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Abstract

Contemporary data-intensive applications generate largedatasets of
very high dimensionality. Data management in high-dimensional
spaces presents problems, such as the degradation of query pro-
cessing performance, a phenomenon also known as the curse of
dimensionality. Dimensionality reduction (DR) tackles this prob-
lem, by efficiently embedding data from high dimensional to lower
dimensional spaces. However, the large scale and dynamism of
generated data calls for methods of low time and space complexity,
features that are hardly combined in the majority of existing DR
algorithms. Motivated by this fact, in this paper we proposeFE-
DRA, a fast and efficient dimensionality reduction algorithm that
uses a set of landmark points to project data to a lower dimensional
Euclidean space. FEDRA is both faster and requires less memory
than other comparable algorithms, without compromising the pro-
jection’s quality. We theoretically assess the quality of the resulting
projection and provide a bound for the error induced in pairwise
distances. Furthermore, we present two extensions of FEDRAthat
improve the quality of the projection, suitable for applications that
can tolerate higher processing costs. We prove the validityof our
claims both theoretically and experimentally, by comparing our al-
gorithm against prominent approaches, such as FastMap, LMDS,
PCA, SVD and Random Projection.

1 Introduction

An increasing number of contemporary applications produce
massive volumes of very high dimensional data. In scientific
databases, for example, it is common to encounter large sets
of observations, represented by hundreds or even thousands
of coordinates. In such high dimensional spaces, query pro-
cessing performance degrades, a phenomenon known as the
curse of dimensionality [11]. Thus, typical data mining tasks,
such as clustering or classification become ineffective [5],
and data mining applications rely on dimensionality reduc-
tion (DR) as a pre-processing step for solving these prob-
lems.

Dimensionality reduction algorithms address this chal-
lenge, by projecting data from the original high dimensional
spaceRn to a new, lower dimensional spaceRk (usually
k << n). The objective of the DR methodology is to retain
the distances between points or other statistical properties in
the lower dimensional space. Nevertheless, the vast amount
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of generated data dictates methods that are both fast and ex-
hibit low memory requirements. These features are hardly
combined in the majority of existing DR algorithms. There-
fore, there is a need for provably fast and effective algorithms
for efficient processing of datasets of both high dimensional-
ity and cardinality.

In this context, we propose FEDRA, a fast and efficient
dimensionality reduction algorithm that follows the general
principles of thelandmark-based DR paradigm [9]. FEDRA
selects randomly a limited number ofk points (henceforth
called landmarks) of the initial space and provides their
embedding inRk, such that the pairwise distances of all
landmarks are totally preserved. Each of the remaining
points is projected toRk by requiring that its distances
from all landmark points are preserved. Using this simple
projection methodology FEDRA achieves quality of results
comparable to the most prominent DR algorithms, while
being faster and consuming less space in memory.

The contribution of this work is manifold:

• We propose a new algorithm, FEDRA, which exhibits
lower time and space requirements than other promi-
nent DR algorithms, while successfully reproducing the
original data structure. Furthermore, we show that FE-
DRA is applicable with the use of any Minkowski dis-
tance metricdp (p > 1), making it attractive for appli-
cations that cannot employ the Euclidean distance.

• We provide theoretical guarantees for FEDRA’s pro-
jection quality and offer a quantitative analysis of the
induced error. Moreover we derive upper and lower
bounds for the error in approximating the original pair-
wise distances in the projected space.

• We introduce two algorithms, one for landmark selec-
tion and one for the actual data embedding, to further
improve the projection quality, suitable for applications
that tolerate higher processing costs. In addition, we de-
fine an analytical expression which enables the offline
assessment of the quality of the resulting projection.

• Through extensive experiments on very large datasets,
both in terms of dimensionality and cardinality, we
demonstrate that the quality of results of FEDRA is
comparable to several prominent DR algorithms, while
exhibiting lower complexity and costs than any other of
the employed algorithms.



The rest of this paper is organized as follows: in sec-
tion 2, we review the most prominent DR algorithms. We
motivate the need for a new fast and efficient algorithm in
section 3, through an analysis of the complexity of existing
techniques. In section 4, we present FEDRA, while in sec-
tion 5 we theoretically analyze our algorithm’s performance
and quality. In section 6, we present two extensions of the
basic algorithm for better quality of results, when higher pro-
cessing costs can be tolerated. Additionally, we offer an of-
fline algorithm that assesses the quality of a projection and
re-initializes FEDRA, if necessary. The experimental study
is presented in section 7. Finally, in section 8, we conclude
the paper and sketch future research directions.

2 Related Work

Dimensionality reduction problems can be broadly classified
into three distinct categories [6].Hard problems, where data
is defined in a space consisting of hundreds/thousands of co-
ordinates and drastic dimensionality reduction is necessary,
Soft problems, where the requirement for reduction is milder
andVisualization problems, where data of high dimensional-
ity is mapped to few dimensions, such that its structure be-
comes perceivable by humans.

While there exist different methods of assessing the
quality of the output of a DR algorithm, the most usually
employed evaluation metric isstress. Simply stated,stress
evaluates the preservation of pairwise distances in the pro-
jected space and is defined as:
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ij ,d(k)

ij denote the Euclidean distance between
points i and j in the n-dimensional andk-dimensional
space respectively. Another application-oriented methodis
the comparison of clustering and classification performance
prior and after DR. For the subsequent analysis, we assume
that the goal is to projectd data vectors defined inRn into
theRk subspace while preserving their pairwise distances.

One of the initial methods proposed was multidimen-
sional scaling (MDS) often referred to as classic MDS [23].
Simply stated, the algorithm initially embeds all points ran-
domly in the new space and iteratively repositions them, in
order to minimize the exhibited stress value. Despite its mer-
its, MDS exhibits two serious drawbacks, namely high com-
putational complexity and high memory requirements. Any
subsequent addition of a data point in the projection results
in O(d) overhead [12].

Principal Components Analysis (PCA) [21] is closely
related to MDS and considered as the best method in terms
of the quality of the produced projection. Givend data
vectors defined inRn and represented by a two dimensional
matrixXd×n, PCA projects them inRk by computing the
productXd×nP

T
k×n, wherePk×n contains as row elements

the eigenvectors of the covariance matrix that correspond to
its k largest eigenvalues andXd×n the original data matrix
with means subtracted across each dimension.

The high quality results produced by MDS impacted
subsequent research efforts significantly, which focused
mainly in resolving its scaling problems. Faloutsos and Lin
introduced FastMap [12], an algorithm that successfully ad-
dressed the computational complexity issue. FastMap em-
beds data from spaceRn to R1 by projecting on a hyper-
plane perpendicular to the line defined by the two most dis-
tant points (henceforth referred to as pivots) in the processed
hyperplane. Iterative application of the latter, results in the
embedding of the processed point in theRk space. The pro-
jection is carried out based on the Pythagorean Theorem and
its generalization, the cosine law.

FastMap’s agnostic nature towards the original dimen-
sionality of data, makes it an ideal candidate for the process-
ing of collections where only pairwise distance information
(and not absolute position) is available. A significant draw-
back of FastMap is its memory requirements, which reach
O(d2), as it requires the maintenance of all pairwise dis-
tances in main memory. The latter is partially addressed in
a variation of the algorithm that takes as input the original
points, thus losing its dimensionality agnostic nature. Then,
memory requirements are reduced toO(d(k + n)) however
computational complexity rises toO(dk(k+n)). In the con-
text of this paper we follow the first outlined variation which
is also the one appearing in the original publication [12].

In order to address the high memory requirements of
MDS, a slightly different embedding methodology, namely
landmark-based projection, has been defined. Instead of
trying to map all data simultaneously to the new space,
landmark-based projection algorithms initially extract a
small fraction of points which are projected in the new space.
Based on the assumption that these points remain fixed (land-
marks in the new space), the rest of the dataset is projected
by employing distance preservation techniques.

The first method obeying this scientific paradigm was
Triangulation based Sequential Mapping (TSM) [19]. TSM
has been specifically designed and tuned in order to address
visualization problems. TSM projects each point indepen-
dently in a two dimensional Euclidean space using two land-
marks. Landmarks are different for each point and their se-
lection is accomplished with two alternative strategies, both
operating on the dataset’s minimum spanning tree. Subse-
quent projection is implemented through triangulation tech-
niques. TSM guarantees that2n−3 out of then(n−1)

2 overall
pairwise distances will be exactly preserved.

The most prominent algorithm of this methodology is
Landmark Multidimensional Scaling (LMDS) [9], which
directly addresses the scalability problem of MDS. Initially,
LMDS selectsf landmark points, with the constraintf > k,
and projects them in the new space with the use of MDS.



Table 1: Comparative assessment of the presented methods.

Algorithm Computational Complexity Memory Requirements Single Point Addition
MDS O(d2) O(d2) O(d)

PCA/SVD O(n3 + n2d) O(n3 + nd) O(kn)
RP O(dkn) O(kn) O(kn)

LMDS O(kfd+ f2 + f3) O(fd) O(f(n+ k))
FastMap O(dk) O(d2) O(k)
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Figure 1: Graphical comparison of the complexity of DR algorithms.

Afterwards a distance-based triangulation procedure, which
uses as input distances to already embedded landmark points,
determines the projection of the remaining points. Principal
components analysis [21] is optionally used to align the
result to the principal axes of the data set.

Advances in the area of landmark-based algorithms have
resulted in the definition of several algorithms, such as Lo-
cal Linear Embedding (LLE) [20], Isomap [22]1, and K-
Landmarks [16]. All these successfully address the memory
requirement issue of MDS, but necessitate polynomial exe-
cution time with respect to the dimensionality of the projec-
tion space, which may cause problems ifk is comparable to
n. Nevertheless, they have inspired the definition of FEDRA
and they served as basis for its theoretic justification.

Random Projection is another technique used for dimen-
sionality reduction. The data matrixX is embedded in the
Rk space with the use of a randomly generated matrix (R)
through multiplicationX ′

d×k = Xd×nR
T
k×n. The method

is based on the Johnson-Lindenstrauss lemma [14]. An el-
ementary proof of this lemma is provided by Dasgupta and
Gupta in [8]. The main remaining issue is the definition of
the projection matrix. Achlioptas proposes two simple distri-
butions [3] that prove rather robust and can easily be applied
to large datasets.

1LLE and Isomap belong in another DR paradigm, namely Non Linear
Dimensionality Reduction. Landmark selection is also usedin this case, but
not strictly obeying the landmark based projection methodology.

3 Motivation

We present a comparative assessment of the most prominent
DR methods, in terms of computational complexity, memory
requirements and cost of adding a new point in an already
projected dataset. Table 1 summarizes these results in terms
of O() notation. In order to ensure a fair comparison to
LMDS, we assume random selection of landmarks and omit
the optional PCA alignment step. The notation is based on
the analysis of the previous section.

Using the mathematical formulas of Table 1 we simulate
a hard DR problem (projection wherek ≤ 0.1n) and
measure the time, space requirements and the cost for a
new point addition. We assume thatn=1000,d=10000 and
k=20...100 (2% - 10% ofn). For LMDS, we randomly select
the least required number of landmarks, specificallyk+1,
and omit the optional PCA alignment step. The results are
depicted in Figure 1.

A first observation is that FastMap is indeed the algo-
rithm with the lowest time complexity, while mainly Ran-
dom Projection and LMDS guarantee low memory require-
ments. However, FastMap fails to address the second draw-
back of MDS, namely the intensive memory requirements,
in the order ofO(d2).

Despite their good results, SVD-based methods also ex-
hibit poor scaling quality [4]. Moreover, the eigen analysis
employed in these algorithms results in high computational
complexity and high memory requirements. Another prob-



lem is their inability to handle data updates efficiently (i.e.
massive additions or deletions of points). Although meth-
ods of bounding the error [18] and updating an already ex-
isting decomposition when the error surpasses a predefined
bound do exist [24], the cost of updating is excessively high,
marginally reaching the cost required for the recomputation
of the decomposition. On the other hand, Random Projection
seems a suitable method regarding scaling, as it is immune to
data additions, produces results rather fast and has low space
complexity.

According to this analysis we conclude that the ideal
dimensionality reduction method should exhibit quality of
results equal to that of PCA, space complexity lower than
or equal to Random Projection or at least LMDS and time
complexity lower than or at least equal to FastMap. Such a
method should also provide solution to hard dimensionality
reduction problems on datasets of high cardinality. This
discussion motivates the design of a new DR algorithm that
successfully addresses all of these requirements.

4 The FEDRA Algorithm

In this section, we present FEDRA, a dimensionality re-
duction algorithm that directly addresses the two major dis-
advantages of classic MDS, namely its high computational
complexity and high memory requirements, while exhibit-
ing low stress values and preserving the data distribution.It
is designed to handle all classes of dimensionality reduction
problems, however it emphasizes on the hard ones. The intu-
ition of the approach is based on the landmark-based projec-
tion methodology [9, 16, 19]. However FEDRA introduces
significant advances in terms of computational cost and pro-
jection quality, compared to existing landmark-based algo-
rithms and other DR methods. More specifically:

• FEDRA acquires the projection through an iterative
scheme of polynomial equations, thus achieving low
computational complexity and memory requirements.

• In comparison to several DR algorithms that are re-
stricted to the Euclidean distance, our approach is ap-
plicable to any Minkowski distance metric (p > 1).

• Additionally, the proposed method guarantees the exact
preservation of a significant amount of the initial pair-
wise distances.

• Finally, FEDRA establishes a bound for the error intro-
duced due to the reduction, thus providing theoretical
guarantees for the quality of the projection.

In the following analysis, we assume that the dataset is
composed ofd n-dimensional points that are going to be
embedded inRk, with k significantly lower thann (k ≤
0.1n). The Minkowski distance between two pointsxi and
xj in ann-dimensional space is depicted asd(n)

p (−→xi ,−→xj).

4.1 Landmark-based DR Algorithm. Initially, k land-
marks are selected from the dataset. The simplest selection
approach is to randomly pick the points from the dataset,
which incursO(k) time cost. The algorithm embeds the se-
lected set of landmarksL intoRk. The first processed land-
mark (randomly selected fromL) is mapped to the beginning
of the coordinates systems axis, while for each of the remain-
ing landmarks it is required that distances between already
embedded landmarks and the processed one are retained. In
the final step, each remaining non-landmark point is pro-
jected independently with respect to the rest of the dataset
by requiring that its distances to the landmarks remain the
same in the embedding space. This results in the definition
of a non-linear system of equations. However we show that,
despite its non-linear nature, the system in question can be
solved easily in linear polynomial time.

We first provide an overview of the algorithm in a de-
scriptive manner for ease of presentation. FEDRA requires
as input only the projection dimensionality (k), the pairwise
distances between the points of the dataset (D) and the em-
ployed Minkowski distance metric (p). One necessary con-
dition for the successful execution of the approach is that the
triangular inequality is sustained in the original space.

In the first step,k points are randomly selected popu-
lating setL = {l1, l2, ...lk}. The first landmark point,l1,
is projected at pointl(k)

1 =(0, 0, ..., 0). Sincel2 should re-

tain its distance tol1, it is mapped at point (d(n)
p (

−→
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−→
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0, ..., 0), whered(n)
p (

−→
li ,

−→
lj ) denotes the Minkowski dis-

tance of landmarksi and j in the n-dimensional space.
The third landmark is embedded under the constraint that
its distances to all already projected landmarks are retained
(d(n)

p (
−→
li ,

−→
l3 ) = d

(k)
p (

−→
li ,

−→
l3 ) for i = 1, 2). This leads to

the following system of non-linear equations (lij denotes the
j-th coordinate ofli):
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The solution of this system is trivial considering the fact
that only two non-zero coordinates are required for our pre-
requisites to hold true. The latter is based on the fact that the
pairwise distances ofk objects can be exactly preserved in
a k − 1 dimensional space. Consequently, we simplify the
system by assuming thatl(k)

3j = 0 for eachj ≥ 3. Gener-
alizing, the number of non-zero coordinates required for the
projection of thei-th landmark isi− 1. Following the same
technique during the subsequent landmarks projections, the
j-th coordinate of thei-th landmark is provided by the fol-
lowing equations (equation set A) (i = 1..k, j = 1..k − 1):
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0 otherwise
The cost of finding the p-1 roots of the resulting polyno-

mial with the use of a simple Horner scheme requires O(p)
time. Consequently, since the computed non-zero coordi-
nates for all landmarks in this step arek(k−1)/2, the cost of
embedding the landmarks isO(pk2)2. As the resulting poly-
nomials describing the value of each dimension may have up
to p-1 roots, there exists a problem of which root to select.

Figure 2 provides a simple example of the projection of
three points fromR3 toR2 with p = 2. During the first step,
landmarks (depicted as stars) are projected in the new space.
The first one is placed on the beginning of the coordinate
system. The second landmark is mapped on the x axis at
(do, 0), wheredo signifies their distance in the original space.
The third point can be embedded in two different positions,
both symmetric with respect to the line defined by the two
initial landmarks. Symmetric coordinates are derived in this
case due to the square root computation employed for the
calculation of the last coordinate. Since roots depict the
various symmetric coordinates that a point can be embedded
in the lower dimensional space, it suffices to choose any of
them, providing that the same selection scheme is employed
for all remaining points.
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Figure 2: Symmetric projection fromR3 toR2. Stars depict
the landmark points and squares the two possible projections.
Axes are rotated to ease illustration.

In the final step, each remaining point is projected

2In the general case, factor p is significantly lower than k anddoes not
affect the overall cost

Algorithm 1 FEDRA.
1: Input: Projection dimensionality (k), data distances in
Rn(D), Distance Metric (p)

2: Output: new dataset inRk (P )
3: Create set of landmarksLS=Ø
4: Create new datasetP=Ø
5: for i = 1 to k do
6: select landmark pointpi

7: LS = LS ∪ pi

8: end for
9: Create set of projected landmarksPLS=Ø

10: for i = 1 to all landmarksli do
11: li = Calculate landmark coordinates using the equa-

tions of Set A
12: PLS=PLS ∪ li
13: end for
14: P=P ∪ PLS
15: for i = 1 to all remaining pointsxi do
16: xi=Calculate remaining points coordinates using the

equations of Set B
17: P=P ∪ xi

18: end for

independently of the rest of the dataset by requiring that its
distances to the landmarks are sustained in the projection
space. This defines the following non-linear system of
equations for any pointx:

d
(k)
p (−→x ,−→li ) = d

(n)
p (−→x ,−→li ) for i = 1...k (3)

Assuming the projection of pointxi in the new space
and analyzing equation (3) in the same way as equation (2)
we obtain the equations that provide the projection of point
xi (i = 1...d, xi /∈ L) in the low dimensional space (equation
set B):
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The computation of thek coordinates for each of the
remainingd−k points results inO(pdk−pk2) computational
cost. Based on this example, FEDRA is straightforwardly
derived and presented in Algorithm 1. At this point, it should
be stressed that the order in which the landmarks are selected
does not affect the projection. The only effect is a simple
shift of the coordinates of all points, however the projection
remains the same, since it is based on the initial pairwise
distances and not on the coordinates.

5 Theoretical Evaluation

After having introduced the FEDRA algorithm, we proceed
to present its theoretical evaluation. We first analyze its
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Figure 3: FEDRA’s computational complexity and memory
requirements.

computational complexity, then we prove that the error
induced by the projection is bounded, and finally we assess
the projection’s quality.

5.1 Computational Complexity. Based on the algorith-
mic description, FEDRA exhibits slightly better computa-
tional complexity than FastMap (both evaluated with the Eu-
clidean distance), and additionally significantly lower mem-
ory requirements than LMDS and Random Projection. FE-
DRA requiresk2 space in the first step (landmarks pairwise
distances) and(k2 + k)/2 in the second (embedded land-
mark coordinates and distances between processed points
and the landmarks in the original space), which is analogous
toO(k2).

The latter is clearly depicted in Figure 3. All measure-
ments are computed in accordance with the configuration
outlined in section 3, in order to ensure a fair comparison.
The alternate FastMap setup (FastMap Alt) has also been in-
cluded in the graph to ensure completeness.

FEDRA is indifferent to the initial dimensionality of the
dataset, and this property makes it appropriate for datasets
where only similarity/distance information is available.This
is usually the case when objects either cannot be represented
in a vector space or such a representation does not exist and
only pairwise distances are available. Further, the subse-
quent addition of a point in an already existing projection
is as fast and efficient as in FastMap3. Concluding, FEDRA
successfully addresses the two major disadvantages of MDS
and appears as an efficient solution in cases of hard dimen-
sionality reduction problems on large datasets.

FEDRA owes its low memory and computational re-
quirements to the minimization criterion employed. Instead

3Evaluated with the Euclidean distance

Figure 4: Application of the cosine law, in order to determine
the error bound.

of trying to minimize the distance discrepancies between
all projected points (stress minimization criterion), FEDRA
minimizes the distance deviation between the landmarks and
the point under projection. One could argue that this sim-
plification results in significant deterioration of the projec-
tion’s quality. However, existing theory [9] and experiments
suggest that this simplification is acceptable. Moreover, in
the following paragraphs, we prove that the distance between
any two non-landmark points in the new space is dominated
by their distance in the original space, while a significant
percentage of initial pairwise distances remains unaltered in
spite of the projection. The analysis is done for the Euclidean
distance metric (p = 2) however its generalization can be
straightforwardly derived.

5.2 Error Bound. The new distance between any two
points xi, xa can be defined asd(k)

2 (−→xi ,−→xa) =
√
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c=1(x

(k)
i,c − x

(k)
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tance in thek-dimensional space we can assess the qual-
ity of the projection. This is done with the use of the
equations of Section 4 forp = 2 as follows: x(k)
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In Figure 4, by applying the cosine law on the trian-
gles defined by (xi,l1,xa) and (xi,lj+1,xa) we obtain for

i, j < k :x(k)
i,j − x

(k)
a,j = d

(n)
2 (−→xi ,−→xa)(cosφd

(n)
2 (

−−→
lj+1,−→xi) −

cosψjd
(n)
2 (

−→
l1 ,−→xi) − ∑j−1

f=1 l
(k)
j+1,f (x

(k)
i,f − x

(k)
a,f ))/l

(k)
j+1,j

whereφ , ψj signify the angles defined by lines−−→xixa,
−−→
xil1

and−−→xixa,
−−−→
xilj+1 respectively.

By defining Dj = (cosφd
(n)
2 (

−−→
lj+1,−→xi) −



cosψjd
(n)
2 (

−→
l1 ,−→xi)) the expression can be simplified

and depicted asx(k)
i,j − x

(k)
a,j = d

(n)
2 (−→xi ,−→xa)(Dj −

∑j−1
f=1 l

(k)
j+1,f (x

(k)
i,f − x

(k)
a,f ))/l

(k)
j+1,j

Notice that the sum of differencesx(k)
i,f − x

(k)
a,f

can be recursively computed with the use of the ini-
tial formula. The resulting expression is of the form
d
(n)
2 (−→xi ,−→xa)

∑j
f=1 F (Df ), whereF (Df ) signifies the lin-

ear combination ofDf with the landmark coordinates in the
new space. Consequently the expression is also defined as
x

(k)
i,j − x

(k)
a,j = d

(n)
2 (−→xi ,−→xa)(Dj −

∑j
f=1 F (Df ))/l

(k)
j+1,j

Finally, d
(k)
2 (−→xi ,−→xa) =

√

∑k
c=1(x

(k)
i,c − x

(k)
a,c)2 ≤

√

∑k−1
c=1 (x

(k)
i,c − x

(k)
a,c)2 +

√

(x
(k)
i,k − x

(k)
a,k)2 ≤

√
k − 1d

(n)
2 (−→xi ,−→xa)

√

∑k−1
c=1 A

2
c +

√

d
(n)
2 (−→xi ,

−→
l1 ) + d

(n)
2 (−→xa,

−→
l1 ). where Ac =

Dc −
∑c

f=1 F (Df ))/l
(k)
c+1,c.

A significant first result of this analysis is that the
resulting embedding is primarily influenced by the points’
original pairwise distances and significantly less by the
landmarks themselves, showing that the landmarks’ random
selection process is acceptable.

We now define ∆i,a = |d(k)
2 (−→xi ,−→xa) −

d
(n)
2 (−→xi ,−→xa)| the variation between the distances

of points xi,xa in the original and lower dimen-

sional space and obtain (

√

(k − 1)
∑k−1

c=1 A
2
c −

1)d
(n)
2 (−→xi ,−→xa) +

√

d
(n)
2 (−→xi ,

−→
l1 ) + d

(n)
2 (−→xa,

−→
l1 ) ≤

∆i,a ≤ (

√

(k − 1)
∑k−1

c=1 A
2
c + 1)d

(n)
2 (−→xi ,−→xa) +

√

d
(n)
2 (−→xi ,

−→
l1 ) + d

(n)
2 (−→xa,

−→
l1 ). Thus we derive both an

upper and a lower bound for the pairwise distance variation
due to the projection between any two points of the dataset.

5.3 Quality Assessment.The previous analysis bounds
the error in the distance deviation between any two points
due to the projection while highlighting the acceptabilityof
the landmarks’ random selection process. We will now at-
tempt to go one step further and calculate the exact amount
of pairwise distances for which this analysis is applicable
(∆i,a 6= 0). By construction, FEDRA guarantees that a cer-
tain amount of pairwise distances will be exactly preserved.
Indeed, the landmarks’ selection and projection phases pre-
serve exactlyk(k−1)

2 pairwise distances while the subsequent
embedding of the remaining(n − k) data points retains an-
other(n − k)k distances. Assuming thatp signifies the di-
mensionality of the projection space as a percentage of the
number of the original dimensions, the percentagex of pair-
wise distances that will remain unaffected due to the projec-
tion is given by the subsequent analysis.
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Figure 5: FEDRA’s original distances maintenance ability.

x=2nk−k2−k
(n−1)n =k

n
2n−k−1
(n−1)

x=p 2n−k−1
n−1 =p 2−p−1/n

1−1/n

Assuming thatn is excessively large (1 � n) we can easily
ignore 1

n since its value will be close to zero, thus deriving
the following:

x=p(2 − p) , 0 < p ≤ 1
Despite the simplicity of this analysis, it proves that

a significant percentage of distances will remain unaltered
despite the projection. Figure 5 shows the percentagex of
distances that are not modified, because of the projection.
The x-axis depicts the dimensionality of the projection space
calculated as a percentage of the number of the original
dimensions (p). For example, ifkn = p = 0.3 then projecting
with FEDRA will not affect51% of the initial distances.

6 FEDRA Extensions

In this section we introduce three algorithms, complemen-
tary to the FEDRA approach. The first two aim at improving
the projection quality and are suitable for applications that
can tolerate higher processing costs. The third one is an of-
fline evaluation procedure which assesses the quality of the
projection and triggers, if necessary, the re-initialization of
FEDRA.

6.1 Intentional Landmark Selection. The theoretic anal-
ysis previously presented signifies that the pairwise distances
of all points in the new space are partially influenced by the
landmarks positions in the original space. Consequently,
a natural question is whether significant benefits can be
achieved by employing another selection scheme. For this
purpose, we introduce a greedy algorithm that intentionally
chooses landmark objects, in such a way that they increase



Algorithm 2 Projection Quality Evaluation.

1: Input: Original Distances (d(n)
p ), New Distances (d(k)

p ),
Threshold (t)

2: Output: True/False
3: Set counter = 0
4: for i = 1 to d− k do
5: for j = i to d− k do

6: if (
|d(n)

p (−→xi ,−→xj )−d(k)
p (−→xi ,−→xj )|

d
(n)
p (−→xi ,−→xj)

7−→ 1) then

7: counter = counter + 1
8: end if
9: end for

10: end for
11: if counter> t then
12: return False
13: end if
14: return True

the quality of the projection. We refer to this heuristic as
Intentional Landmark Selection heuristic (ILS).

The basic intuition behind this approach is that land-
marks should ideally be distributed over the whole dataset.
The algorithm works in the following way. The landmark
set is initialized by randomly selecting the first landmark
object l1. The next landmark objectl2 would be the one
that exhibits maximum distance froml1. This process itera-
tively selects as next landmarkli the object that maximizes:
∑i−1

j=1 d(li, lj). The algorithm terminates whenk landmarks
have been selected.

As already mentioned, distances between any point and
the landmarks remain unaffected during projection. There-
fore data distribution is preserved if landmarks are selected
so that they span throughout the whole dataset.

6.2 Distance Minimization. Another issue, straightfor-
wardly rising from the main analysis of the algorithm is the
root selection process. A polynomial ofp − 1 degree has
at mostp − 1 roots so it is normal to question the valid-
ity of the random selection process proposed. Although the
assessment analysis of the previous section and the exper-
iments suggest that random selection is acceptable, in this
paragraph we present a heuristic which provides a solution
to this issue.

The heuristic is based on the stress minimization crite-
rion of MDS and emphasizes on the subsequent embedding
of the remaining points. Recall that each point can be em-
bedded to more than one points in the projection space, due
to the degree (p) of the equations. Instead of using a spe-
cific root selection scheme, the algorithm greedily selectsthe
point that minimizes the distance deviation from already pro-
jected points (not landmarks). We refer to this heuristic as
Distance Minimization Heuristic (DMH). Despite its effec-

Table 2: The FEDRA algorithm assessment.

Algorithm Computational Memory Addition
Complexity Requirements of data

FEDRA O(pdk − pk2) O(k2) O(pk)

FEDRA-DMH O((d − k)pd) O(dk) O(pk)
FEDRA-ILS O(pdk − pk2) O(dk) O(pk)

tiveness, this heuristic comes with a cost, since its computa-
tional complexity is in the order ofO((d − k)pd). Table 2
provides the complexity of FEDRA and its extensions in a
comparable way to Table 1.

6.3 Offline Quality Assessment.The independent projec-
tion of each point with respect to the other non-landmark
points is one of the factors for FEDRA’s reduced complex-
ity. However, this simplification may sometimes come with
a cost, as it cannot always guarantee that pairwise distances
between non-landmark points are also preserved. The lat-
ter is due to the fact that the new distance is approximated
by the result of a linear combination of the initial distanceas
well as the distances between the selected landmarks. There-
fore, there exists one potential case of failure. The latter
is depicted in the assessment analysis whenDj = 0, or

cosφd
(n)
2 (

−−→
lj+1,−→xi) = cosψjd

(n)
2 (

−→
l1 ,−→xi) for j = 1..k. In

general, this situation scarcely occurs, as data would have
to be symmetrically divided by a given set ofk randomly
chosen points. Nevertheless we provide an offline detection
algorithm, which detects a problematic situation and triggers
the re-initialization of FEDRA.

The proposed evaluation algorithm takes as input both
the original (d(n)

p ) and new distances (d(k)
p ) and a thresh-

old value which signifies the maximum number of points
(t) which can be falsely embedded without deteriorating the
overall quality of the projection. By evaluating expression
|d(n)

p (−→xi ,−→xj)−d(k)
p (−→xi ,−→xj )|

d
(n)
p (−→xi ,−→xj )

7−→ 1 for all pointsi,j we calcu-

late whether thet value is exceeded. In case of an invalid
projection the algorithm is re-initialized with a different set
of landmark points. A formal presentation of the algorithm
is presented in Algorithm 2.

The added value of the approach lays in the fact that
it is executed offline, that is, after the actual reduction
has terminated. Despite its high computational complexity,
O((d − k)2) this heuristic can be efficiently implemented,
in order to impose minimum memory overhead. Instead of
having both distance arrays residing constantly in memory
throughout the evaluation procedure, in each step one can
load only the required fraction of information, that is only
one line from each array, thus resulting inO(d) memory



load.

7 Experimental Evaluation

In this section we present the experimental evaluation of
FEDRA, which indeed verifies the expected performance
and makes it an attractive solution for hard DR problems.

We carried out experiments on a number of datasets
acquired by the UCI Machine Learning Repository [1]. We
compare FEDRA to other well known approaches in order
to assess the quality of the projection. Therefore, we focus
on the how well data distribution features are maintained in
the lower dimensional space. More specifically we compare
the classification and clustering results of kNN [17] and K-
Means [7] algorithms respectively, between the original and
the target low dimensional space. kNN is initialized with
k = 10 in all experiments, while K-Means with the number
of classes of each dataset. Although kNN initialization is
not optimal, it does not affect the validity of our results,
due to the fact that we are measuring relative classification
preservation.

We assess the performance of FEDRA by comparing its
performance to that of the algorithms described in Section 2,
with respect to the following metrics:

1. Stress: Projection quality, measuring the algorithm’s
original distance preservation capability. Each algo-
rithm aims at minimizing this criterion.

2. Relative Classification Ability Maintenance4 (RCAM):
Classification quality metric measuring the capability of
each algorithm in retaining or ameliorating the classifi-
cation results of kNN through projection to the target
space. It is defined as: Correctly Classified Instances in
Rk/Correctly Classified Instances inRn. Values close
to or higher than 1 signify acceptable behavior.

3. Relative Clustering Disability Degradation (RCDD):
Clustering quality metric that measures the capability
of each algorithm in discovering clusters of K-Means
through projection. It is defined as: Incorrectly Clus-
tered Instances inRk/ Incorrectly Clustered Instances
in Rn.Values close to or lower than 1 signify accept-
able behavior.

In order to test the statistical significance of our results,
we have analyzed their variance. ANalysis Of VAriance
(ANOVA) is a mathematical process that tests the statisti-
cal significance of the differences between the mean values
of two or more populations of observations. In order to en-
sure credible results, ANOVA requires: 1) mutually indepen-
dent population values, 2) that pairwise exhibited variances
of populations are the same and 3) that observations should

4We use the terms maintenance and preservation interchangeably.

be normally distributed within populations. The first require-
ment is essential. On the other hand, any violation of the sec-
ond or the third will not be a source of significant problems.
This is proved by [15], where it is shown that the F statis-
tic5 is quite robust against violations of these assumptions.
Based on the aforementioned observations and our experi-
mental setup, we use ANOVA to evaluate the observed stress
values. Classification and clustering experiments cannot be
validated by ANOVA, due to the fact that the first require-
ments is not satisfied. The validity of the classification ex-
periments has been verified with 10-fold cross validation.

The datasets used for our experiments are presented in
Table 3. To the best of our knowledge, the datasets employed
in this evaluation are among the largest ones in comparison
to experiments found in relevant research work. This verifies
our claim for robust behavior of FEDRA. Each dataset was
evaluated for 5 different values of the target dimensionality
(thus in the relevant graphs we encounter 5 points for each
algorithm), which are defined as a fraction of the initial
dimensionality of the dataset. Each time the projection
dimensionality is increased by 2% of the initial dimensions
(starting from 2%)6. Each resulting value is the mean of
20 executions. In all experiments we used the Euclidean
distance metric.

We compare our algorithm against PCA, SVD, Random
Projection, FastMap and LMDS. In the case of Random Pro-
jection the random matrix is generated using the distributions
provided by Achlioptas in [3]. The first proposed distribution
is depicted in the various graphs as RP(1/2) and the second as
RP(1/6). On the other hand, LMDS selects either randomly
(LMDS RN) or heuristically (LMDS MM)2k landmarks for
its initialization.

All experiments have been carried out on a commodity
2.4GHz Pentium IV machine with 1.28GB of RAM. In
the first two sets of experiments WEKA [2] is used for
both classification and clustering purposes, while in the last
set, where memory requirements are extremely high, we
employed an implementation of the Gmeans [10] algorithm.

7.1 FEDRA Evaluation. In the first set of experiments we
used the Wine dataset to assess FEDRA’s (and its variations’)
performance with regards to Stress, RCAM and RCDD. Our
intention was to measure the statistical significance of the
differences between the metrics values obtained by the base
FEDRA algorithm and its heuristics.

As one can see in Figures 6(a), 7(a), neither the DMH

5F statistic is the ratio of two s squares (i.e. estimates of a population
variance, based on the information in two or more random samples).
When employed in the procedure entitled ANOVA, the obtainedvalue of
F provides a test for the statistical significance of the observed differences
among the means of two or more random samples.

6If 2% is smaller than 1 then the projection dimensionality isset to 1 and
it is increased by one on iteration basis.



Table 3: Datasets used in the evaluation.

Dataset Objects Dimensions Classes Description
Wine 178 13 3 Wine chemical observations

Segmentation 2100 19 7 Image segmentation data
Musk 476 617 2 Molecules descriptions

Ionosphere 351 34 2 Ionosphere observations
Synthetic Control 600 60 6 Synthetic Control dataset

Connect-4 67577 42 3 A set of connect-4 games
CovType 581012 54 7 Forest cover type data
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Figure 6: Relative classification ability maintenance (RCAM) depicted as a function of stress.

implementation nor the ILS selection of landmarks amelio-
rated the results significantly in most cases. In addition, vari-
ance analysis of the obtained results suggested that with a
confidence level of 95% our hypothesis, equality between
results mean values, is maintained in 4 out of 5 projection
loops. This means that regardless of the employed FEDRA’s
variation, stress remains the same within a confidence level
of 95%. We come to the same conclusion regarding the re-
spective experiments for RCDD and RCAM. Consequently,
based on these results, we employ only the base FEDRA al-
gorithm in the rest of our experiments.

7.2 Classification Ability Preservation. In the second set
of experiments we evaluated all approaches against four
datasets and depicted their RCAM values versus the exhib-
ited stress. The employed representation depicts algorithms
with low stress and high RCAM values in the upper left part
of the graph. Moreover, although not explicitly shown in the

graphs, higher stress values correspond to lower projection
dimensionality. In other words, the rightmost point of a line
in the charts corresponds tok = 10%n and the leftmost point
to k = 2%n . Consequently, stress is minimized as the pro-
jection dimensionality increases towards 10% of the original
one. According to [13] we would expect an amelioration of
the classification results of kNN because of dimensionality
reduction. However, due to the fact that the latter research
has made rather broad assumptions, we expect a general ten-
dency of reaching 100% of preservation or a small fraction
of improvement.

The first remarkable result was the very high stress value
generated by LMDS. Despite this, LMDS (Figures 6(b) and
7(b)) produced fair results with respect to the RCAM mea-
sure, with high stability, but always lower than the maximum
RCAM values achieved by the other approaches. FEDRA
on the other hand clearly outperforms Random Projection in
all experiments, while achieving better classification ability
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Figure 7: Relative clustering disability degradation (RCDD) depicted as a function of stress.

Table 4: Experiments with large datasets.

Algorithm RFM RCAM RCDD
(CovType) (Connect-4) (Connect-4)

FEDRA 100% 98% 82%
RP(1/2) 98% 99% 81%
RP(1/6) 95% 94% 82%

maintenance than most of the other algorithms. Specifically,
in Figure 6(d) (musk dataset), FEDRA clearly outperforms
all other algorithms in 3 out of 5 projections, while it per-
forms slightly worse than SVD and PCA fork = 8%n and
k = 10%n. Exactly the same behavior, but with signifi-
cantly higher RCAM values with respect to the rest of the al-
gorithms, appears in Figure 6(f). Another notable fact is that
the stress exhibited by FEDRA is always significantly lower
than the one exhibited by Random Projection. In Figure 6(c),
FEDRA is shown to outperform all other approaches in the
final projection, but it is being supplanted by PCA, SVD
and FastMap in 2 out 5 projections. Similar conclusions are
drawn by the results in Figure 6(e).

7.3 Clustering Disability Degradation. In this set of ex-
periments we evaluate all approaches with the previously
presented datasets and plot their RCDD values as a function
of stress. The results highlight algorithms with low stress

and low RCDD values in the lower left part of the graph.
This metric’s best values are those closer to 1, conveying that
the clustering quality is either the same or better than the one
exhibited by the clustering algorithm in the original space.

As one can see in Figure 7(b), LMDS exhibits low stress
while its clustering quality degrades in almost three out of
four cases. Only for the segmentation dataset we notice an
improvement of the clustering quality, where for a particular
projection we obtain a quality of almost 100%.

FEDRA successfully addresses the challenges posed by
this new setup as it achieves the best quality update for the
synthetic control and the ionosphere datasets (Figures 7(c),
7(f)). In addition, as far as the former is concerned, FEDRA
constantly exhibits very favorable values of both stress and
improvement of clustering ability. The experiments with
the musk dataset (Figure 7(d)) indicated that all algorithms
exhibit similar behavior, with FEDRA providing slightly
better and more stable results with respect to the RCDD
measure. Finally, in Figure 7(e), although FEDRA is initially
outperformed by SVD and PCA, it finally achieves high
quality results in both stress and RCDD measures. It is
worth mentioning in this case FastMap’s excellence in the
fifth projection, where it outperforms even PCA.

7.4 Memory Intensive Datasets.Eventually we con-
ducted experiments with two very large datasets and per-
formed one single projection in a space of dimensionality
equal to the 10% of original one. Here we excluded algo-



rithms such as PCA, SVD, and FastMap due to their ex-
cessive memory requirements. Moreover we decided to ex-
clude LMDS due to the excessive stress values produced in
the previous experiments. We only measured classification
and clustering quality in both datasets as the computation of
stress was also infeasible, due to the same reasons.

Table 4 shows experimental results for two datasets:
CovType and Connect-4. In the CovType dataset, due to
memory limitations posed by the implementation of WEKA,
we used an implementation of Gmeans. As clustering valid-
ity measure we use the fraction of the value of F-measure [7]
in the projection space over the one in the original space
and denote as Relative F-Measure (RFM). Ideally, a flaw-
less projection would achieve a value of 100%. FEDRA
achieved 100% clustering quality preservation, thus outper-
forming both Random Projection setups. In the Connect-4
dataset, we used the RCAM and RCDD values to compare
the algorithms. FEDRA exhibits high quality results in both
metrics and slightly outperforms Random Projections, with
the exception of RP(1/2) and RCAM. Moreover, the cluster-
ing quality is significantly improved in all cases illustrating
thus the merits of dimensionality reduction in this context.

8 Conclusions

In this paper, we proposed FEDRA, a fast and efficient di-
mensionality reduction algorithm suitable for hard dimen-
sionality reduction problems, where existing algorithms can-
not be applied. FEDRA achieves quality of results compara-
ble to the most prominent DR algorithms, while being faster
and consuming less space in memory. In addition, FEDRA
is able to employ any Minkowski distance (p > 1) and not
only the Euclidean distance. We theoretically quantitatedthe
quality of the projection and provided bounds in the error in-
troduced due to the projection. Moreover, we proposed two
extensions of the basic algorithm, which can increase FE-
DRA’s quality of results, for applications that can tolerate
higher processing costs. Additionally we introduced a sim-
ple offline algorithm that assesses the quality of the projec-
tion and triggers the re-initialization of FEDRA if necessary.
Through extensive experiments on real world datasets we
demonstrated FEDRA’s quality, reflected in the high qual-
ity clustering and classification results achieved. In our fu-
ture work, we will focus on applying FEDRA on text col-
lections and study its performance in such ultra-high dimen-
sional sparse representation spaces.
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