
A Framework for Protocol Reconfiguration

E. Patouni, N. Alonistioti, P. Magdalinos

Communication Networks Laboratory,
 Department of Informatics and Telecommunications, National and Kapodistrian University of Athens,

Ilisia Campus 157 84 Athens, Greece

Contact Details:
Eleni Patouni
Communication Networks Laboratory,
Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens,
Ilisia Campus 157 84 Athens, Greece

Tel:+30 6945 665693
E-mail: elenip@di.uoa.gr

Abstract
Over the last decade the mobile industry spawned numerous wireless technologies and access systems with different
capabilities that coexist forming a new era in the area of wireless technologies. The current trend is the facilitation and the
combination of the capabilities of the different systems, and is introduced within the reconfigurability concept. The latter lies
in the dynamic adaptation of the equipment in order to meet the evolving application requirements and other needs. This
concept can be realized with the introduction of flexible protocols. In this analysis, a proposed framework which describes the
necessary mechanisms for the dynamic binding and reconfiguration of protocol components is presented.

Keywords— protocol component, binding, reconfiguration

Abstract— Over the last decade the mobile industry spawned
numerous wireless technologies and access systems with
different capabilities that coexist forming a new era in the area
of wireless technologies. The current trend is the facilitation and
the combination of the capabilities of the different systems, and
is introduced within the reconfigurability concept. The latter lies
in the dynamic adaptation of the equipment in order to meet the
evolving application requirements and other needs. This concept
can be realized with the introduction of flexible protocols. In this
analysis, a proposed framework which describes the necessary
mechanisms for the dynamic binding and reconfiguration of
protocol components is presented.

Keywords— protocol component, binding, reconfiguration

I. INTRODUCTION
In the next decade, the evolution of 3G mobile systems and

the introduction of 4G in mobile and wireless
communications are expected to play a central role in all
aspects of mobile users’ activities. The technology will
substantially expand on the current concept of “anywhere,
anytime” to a new paradigm summarized in the notion of
“advanced user experience” of mobile services.

The expectation for the evolution of current mobile and
wireless communications is the support of multiple access
environment based on heterogeneous networks. In such a
complex environment, reconfigurable systems in all network
entities will be essential to support flexibility. This concept
sketches the existence of multi-mode, reconfigurable
equipment, which will support the dynamic and seamless
adaptation to the different wireless networks. The realization
of the above concept requires the introduction of similar
flexibility to the protocol layers that form the equipment’s
protocol stack.

An important aspect for protocol reconfiguration is the
decomposition of protocol functionality into components able
to be re-assembled dynamically, thus providing the full
protocol functionality. Major research issue is the
introduction of a component based framework which enables
the dynamic synthesis of protocol layer functionality
(protocol component dynamic binding) and protocol

reconfiguration (i.e. dynamic replacement of a protocol
component with another). In this paper we present such a
framework and mechanisms for protocol reconfiguration.

The rest of the paper is organized as follows. In Section II,
related work is presented. Section III clarifies the necessary
mechanisms that enable the protocol reconfiguration process.
In Section IV, the definition of the protocol component is
presented. Section V analyzes the steps for the protocol
reconfiguration process. Section VI describes the process of
validating the proposed framework, while section VII
presents the performance assessment of this system. Finally,
some conclusion remarks and directions for future research
are drawn.

II. RELATED WORK
The idea of composing protocols out of components was

the basic concept of many frameworks in the past. One of
these frameworks is the X-Kernel [1]. In this standard runtime
framework, composite protocols are composed of
microprotocol objects with respect to the application
requirements using protocol graphs. The Cactus system
extended the above concept of the X-kernel framework,
offering a hierarchical composition mechanism for composite
protocols [2], [3]. A different mechanism is being
implemented in the Appia Framework [2]. In this system, a
protocol is composed of one or more modules, placed in
layers. The communication between the individual modules is
achieved using event routing between static communication
channels. All the above-mentioned frameworks are
characterized by a serious disadvantage: the correctness of
composition cannot be completely assured and formally
verified.

Ensemble is a group communications system which
supports the communication between the protocol modules
using the linear stacking composition mechanism and
exploiting the packet concept [3]. This approach has the
disadvantage that it allows every component to communicate
directly only with its two adjacent components.

The component concept is also applied in the THINK-
FRACTAL frameworks. FRACTAL introduces a generic

A Framework for Protocol Reconfiguration

E. Patouni, N. Alonistioti, P. Magdalinos

Communication Networks Laboratory,
Department of Informatics and Telecommunications, National and Kapodistrian University of Athens,

Athens, Greece
email: { elenip, nancy, panagis }@di.uoa.gr

recursive component model which allows sharing of sub-
components between components [4]. However, this model
cannot be easily applied to protocol layers. THINK is another
component-based framework that targets on building flexible
operating system kernels [5].

Furthermore, another category of frameworks were
developed, which considered a whole protocol layer as a
component. This design is applied in DiPS/CuPS, which
allow dynamic adaptation of protocol stacks, in order to come
up to the applications requirements or the network
optimization issues [6], [7].

III. MECHANISMS FOR PROTOCOL RECONFIGURATION
The deployment of the protocol reconfiguration concept

lies in the capability to realize the specified reconfiguration
during runtime interaction between the protocol components.
In this context, it should be possible to dynamically compose
the protocol components so as to realize the functionality of
the specified protocol. Another issue is the capability to
replace protocol functionality, specified in protocol
components, thus guaranteeing that the new component will
be configured in a proper way to achieve seamless
replacement [8].

The above requirements introduce great complexity, which
should not affect the reliable operation of the protocol stack.
Therefore, it is necessary to introduce mechanisms which
should control the protocol reconfiguration process. Our
concept lies in the introduction of the following mechanisms:

- a Manager entity within each protocol, and
- a semantic layer of information for each protocol

component; its metadata [9].
This concept is illustrated in Fig.1, which presents a

reconfigurable protocol stack; each protocol layer comprises
several components and one Manager.

Fig.1. A Reconfigurable Protocol stack exploiting the Protocol

Component Concept

The Manager is responsible for verifying and realizing the
dynamic composition of the protocol components. In
addition, the Manager has the overall control of the process of
the dynamic replacement of protocol components. The
Manager performs the above-mentioned functions based on
the component’s metadata.

Therefore the components metadata should include all the
necessary information that will allow the Manager to identify
the binding between the components, verify the correctness of
the proposed binding and perform this binding (realize the
communication between the protocol components that should
be bound together). In this framework, the component’s
metadata include a unique identifier (i.e, the name of the
component), the version of the component and the
component’s composition information.

Both the unique identifier and version enable the
identification of each protocol component. In addition, the
versioning information is used in order to prevent the binding
of incompatible components. The component composition
information indicates which components are composed with
the specified component. In particular, the component
composition information is included within two array
structures; an array for the input components (the components
that send data to the specified component) and an array for
the output components (the components that receive data
from the specified component). The Manager based on the
input and output components arrays identifies the components
that should be bound to the specified component. The above
process is illustrated with an example. Let us suppose that
componentX’s metadata include the following input and
output arrays: inputArray = [componentA], outputArray =
[componentB].

The Manager should first check the input array for the
componentX; this array includes componentA. Then it should
verify the composition between componentX and
componentA by checking that the output array in the
componentA’s metadata includes componentX. Thereafter,
the Manager should check the output array in the
componentX metadata and verify the composition between
componentX and componentB in the same way.

At this point, the implementation issue of the component
metadata will be discussed. Up to now, this semantic layer of
information is inserted in an ASCII file for each component.
Another approach is the representation of the metadata with
the use of XML or RDF(S), since the latter provide great
interoperability, extensibility and are commonly
comprehensive [10]. In both cases, the Metadata should
accompany a protocol component; every time a protocol
component is being downloaded in the reconfigurable

equipment, its metadata will be downloaded too.

IV. PROTOCOL COMPONENT DEFINITION
The basic step for enabling the reconfigurability concept

within the protocol layers is the definition of the protocol
component. The latter should be done taking into account that
the defined protocol components should realize the
functionality of the specified protocol when they are
integrated. In addition, it should be possible to compose a
specified protocol by using combinations of different protocol
components; however, the specified protocol functionality
should remain the same.

The fulfillment of the above requirements raised the need
for the definition of a generic reconfigurable component
interface (ReconfigurableComponentInterface) and the
introduction of the ReconfigurableComponent, which realizes
this interface (Fig.2.). Each protocol component should be
implemented as a subclass of the ReconfigurableComponent
(Fig.2). This way the functionality of the protocol component
is different for each protocol component and it is introduced
in the function method.

Fig.2. Protocol component definition

At the same time, all the protocol components have some

common mechanisms regarding the control and deployment
of their reconfiguration. The latter are defined in the
following methods, which will be further analyzed later in

this paper:
- the writeMessage/ readMessage methods. These

methods define the behavior of the component
during the communication with other protocol
components.

- the setMyOutputQueues/setMyInputQueues
methods. These methods are used for the
composition of the different components.

- the getMyState/setMyState methods. These
methods were introduced for the achievement of
seamless protocol component reconfiguration

V. PROTOCOL COMPONENT RECONFIGURATION
Up to this point, the mechanisms that enable the

establishment of the protocol reconfiguration process were
analyzed. In this section, the interactions between the
Manager and the protocol components during the process of
their dynamic binding and replacement are identified.

 Regarding the dynamic binding of protocol components,
once the Manager identifies that two protocol components
should be composed, it realizes their composition; the latter is
implemented with the use of First-In First-Out (FIFO) queues.
In particular, the Manager creates a FIFO queue for each pair
of components that should communicate with each other.
Thereafter it passes the queue handler to both of the
components. The sending component places its packets in the
FIFO queue and the receiving component extracts them.

Supposing that a protocol component communicates with
N components, then this component will realize this
communication with the use of N FIFO queues the Manager
creates. These N components, when composed, create a
graph; each edge of this graph is implemented with a FIFO
queue. Furthermore, the queue handlers corresponding to the
FIFO queues are stored in a two dimensional array in order to
enable their retrieval when necessary.

At this point a reconfiguration scenario which requires the
downloading of a new protocol composed of two
components, componentA and componentB, will be
described. The first phase of this reconfiguration scenario is
the downloading procedure of the components and their
metadata, which is being realized by a downloading entity.
Thereafter, the Manager is triggered to realize the protocol
component binding (Fig.3). Initially, the Manager retrieves
the components Metadata. Then it checks the composition of
the two components. Supposing that the composition realizes
a directional communication between componentA and
componentB (componentA sends data to componentB), then
the Manager should create only one FIFO queue. Thereafter it
passes the queue handler to both the protocol components.

Manager Component
A

Component
B

1: metadata retrieval for ComponentA

2: metadata retrieval for ComponentB

3: checking composition

4: FIFO queue creation

5: passing queue handler

6: passing queue handler

Fig.3. Sequence diagram illustrating the composition process of two protocol

components.

At this point, the necessary steps for the replacement of a
protocol component will be presented (Fig.4.). In this
scenario, we consider the dynamic replacement of
componentA with componentC. In addition, it is assumed that
componentA is binded to the same components that
componentC does. At first, the Manager retrieves the
metadata for the new component (componentC) and checks
which components it is composed with. Then it pauses the
function of the replaceable component (componentA). To the
next step, the Manager retrieves the state of componentA and
sets the state of componentC to the same state with
componentA. This is necessary since the replacement of a
component which is in a specific state, with a component
which is in an idle or initial state, does not guarantee the
reliable operation of the protocol.

Finally, the Manager should establish the composition
between componentC and the components which it
communicates with. This is achieved using a similar way to
the component binding mechanism. At first the Manager
retrieves the queue handlers that correspond to the
components that componentA communicates with (from the
two dimensional array they are stored). Then it simply passes
this set of queue handlers to componentC.

Manager Component
A

Component
C

1: metadata retrieval for componentC

2: checking composition
3: pause

4: state retrieval

5: set state
6: retrieving queue handlers

7: paasing queue handlers

Fig. 4. A sequence diagram illustrating the process of replacing
componentA with componentC

In case that the new component communicates with more
components than the old one, the Manager should not only
retrieve the queue handlers that correspond to the components
the old component communicates with, but it should also
create the necessary queue handlers that correspond to the
other components the new component communicates with.

VI. VALIDATION OF THE PROPOSED FRAMEWORK
In order to validate the proposed framework architecture

and functionality we have implemented a proof-of-concept
prototype. Initially, a test protocol was implemented and used
for verification of the mechanisms; this protocol was
decomposed into three protocol components. The function of
these components was the forwarding of the received
information or both the modifying and forwarding the
received information.

In terms of applicability of the proposed framework also to
other protocols, currently, successful tests and respective
validation have been performed for the FTP protocol
functionality. The FTP protocol was decomposed into two
components. The first FTP component includes the necessary
functionality for establishing the FTP connection plus
handling the process of uploading a file. The second FTP
component realizes the downloading process. Their
communication is unidirectional; the first FTP component
sends data to the second FTP component. In particular, the
data exchange is related to the request for downloading a file
and the necessary parameters for the downloading phase. The
process of dynamic component binding and reconfiguration
was successfully validated under the current prototype
implementation. Both the proposed framework and the
protocols were implemented in Java. The prototype
implementation has proven that the protocol components,
when reassembled, have resulted in a robust protocol
functionality based on the initial protocol specification.

VII. PERFORMANCE ASSESSMENT
 In addition, preliminary performance tests of the proposed
framework have been executed within the components of the
FTP protocol. This performance assessment targeted to the
calculation of the delay that is created by the insertion of the
FIFO queue for the communication between the FTP protocol
components. More specifically, we considered the user
request to download a file. Firstly the overall time T for
processing this request until entering the downloading phase
was counted for the simple FTP protocol. To the next step, we
counted the delay that is created within the component based
FTP protocol, by the requirement for the first FTP component

to place its packet into the FIFO queue and the second FTP
component to extract it. Moreover the percentage (%) of this
binding delay to the time T was calculated (binding delay/T)
for a set of 100 samples. The mean value of the binding delay
to the time T for this set of samples was calculated to be
4.72%. The minimum of this value was 1.10%, while the
maximum was 11.08%. Fig.5 illustrates the percentage of the
binding delay divided to the time T for each sample,
considering the capabilities of the underlying hardware
(Pentium III 800MHz PC with 512MB RAM).

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100
samples

(b
in

di
ng

 d
el

ay
 /

tim
e

T)

pe
rc

en
ta

ge

Fig. 5. The percentage of (binding delay / T) for a set of 100 samples

 At this point, we should note that the proposed framework
inserts a very low value of delay in the functionality of the
FTP protocol. This fact is caused by the design of the
analyzed framework and the design approach for the FTP
protocol components. The definition of protocol components
within this protocol was carefully done so as to fulfill the
following two requirements.

- to allow the defined components to have robust
functionality enabling the execution of meaningful
reconfiguration scenarios (i.e., a reconfiguration
scenario for the replacement of the FTP component
which implements the downloading procedure with
another one which includes more capabilities),

- not to introduce overhead for the communication
between the composed protocol components; this is
achieved when the information that should be
exchanged between the protocol components is not
actual protocol data, but configuration information
or request for a function of this protocol.

VIII. CONCLUSION
The mechanisms that were presented in this framework

introduce an innovative system for dynamic protocol
component binding and reconfiguration. This approach does
not limit the number or the functionality of the protocol
components, as it provides the possibility that different
combinations of protocol components may compose a

protocol. Moreover, the correction of the composition is
verified by the functionality implemented in the protocol
Manager.

Further research lies in the deployment and simulation of
the proposed mechanisms in a set of protocols. In addition,
simulations concerning the queue length should be executed,
in order to specify whether the introduction of a light flow
control mechanism for queue overflowing is necessary.

Another issue is the introduction of the Manager within the
protocol. At first, the introduction of a common Manager
entity for the whole protocol stack should be considered. To
the next step, the possibility of removing the Manager and
distributing its functionality in the protocol components
should be taken into account.

ACKNOWLEDGMENT
This work has been performed in the framework of the EU

funded project E2R. The authors would like to acknowledge
the contributions of their colleagues from E2R consortium.

REFERENCES
[1] Norman C. Hutchinson and Larry L.Peterson: The x-kernel: An

architecture for implementing network protocols. IEEE Transactions
on Software Engineering, 17(1):64-76, January 1991.

[2] Sergio Mena, Xavier Cuvellier, Christophe Gregoire, Andre Schiper:
Appia vs. Cactus: Comparing Protocol Composition Frameworks. 22nd
International Symposium on Reliable Distributed Systems (SRDS'03),
Florence, Italy, October 2003.

[3] Magesh Kannan, Ed Komp, Gary Minden, Joseph Evans: Design and
Implementation of Composite Protocols. Technical Report ITTC-
FY2003-TR-19740-05, Feb 2003

[4] E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and Dynamic
Software Composition with Sharing. Seventh International Workshop
on Component-Oriented Programming (WCOP02), Monday, June 10,
2002 - At ECOOP 2002, Malaga, Spain (June 10-14, 2002)

[5] Jean-Philippe Fassino, Jean-Bernard Stefani, Julia Lawall and Gilles
Muller. THINK: A Software Framework for Component-based
Operating System Kernels. In Proceedings of the USENIX Annual
Technical Conference, 2002.

[6] N. Janssens, S. Michiels and P. Verbaeten: DiPS/CuPS: a Framework
for Runtime Customizable Protocol Stacks. CW Technical Report 328,
Dept. of Comp. Science, K.U.Leuven. November 2001.

[7] S. Michiels, T. Mahieu, F. Matthijs and P.Verbaeten: Dynamic Protocol
Stack Composition: Protocol independent Addressing. In 4th ECOOP
Workshop on Object-Orientation and Operating Systems
(ECOOPOOOSWS' 2001), June 2001.

[8] G. Minden, E. Komp, S. Ganje, M. Kannan, S. Subramaniam, S. Tan, S.
Vallabhaneni, J.Evans: Composite Protocols for Innovative Active
Services. DARPA Active Networks Conference and Exposition
(DANCE'02), San Francisco, CA, May 2002.

[9] Vagelis Gazis, Nancy Alonistioti and Lazaros Merakos: Metadata
Design for Introspection-Capable Reconfigurable Systems. Third IFIP-
TC6 Networking Conference (Networking 2004), Athens, May 2004.

[10] http://www.w3.org/TR/rdf-schema, (Resource Description Framework
(RDF) Schema Specification 1.0a)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

