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Abstract. Data mining tasks results are usually improved by reducing
the dimensionality of data. This improvement however is achieved harder
in the case that data lay on a non linear manifold and are distributed
across network nodes. Although numerous algorithms for distributed di-
mensionality reduction have been proposed, all assume that data reside
in a linear space. In order to address the non-linear case, we introduce
D-Isomap, a novel distributed non linear dimensionality reduction al-
gorithm, particularly applicable in large scale, structured peer-to-peer
networks. Apart from unfolding a non linear manifold, our algorithm is
capable of approximate reconstruction of the global dataset at peer level
a very attractive feature for distributed data mining problems. We ex-
tensively evaluate its performance through experiments on both artificial
and real world datasets. The obtained results show the suitability and
viability of our approach for knowledge discovery in distributed environ-
ments.

Keywords: distributed non linear dimensionality reduction, distributed
data mining

1 Introduction

During the last decade, the evolution of the internet as well as the emergence of
novel applications, such as peer-to-peer (P2P) systems, has led to an unprece-
dented information explosion. Information is distributed among network nodes,
making the cost of centralizing and processing data prohibitive. Consequently,
distributed data mining (DDM) has emerged as a highly challenging task.

Dimensionality reduction (DR) is an important step of data mining as high
dimensional data lead to the degradation of query processing performance, a
phenomenon known as the curse of dimensionality [8]. Thus typical tasks, such
as clustering or classification, become ineffective. DR is then required in order to
decrease the number of dimensions and reveal potentially interesting structures
in data. With the advent of DDM, distributed dimensionality reduction (DDR)
has emerged as a necessity in many applications.

A prominent such application is knowledge discovery from text collections
distributed in a P2P network. Latest theoretical and experimental evidence point
out that documents lay on a non linear high dimensional manifold ( [5], [3]).
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Consequently, non linear dimensionality reduction (NLDR) is necessary in order
to recover the low dimensional structure. Although numerous DDR algorithms
have been proposed, all assume that data lay on a linear space. Thus there is
the need for definition of distributed NLDR techniques.

To this end, we introduce Distributed Isomap (D-Isomap). D-Isomap corre-
sponds to the decentralized version of the well known NLDR algorithm Isomap
[18]. D-Isomap has been specifically designed and tuned in order to be appli-
cable in large scale, structured P2P networks. We evaluate its performance and
assess its viability and suitability for distributed environments through extensive
experiments on artificial and real world datasets.

The contribution of this work is manifold. In section 2, we provide a review
of the Isomap and DDR families of algorithms. In section 3 we introduce D-
Isomap, a distributed NLDR algorithm which to the best of our knowledge is
the first of its genre. Furthermore, we provide a cost model that assesses the
computational and network resources required for the embedding of a dataset in
a low dimensional space with D-Isomap. Finally, in section 4, we demonstrate the
non linear nature of our approach through extensive experiments on well known
non linear manifolds and justify its applicability in mining document collections
distributed in P2P networks.

2 Related Work

DR algorithms are usually classified with respect to the way they manage data
( [16]). Linear algorithms assume that high dimensional data lay on a linear or
approximately linear manifold of significantly lower dimensionality. On the other
hand, non linear methods assume that such linearity does not exist and operate
on small fractions of the high dimensional manifold that can be perceived as
locally linear. Due to space limitations, in the remaining of this section, we focus
on the Isomap algorithm and its variations while in the end we provide a short
overview of prominent DDR methods and motivate the need for a distributed
NLDR approach.

Isomap [18] is a non linear technique that operates on points’ pairwise geodesic
distances. Isomap first constructs a nearest neighbor (NN) graph, where each
point is represented as a node having edges to its k NN points. Edges are weighted
according to the Euclidean distance of the points connecting. Global pairwise
distances are calculated based on the shortest paths between all points (geodesic
distances). The low dimensional mapping is derived by applying classic metric
multidimensional scaling [19](MDS) on the geodesic distance matrix.

Isomap deficiencies to deal with curved manifolds or project large datasets
gave rise to extensions such as C-Isomap and L-Isomap [16]. C-Isomap employs
a different edge weighting scheme taking into account the mean distance of each
point from its NNs. L-Isomap on the other hand attempts to address the ex-
cessive memory requirements of MDS by introducing Landmark MDS (LMDS).
LMDS applies MDS on a set of sampled points and uses triangulation for the
projection of the remaining dataset. Another problem of Isomap is the defini-
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tion of non connected NN graphs. In such cases the algorithm operates on the
largest connected component and discards the rest. A solution is provided by
Incremental Isomap [20] (I-Isomap) which guarantees the construction of a fully
connected graph and is able to update the embedding when data is inserted or
deleted.

DDR algorithms assume data distributed across a set of nodes and the ex-
istence of some kind of network organization scheme. The simplest case, where
organization exists by construction, are structured P2P networks. In such net-
works, a protocol (usually based on distributed hast tables - DHT) ensures that
any peer can efficiently route a search to a peer that has a specific file. Examples
include Chord [17] and CAN [15]. In unstructured networks, the organization
may be induced by means of physical topology (i.e. a router) or by means of
self-organization [11]. In both cases however, a node undertakes all computa-
tions that have to be done centrally. The most prominent approaches in the
area are adaptations of PCA ( [9], [13], [14]). Two distributed alternatives of
Fastmap [1] have also been proposed, but their application relies heavily on the
synchronization of the network elements thus can only be applied in control-
lable laboratory environments. Recently, K-Landmarks [11] has appeared as a
promising solution for DDR in unstructured P2P networks.

Unfortunately, all these methods are linear, in the sense that they assume
that data lay on a linear or approximately linear low dimensional manifold.
However, latest results point out that data usually lay on a non linear manifold
( [5], [3]) thus linear methods fail to provide adequate results. Consequently,
there is an apparent need for decentralized NLDR techniques. To the best of our
knowledge, D-Isomap is the first attempt towards this direction.

3 Distributed Non Linear Dimensionality Reduction

D-Isomap capitalizes on the basic steps of Isomap and applies them in a net-
work context, managing to successfully retrieve the underlying manifold while
exhibiting tolerable network cost and computational complexity. In the rest of
this section we present in details each step of the algorithm and review the cost
induced by its application in a structured P2P network. Throughout the analysis
we assume that N points, residing in Rd, are distributed in a P2P network of
M peers. Each peer stores Ni points (

∑M
i=1 Ni = N). The objective is to recover

the manifold residing in Rn using a graph defined by the k NNs of each point.

3.1 Data Indexing and Nearest Neighbours Retrieval

The first step of Isomap necessitates the definition of a kNN graph for each point.
The latter, although applied in a distributed environment, should yield results
of accuracy approximating that of a centralized approach. This, in conjunction
with our initial goal for low network cost, highlights the need for a structured,
DHT based, P2P network like Chord. Chord is a P2P lookup protocol where
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peer identifiers are arranged in a circle. Each node has a successor and a pre-
decessor. The successor of a peer is the next node in the identifier circle when
moving clockwise. On the other hand, the predecessor, is the next peer in the
identifier circle when moving counter-clockwise. A message in Chord may require
to traverse O(logM) hops before reaching its destination.

In order to enable rapid lookup of points similar to each peer’s local data
we consider locality sensitive hashing [2] (LSH) that hashes similar points to
the same bucket with high probability. LSH defines L hash tables, each related
with a mapping function gi, i = 1...L. Each gi is defined by f hash functions
hj(), j = 1...f , randomly chosen from the same family of LSH functions H.
Every hi,j() maximizes the collision probability for data points that are close
to each other in the original space. Since we measure similarity based on the
euclidean distance, we use hr,b(x) = � rx+b

w �, where x is the point under process,
r is a random vector which coordinates are defined by the Gaussian distribution
and w, b random numbers with the property b ∈ [0, w).

The mapping of hash identifiers to peer identifiers is accomplished by em-
ploying a similarity preserving transformation that depicts a vector from Rf in
R1 [6]. For a given vector x, LSH produces an f -dimensional vector; the l1 norm
of this vector defines a similarity preserving mapping to R1. Additionally, it can
be proved that the obtained l1 values are generated from the normal distribution
N (f

2 , f
w μl(xi)), where μl(xi) is the mean value of all points’ Euclidean norm. Con-

sequently, each hash value v is indexed by peer pi = ( l1(v)−μl1+2σl1
4∗σl1

∗M)modM .
The simplest way to retrieve the kNNs of a point p is to aggregate from all

hash tables the points hashed in the same bucket as p. Afterwards, retrieve the
actual points, calculate their distances from p and retain the kNNs. In order to
reduce the required messages we halt the procedure as soon as ck points have
been retrieved (in our experiments we set c = 5). Additionally, for each point,
we define a range boundp that enables a queried peer to return only a subset of
the points that indexes using Theorem 1. We use as bound the mean distance
that a point exhibits from the points of its local dataset.

Theorem 1. Given f hash functions hi = � rix
T +bi

w � where ri is an 1xn random
vector, w ∈ N , bi ∈ [0, w), i = 1...f , the difference δ of the l1 norms of the

projections xf ,yf of two points x, y ∈ Rn is upper bounded by ‖∑ f
i=1 |ri|‖‖x−y‖

w
where ‖x − y‖ is the points’ euclidean distace.

Proof: Since |a| − |b| ≤ |a − b| ≤ |a + b| ≤ |a| + |b| we derive l1(xf ) ≤
1
w

∑f
i=1(|rix

T |+|bi|) ≤ 1
w (

∑f
i=1 |ri|)|x|T + 1

w

∑f
i=1 |bi|. We assume A = (

∑f
i=1 |ri|)

and employ the inequality in order to derive δ = |l1(xf )− l1(yf )| ≤ | 1
w A(|x|T −

|y|T )| ≤ | 1
wA||(|x|T − |y|T )| ≤ | 1

wA||(xT − yT )| = | 1
wA||x − y|T = 1

wA|x − y|T
since w and |ri| are positive. In parallel, for any two vectors a, b we know that
‖abT‖ ≤ ‖a‖‖b‖. Consequently, δ ≤ 1

w‖A|x − y|T ‖ ≤ 1
w‖A‖‖x − y‖. Based on

the latter we obtain δ ≤ ‖A‖‖x−y‖
w �

The first part of the procedure is presented in Algorithm 1. At first, Each
peer, hashes its local points and transmits the derived l1 values to the corre-
sponding peers. This procedure yields a network cost of O(NiL) messages per
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Algorithm 1 Data indexing and kNN retrieval
Input: Local dataset in Rd(D), � peers (M), � hash tables L, hash functions g, �
NNs (k), peer identifier (id), parameter c (c)
Output: The local neighbourhood graph of peer id (X)
for i = 1 to Nid, j = 1 to L do

hashj(pi) = gj(pi) - where pi is the i-th point of D

peerind = (
l1(hashj(pi))−μl1+2σl1

4∗σl1
∗ M)modM

Send message (l1(hashj(pi)), id) to peerind and store (peerind, pi, j)
end for
if peer is creating its local NN graph then

for i = 1 to Nid, j = 1 to L do
Send message (id, hashj(pi), boundpi) to (peerind, pi, j)
Wait for response message (host, pind, l1(pind))
If total number of received points is over ck, request points from host nodes,
sort them according to their true distance from pi and retain the k NNs of pi

end for
else

Retrieve message (id, hashj(pi), boundpi) from peerid

Scan local index and retrieve relevant points according to Theorem 1
Forward retrieved points’ pointers to querying node

end if

peer or a total of O(NL) messages. The process of recovering the kNNs of a
point requires ck messages thus is upper bounded by O(ckN). Time require-
ments on peer level are O(NiLf +Niklogk) induced by the hashing and ranking
procedure. Finally memory requirements are O(Nik), due to retaining the NNs
of each point.

3.2 Distributed Geodesic Distances Definition

Each point p has successfully recovered the location of its kNNs and created the
corresponding graph Gp. Now, each peer should identify the shortest paths (SP)
from its local points to all points in the dataset using only local information
(∪Ni

j=1Gj). For this, we will use distributed SP computation techniques, exten-
sively used for network routing purposes. A well known algorithm is the Distance
Vector Routing (DVR) or Distributed Bellman-Ford (DBF) which is core part
of many internet routing protocols such as RIP, BGP, ISO and IDRP [10].

For every point p, its host peer maintains a distance vector DIST [p] that
stores the distances from p to all points of the dataset. Initially, only the cells
corresponding to p’s NNs are populated while the rest are set to ∞. The proce-
dure is initiated by sending the DIST [p] to all peers maintaining p’s NNs. Each
receiver evaluates its current SPs to points appearing in DIST [p] and if a new
SP is identified updates distance vector DIST [q] -where q is a point in p’s set of
NNs- and goes back to the sending step. The process is repeated until no update
takes place, thus SPs have been computed.
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Algorithm 2 Definition of geodesic distances
Input: peer id (id), local dataset (D), distances from NNs (DIST ), time (t)
Output: SP distances of local points to the rest of the dataset (DIST )
for i = 1 to Ni do

Send (DIST [i], i, id) to peers hosting NNs of pi

end for
while Time to receive a message < t do

Receive message (DIST [n], p, peerj) - distances of pp’s NN n residing in peerj

if d(p, j) > d(p, n) + d(n, j) for any j ∈ DIST [n] then
DIST [p][j] = d(p, n) + d(n, j)

end if
if update took place then

Send (DIST [p], p, id) to peers hosting NNs of pp

end if
end while
Substitute ∞ with 5 ∗ max(DIST )

The algorithm is asynchronous and does not have an explicit termination
criterion. However it is self-terminating ( [10]) since message transmissions will
halt as soon as no updates take place. Consequently, each peer, after waiting time
t to receive a message considers the process finalized. In order to guarantee the
creation of a connected SP graph we substitute in the end all remaining ∞ values
with five times the largest local geodesic distance. Based on the description, the
algorithm is presented in Algorithm 2.

DBF resembles a progressive range search where each point p learns in loop
i distance information from points that are i edges away in the graph. There-
fore, DBF execution requires O(kDN2) messages, where D is the diameter (the
longest path) of the network. In our case, D depicts the number of peers that
maintain parts of a single shortest path (from any point p to any point q), thus
D = M and the network cost is upper bounded by O(kMN2). Although the
latter is relatively large, efficient implementation of the procedure can signif-
icantly reduce the total overhead. This can be accomplished by transmitting
only updated SP information in the form (psource, pdestination, dist). Memory re-
quirements are low, O(NiN) due to retaining the local points’ distances in main
memory throughout computations. Finally, time requirements are O(M).

3.3 Approximating the Multidimensional Scaling

At this point, each peer has retrieved the SP distances of its own points to the
rest of the dataset. The final step is to apply eigendecomposition on the global
distance matrix, which is essentially the MDS step of Isomap. Although several
methods for parallel computation of this procedure exist (i.e. [7]), they exhibit
excessive network requirements, making their application infeasible. An approach
that yields zero messages yet rather satisfactory results is the approximation of
the global dataset at peer level with landmark based DR techniques. Instead
of trying to map all data simultaneously to the new space, landmark-based DR



Distributed Knowledge Discovery with Non Linear Dimensionality Reduction 7

Algorithm 3 Distributed Isomap
Input: Local dataset in Rd(D), � peers (M), � hash tables (L), hash functions (g),
� NNs (k), peer identifier (p), lower dimensionality (n), parameter c (c), aggregator
peer (pa), � landmarks (a),time (t)
Output: The embedding of the global dataset in Rn (GL)
Set X = Define local neighbourhoods(D, M, L, g, k, p, c) - Algorithm 1
Set Y = Distributed Bellman-Ford(p, D, X, t) - Algorithm 2
LAN = local points (set of landmark points)
if Ni < a then

if p <> pa then
Randomly select a subset of local points and transmit them to pa

Retrieve global landmarks LAN from pa

else
Receive LANi from peer i
Define LAN by selecting a landmarks and transmit it to all peers

end if
end if
GL = LMDS(Y ,LAN ,n) or FEDRA (Y ,LAN ,n)

algorithms use a small fraction of points and project them in the new space.
Based on the assumption that these points remain fixed (landmarks in the new
space), the rest of the dataset is projected using distance preservation techniques.

Two approaches directly applicable in our case are LMDS [16] and FE-
DRA [12]. LMDS operates by selecting a set of a landmark points, with the
constraint a > n and projects them in the new space with the use of MDS.
Afterwards, a distance-based triangulation procedure, which uses as input dis-
tances to already embedded landmark points, determines the projection of the
remaining points. FEDRA behaves similarly to LMDS however selects exactly n
landmarks. LMDS requires O(naNi + a3) time and O(aNi) space while FEDRA
requires O(nNi) and O(n2) respectively. The salient characteristic of this step is
that by using as landmarks the local points of a peer we manage to kill two birds
with one stone. On one hand we embed the local dataset in Rn while simulta-
neously each peer derives an approximation of the global dataset. Consequently,
each node is able to access global knowledge locally.

A potential failure may appear if the landmarks in a peer are not sufficient for
the embedding to take place (i.e. for LMDS a < n). In such case, a network wide
landmark selection process can be applied. The simplest way, is to assign a peer
with the role of aggregator and then all peers transmit at least 
 n

M � local points.
Landmarks are randomly selected from the accumulated points and transmitted
back to all nodes thus inducing O(nNM) network load. Based on the previous
analysis we derive D-Isomap and present it in Algorithm 3. The application of
D-Isomap requires O(NiLf + Niklogk) time and O(n2 + Ni(N + k)) space per
peer and a total of O(NL + kMN2) messages from all peers.

A final issue is related to the addition or deletion of data. Upon the arrival
of a point, we apply Algorithm 1 and derive its kNNs. Afterwards, the SPs
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Fig. 1. The Swiss Roll, Helix and 3D Clusters datasets

can be easily obtained using the fact that given a set of nodes in a graph, i.e
(s, n1, n2, ..., nk, e), the distances from s to each ni and from each ni to e, the
shortest path from s to e is the one minimizing the overall distance. Therefore, we
relay on the retrieved k-NNs and calculate the SPs of the new point from all local
landmarks. Finally, we obtain its embedding through LMDS or FEDRA. The
procedure requires O(ck) messages. The case of deletion is much simpler, since
the host node will only transmit message (pointid, del) and force the deletion of
the point from the bucket of the indexing peer. On the other hand, the arrival
or departure of peers is handled by the Chord protocol itself.

4 Experiments

In this section we present the experimental evaluation of D-Isomap, which indeed
verifies the expected performance and promotes it as an attractive solution for
hard DDR and DDM problems. We carried out two types of experiments. First,
we compared the manifold unfolding capability of D-Isomap in a distributed
context against Isomap and L-Isomap in various network settings. In the second
set of experiments, we evaluated D-Isomap’s performance against Isomap, L-
Isomap and LSI [4] in numerous supervised and usupervised DDM experiments
using a medium sized text collection. The obtained results prove the suitability
and viability of our algorithm for DDM problems, where each node holds a subset
of the available information.

In the first set of experiments we employed three 3D non linear manifolds,
namely the Swiss Roll, Helix and 3D Clusters each consisting of 3000 points
(Figures 1(a), 1(b), 1(c)). In the case of the Swiss Roll an NLDR algorithm
should unfold the roll into a parallelogram while in the case of Helix it should
extract a circle. Concerning the 3D Clusters, we target in retaining the cluster
structure in the new space. Each dataset was randomly distributed in a network
of M peers (M = 10, 15, 20, 25 and 30). Depending on the dataset, we varied the
value of k; for the Swiss Roll we set k = 8 and progressively augmented it by 2
until 14. For the 3D Clusters we started from k = 6 and reached 12 using the
same step. For Helix we ranged k from 2 to 6 with a step of 1. In all experiments
we set c = 5, L = 10, f = 10 and w = 16.

We assess the quality of D-Isomap by comparing the produced manifold (on
peer level) against those produced centrally by Isomap and L-Isomap. For L-
Isomap we set a = 300 in all experiments. In the subsequent graphs, DF -Isomap
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Fig. 2. Network cost reported as a fraction of the worst case bound RequiredMessages
WorstCaseBound

or DF indentifies D-Isomap configured with FEDRA and DL-Isomap or DL, D-
Isomap deployed with LMDS. We used MATLAB R2008a for the implementation
of the algorithms and E2LSH [2] for LSH. Due to space limitations, we report
only a subset of the experiments1.

In Figure 2 we present the required number of messages for the projection
of each dataset with D-Isomap as a fraction of the worst case network cost
(RequiredMessages

WorstCaseBound ) as derived by Section 3.3. First we validated the bound of
Theorem 1 with the Swiss Roll. The results (Figures 2(a), 2(b)) indicate a re-
duction in the number of messages; consequently we employed the bounded
version of the algorithm for all experiments. Figures 2(b), 2(c) and 2(d) provide
the network load for the projection of each dataset with D-Isomap. The results
highlight that D-Isomap behaves better in terms of network cost as the network
size grows. The reason is simple; as the network grows, the buckets retained
by each peer are smaller, therefore the messages are reduced. Moreover, mes-
sages are not affected seriously by changes in k so we observe a reduction in the
percentage as k grows larger.

Figures 3(a), 3(b) depict the results obtained from Isomap and L-Isomap
when applied on Swiss Roll for k = 8. Both algorithms have successfully revealed
the underlying manifold. DL-Isomap also recovered the correct 2D structure
(Figure 3(c)) without being affected by the limited size of local data (only 3.3%
of the global dataset). We report only one case of failure, for M = 30 and
k = 14 where the embedding was skewed due to inappropriate selection of NNs.

1 All experiments accompanied by the source code, the datasets and
the graphs obtained from each peer are available at http://www.db-
net.aueb.gr/panagis/PAKDD2010
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Fig. 3. Isomap, L-Isomap and D-Isomap on Swiss Roll (top), Helix (middle) and 3D
Clusters (bottom)

DF -Isomap produces acceptable results however of lower quality compared to
DL-Isomap (Figure 3(d)). This is due to the fact that FEDRA operates using
only 2 points while LMDS employs the whole local dataset at each node.

Similar quality results were obtained from DL-Isomap during the evaluation
of Helix. Our algorithm managed to recover the circle structure of Helix (Figures
3(g), 3(h)) providing results comparable to L-Isomap (Figure 3(f)) and Isomap
(Figure 3(e)). The inability of DF -Isomap to work with a limited number of
landmark points was more evident this time, producing an arc instead of a circle.
The effectiveness of D-Isomap was proved when it was applied on the 3D Clusters
dataset. Unlike Isomap and L-Isomap that failed to produce a connected graph
(Figures 3(i), 3(j)), DL-Isomap successfully managed to replicate the cluster
structure in the new space (Figures 3(k)-3(l)) since by construction produces
connected graphs. Again, DF -Isomap failed to recover the whole cluster structure
and preserved only three out of five clusters.

The results obtained from 3D Clusters inspired the application of D-Isomap
on a DDM problem. As evaluation dataset, we used the titles of all papers pub-
lished in ECDL, ECML/PKDD, FOCS, KDD, SIGMOD, SODA and VLDB
conferences between 2006 and 2008 2. The dataset consists of 2167 papers, rep-

2 The authors would like to thank Dr. G. Tsatsaronis who kindly provided the dataset
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resented as 4726-dimensional vectors using a TF-IDF populated vector space
model [4]. We randomly distributed the dataset among M peers (M = 10, 15,
20, 25 and 30) and embedded it in 10, 15, 20, 25 and 30 dimensions. We used
the same values for L,f ,a,c and w as before and ranged k from 8 to 14 with a
step of 2. The embedded datasets from each peer were used as input for clas-
sification and clustering. We employed F -measure ( [4]) in order to assess the
quality of the results. In all experiments we report the relative quality amelio-
ration R = Fm,new

Fm,orig
. R represents the ratio of the F -measure (Fm,new) obtained

in the low dimensional dataset over the F -measure (Fm,orig) obtained in the
original case.

DF -Isomap and DL-Isomap were compared against Isomap, L-Isomap and
LSI. For the central algorithms, reported values correspond to the mean of 10
executions. All results have been validated with a 10-fold cross validation. For
D-Isomap we applied the same methodology on each peer level and report the
mean value obtained across nodes. The statistical significance of D-Isomap’s
results has been verified by a t-test with confidence level 0.99. We employed
k-Means and k-NN [4] for clustering and classification respectively; for k-NN we
set kNN = 8 in all experiments. Although this may not be optimal, it does not
affect our results, since we report the relative performance of the classifier.

Table 1(a) provides the clustering results obtained using k = 8 for the defini-
tion of the NNs for D-Isomap, Isomap and L-Isomap. The results highlight the
applicability of D-Isomap in DDM problems as well as the non linear nature of
text corpuses. Both flavours of our algorithm produce results marginally equal
and sometimes superior to central LSI. The low performance of Isomap and
L-Isomap should be attributed to the definition of non-connected NN graphs.
Table 1(b) provides the classification results obtained for the same value of k.
D-Isomap is outperformed only by central LSI while in cases ameliorates the
quality of k-NN. The latter comprises an experimental validation of the curse
of dimensionality. The network load induced by D-Isomap in this experiment is
provided in 2(e).

5 Conclusion

In this paper we have presented D-Isomap, a novel distributed NLDR algorithm
which to the best of our knowledge is the first attempt towards this direction.
We presented in details each step of the procedure and assessed the requirements
posed to each network node by its application. Through extensive experiments we
validated the capability of D-Isomap to recover linear manifolds from highly non
linear structures. Additionally, we highlighted its applicability in DKD problems
through experiments on a real world text dataset. The high quality results inspire
us to pursue the extension D-Isomap towards P2P document retrieval and web
searching.
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Table 1. Experiments on text. Is, LIs are used for Isomap,L-Isomap respectively

(a) Clustering experiments using k-Means

Number of peers (M)

10 15 20 25 30

DF DL DF DL DF DL DF DL DF DL LSI Is LIs

Low Dim (n)

10 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.73 0.88
15 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.98 0.70 0.85
20 0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.96 0.95 0.97 0.73 0.76
25 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.90 0.71 0.81
30 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.66 0.78

(b) Classification experiments using k-NN

Number of peers (M)

10 15 20 25 30

DF DL DF DL DF DL DF DL DF DL LSI Is LIs

Low Dim (n)

10 1.11 1.04 1.10 1.07 1.11 1.08 1.10 1.08 1.10 1.08 1.14 0.84 0.76
15 1.11 1.05 1.10 1.07 1.10 1.08 1.10 1.08 1.10 1.09 1.20 0.90 0.76
20 1.10 1.05 1.10 1.07 1.10 1.08 1.10 1.09 1.10 1.09 1.24 0.90 0.80
25 1.10 1.06 1.10 1.07 1.10 1.08 1.10 1.09 1.10 1.09 1.25 0.89 0.81
30 1.10 1.06 1.10 1.07 1.10 1.08 1.10 1.09 1.10 1.09 1.24 0.90 0.79
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