identified clusters are non-overlapping and with no 
restrictions regarding their diameter. The quality of the formed 
clusters affects the effectiveness of group-based network 



processes. The discovery of modular clusters will facilitate the 
operation of the different functions (management and control) 
of autonomous systems. For that reason, in this work we 
evaluate and compare SYSTAS using the modularity score Q 
metric [4], which measures the strength of division of a 
network into modules. Modularity score is neutral to other QoS 
indicators of communication networks. 

The remainder of the paper is organized as follows: Section 
II presents relevant research efforts, while the proposed 
algorithm for clusters discovery is described in Section 3. 
Section 4 presents the experimental validation procedure and 
the derived results. Section 5 concludes the paper and sketches 
future research directions. 

II. BACKGROUND WORK 

Clustering in MANETs is defined as the virtual partitioning 
of the dynamic nodes into various groups. Groups of nodes are 
formed with respect to their closeness. Two nodes are assumed 
neighboring when both of them lie within their transmission 
range and set up a bidirectional link between them [5]. From a 
graph-theoretic perspective, clustering is the task of grouping 
the vertices of a graph into disjoint groups. The derived 
partitioning attempts to minimize the sum of edges between 
clusters, while in parallel maximize their sum in every cluster 
[6]. In some of the research literature, a cluster in a graph is 
called a community [7]. Finally, in data mining, clusters are 
formed among (data) objects typically by exploiting their 
pairwise similarities [8]. 

Several clustering algorithms have been proposed for 
MANETs the last decade, exploiting different criteria (nodes’ 
ID, nodes’ degree, mobility patterns, closeness, etc) and having 
different targets (e.g., load balancing, energy efficiency). 
According to the Lowest-ID Cluster (LID) algorithm that is 
one of the first proposed solutions, every node is assigned a 
unique non-negative identification number (ID), which is the 
deciding factor for the status of a node. Each node broadcasts 
its ID to its neighbors and receives theirs. If a node listens to all 
the neighbors’ IDs that are higher than its own ID, it declares 
itself as the cluster head among its immediate neighbors. This 
process is repeated till all the nodes are assigned with the role 
of a head or a member of a cluster [9]. MOBIC is a mobility-
metric based version of LID which was proposed by Basu et al. 
[10]. Authors in [11] have proposed the Highest Connectivity 
(HC) algorithm, where cluster heads become the nodes that 
enjoy the highest degree of connectivity. In [12] Chatterjee et 
al. proposed a weighted clustering algorithm (WCA) where a 
set of node parameters such as degree of connectivity, mobility, 
transmission power and available battery power are taken into 
account for the selection of a cluster head. Additionally, 
depending on the network scenario, a weighted scheme is also 
applicable. Basagni et al. presented a distributed clustering 
algorithm (DCA) and the mobility adaptive clustering 
algorithm (DMAC) [13]. In DCA, each node is associated with 
a unique parameter (weight), which is used for the 
identification of the node’s role. In [14], the authors propose an 
enhancement of LID, the Least Cluster Change (LCC) 
algorithm. In [15], the Hierarchical control clustering (HCC) is 
introduced which creates a hierarchical control structure for 
multi-hop wireless networks. HCC cluster formation involves 

constructing a spanning tree in time proportional to the 
diameter of the network by performing a distributed breadth-
first search. Additional cluster formation algorithms have been 
proposed for energy saving purposes especially in Wireless 
Sensor Networks (WSN) [16]. A more detailed analysis of the 
different algorithms that have been proposed for MANETs or 
WSNs is available in [5], [17] and [18]. 

Cluster discovery has been also studied in the context of 
graph theory. The work can be broadly divided in two main 
areas ([6]), namely Graph Partitioning and Community 
Structure Detection. Graph partitioning (GP) has been pursued 
particularly in computer science and related fields, with 
applications in parallel computing and integrated circuit design. 
Community Structure detection (CS), has been pursued by 
sociologists, with applications especially to social and 
biological networks. In GP it is usually assumed that we know 
or at least have an indication about the number of groups, while 
in CS, we assume that the network of interest divides naturally 
into subgroups and the experimenter's job is to find those 
groups. The number and size of the groups are thus determined 
by the network itself and not by the experimenter. Repeated 
Random Walks (RRW) and Markov Cluster Algorithm (MCL) 
are well known schemes for CS-based clusters discovery [19]. 

The analysis of huge amounts of data has led to the need for 
the development of data mining clustering schemes. These 
algorithms facilitate the identification of groups of similar 
objects. Typically these objects are database entries describing 
key features of the set members; the clustering procedure is 
executed simultaneously on the entire dataset. Depending on 
the algorithm, the process has variable time constraints and 
cluster assignments. The procedure may lead to clusters’ 
formation, hierarchies of clusters, etc. Typical methodologies 
are the Partitioning clustering (e.g., k-Means) and Hierarchical 
clustering [8]. 

III. PROPOSED ALGORITHM 

A. Structure and Properties of Dense Wireless Networks 

There are various structural metrics that could be used in 
order to describe the properties of a graph topology formed by 
a network of IoT objects e.g., node degree (i.e., number of 
edges incident to the node), degree distribution, path length, 
node clustering coefficient (i.e., ratio of the number of edges 
between node's neighbors to the maximal possible number of 
such edges), geodesic distance. According to these properties 
four main categories of structural models are identified: a) 
Random network: a fixed number of nodes are connected 
randomly to each other, b) Small-world network: any two 
nodes can be connected with a path of only a few links, c) 
Scale-free network: network’s properties are determined by 
hubs, d) Hierarchical network: seamlessly integrates a scale-
free topology with an inherent modular structure by generating 
a network that has a power-law degree distribution. Each 
structural model has specific characteristics regarding the 
values of the key structural metrics e.g., degree distribution and 
clustering coefficient. The wireless networks in an urban dense 
environment appear the properties of a small-world graph, 
since the number of nodes, connections between them and 
graph edges are determined in a random way, but with small 
average distances between node pairs [20] . 



B. SYSTAS 

The proposed algorithm assumes zero or low mobility 
levels for the involved nodes. All nodes have the capability to 
discover their physical topology and by exploiting this 
commonly known scheme, form in a distributed way, the 
appropriate number of clusters. Clusters are non-overlapping 
and consist of two types of nodes: a) simple member nodes, 
and b) head nodes. The application of SYSTAS leads to the 
election of a single head for each cluster and the specification 
of cluster borders through the allocation of member nodes to 
elected heads. It should be noted that the number of elected 
heads equals to the number of clusters, while their role in the 
algorithm is to facilitate the formation of the clusters. 

SYSTAS is based on the topological characteristics of the 
network area (nodes' degree, clustering coefficient). Heads are 
elected according to their degree (number of edges incident to 
the node) and then clusters are formed based on the network 
density and by a process of “preferential attachment”, where 
nodes prefer to join the more “popular” clusters. Two nodes are 
considered neighboring if they are within each other’s 
transmission range. 

We assume that a network topology is represented by a 
connected and undirected graph G = (V, E), where V is the set 
of network nodes and E the set of edges (connectivity links) 
between network nodes. An edge exists between two nodes, if 
one is within the coverage area of the other. Let the 
cardinalities of V and E be denoted by n and e, respectively; 
i.e., n is the number of nodes, and e the number of connectivity 
links. The input variables of the proposed algorithm are the 
following: 

• hmax: the maximum number of hops that each head 

node advertises its presence. 

• m: the maximum number of member nodes that 

triggers a cluster to be merged with a neighboring 

cluster. 

• Rthr: the threshold of inter-cluster and intra-cluster 

edges ratio (denoted by R) that initiates a cluster 

merging process. 

  The proposed algorithm consists of three phases: 

1. Formation of initial clusters with heads and members 

selection. 

2. Expansion of clusters with high clustering 

coefficient. 

3. Merging of clusters with high inter-connectivity 

factor. 
In the first phase, the initial set of clusters is formed based 

on the degree parameter (Table I). Each node i monitors its 
proximity, measures its degree Di -which is the number of its 
one hop away neighbors- and advertises it to its proximity 
(one-hop away nodes). After receiving all neighboring nodes’ 
degrees -Di,j-, each node i evaluates local and neighboring 
degrees and selects as head (Hi) the node with the maximum 
degree. All head nodes that have a zero number of member 
nodes are merged with the neighboring cluster where the head 
has the largest degree. 

The head-node is not a member node of any other cluster 
and each member is allocated to only one head/cluster. Every  

TABLE I.  PHASE I - FORMATION OF INITIAL CLUSTERS AND HEADS 

IDENTIFICATION 

Each node: InitialClustersFormation() 

1: Discover neighboring nodes; 

2: Calculate Degree (Di); 

3: Advertise Di one hop away; 

4: Collect Di, j from all neighboring nodes; 

5: Selected Head (Hi): Node with the maximum degree (Di, j, Di)  

6: If node i is a head without members then 

7: 
Join the cluster of neighboring cluster where head k has  

the maximum degree Dk; 

8: End 
 

member node stores the degree and the ID of its head, while 
the head knows the number of member nodes that constitute its 
cluster and their IDs. With the end of this phase, the initial 
clusters have been formed, consisting of heads and members. 

The goal of the second phase is to expand the clusters that 
have high clustering coefficient. Thus, areas of the graph with 
high modularity will be identified. For this step, both head 
nodes and member nodes participate, undertaking different 
tasks, presented in Table II and Table III, respectively. Firstly, 
each head node Hk calculates the existing number of its 
member nodes, denoted by Mk, and advertises it h hops away 
(Table II, steps 1-3). The initial value of h is one (h=1). The 
head node then waits for a period Tk for the completion of the 
forwarding phase of advertisements messages and the re-
allocation of member nodes to clusters. The re-allocation phase 
is discussed below and presented in Table III. After Tk , every 
head node re-calculates the number of its member nodes and 
updates Mk  (Table II, steps 5). 

Clusters that exhibit low cardinality (Mk  < m) are merged 
with the neighboring cluster that has the largest dominance 
factor, denoted DF (Table II, steps 6-8). DF quantifies the 
influence (in terms of edges) of cluster g on cluster k. Hence, 
for its calculation it is necessary to measure the total number of 
inter-cluster edges of cluster k (head and member nodes), 
denoted by ���, as well as the number of inter-cluster edges 

between cluster k and neighboring cluster g, denoted ��,�� . DF is 

calculated as follows: 

TABLE II.  PHASE II - EXPANSION OF CLUSTERS (HEAD SIDE) 

Head node: ClustersExpansion_HeadSide() 

1: h = 1; 

2: Calculate the number of cluster members (Mk); 

3: Advertise Mk  h hops away; 

4: 
Wait for a time interval Tk to complete the  

   ClustersExpansion_MemberSide(); 

5: re-Calculate Mk; 

6: If Mk  < m then 

7: 
Merge cluster of Head k with the neighboring cluster g 

that the maximum ����; 

8: End 

9: If h < hmax then 

10: h ++ 

11: GOTO step 2; 

12: End 



���� = 	
,��

	
�
                             (1) 

The head of cluster k calculates the DF of each neighboring 
cluster and opts to merge with the cluster that has the largest 
DF value. After merging, the advertisement hops are increased 
by 1 (h++) provided that h < hmax and the process is repeated 
(Table II, steps 9-12). 

Table III depicts the process for the second phase from the 
perspective of a member node. Each member that receives an 
advertisement message forwards it to a neighboring node if the 
following conditions are met: 

• h -1≠0 and 

• It belongs to the same cluster with the head that 

initially created the advertisement message. 
The head node does not forward the advertisement messages of 
other heads. The goal of these conditions is to avoid the 
creation of disconnected cluster areas. 

Table III presents the functions of each member in the 
context of the second phase of SYSTAS. Each member node 
collects all advertisement messages that are in maximum h 
hops away. Using these messages, each member calculates the 

influence factor of every head. The influence ���of a head Hk 
on a member node i, is calculated as follows: 

��� = ��� ,					��	��� = 1
�,� ,				��	��� > 1�                (2) 

where Mk is the number of members of the head node k. Si,k 
denotes the number of advertisement messages that member 
node i has received from Hk via the different paths that connect 
node k and node i. Each member node selects the head (i.e., 
cluster to join) with the largest IF value. Hence, member nodes, 
following the preferential attachment model, join the closest 
cluster with the larger influence on it. 

After completing the advertisement phase, the number of 
formed clusters and consequently the number of heads have 
been reduced. The third phase of SYSTAS entails the 
discovery of clusters that show high inter-connectivity and can 
be merged (Table IV). The inter-connectivity measurement Rk 
is calculated by every head node k as the inter-cluster and intra-
cluster edges ratio for its cluster: 

�� = 	
�
	
�

                        (3) 

where ��� denotes the total number of intra-cluster edges of 

cluster k. If �� > ����  then cluster k, regardless of its 

constituent number of members, triggers its merging with the 

TABLE III.  PHASE III - EXPANSION OF CLUSTERS (MEMBER SIDE) 

Member node: ClustersExpansion_MemberSide() 

1: Do 

2: Collect advertisement messages about Mk; 

3: While (Tk has not expired) 

4: For each Head (Hk) 

5: Calculate ���; 

6: End 

7: Join Cluster with maximum ���; 
 

TABLE IV.  PHASE III - MERGING OF CLUSTERS 

Head nodes: ClustersMerging()  

1: Calculate ��� and ���; 

2: Calculate Rk; 

3: If Rk > Rthr  then 

4: Calculate ����; 

5: 
Merge cluster k with the neighboring cluster g that has the  

maximum DF; 

6: End 
 

neighboring cluster that has the maximum DF value, using (2). 
The rationale of this merging phase, is to avoid forming 
clusters that are not modular and member nodes are not clearly 
independent in term of interactions from neighboring clusters. 

Merging will lead to the reduction of clusters (i.e., elected 
heads) and consequently to the increase of the allocated 
member nodes per cluster. After the end of the merging phase, 
the clusters have been formed and the heads of each cluster 
have been elected. Finally, each head node is aware of the 
member nodes that constitute its cluster, while each member 
node is aware of the head that is assigned to and its distance in 
terms of hops. 

IV. PERFORMANCE EVALUATION 

In this section we evaluate the performance of SYSTAS 
using various network topologies and different values for the 
three input parameters (hmax, m, Rthr). Useful conclusions are 
derived for the values of the parameters based on the density of 
the graphs, which have been generated using the NS-3 network 
simulator [21]. We compare SYSTAS with two other cluster 
discovery algorithms: a) Hierarchical Agglomerative 
Clustering (HAC) [8], and b) Markov Cluster Algorithm 
(MCL) [19]. The quality of the discovered clusters is assessed 
using the modularity score Q metric introduced in [4]. 

� = � !"# − ‖"&‖                    (4) 
where e is a symmetric matrix whose element ei,j is the fraction 
of edges in the network that connects vertices in communities i 
and j, and Tr(e) is the trace of matrix e (i.e., the sum of 
elements from its main diagonal). Q gives an indication for the 
quality of the formed clusters over all possible divisions of the 
graph, measuring the density of links inside communities as 
compared to links between communities. Its range is [0,1], 
while the higher is Q the better is the quality of the discovered 
clusters. In the experiments we consider graphs, where nodes 
are connected randomly to each other following the structure of 
a small-world network topology. An edge between two nodes 
denotes that they are within each other’s transmission range. In 
all experiments we set m=1. 

Fig. 1-a depicts the formed clusters after the application of 
SYSTAS on a small and sparse graph of 30 nodes (density = 
0.128 and average geodesic distance=3.56). We note that the 
density of a graph is calculated using the formula in [22]. Fig. 
1-b presents the discovered clusters for a network graph of 40 
nodes, which density is 0.198 and its average geodesic distance 
= 2.7. Three clusters have been formed, which heads are n30, 
n12, and n10.  

In the case of a more dense topology consisting of 80 nodes 



(density =0.186, average geodesic distance = 2.52) two clusters 
have been identified (Fig. 2-a). A larger graph of 100 nodes, 
which density is 0.116 and the average geodesic distance is 
3.56 is depicted in Fig. 2-b. Using SYSTAS four clusters have 
been discovered: n56 with 33 members, n37 with 37 members, 
n7 with 24 members and an isolated cluster where the head 
node (n96) consists of only two members. 

Table V, Table VI, Table VII and Table VIII present the 
number of formed clusters, the elected head, the number of 
members and the modularity score Q, setting different values to 
hmax and Rthr parameters. As expected the increase of 
advertisement hops (hmax) leads to the formation of less clusters 
for the same Rthr, while the resulting modularity score (
increased. However, higher hmax and lower m means that more 
messages are exchanged among involved nodes and the cost of 
the algorithm is increased. For that purpose it is necessary to 
make a good estimation for the initial input parameters of 
graph. The conducted experiments show that in a uniformly 
dense graph (e.g., Table VII) the achieved modularity (

increased setting a high Rthr value (Rthr = 1.5, R
sparse graph, a larger number of advertisement hops (e.g., 
= 3) and a smaller Rthr value (Rthr = 1) facilitate the effective 
discovery of clusters (Table V, Table VIII). It should be noted 
that the Rthr value does not affect significantly the performance 
of SYSTAS for the case that the partitions of a graph are 
clearly identifiable. 

(a) 

(b) 

Fig. 1. Clusters visualization (a) Topology of 30 nodes (hmax

Topology of 40 nodes (hmax =3, Rthr =1) 

c distance = 2.52) two clusters 
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which density is 0.116 and the average geodesic distance is 
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Table V, Table VI, Table VII and Table VIII present the 
number of formed clusters, the elected head, the number of 
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Fig. 2. Clusters visualization (a) Topology of 80 nodes (
Topology of 100 nodes (hmax =3, Rthr = 1) 

TABLE V.  DISCOVERED CLUSTERS FOR 

hmax Rthr Clusters Cluster Heads

1 ∞ 5 n2(10), n7(4) , n5(4), n21 (3), n22(4)

1 1 4 n2(10), n7(9), n5(5), n

2 ∞ 5 n2(10), n7(4) , n5(4), n21(3), n22(4)

2 1 5 n2(10), n7(5) , n5(4), n

3 ∞ 5 n2(10), n7(5) , n

3 1 4 n2(11), n7(9), n5(3), n21(3)

TABLE VI.  DISCOVERED CLUSTERS FOR 

hmax Rthr Clusters Cluster Heads

1 ∞ 4 n10(10), n30(16), 

1 1 3 n10(16), n30(16), 

2 ∞ 5 n10(6), n30(17), 

2 1 3 n10(15), n30(17), 

3 ∞ 3 n10(16), n30(16)

3 1 3 n10(16), n30(16)
 

TABLE VII.  DISCOVERED CLUSTERS FOR 

hmax Rthr Clusters Cluster Heads

1 ∞ 9 n52(15), n2(6), n50(9), n7(27), 

n9(4), n43(2), n64(2), n78(2), n55(4)

1 1 2 n52(48), n(30) 

2 ∞ 5 n52(12),n2(12), n50(4), n7(38),

 

 

Clusters visualization (a) Topology of 80 nodes (hmax =3, Rthr = 1), (b) 
 

LUSTERS FOR 30 NODES TOPOLOGY 

Cluster Heads Q  

n2(10), n7(4) , n5(4), n21 (3), n22(4) 0.523 

, n5(5), n21(3) 0.528 

n2(10), n7(4) , n5(4), n21(3), n22(4) 0.540 

n2(10), n7(5) , n5(4), n21(3), n22(3) 0.540 

n2(10), n7(5) , n5(4), n21(3),n 22(3) 0.511 

n5(3), n21(3) 0.521 

LUSTERS FOR 40 NODES TOPOLOGY 

Cluster Heads Q  

30(16), n12(5), n19(5) 0.372 

30(16), n12(5) 0.448 

30(17), n12(5),n19(5),n1(2) 0.404 

30(17), n12(5) 0.449 

(16), n12(5) 0.468 

30(16), n12(5) 0.468 

LUSTERS FOR 80 NODES TOPOLOGY 

Cluster Heads Q  

n52(15), n2(6), n50(9), n7(27), 

n9(4), n43(2), n64(2), n78(2), n55(4) 

0.289 

0.342 

52(12),n2(12), n50(4), n7(38),n9(9) 0.413 



hmax Rthr Clusters Cluster Heads Q  

2 1.5 4 n52(12), n2(12) n7(43), n9(9) 0.416 

2 1 2 n2(22), n7(56) 0.315 

3 ∞ 3 n52(12), n2(21), n7(44) 0.419 

3 1 2 n2(21), n7(57) 0.307 

TABLE VIII.  DISCOVERED CLUSTERS FOR 100 NODES TOPOLOGY 

hmax Rthr Clusters Cluster Heads Q  

1 ∞ 12 

n13(2), n2(5), n96(2), n37(26), 

n7(20), n56(12), n25(3), n69(6), 

n67(2), n19(5), n83(2), n53(2) 

0.448 

1 1 3 n56(31), n37(43), n7(23) 0.559 

2 ∞ 8 
n2(2), n96(2), n37(30), n7(24), 

n56(25), n69(2), n19(4), n83(3) 
0.445 

2 1 4 n56(33), n37(37), n7(24), n96(2) 0.572 

3 ∞ 4 n56(32), n37(37), n7(25), n96(2) 0.570 

3 1 4 n56(32), n37(37), n7(25), n96(2) 0.570 
 

As mentioned in the beginning of this section, for the 
evaluation of the SYSTAS we have used as baseline algorithms 
HAC from the family of hierarchical clustering algorithms and 
MCL from graph theory. In HAC each object forms a single 
object cluster. The algorithm continues by merging two 
clusters with the highest similarity at each step (e.g., choose 
two clusters with the smallest distance between them) [8]. We 
selected HAC over DBSCAN (a pure density based clustering 
algorithm [8]) due to nature of our approach. Although taking 
into account density, SYSTAS essentially operates similarly to 
HAC by progressively joining clusters according to a similarity 
metric until no further merging can take place. MCL partitions 
a graph by simulating multiple random walks inside the graph 
[19]. The main idea resides in the fact that by randomly visiting 
nodes, the number of times strongly connected nodes are 
visited is much higher than nodes with weak paths between 
them. In both schemes global knowledge is required (vector 
distance calculation and matrix multiplication). On the other 
hand, SYSTAS follows a distributed approach, which is based 
on local knowledge. Table IX shows that SYSTAS 
outperforms HAC in all cases, while in four out of eight graphs 
the same or higher modularity (Q) has been achieved, 
compared to MCL. We should point out that SYSTAS exploits 
only local view, whereas MCL needs global view of the graph. 

TABLE IX.  COMPARISON OF SYSTAS WITH HAC AND MCL 

Nodes  Density  HAC  MCL  SYSTAS  

20  0.236 0.266  0.386  0.429  

30  0.128 0.322  0.534  0.540  

40  0.198 0.398  0.520  0.468  

50  0.128 0.292  0.607  0.572  

80  0.186 0.433  0.543  0.419  

100  0.116 0.562  0.558  0.572  

128  0.142 0.537  0.602  0.595  

135  0.084 0.435  0.611  0.611  

V. CONCLUSIONS 

In this paper, we have proposed SYSTAS a distributed 
algorithm catering for the discovery and formation of clusters 
in a network graph of fixed wireless nodes. SYSTAS is based 
on the density of the network graph, the interactions among 
nodes and the preferential attachment model. The local graph 

view is used, without having any indication about the 
appropriate or expected number of clusters. Through numerous 
experiments using various network topologies we showcased 
the validity, viability and merits of our work. Experimentation 
results show that the quality of SYSTAS clusters is comparable 
to competitive centralized solutions from graph theory. Our 
future work includes the extension of SYSTAS towards 
maintenance of formed clusters, while the communicational 
cost of SYSTAS and other solutions will be investigated. 
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