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Abstract 
Dimensionality reduction algorithms are extremely useful in various disciplines, especially related 
to data processing in high dimensional spaces. However, most algorithms proposed in the literature 
assume total knowledge of data usually residing in a centralized location. While this still suffices 
for several applications, there is an increasing need for management of vast data collections in a 
distributed way, since the assembly of data centrally is often infeasible. Towards this end, in this 
paper, a novel distributed dimensionality reduction (DDR) algorithm is proposed. The algorithm is 
compared with other effective centralized dimensionality reduction techniques and approximates 
the quality of FastMap, considered as one of the most effective algorithms, while its central 
execution outperforms FastMap. We prove our claims through experiments on a high dimensional 
synthetic dataset. 
 
1. Introduction 
Dimensionality reduction algorithms are extremely useful in various disciplines, especially related 
to data processing in high dimensional spaces. The latter becomes a difficult task as dimensions 
increase, because of the two distinct problems: the “empty space phenomenon” and “the curse of 
dimensionality” [1],[2]. The first denotes the fact that in high dimensional spaces data are sparsely 
situated, appearing at equal distance from one another. The “curse of dimensionality” on the other 
hand refers to the fact that in the absence of simplifying assumptions, the sample needed to estimate 
a function of several variables to a given degree of accuracy grows exponentially with the number 
of variables. A thorough investigation considering both aforementioned facts from the perspective 
of the nearest neighbor retrieval can be found in [20],[19]. 
  
Besides high dimensionality, another problem encountered in the area of data processing is the 
large amount of data. Data is not always situated on a single machine, but is usually scattered in a 
network. The latter is more obvious nowadays with the emergence of several novel applications 
such as peer-to-peer, sensor networks, data streams, etc. The ability to collect, store, process and 
subsequently index huge amounts of data has necessitated the development of algorithms that can 
extract useful information from distributed data corpuses. The scientific field of distributed 
knowledge discovery (DKD) addresses this issue. Distributed knowledge discovery is divided into 
two distinct categories. Homogeneous, where resources queried are arbitrarily distributed among 
nodes although described by the same features and heterogeneous, where all participants share the 
same knowledge but described by different features. Another possible categorization is acquired 
when information is considered as a huge resources x features matrix. If the rows or the matrix are 
shared among peers then the distribution is called horizontal (which is analogous to homogeneous) 
while the division of columns denotes a case of vertical distribution (equal to heterogeneous).    
 
This paper proposes a novel effective dimensionality reduction algorithm that enables the 
compression of data processed, while retaining information for subsequent clustering or 
classification purposes. The algorithm proposed however exhibits the ability of distributed 



execution tackling the issue of distributed dimensionality reduction (DDR) from the perspective of 
a distributed, homogeneous knowledge discovery problem. Despite the distributed nature of the 
approach, the reduction and indexing performance produced is almost equal to the one exhibited by 
a well-known centralized algorithm, namely FastMap ([17]). 
 
The paper is organized as follows: in Section 2 we review the related work regarding 
dimensionality reduction techniques. In Section 3, we identify the requirements for a distributed 
dimensionality reduction algorithm, while in Section 4, we present the novel algorithm. In Section 
5, the experimental results are presented, and finally in Section 6, we conclude the paper. 
 
2. Related Work 
Each dimensionality reduction algorithm must fulfill some requirements in order to be considered 
effective and efficient. Briefly stated, the prerequisites are: a) the discovery of the intrinsic 
dimensionality of the dataset, b) the preservation of correlation dimensions between data, while 
projecting to a lower dimensionality space, and c) the least possible loss of information. 
 
One of the initial methods proposed is the multidimensional scaling technique (MDS) often referred 
today as classic MDS (http://www.statsoft.com, http://www.diap.polimi.it). MDS is an explorative 
technique of data analysis that provides a depiction of the processed dataset in a lower 
dimensionality space with the usage of correlation information. In general, MDS can be considered 
as a methodology for dimensionality reduction proposing the use of numerical analysis 
transformations on data until a certain criterion is maximized or minimized. 
 
The best dimensionality reduction approach is Principal Components Analysis [1], [2].  PCA 
achieves high stress minimization and high level of mutual information preservation. The algorithm 
applies singular value decomposition on the correlation matrix and retains only the k greatest 
singular values and vectors. In general, all singular value decomposition based methods exhibit 
high quality of results. Latent Semantic Indexing (LSI - [18]) is a special case, because the process 
utilized for the projection also manages to capture and bring forward semantic information 
contained in data. If the Stress criterion of MDS is replaced by the level of mutual information 
preservation the method in question is Independent Component Analysis [1],[2]. In the case of 
PCA, the use of the negative entropy function, as defined by Shannon, produces the Projection 
Pursuit method [2]. 
 
One of the fastest methods available in this area is FastMap [17]. FastMap maps data from 
dimension n to n-1 by projection on a hyperplane perpendicular to the line defined by the two most 
distant points in the processed space. Recursive application of this procedure achieves the 
projection of N point from space Rn to subspace Rk in O(Nk) time while retaining distances among 
data. The Discrete Fourier Transform ([4] - DFT), is another method for fast projection and 
compression of data, which perceives each point as a series of randomly selected instances of a 
continuous signal and transforms it to a sum of basic signals. Afterwards, basic signals that do not 
add up to the final reconstruction are rejected; consequently, the corresponding coordinates are 
absconded thus resulting in the compression and reduction of data. PAA (Piecewise Aggregate 
Approximation) [4] is a close relative of DFT that projects each point independently from the rest. 
After fixing a window size f, all sets of f coordinates are replaced by their mean value. The main 
drawback of this fast approach (O(n)) is its dependence on the size of the initial window. If the 
latter is big, then sharp changes in data will be lost, as all will be smoothed to their mean value. 
 
All previously presented algorithms except from MDS, are classified as linear, because they try to 
project data in a globally linear space of lower dimensionality. On the contrary, non-linear methods 



try to preserve linearity in the locality of each point. By adding up the local linear fractals of 
projection space one can achieve the formation of a non-linear projection space satisfying our 
requirements. Prominent methods employed for non-linear dimensionality reduction are the spring 
models [8], self organizing (Kohonen) maps [5], neural networks [1][2] and non-linear PCA [2]. 
The general idea of non-linear projection has recently steered much research in the field of 
dimensionality reduction. Isomap [8], C-Isomap [12] and Local Linear Embedding [11],[10] are 
relatively new methods for non-linear reduction. The most novel approach presented in 
bibliography is Landmark MDS or shortly LMDS [3]. The major goal of LMDS is the provision of 
a dimensionality reduction approach adequate for large datasets that cannot be loaded on main 
memory. The cost of this approach is Ο(2kbN + k2N + b3) (N being the cardinality of the projected 
set, b the number of landmark  points and k the dimensionality of the projecting space)  assuming 
that no heuristic is used. If a heuristic is employed for the selection of the initial points then a 
O(bN) factor is added to the aforementioned cost.  
 
3. Requirements of a DDR Algorithm and Applicability of Centralized Algorithms 
The aim of this section is the identification of some initial requirements that a dimensionality 
reduction method must fulfill, in order to be used in distributed environments, along with an 
evaluation of the applicability of the previously described centralized algorithms in this context. 
Before dwelling in further analysis, some assumptions are stated. It is assumed that all resources 
can be described as points in a high dimensional space, i.e. Rn, while the latter is common to all 
participating nodes that form a network. Moreover no node can have global knowledge of the 
data/corpus being processed, but only a small fraction. Both assumptions anagoge the problem to a 
horizontally distributed knowledge discovery problem. 
 
Given a dimensionality reduction algorithm and a dataset of N resources, distributed arbitrarily 
among the nodes of a network, the following requirements must hold for the distributed execution 
of an algorithm: (1) Each point should be projected to the new subspace independently from the rest 
of the dataset.. (2) Distances between points should be preserved while projecting to a new 
subspace. The latter must hold true both locally and globally. Given two points A, B, their distance 
(d) in the high dimension space, and their distance (d’) in the projection space, the algorithm must 
guarantee that these values will be preserved even when the points belong to different network 
nodes. (3) The algorithm should be fast to compute, and linear to the total number of points 
projected. 
 
The vast majority of dimensionality reduction techniques attempt to map points in a low 
dimensional space by exploiting the correlations among them. This is not tolerable in our case, 
because no node can acquire full knowledge of the data shared by the network. As an example, one 
can imagine the use of LSI, PCA and in general all SVD based methods. In the case of LSI or PCA, 
the abruption of certain singular values and singular vectors retains only the dimensions that 
provide the most valuable information regarding the correlation of the data, while discarded 
information is regarded as noise. There is no way to ensure however the validity of the comparison 
of two models generated by two different corpuses. The reason is rather simple and straightforward. 
Correlation dimensions initially perceived as noise and thus discarded, could carry valuable 
information, if SVD would have been carried out on the union of the two corpuses. Furthermore, 
SVD based methods, especially LSI, appear to have low scaling ability because of their complexity 
(N3, N being the size of the resources correlation matrix) and the fact that when vast amounts of 
data are processed it is not easy to distinguish noise from information.  
 
One could argue however, that SVD is applicable in horizontally distributed data. Although this is 
the case, the cost of applying an SVD update algorithm is equal to the cost of re-calculating the 



decomposition [13], while the folding in technique (addition of data based on the assumption that 
the decomposition is not influenced by new information) deteriorates quickly [14]. The Discrete 
Fourier Transform, although it satisfies the first and third requirement, discards dimensions in the 
depiction of the transformed signal, based on their significance. In our case, this would prevent 
even local comparison of data, because the discarded dimensions would differ among resources. 
 
Only two of the presented methods can be applied in our case, LMDS and PAA. In the case of 
LMDS, a node can be arbitrarily chosen and assigned the task of reducing the initial points, which 
are provided by the rest. Afterwards, both projected and original data can be broadcasted across the 
network and each node may proceed independently. What the “adapted” LMDS achieves with high 
complexity and network traffic, PAA can achieve it with relatively no cost. The major drawback in 
this case is the size of the rolling window. If the latter is big (reduced dimensionality << original 
dimensionality) and the points are sparse then all variation will be lost. 
 
4. The Proposed Algorithm 
An algorithm with lower complexity than LMDS and lower network traffic would be an adequate 
solution to our problem. The DDR algorithm presented in this section is an attempt to reach these 
standards, while fulfilling the requirements stated in the previous section. The approach follows the 
general principles of the LMDS adaptation, while differentiating in the way each step is achieved 
and exhibiting lower complexity and network traffic. The setup of the problem is the same. Given 
N resources represented as points of Rn, distributed arbitrarily in a network of p nodes, we want to 
find a projection of the data in Rk, while retaining distances and the ability to perform clustering 
afterwards. Each node is assumed to possess ⎡p/N⎤ resources. The algorithm is divided into four 
distinct steps. 
 
Step 1: An aggregator node is selected. The selection can be made randomly or based on same kind 
of “built in” heuristic (i.e. a transformation of the IP address of nodes) as described in [16]. The 
aforementioned node is assigned all tasks that need to be executed centralized. 
 
Step 2: Afterwards, k points must be sampled from the whole dataset and forwarded to the selected 
node. Each node selects and forwards ⎡k/p⎤ points resulting in O(nk) network traffic load. The 
selection can be made with one of the following ways: 

 Each node randomly selects from the resources owned ⎡k/p⎤ points. 
 Each node selects the ⎡k/p⎤ most far off points of its collection trying to create a kernel of 

points with long connections among them. We refer to this heuristic as MaxDist. The cost of the 
selection is O(⎡k/p⎤), when random selection is employed, and O(⎡N/p⎤⎡k/p⎤), when MaxDist is 
used. 
 
Step 3: Selected points are projected by the aggregator in the Rk space with the use of the FastMap 
algorithm and all data (original coordinates of resources and projections) are flooded to the rest of 
the peers.  The initialization of the FastMap algorithm needs O(k2n) time and its execution O(k2), 
while the broadcasting of the result produces O(nk + k2) network traffic. 
 
Step 4: In the final step of the procedure, each node is obliged to project the resources owned to the 
new subspace with the use of the provided points (hereafter referred as landmark points). During 
the projection, the algorithm attempts to preserve distances, meaning that the resource projected 
must have equal distance from the landmark points both in the original and in the projection space. 
If x is the projected point, L the set of k landmark points and li the landmark points then this 
requirement is stated as || x(k) - li

(k) || = || x(n) - li
(n) || for i=1..k. The algorithm searches the common 

trace of all k hypersheres, which is in fact the projection of point x in the reduced space. The result 



can easily be obtained by solving the above system of nonlinear equations with the Newton method. 
If the approximation is precise, then the algorithm converges, otherwise the algorithm deviances 
and produces a result after the completion of a certain amount of iterations. This step produces on 
each node a load analogous to Ο((⎡N/p⎤-⎡k/p⎤) k3/3).. 
 
For any set of points the algorithm will produce a solution if the triangular inequality is sustained in 
the original space. For any point S of the initial space and the landmark points Α, Β equation 
||ΑΒ ||≤||SΑ ||+||SΒ || (1) holds true. The system defined for the projection (||SΑ ||=||S’Α’ ||, 
||SB ||=||S’B’ ||) does not have a solution, if there exists no common trace between the created 
hyperspheres. This is translated as ||Α’Β’ ||≥ ||S’Α’ ||+||S’Β’ || or equally ||Α’Β’ ||≥ ||SΑ ||+||SΒ || 
(2) since ||SΑ ||=||S’Α’ || and ||SB ||=||S’B’ || by default. After projecting A, B with FastMap the 
original and projected distances between these points are associated through inequality 
||Α’Β’ ||≤||ΑΒ || (3). Consequently based on (3), (1) we conclude that equation (2) is never true, 
meaning that the system in question always has a solution (there always exists a projection) 
provided that the triangular inequality is sustained in the original space. Moreover, the time needed 
to compute this solution depends only on the approximation vector provided initially to the Newton 
method and the accuracy factor ε.  
 
To sum up, the proposed algorithm differs from other widely employed dimensionality reduction 
approaches for three distinct reasons. Initially, the projection of the vast majority of points is done 
independently from the rest, meaning that only the landmark points affect the projection. Moreover, 
landmark points remain unaffected by subsequent projections while the projection itself is 
independent of the sampled data. Finally the minimization criterion employed by the algorithm is 
∑|L|{|distanceorig - distancenew|}, applied to each point independently, contrary to the widely 
employed Stress function that is applied to the whole set of data. 
 
Compared to the distributed LMDS adaptation - also proposed in this paper- our algorithm exhibits 
lower network load and computational complexity. Indeed, distributed application of LMDS 
produces O(2bn + bk) network traffic and requires O(k2⎡N/p⎤ + bk⎡N/p⎤) time for all nodes, while 
for the aggregator the load is  O(k2⎡N/p⎤ + bk⎡N/p⎤ + b3). Note that b is larger than k in all cases 
and signifies the number of points selected for the execution of LMDS. On the other hand our 
algorithm produces O(2nk + k2) traffic load and requires Ο((⎡N/p⎤-⎡k/p⎤) k3/3) time. This value is 
augmented at the aggregator node for an amount of O(k2) due to the execution of FastMap. 
  
Apart from the lower complexity, the proposed algorithm comes with one more advantage against 
the distributed application of LMDS. The sampling procedure can be carried out once in the 
lifetime of a network and the result can be forwarded to all nodes entering the network at any time. 
Projection is independent of the sample, because each resource is projected to a point abstaining 
analogously far or close in the reduced space. On the contrary, since LMDS employs classic MDS 
that requires the solution of a generalized eigenvector problem, updates have to take place 
periodically, since content changes affect the projection.  
 
5. Experimental Results 
In an attempt to evaluate the proposed algorithm, a series of experiments on a synthetic dataset was 
carried out. The goal was to prove the validity of the approach while exhibiting results of quality 
close to well-known centralized approaches. In all experiments, we arbitrarily created a set of high 
dimensional vectors, which constructed a set of ten clusters, well separated so as to ensure that the 
applicability of clustering is unaffected by the high dimensionality of the processed space. The 
clustering algorithm employed was K-Means.  
 



The data generator takes as input the number of vectors (s), and the number of clusters (c) to be 
created. All vectors coordinates are initialized by values belonging to [0,1]. At the second step the 
generator produces a set of c different integers (pi, i=1…10). Finally, each set of ⎡s/c⎤ vectors 
changes the pi coordinate of the elements contained to 5. This value ensures that each set of ⎡s/c⎤ 
vectors is well separated from the rest, meaning that no overlapping occurs between clusters. 
 
The points were subsequently projected to a predefined lower dimensionality space through the 
usage of four different algorithms. The first algorithm, which has been used as a point of reference, 
was FastMap. Afterwards, two different setups of our new algorithm were employed. The first 
(named DDR-R) used a random sample of initial data, while the other (named DDR-H) employed 
the MaxDist heuristic. PAA was also tested in order to evaluate its stability and quality in large-
scale reduction processes. Finally, K-Means was employed in order to evaluate the clustering 
quality after the reduction. The Newton method employed by our algorithm utilizes as an 
approximation vector the perpendicular projection of the point (referred to as x) to the new 
subspace with every coordinate augmented by a factor (a2-1)||x|| (a=0.7) 
 
Results presented in this paper come from the projection of 1000 vectors of dimensionality 2000 to 
dimensions 10, 20, 40, 80, 100. Due to space limitations, three more sets of experiments are 
omitted, but can be found in the extended version of this paper [21]. 
 

 
Figure 1: Deviation of clustering quality in fourth 

set 

 
Figure 2: Outperforming FastMap in clustering 

quality maintenance

As far as clustering is concerned, figure 1 gives valuable insight and allows us to draw some initial 
conclusions. With a sampling of only 2%-4% of data, high quality projection and clustering is 
achieved. F-measure is in fact less than 5% lower than the one achieved with centralized projection 
of the data (FastMap). Moreover, when projecting from initial dimensionality 2000 to 100 
dimensions, both DDR-R and DDR-H outperform FastMap, as exhibited in figure 2. 
 
Another valuable result is that the method is not influenced by the way the initial set of points is 
selected, allowing in fact the usage of random sampling and thus lowering the complexity of the 
process. The projection quality is measured by computing the stress value. All experiments 
exhibited the same behavior, producing a very low stress value, almost equal to the one exhibited 
by FastMap. Moreover, the mathematically proven fact that the stress value decreases as projection 
dimension increases was also demonstrated. Finally, the projection was unaffected by the way 
initial points were sampled. Figure 3, which demonstrates these facts while Figure 4 demonstrates 
the time requirements of all four approaches. 
 
In all above experiments, our algorithm was executed in a distributed way, as described in the 
previous sections. However, one can also employ this algorithm in a centralized way. In this case, 
the best way to choose the initial points is the execution of a clustering algorithm, namely K-Means 
with the usage of HAC as initialization process. After the latter’s completion, the number of 



clusters generated is supplied to our algorithm as the projection dimension and the centroids 
calculated as the landmark points. When our algorithm was evaluated with the aforementioned 
setup, it outperformed FastMap, reaching even more than 10% better clustering quality, together 
with an extremely low stress value. Figures 5, 6 demonstrate this fact in the projection of 300 points 
from an initial dimension of 1000 to 10. 
 

 
Figure 3: Projection quality in the fourth set 

 
Figure 4: Time requirements in the fourth set

 
To sum up, the experimental evaluation presented in this section, leads to a primary conclusion 
stating that the proposed algorithm offers the possibility of distributed dimensionality reduction for 
large datasets providing projection quality equal to a centralized approach, namely FastMap. 
Furthermore, clustering the reduced data projected by our algorithm, retains high quality, 
marginally equal to the one achieved, when performing clustering in the original space (note that 
the initial clusters were well separated). Results obtained from clustering on the projections of the 
centrally executed FastMap, and our distributed executed algorithm exhibit the same quality. On the 
other hand the use of the MaxDist heuristic does not ameliorate results. Finally, when our algorithm 
was used as a centralized dimensionality reduction approach and was evaluated against FastMap 
produced better quality results both in terms of F-Measure and Stress values. 

 

 
Figure 5: Clustering quality in centralized 

execution 

 
Figure 6: Stress in centralized execution

6. Conclusions and Future Work 
This paper tackled the issue of distributed dimensionality reduction from the perspective of a 
distributed, homogeneous knowledge discovery problem. The bibliographic research indicated the 
absence of any appropriate solution to this problem. Furthermore, only one of the centralized 
approaches could be adjusted to fit our requirements. To best of our knowledge, our approach and 
the distributed LMDS adaptation, both presented in this paper, are the first to provide a solution to 
this problem. However, our algorithm is the first approach that directly targets the problem of 
distributed dimensionality reduction. The quality of our results is almost equal to FastMap, 
measured in terms of Stress and F-measure values, while our algorithm’s central execution 



outperforms FastMap. Future work will primarily concentrate on evaluating our algorithm with real 
datasets against LMDS and PCA. The last comparison will demonstrate the viability of our 
approach against the best dimensionality reduction algorithm in the bibliography. 
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