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Abstract of generated data dictates methods that are both fast and ex-

Contemporary data-intensive applications generate atsets of Nibit low memory requirements. These features are hardly
very high dimensionality. Data management in high-dimemsi combined in the majority of existing DR algorithms. There-
spaces presents problems, such as the degradation of qlmeryf re, there is a need for provably fast and effective alpani
cessing performance, a phenomenon also known as the curstPbgfficient processing of datasets of both high dimengiona
dimensionality. Dimensionality reduction (DR) tacklesstprob- ity and cardinality.

lem, by efficiently embedding data from high dimensionaltwér In this context, we propose FEDRA, a fast and efficient
dimensional spaces. However, the large scale and dynanfisnflinensionality reduction algorithm that follows the geader
generated data calls for methods of low time and space caityple Principles of thdandmark-based DR paradigm [9]. FEDRA
features that are hardly combined in the majority of exgstpR S€lects randomly a limited number bfpoints (henceforth
algorithms. Motivated by this fact, in this paper we prop&4e called landmarks) of the initial space and provides their
DRA, a fast and efficient dimensionality reduction algaritthat €mbedding inR*, such that the pairwise distances of all
uses a set of landmark points to project data to a lower dineas landmarks are totally preserved. Each of the remaining
Euclidean space. FEDRA is both faster and requires less memQINts is projected tok" by requiring that its distances
than other comparable algorithms, without compromisireyito- from all landmark points are preserved. Using this simple
jection’s quality. We theoretically assess the qualityhef tesulting Projection methodology FEDRA achieves quality of results
projection and provide a bound for the error induced in paiew COMpParable to the most prominent DR algorithms, while
distances. Furthermore, we present two extensions of FEDgi P€ing faster and consuming less space in memory.

improve the quality of the projection, suitable for applioas that The contribution of this work is manifold:

can tolerate higher processing costs. We prove the valadityur ¢ We propose a new algorithm, FEDRA, which exhibits

claims both theoretically and experimentally, by compguanir al- lower time and space requirements than other promi-

gorithm against prominent approaches, such as FastMap,$;MD  nent DR algorithms, while successfully reproducing the

PCA, SVD and Random Projection. original data structure. Furthermore, we show that FE-
DRA is applicable with the use of any Minkowski dis-

1 Introduction tance metrial, (p > 1), making it attractive for appli-

An increasing number of contemporary applications produce cations that cannot employ the Euclidean distance.

massive volumes of very high dimensional data. In scientific . . ,
databases, for example, it is common to encounter large sefs We _prowde_ theoretical guarante_:es_ for FEDR.AS pro-
. jection quality and offer a quantitative analysis of the
of observations, represented by hundreds or even thousands: .
. . . . induced error. Moreover we derive upper and lower
of coordinates. In such high dimensional spaces, query pro- ; T . .
. bounds for the error in approximating the original pair-
cessing performance degrades, a phenomenon known as thewise distances in the proiected space
curseof dimensionality [11]. Thus, typical data mining tasks, pro) pace.
such as clustering or classification become ineffective [5] ¢ We introduce two algorithms, one for landmark selec-
and data mining applications rely on dimensionality reduc- tion and one for the actual data embedding, to further
tion (DR) as a pre-processing step for solving these prob- improve the projection quality, suitable for applications
lems. that tolerate higher processing costs. In addition, we de-
Dimensionality reduction algorithms address this chal-  fine an analytical expression which enables the offline
lenge, by projecting data from the original high dimensiona  assessment of the quality of the resulting projection.
spaceR” to a new, lower dimensional spad® (usually
k << n). The objective of the DR methodology is to retain
the distances between points or other statistical pragseirti
the lower dimensional space. Nevertheless, the vast amoun

e Through extensive experiments on very large datasets,
both in terms of dimensionality and cardinality, we

tdemonstrate that the quality of results of FEDRA is
comparable to several prominent DR algorithms, while

*All authors affiliated with Athens University of EconomicadaBusi- exhibiting lower complexﬂy and costs than any other of
ness the employed algorithms.



The rest of this paper is organized as follows: in sethe eigenvectors of the covariance matrix that correspond t
tion 2, we review the most prominent DR algorithms. Wks k largest eigenvalues ankl;.,, the original data matrix
motivate the need for a new fast and efficient algorithm with means subtracted across each dimension.
section 3, through an analysis of the complexity of existing The high quality results produced by MDS impacted
techniques. In section 4, we present FEDRA, while in sesuibsequent research efforts significantly, which focused
tion 5 we theoretically analyze our algorithm’s performanenainly in resolving its scaling problems. Faloutsos and Lin
and quality. In section 6, we present two extensions of tindroduced FastMap [12], an algorithm that successfully ad
basic algorithm for better quality of results, when higher-p dressed the computational complexity issue. FastMap em-
cessing costs can be tolerated. Additionally, we offer an dfeds data from spacB™ to R! by projecting on a hyper-
fline algorithm that assesses the quality of a projection apldne perpendicular to the line defined by the two most dis-
re-initializes FEDRA, if necessary. The experimental gtudant points (henceforth referred to as pivots) in the preeds
is presented in section 7. Finally, in section 8, we conclullgperplane. Iterative application of the latter, resultshie

the paper and sketch future research directions. embedding of the processed point in tR& space. The pro-
jection is carried out based on the Pythagorean Theorem and
2 Related Work its generalization, the cosine law.

Dimensionality reduction problems can be broadly classifie FastMap’s agnostic nature towards the original dimen-
into three distinct categories [6Hard problems, where data sionality of data, makes it an ideal candidate for the preces
is defined in a space consisting of hundreds/thousands ofi8§-0f collections where only pairwise distance informatio
ordinates and drastic dimensionality reduction is necgss&and not absolute position) is available. A significant draw
Soft problems, where the requirement for reduction is mildgpack of FastMap is its memory requirements, which reach
andVisualization problems, where data of high dimensionalO(d”), as it requires the maintenance of all pairwise dis-
ity is mapped to few dimensions, such that its structure J80Ces in main memory. The latter is partially addressed in
comes perceivable by humans. a variation of the algorithm that takes as input the original
While there exist different methods of assessing tRe@ints, thus losing its dimensionality agnostic natureef,h
quality of the output of a DR algorithm, the most usualljPemory requirements are reducedd(k + n)) however
employed evaluation metric igress. Simply statedstress Computational complexity rises @(dk(k +n)). In the con-
evaluates the preservation of pairwise distances in the pféxt of this paper we follow the first outlined variation whic

jected space and is defined as: is also the one appearing in the original publication [12].
p 4 2 k)2 p FEESY In order to address the high memory requirements of
VL T @ =Py v v o .
i=1 £vj=1\""1j i i=1Zaj=1%j MDS, a slightly different embedding methodology, hamely

(n) (k) ) ) landmark-based projection, has been defined. Instead of
where d;;".d;;" denote the Euclidean distance betweqpng 1o map all data simultaneously to the new space,
points i and j in the n-dimensional andk-dimensional |5ndmark-based projection algorithms initially extract a
space respectively. Another application-oriented meiBodym g fraction of points which are projected in the new space
the comparison of clustering and classification perfornang,seq on the assumption that these points remain fixed (land-

prior and after DR. For the subsequent analysis, we assyfigs in the new space), the rest of the dataset is projected
that the goal is to project data vectors defined iR™ into by employing distance preservation techniques.

the R subspace while preserving their pairwise distances.” The first method obeying this scientific paradigm was

~ One of the initial methods proposed was multidimeRyiangulation based Sequential Mapping (TSM) [19]. TSM
sional scaling (MDS) often referred to as classic MDS [23)55 peen specifically designed and tuned in order to address
Simply stated, the algorithm initially embeds all pointa+a g ,ajization problems. TSM projects each point indepen-
domly in the new space and iteratively repositions them, d@ iy in a two dimensional Euclidean space using two land-
order to minimize the exhibited stress value. Despite its Mg, 4 rks. andmarks are different for each point and their se-
its, MDS exhibits two serious drawbacks, namely high Cofciion is accomplished with two alternative strategiezhb
putational complexity and high memory requirements. A’SGerating on the dataset's minimum spanning tree. Subse-
subsequent addition of a data point in the projection resulf,ent projection is implemented through triangulatiorhtec

n O(d? oyerhead [12]. . . niques. TSM guarantees ti#at— 3 out ofthe@ overall
Principal Components Analysis (PCA) [21] is CIOSe'|}5airwise distances will be exactly preserved.

related to MDS and considered as the best method in terms The most prominent algorithm of this methodology is

of tthe qC:J&}I_itydo_fﬁ;Ee p(;oduced p:o{jegtioni Gcij\'/ehdat'a %andmark Multidimensional Scaling (LMDS) [9], which
vect(.)rsXe mePCIA an rfp:ﬁsen_erﬂk t))/a wo |rtr_1en?;]on irectly addresses the scalability problem of MDS. Inlgial
matrix X g, projects them | y compuling tn€ |\, selectst landmark points, with the constraifit> k,

T :
productX o, Py, Where Py, contains as row elements, o iects them in the new space with the use of MDS.



Table 1: Comparative assessment of the presented methods.

Algorithm || Computational Complexity Memory Requirements$ Single Point Addition
MDS O(d?) O(d?) 0O(d)
PCA/SVD O(n® + n?d) O(n? + nd) O(kn)
RP O(dkn) O(kn) O(kn)
LMDS Okfd+ f*+ f3) O(fd) O(f(n+k))
FastMap O(dk) O(d?) O(k)

Computational Complexity - f(k) _ Memory Requirements ~i() _ Cost of adding a point - f(k)
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Figure 1: Graphical comparison of the complexity of DR aitjons.

Afterwards a distance-based triangulation procedurechivhB Motivation

uses as input distances to already embedded landmark poijis present a comparative assessment of the most prominent
determines the propcuon of_ the remaining points. P_nak:l[DR methods, in terms of computational complexity, memory
components analysis [21] is optionally used to align thequirements and cost of adding a new point in an already
result to the principal axes of the data set. _ projected dataset. Table 1 summarizes these results is term
Advances in the area of landmark-based algorithms haye( () notation. In order to ensure a fair comparison to
resulted in the definition of several algorithms, such as LOMDS, we assume random selection of landmarks and omit
cal Linear Embedding (LLE) [20], Isomap [22]and K- the optional PCA alignment step. The notation is based on
Landmarks [16]. All these successfully address the memegg analysis of the previous section.
requirement issue of MDS, but necessitate polynomial exe- ysjng the mathematical formulas of Table 1 we simulate
cution time with respect to the dimensionality of the prejeg nard DR problem (projection where < 0.1n) and
tion space, which may cause problems is comparable 10 measure the time, space requirements and the cost for a
n. Nevertheless, they have inspired the definition of FEDRfxy point addition. We assume that1000,d=10000 and
and they served as basis for its theoretic justification. k=20...100 (2% - 10% of)). For LMDS, we randomly select
~ Random Projection is another technique used for dimgRe least required number of landmarks, specificaty,
sionality reduction. The data matriX is embedded in the ang omit the optional PCA alignment step. The results are
RF space with the use of a randomly generated matiix (depicted in Figure 1.
through multiplicationX? , = Xaxn Ry, The method A first observation is that FastMap is indeed the algo-
is based on the Johnson-Lindenstrauss lemma [14]. An@hm with the lowest time complexity, while mainly Ran-
ementary proof of this lemma is provided by Dasgupta agém Projection and LMDS guarantee low memory require-
Gupta in [8]. The main remaining issue is the definition ¢hents. However, FastMap fails to address the second draw-
the projection matrix. Achlioptas proposes two simpleréist hack of MDS, namely the intensive memory requirements,
butions [3] that prove rather robust and can easily be agplig the order 0f0(d?)
to large datasets.

Despite their good results, SVD-based methods also ex-
hibit poor scaling quality [4]. Moreover, the eigen anadysi
TLLE and Isomap belong in another DR paradigm, namely Nonaine€Mployed in these algorithms results in high computational

Dimensionality Reduction. Landmark selection is also usdtis case, but complexity and high memory requirements. Another prob-
not strictly obeying the landmark based projection methmgio



lem is their inability to handle data updates efficientlg(i.4.1 Landmark-based DR Algorithm. Initially, & land-
massive additions or deletions of points). Although metharks are selected from the dataset. The simplest selection
ods of bounding the error [18] and updating an already eepproach is to randomly pick the points from the dataset,
isting decomposition when the error surpasses a predefindtch incursO(k) time cost. The algorithm embeds the se-
bound do exist [24], the cost of updating is excessively higacted set of landmarks into R*. The first processed land-
marginally reaching the cost required for the recomputatimark (randomly selected froih) is mapped to the beginning
of the decomposition. On the other hand, Random Projectimifrihe coordinates systems axis, while for each of the remain
seems a suitable method regarding scaling, as it is immunep landmarks it is required that distances between already
data additions, produces results rather fast and has lovesganbedded landmarks and the processed one are retained. In
complexity. the final step, each remaining non-landmark point is pro-
According to this analysis we conclude that the idepdcted independently with respect to the rest of the dataset
dimensionality reduction method should exhibit quality dfy requiring that its distances to the landmarks remain the
results equal to that of PCA, space complexity lower thaame in the embedding space. This results in the definition
or equal to Random Projection or at least LMDS and tinté a non-linear system of equations. However we show that,
complexity lower than or at least equal to FastMap. Suchdaspite its non-linear nature, the system in question can be
method should also provide solution to hard dimensionalgglved easily in linear polynomial time.
reduction problems on datasets of high cardinality. This We first provide an overview of the algorithm in a de-
discussion motivates the design of a new DR algorithm tteafriptive manner for ease of presentation. FEDRA requires

successfully addresses all of these requirements. as input only the projection dimensionality)( the pairwise
distances between the points of the datasgtgnd the em-
4 The FEDRA Algorithm ployed Minkowski distance metrigp)]. One necessary con-

In this section, we present FEDRA, a dimensionality rélition for the successful execution of the approach is tmat t
duction algorithm that directly addresses the two major di§langular inequality is sustained in the original space.
advantages of classic MDS, namely its high computational !N the first stepk points are randomly selected popu-
complexity and high memory requirements, while exhibi@ting setL = {l1,ls,...Iy}. The first landmark pointl,,

ing low stress values and preserving the data distributionis projected at point*'=(0, 0, ..., 0). Sincd, should re-

is designed to handle all classes of dimensionality redocttain its distance td,, it is mapped at pointagw(l—;,l—;),
.p'roblems, howeveritgzmphasizes onthe hard ones. The ir'@j,u-___, 0), Wheredz(,")(l_[, l_j)) denotes the Minkowski dis-
ition of the approach is based on the landmark-based projggice of landmarks and j in the n-dimensional space.
tion methodology [9, 16, 19]. However FEDRA introducegne third landmark is embedded under the constraint that
significant advances in terms of computational cost and pf@-djstances to all already projected landmarks are retiin
chtlon guality, compared to existing Iand.mark-based alg&(jn)(l—;’ l_;{) _ dék)(l—;’ l_;{) fori = 1,2). This leads to
rithms and other DR methods. More specifically:

the following system of non-linear equationds denotes the

e FEDRA acquires the projection through an iterativeth cg%rdinaktepoti): o )
scheme of polynomial equations, thus achieving low lél) +l§2) + .. +l§k) = d,(,")( ) (1)
computational complexity and memory requirements(;{%) — ()yp 1 (r 4 11 We — g0 (77 T (2)
e In comparison to several DR aldorithms that are re- The solution of this system is trivial considering the fact
. P . . 9 ; at only two non-zero coordinates are required for our pre-
stricted to the Euclidean distance, our approach is ap. i ;
. . . . requisites to hold true. The latter is based on the fact treat t
plicable to any Minkowski distance metrig & 1).

pairwise distances 0f objects can be exactly preserved in

o Additionally, the proposed method guarantees the exadt — 1 dimensional space. Consequently, we simplify the
preservation of a significant amount of the initial pailsystem by assuming tha%’) = 0 for eachj > 3. Gener-
wise distances. alizing, the number of non-zero coordinates required fer th

: . . cE)rojection of the-th landmark is — 1. Following the same
e Finally, FEDRA establishes a bound for the error intrGa .pique during the subsequent landmarks projectioes, th

duced due to the reduction, thus providing theoreticaly, .,ordinate of the-th landmark is provided by the fol-
guarantees for the quality of the projection. lowing equations (equation set A) £ 1..k,j = 1.k — 1):

In the following analysis, we assume that the dataset is
composed ofi n-dimensional points that are going to be
embedded inR*, with k significantly lower tham (k <
0.1n). The Minkowski distance between two pointsand

—>—>)

x; in ann-dimensional space is depicted(éﬁ)(azi, zj).
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A (L, TP — dS (17, T7 )P — Algorithm 1 FEDRA.

?:1 (?)ZEJ]?)P—f(_Z§?1jf)+ 1: Input: Pr.ojection dimgnsionalitylﬂo, data distances in
sl [l(k)p _a® l(k)l Pl=0 ifj<i-—2 R"(D), Distance Metric )

|§;§) — f=1lhif nf o tLf 2: Output: neV\;?atzset ||31;’;(J;)

n),— = i N1 U 3: Create set of landmarkisS=

(dz(? )(ll )P = Zf:21 lvg,kf)p)p ifj=i-1 4: Create new datasét=0)
, 5: fori=1to k do

0 otherwise g gelect landmark point;

The cost of finding the p-1 roots of the resulting polyno-7; LS =LSUp
mial with the use of a simple Horner scheme requires O(pg: end for '

time. Consequently, since the computed non-zero coord&—, Create set of projected landmarRg, 5=0
nates for all landmarks in this step arg: — 1) /2, the cost of 10': for i — 1 to all landmarks, do

embedding the landmarks@(pk?)?. As the resulting poly- ;. ;. — calculate landmark coordinates using the equa-
nomials describing the value of each dimension may have up tions of Set A
to p-1 roots, there exists a problem of which root to select.lz: PLS=PLS U1,

Figure 2 provides a simple example of the projection qg: end for
three points fronk® to R* with p = 2. During the firststep, ;,. p=p |, pr.g
landmarks (depicted as stars) are projected in the new spage
The first one is placed on the beginning of the coordinaje. . —ca|culate remaining points coordinates using the
system. The second landmark is mapped on the x axis at equations of Set B
(do, 0), whered,, signifies their distance in the original Space;.  p=p 4,
The third point can be embedded in two different position§8: e
both symmetric with respect to the line defined by the twe
initial landmarks. Symmetric coordinates are derived ia th
case due to the square root computation employed for
calculation of the last coordinate. Since roots depict t
various symmetric coordinates that a point can be embed
in the lower dimensional space, it suffices to choose any
them, providing that the same selection scheme is employe
for all remaining points.

for ¢+ = 1 to all remaining points;; do

nd for

8ependently of the rest of the dataset by requiring tlsat it
%éances to the landmarks are sustained in the projection
ce. This defines the following non-linear system of
gations for any point:
dP (7, T) =d" (7, T;) fori = 1..k (3)

Assuming the projection of point; in the new space
Symmetric Projection - Initial Points in R Symmetric Projection - New Points in R? and ana|yzing equation (3) in the same way as equation (2)
0.9

Kl we obtain the equations that provide the projection of point
14 °? P AN x; (1 = 1...d, z; ¢ L)inthe low dimensional space (equation
13 07 / \\ set B)
: d (I, myr — dy? (10, )P —
" N ‘ " ] (R)p—f(_7(k)
v "ol N (k) }fll (225] I f(i;lj%: "
o . i) = 4l — @ =0 =0 it g <k
o7 R 03 // ) . . -
11 0z . o (dl() )(ll , {L_;)p — Zf:21 lgkf)p); ifj=k
"o s N J/ The computation of thé& coordinates for each of the
o8 o ' o S remainingd—k points results ifQ (pdk—pk?) computational
Y o x 95 3 s cost. Based on this example, FEDRA is straightforwardly

<o

derived and presented in Algorithm 1. At this point, it shtbul
be stressed that the order in which the landmarks are sdlecte
Figure 2: Symmetric projection froiR® to R2. Stars depict does not affect the projection. The only effect is a simple
the landmark points and squares the two possible projextighift of the coordinates of all points, however the projecti
Axes are rotated to ease illustration. remains the same, since it is based on the initial pairwise
distances and not on the coordinates.

In the final step, each remaining point is projecteéi Theoretical Evaluation

2In the general case, factor p is significantly lower than k daes not After haV'”Q mtmduce_d the FEDR_A algorlthm, we procegd
affect the overall cost to present its theoretical evaluation. We first analyze its
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Figure 4: Application of the cosine law, in order to deterenin
Figure 3: FEDRA's computational complexity and memortjne error bound.
requirements.

of trying to minimize the distance discrepancies between

computational complexity, then we prove that the ey projected points (stress minimization criterion), HE®

mduceq by th? propchon is bounded, and finally we asserrsnshimize:s the distance deviation between the landmarks and
the projection’s quality.

the point under projection. One could argue that this sim-
51 Computational Complexity. Based on the algorith_pIification results in significant deterioration of the proj
rﬁic description, FEDRA exhibité slightly better com uté@on’s quality. However, existing theory [9] and experinten
. pton, gntly comp suggest that this simplification is acceptable. Moreover, i
tional complexity than FastMap (both evaluated with the E o following paraaraphs. we prove that the distance batwee
clidean distance), and additionally significantly lowerme g paragrapns, we p . .

ory requirements than LMDS and Random Projection. F ny two non-landmark points in the new space is dominated
DRA requiresi? space in the first step (landmarks pairWisey their distance in the original space, while a significant

percentage of initial pairwise distances remains unaltare

: 5 : s
distances) andk” + k)/2 in the second (embedded IandsR'te of the projection. The analysis is done for the Euelide

mark coordinates and distances between processed PStance metrici{ = 2) however its generalization can be

z)ng;gg)landmarks in the original space), which is analogos"frsaightforwardly derived.

The latter is clearly depicted in Flggre 3. Al MEASUre > Error Bound. The new distance between any two
ments are computed in accordance with the configuration _ k) s —s
x;, T, can be defined asdy’(7;,%,) =

outlined in section 3, in order to ensure a fair comparisorﬁOln S
The alternate FastMap setup (FastMap Alt) has also beenViAZle(x<k) — zng)Q By approximating the new dis-

i,c

cluded in the graph to ensure completeness. tance in thek-dimensional space we can assess the qual-
FEDRA is indifferent to the initial dimensionality of theity of the projection. This is done with the use of the

dataset, and this property makes it appropriate for daia%ﬁ:]uations of Section 4 fop = 2 as follows: xgk,’-) _
where only similarity/distance information is availabléis =~ (x) (d(”)(lz_> )2 —d(”)(l_) )2 —d(")(T’ _';;QJF

is usually the case when objects either cannot be represefitei o2 b s A 1’?" 2 J+1}:xa

in a vector space or such a representation does not existdndl(11 - 7)2 — 25523 1%, (@) — =) /21, ; for
only pairwise distances are available. Further, the subse- < k whereas fori,j = k : z;; — Z4;

guent addition of a point in an already existing projectiov/dén)(@j l_f)2 + dé”') @2, 17)2

is as fast and efficient as in FastMagConcluding, FEDRA In Figure 4, by applying the cosine law on the trian-

successfully addresses the two major disadvantages of N@é defined by «,11,7,) and @;.l;41,7,) we obtain for
and appears as an efficient solution in cases of hard dlmErjl-< PO xt(lk) _ dé”')(z_-{, 22)(cos (bdgn) (lj—+1>’ 7)) —

sionality reduction problems on large datasets. R 7 -
FEDRA owes its low memory and computational recos;ds” (17, 7) — S lj(k—;-)lf(xv(kf) - l'gf,)r))/lj(ﬂ,j
quirements to the minimization criterion employed. Insteavhere¢ , v, signify the angles defined by linesz, zily
andz;z,, 1;1,1 respectively.
" SEvaluated with the Euclidean distance By defining D, = (cos ¢dén) (lj_+1>, ) —

I



COS w.] d(n) ( ll s _))) the eXpI’eSSIOI’] can be S|mpl|f|ed . Original Distance Preservation Capability

and depicted ase{”) — o) = d"(z,7)(D; -
L) ) )y ()
Zj‘ 1ZJ+1 f( if (lf))/lJJFl:J 0.8
Notice that the sum of dlfferences() - (k}

o
3

can be recursively computed with the use of the ini-
tial formula. The resulting expression is of the form

dy” (z3,72) S)_, F(Dy), whereF(Dy) signifies the lin-
ear combination oD with the landmark coordinates in the

new space. Consequently the expression is also defined a
k k n j
2 —al) = &5 (@, 7) (D — S, F(D) /1

o
Y
T

o
=

Percentage of unaffected distances (x)
o o
© @

0.2F
Flnally, dP(zx) = \/Zflxic—xg]fg)Q <
0.1
VELEE dr el e < S o
: ooz Pergésntageogfinitigistjimen()é?ons (Sik/n) o8 00t
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VE—1 d“”(-i,-m Sl) A2 +

\/d iz 1)+ dS (T, 1) where A,

(k
Do~ Y5, F(D) /I ..
A significant first result of this analysis is that the
resulting embedding is primarily influenced by the points’

Figure 5: FEDRA's original distances maintenance ability.

2
X_an kf—k_k2n—k—1

original pairwise distances and significantly less by the n—Dn —7n (n=D

landmarks themselves, showing that the landmarks’ random X_p2n k— 1_p21 pl/l/n

selection process is acceptable. o Assuming that: is excesswely largel(< n) we can easily
We now define Ai, = [dy"(%i,7s) — ignorel since its value will be close to zero, thus deriving

dé")(f{,a:—,,’ﬂ the variation between the distancethe following:

of points z;,z, in the original and lower dimen- x=p(2—-p),0<p<1

sional space and obtain( (k — 1)Ek—11 A2 - Despite the simplicity of this analysis, it proves that

a significant percentage of distances will remain unaltered
)d(") (Z5,75) + \/d(” (1) d(") (z2,17) despite the projection. Figure 5 shows the perceniage

, ~ k—1 4o ") /— —> distances that are not modified, because of the projection.
Aia = (YE-1)3 Ac + 1dy (T, Ta) + The x-axis depicts the dimensionality of the projectioncgpa
\/d(”)(xl, 1) +d(z;,1)). Thus we derive both anCalculated as a percentage of the number of the original
upper and a lower bound for the pairwise distance variatiéifnensionsg). For example, if: = p = 0.3 then projecting
due to the projection between any two points of the datas¥ith FEDRA will not affect51% of the initial distances.

IA

5.3 Quality Assessment.The previous analysis bound$ FEDRA Extensions

the error in the distance deviation between any two poittsthis section we introduce three algorithms, complemen-

due to the projection while highlighting the acceptabitify tary to the FEDRA approach. The first two aim at improving

the landmarks’ random selection process. We will now dhe projection quality and are suitable for applicatiorst th

tempt to go one step further and calculate the exact amocew tolerate higher processing costs. The third one is an of-

of pairwise distances for which this analysis is applicabfne evaluation procedure which assesses the quality of the

(A;,, # 0). By construction, FEDRA guarantees that a ceprojection and triggers, if necessary, the re-initiaiizatof

tain amount of pairwise distances will be exactly preservéeEDRA.

Indeed, the landmarks’ selection and projection phases pre

serve exactl)f’(k’z—‘” pairwise distances while the subsequeftl Intentional Landmark Selection. The theoretic anal-

embedding of the remaining — k) data points retains an-ysis previously presented signifies that the pairwise desta

other(n — k)k distances. Assuming thatsignifies the di- of all points in the new space are partially influenced by the

mensionality of the projection space as a percentage of edmarks positions in the original space. Consequently,

number of the original dimensions, the percentagépair- a natural question is whether significant benefits can be

wise distances that will remain unaffected due to the projétchieved by employing another selection scheme. For this

tion is given by the subsequent analysis. purpose, we introduce a greedy algorithm that intentignall
chooses landmark objects, in such a way that they increase



Algorithm 2 Projection Quality Evaluation.

k Table 2: The FEDRA algorithm assessment.
1: Input: Original Distancesd."), New Distancesd(”),

Threshold {)

2: Output: True/False Algorithm Computational Memory Addition

3: Set counter=0 Complexity | Requirements| of data

4 fori=1tod — kdo FEDRA O(pdk — pk®) O(k?) O(pk)

5. forj=itod—kdo FEDRA-DMH || O((d — k)pd) O(dk) O(pk)

N i (\d]gn>(l—-g,(§»)j2@@?)| . 1) then FEDRA-ILS || O(pdk — pk?) O(dk) O(pk)
dp(X4,25)

7. counter = counter + 1

8 end if

o endfor tiveness, this heuristic comes with a cost, since its comput

10: gnd for tional complexity is in the order o®((d — k)pd). Table 2

11: if counter> t then provides the complexity of FEDRA and its extensions in a

12 re’_[urn False comparable way to Table 1.

13: end if

14: return True

6.3 Offline Quality Assessment.The independent projec-
tion of each point with respect to the other non-landmark
points is one of the factors for FEDRA's reduced complex-
the quality of the projection. We refer to this heuristic aty. However, this simplification may sometimes come with
Intentional Landmark Selection heuristic (ILS). a cost, as it cannot always guarantee that pairwise disgance

The basic intuition behind this approach is that lantbetween non-landmark points are also preserved. The lat-
marks should ideally be distributed over the whole datastet is due to the fact that the new distance is approximated
The algorithm works in the following way. The landmarky the result of a linear combination of the initial distaase
set is initialized by randomly selecting the first landmankell as the distances between the selected landmarks.-There
objectl;. The next landmark objedt would be the one fore, there exists one potential case of failure. The latter
that exhibits maximum distance froin This process itera- is depicted in the assessment analysis whgn= 0, or
tively selects as next landmarkthe object that maximizes:cos ¢d'™ (1,41, 77) = costp;dS (17, 77) for j = 1..k. In
Z};ll d(li,1;). The algorithm terminates whénlandmarks general, this situation scarcely occurs, as data would have
have been selected. to be symmetrically divided by a given set bfrandomly

As already mentioned, distances between any point aiibsen points. Nevertheless we provide an offline detection
the landmarks remain unaffected during projection. Thekgigorithm, which detects a problematic situation and &igg
fore data distribution is preserved if landmarks are setecthe re-initialization of FEDRA.
so that they span throughout the whole dataset. The proposed evaluation algorithm takes as input both

, L . ) the original (i,(,")) and new distancesdj(k)) and a thresh-

6.2 Distance Minimization. Another issue, straightfor-g 14 yalue which signifies the maximum number of points
wardly rising from the main analysis of the algorithm is thg) \hich can be falsely embedded without deteriorating the

root selection process. A polynomial pf— 1 degree has gyerall quality of the projection. By evaluating expressio
at mostp — 1 roots so it is normal to question the valldwgw(@@%)_d;m(@g@m

ity of the random selection process proposed. Although the 47 (77 77)
assessment analysis of the previous section and the exla¢e- whether the value is exceeded. In case of an invalid
iments suggest that random selection is acceptable, in fiigjection the algorithm is re-initialized with a differeset
paragraph we present a heuristic which provides a solutmflandmark points. A formal presentation of the algorithm
to this issue. is presented in Algorithm 2.

The heuristic is based on the stress minimization crite- The added value of the approach lays in the fact that
rion of MDS and emphasizes on the subsequent embedding executed offline, that is, after the actual reduction
of the remaining points. Recall that each point can be ehas terminated. Despite its high computational complexity
bedded to more than one points in the projection space, dugd — k)?) this heuristic can be efficiently implemented,
to the degreey) of the equations. Instead of using a spén order to impose minimum memory overhead. Instead of
cific root selection scheme, the algorithm greedily seldws having both distance arrays residing constantly in memory
point that minimizes the distance deviation from already prthroughout the evaluation procedure, in each step one can
jected points (not landmarks). We refer to this heuristic bsad only the required fraction of information, that is only
Distance Minimization Heuristic (DMH). Despite its effecone line from each array, thus resulting @(d) memory

> 1 for all pointsi,j we calcu-




load. be normally distributed within populations. The first remgui
ment is essential. On the other hand, any violation of the sec
7 Experimental Evaluation ond or the third will not be a source of significant problems.

In this section we present the experimental evaluation OHiS is proved by [15], where it is shown that the F statis-
FEDRA, which indeed verifies the expected performanEQS is quite robust against violations of these assumptions.
and makes it an attractive solution for hard DR problems. Based on the aforementioned observations and our experi-
We carried out experiments on a number of datas8i€ntal setup, we use ANOVA to evaluate the observed stress
acquired by the UCI Machine Learning Repository [1]. wealues. Classification and clustering experiments canaot b
compare FEDRA to other well known approaches in orgéglidated by ANOVA, due to the fact that the first require-
to assess the quality of the projection. Therefore, we fodl§Nts is not satisfied. The validity of the classification ex-
on the how well data distribution features are maintainedRgfiments has been verified with 10-fold cross validation.
the lower dimensional space. More specifically we compare The datasets used for our experiments are presented in
the classification and clustering results of kNN [17] and K-able 3. To the best of our knowledge, the datasets employed
Means [7] algorithms respectively, between the original ai this evaluation are among the largest ones in comparison
the target low dimensional space. kNN is initialized witF experiments found in relevant research work. This vexifie
k = 10 in all experiments, while K-Means with the numbePur claim for robust behavior of FEDRA. Each dataset was
of classes of each dataset. Although kNN initialization fvaluated for 5 different values of the target dimensidyali
not optimal, it does not affect the validity of our resultthus in the relevant graphs we encounter 5 points for each
due to the fact that we are measuring relative classificat@@orithm), which are defined as a fraction of the initial
preservation. dimensionality of the dataset. Each time the projection
We assess the performance of FEDRA by COmparmgq{'gnensionality is increased by 2% of the initial dimensions

performance to that of the algorithms described in Sectjor(®tarting from 2%j. Each resulting value is the mean of
with respect to the following metrics: 20 executions. In all experiments we used the Euclidean

distance metric.

1. Stress: Projection quality, measuring the algorithm’s We compare our algorithm against PCA, SVD, Random
original distance preservation capability. Each alg&¥ojection, FastMap and LMDS. In the case of Random Pro-
rithm aims at minimizing this criterion. jection the random matrix is generated using the distringi

provided by Achlioptasin [3]. The first proposed distrilaurti

2. Relative Classification Ability Maintenarfc€RCAM):  is depicted in the various graphs as RP(1/2) and the second as
Classification quality metric measuring the capability ¢¢p(1/6). On the other hand, LMDS selects either randomly
each algorithm in retaining or ameliorating the classifft MDS RN) or heuristically (LMDS MM)2k landmarks for
cation results of kNN through projection to the targgfs initialization.
space. Itis defined as: Correctly Classified Instances in || experiments have been carried out on a commodity
R*ICorrectly Classified Instances i". Values close 2 4GHz Pentium IV machine with 1.28GB of RAM. In
to or higher than 1 signify acceptable behavior. the first two sets of experiments WEKA [2] is used for

. . L . both classification and clustering purposes, while in tisé la
3. Relative Clustering Disability Degradation (RCDD): t, where memory requireme?ntz arr)e extremely high, we

: i ; Se
Clustering qugllty T“etf'c that'measures the Capab"@fnployed an implementation of the Gmeans [10] algorithm.
of each algorithm in discovering clusters of K-Means

through pYOJECtan.k It is defined as: Incorrectly Clus?.l FEDRA Evaluation. In the first set of experiments we
tered Instances i"/ Incorrectly Clustered Instances . , . e
in R" Values close to or lower than 1 signify accepffsed the Wine Qataset to assess FEDRA's (and its varialions

: ; performance with regards to Stress, RCAM and RCDD. Our
able behavior. : . S L
intention was to measure the statistical significance of the
In order to test the statistical significance of our resuliTerences between the metrics values obtained by the base

we have analyzed their variance. ANalysis Of VAriandeEDRA algorithm and its heuristics. _
As one can see in Figures 6(a), 7(a), neither the DMH

(ANOVA) is a mathematical process that tests the statisti-
cal significance of the differences between the mean values
of two or more populations of observations. In order to eN=5¢ sgatistic is the ratio of two s squares (i.e. estimates agufation
sure credible results, ANOVA requires: 1) mutually indepemariance, based on the information in two or more random &shp
dent population values, 2) that pairwise exhibited vargnc/Vhen employed in the procedure entitied ANOVA, the obtainetlie of

of populations are the same and 3) that observations Sh&u%ovides a test for the statistical significance of the okekdifferences
among the means of two or more random samples.

61f 29 is smaller than 1 then the projection dimensionalitgesto 1 and
#We use the terms maintenance and preservation interchalpgea it is increased by one on iteration basis.



Table 3: Datasets used in the evaluation.

Dataset Objects | Dimensions| Classes Description
Wine 178 13 3 Wine chemical observations
Segmentation 2100 19 7 Image segmentation data
Musk 476 617 2 Molecules descriptions
lonosphere 351 34 2 lonosphere observations
Synthetic Control 600 60 6 Synthetic Control dataset
Connect-4 67577 42 3 A set of connect-4 games
CovType 581012 54 7 Forest cover type data
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Figure 6: Relative classification ability maintenance (R@QAlepicted as a function of stress.

implementation nor the ILS selection of landmarks ameligraphs, higher stress values correspond to lower projectio
rated the results significantly in most cases. In additian;v dimensionality. In other words, the rightmost point of alin
ance analysis of the obtained results suggested that witim the charts correspondskto= 10%n and the leftmost point
confidence level of 95% our hypothesis, equality betwetmk = 2%n . Consequently, stress is minimized as the pro-
results mean values, is maintained in 4 out of 5 projectiggttion dimensionality increases towards 10% of the ogbin
loops. This means that regardless of the employed FEDR@ige. According to [13] we would expect an amelioration of
variation, stress remains the same within a confidence letied classification results of KNN because of dimensionality
of 95%. We come to the same conclusion regarding the reduction. However, due to the fact that the latter research
spective experiments for RCDD and RCAM. Consequenthas made rather broad assumptions, we expect a general ten-
based on these results, we employ only the base FEDRAd®Ency of reaching 100% of preservation or a small fraction
gorithm in the rest of our experiments. of improvement.

The first remarkable result was the very high stress value
7.2 Classification Ability Preservation. In the second set generated by LMDS. Despite this, LMDS (Figures 6(b) and
of experiments we evaluated all approaches against f@{ip)) produced fair results with respect to the RCAM mea-
datasets and depicted their RCAM values versus the extgbre, with high stability, but always lower than the maximum
ited stress. The employed representation depicts algesittRCAM values achieved by the other approaches. FEDRA
with low stress and high RCAM values in the upper left paoh the other hand clearly outperforms Random Projection in
of the graph. Moreover, although not explicitly shown in thall experiments, while achieving better classificatiorigbi
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Figure 7: Relative clustering disability degradation (R@Q)Rlepicted as a function of stress.

and low RCDD values in the lower left part of the graph.
This metric’s best values are those closer to 1, conveyialg th
the clustering quality is either the same or better than tiee o

Table 4: Experiments with large datasets.

Algorithm RFM RCAM RCDD . . - . -
(CovType) | (Connect-4)| (Connect-4) exhibited by the clusfterlpg algorithm in the or!g!nal space
FEDRA 100% 98% 82% _ Ag, one can see in F|gure 7(b), LM_DS exhibits low stress
RP(1/2) 98% 99% 81% while its clustering quality degrade; in almost three o_ut of
RP(1/6) 95% 94% 82% four cases. Only for the segmentation dataset we notice an

improvement of the clustering quality, where for a partgul
projection we obtain a quality of almost 100%.
FEDRA successfully addresses the challenges posed by

maintenance than most of the other algorithms. Specifically)S NEW Setup as it achieves the best quality update for the

in Figure 6(d) (musk dataset), FEDRA clearly outperforrﬁé’mhetic control and the ionosphere datasets (Figurgs 7(c

all other algorithms in 3 out of 5 projections, while it per-7(f))' In addition, as far as the former is concerned, FEDRA

forms slightly worse than SVD and PCA fér— 8%n and constantly exhibits very favorable values of both stress an

k = 10%n. Exactly the same behavior, but with Sigl,mcilmprovement of clustering ability. The experiments with

cantly higher RCAM values with respect to the rest of the &€ Musk dataset (Figure 7(d)) indicated that all algorghm
gorithms, appears in Figure 6(f). Another notable factiﬂtheXh'b't similar behavior, with FEI_DRA providing slightly
the stress exhibited by FEDRA is always significantly low&€Etter and more stable results with respect to the RCDD

than the one exhibited by Random Projection. In Figure 6(B)€asure. Finally, in Figure 7(e), although FEDRA s inlyial

FEDRA is shown to outperform all other approaches in tif&itPerformed by SVD and PCA, it finally achieves high

final projection, but it is being supplanted by PCA, SVI9uality results in both stress and RCDD measures. 1t is

and FastMap in 2 out 5 projections. Similar conclusions a‘?’@rth ment_ioning in this case FastMap’s excellence in the
drawn by the results in Figure 6(e). fifth projection, where it outperforms even PCA.

7.4 Memory Intensive Datasets.Eventually we con-
7.3 Clustering Disability Degradation. In this set of ex- ducted experiments with two very large datasets and per-
periments we evaluate all approaches with the previousdymed one single projection in a space of dimensionality
presented datasets and plot their RCDD values as a funcigiial to the 10% of original one. Here we excluded algo-
of stress. The results highlight algorithms with low stress



rithms such as PCA, SVD, and FastMap due to their eX{4] D. Bassu and C. Behrens. Distributed LSI: Scalable cptice

cessive memory requirements. Moreover we decided to ex-
clude LMDS due to the excessive stress values produced in
the previous experiments. We only measured classificatidfl
and clustering quality in both datasets as the computafion o

stress was also infeasible, due to the same reasons.

Table 4 shows experimental results for two datasetg:s]
CovType and Connect-4. In the CovType dataset, due Tg]
memory limitations posed by the implementation of WEKA,
we used an implementation of Gmeans. As clustering valigg)
ity measure we use the fraction of the value of F-measure [7]
in the projection space over the one in the original space
and denote as Relative F-Measure (RFM). Ideally, a flawf9]
less projection would achieve a value of 100%. FEDRA
achieved 100% clustering quality preservation, thus autpe
forming both Random Projection setups. In the Connect#!
dataset, we used the RCAM and RCDD values to compare
the algorithms. FEDRA exhibits high quality results in bot 1
metrics and slightly outperforms Random Projections, wi
the exception of RP(1/2) and RCAM. Moreover, the cluster-

ing quality is significantly improved in all cases illusirag

thus the merits of dimensionality reduction in this context

8 Conclusions

In this paper, we proposed FEDRA, a fast and efficient &iL_S]
mensionality reduction algorithm suitable for hard dimen-
sionality reduction problems, where existing algorithras-c [14
not be applied. FEDRA achieves quality of results compara-
ble to the most prominent DR algorithms, while being faster
and consuming less space in memory. In addition, FEDR#s]

is able to employ any Minkowski distance ¢ 1) and not

only the Euclidean distance. We theoretically quantitéted [16]
quality of the projection and provided bounds in the errer in
troduced due to the projection. Moreover, we proposed two
extensions of the basic algorithm, which can increase FE-
DRA’s quality of results, for applications that can tolera [1
higher processing costs. Additionally we introduced a sim-
ple offline algorithm that assesses the quality of the projec
tion and triggers the re-initialization of FEDRA if necesga |19
Through extensive experiments on real world datasets we
demonstrated FEDRAs quality, reflected in the high qual-
ity clustering and classification results achieved. In aur f[20]
ture work, we will focus on applying FEDRA on text col-
lections and study its performance in such ultra-high dimen

sional sparse representation spaces.
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