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Abstract. Due to the vast amount and pace of high-dimensional data
production and their distribution among network nodes, the fields of
Distributed Knowledge Discovery (DKD) and Distributed Dimensional-
ity Reduction (DDR) have emerged as a necessity in many application
areas. While a wealth of centralized dimensionality reduction (DR) al-
gorithms is available, only few have been proposed for distributed envi-
ronments, most of them adaptations of centralized ones. In this paper,
we introduce K-Landmarks, a new DDR algorithm, and we evaluate its
comparative performance against a set of well known distributed and
centralized DR algorithms. We primarily focus on each algorithm’s per-
formance in maintaining clustering quality throughout the projection,
while retaining low stress values. Our algorithm outperforms most other
algorithms, showing its suitability for highly distributed environments.

Keywords: Distributed dimension reduction, distributed knowledge dis-
covery

1 Introduction

Distributed Knowledge Discovery (DKD) has emerged as one of the most chal-
lenging tasks in large scale distributed data management. This is partly due to
the inapplicability of centralized approaches in current research problems, which
is more evident with the advent of new application areas that are inherently
distributed, such as sensor networks and peer-to-peer (P2P) systems. The main
characteristic of P2P systems is the lack of global knowledge, in the sense that no
peer can gather all available data. In large scale P2P networks, data is distributed
to peers (in horizontal partitioning manner) making the cost of centralized as-
sembly and subsequent computation of any centralized algorithm prohibitive. On
the other hand, globally described data can be of very high dimensionality, while
peer local dimensions can be different from each other (vertical partitioning).
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Dimensionality reduction techniques tackle these problems through the def-
inition of various methods for embedding the data from the initial space Rn

to the target space Rk, where k < n. These algorithms are extremely useful in
various disciplines related to knowledge discovery. The latter becomes a difficult
task as the number of dimensions increases, because of two distinct problems:
the ”empty space phenomenon”, and the ”curse of dimensionality” [4]. The for-
mer denotes the fact that data in high dimensional spaces is sparsely situated,
having almost equal distance from one another. The latter refers to the fact
that the sample needed to estimate a function of several variables to a given de-
gree of accuracy grows exponentially with the number of variables. A thorough
investigation of both problems can be found in [5].

The motivation for our work emerges from the need to apply dimensionality
reduction on data distributed in a P2P network. This task is directly applicable
in P2P information retrieval applications, where documents are represented as
high dimensional points using the vector space model. Distributed dimensionality
reduction (DDR) algorithms are then necessary to decrease the representation
costs and to reveal potentially interesting or hidden structure in the data.

Towards this objective, we focus on the DKD problem, assuming that the
data set is partitioned horizontally (i.e. non overlapping sets of identically struc-
tured tuples) and distributed on peers. We identify the following requirements for
DDR algorithms: 1) each point’s projection should be computed independently
from other points, 2) distances between points should be preserved, 3) the algo-
rithm should be fast and linear to the number of projected points, and 4) the
algorithm should incur low communication cost (in a distributed context).

In this paper, we present a DDR algorithm, called K-Landmarks, aiming to
retain clustering quality at the projected space. K-Landmarks first selects an
aggregator node that picks k points (henceforth called landmark points) from
the whole dataset of cardinality d, and projects them from Rn to Rk with
FastMap [3]. The projections of the remaining d − k points are computed by
requesting the preservation of distances, meaning that each point projected must
be at equal distance from all landmark points, both in the original and in the pro-
jection space. Our algorithm is not an adaptation of a centralized algorithm; on
the contrary it is inherently distributed. Preliminary work describing the initial
idea and algorithm was presented in [8]. In this paper, we present additionally
the formal description of the algorithm, its geometric interpretation, the proof
of convergence and new extensive experiments on various UCI datasets1, com-
paring our algorithm’s performance with the most promising DDR algorithms
in the literature. The rest of the paper is organized as follows: in Section 2 we
present a brief overview of the related work. Section 3 describes K-Landmarks,
while in Section 4 the conducted experiments are presented. In Section 5 we
conclude the paper and sketch future research directions.

1 http://www.ics.uci.edu/~mlearn/MLSummary.html
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2 Related Work

In the following presentation we mainly concentrate on distributed approaches
and provide only a brief outline of the most prominent centralized algorithms.
For the rest of this paper we assume that the goal is to project d data vectors
defined in Rn and represented as a matrix Xdxn in the Rk subspace.

One of the first dimensionality reduction methods was Multidimensional Scal-
ing (MDS) [4] that is now referenced as classic-MDS. FastMap [3] was proposed
as a solution to the high computational complexity of MDS while Landmark
MDS (LMDS) [2] addresses the high memory requirements of classic-MDS. The
dimensionality reduction techniques widely used in practice, due to their concep-
tual simplicity, are Principal Components Analysis (PCA) and Singular Value
Decomposition (SVD) [4]. Adaptations of the convergence criterion of MDS and
PCA have resulted in the definition of Independent Component Analysis and
Projection Pursuit algorithm respectively [4].

In the field of DDR we report two promising approaches, the Distributed PCA
and the Distributed FastMap. The intuition of distributed PCA (DPCA) [11] is
based on the aggregation of a fragmented covariance matrix, which is computed
by the equation: dC = XT (I − d−111T )X. For each node i possessing di data
the following statistics are denoted: xi as the vector of column means, ki as the
number of required principal components from node i, Xi as the local dataset and
Λi, Ui as the matrices of the ki largest eigenvalues and corresponding eigenvectors
(in descending order) of location i. Furthermore the expression I − d−111T , is
transformed into (I − V ) + (V − d−111T ), where x = d−11T X is the n column
means vector, 1 is a vector containing ones (1s) and V is a diagonal matrix
(vii = d−1

i 11T ). DPCA is based on the following decomposition scheme of the
covariance matrix (see [11] for details):

dC =
∑s

i=1 UiΛ
2
i U

T
i +

∑s

i=1 di(xi − x)(xi − x)T (1)

Initially, an aggregator node is selected that performs the merging and local ki

values are set. Then the statistics (di,ki,xi,Λi,Ui) are calculated on each network
node and communicated to the aggregator. The latter, based on equation (1),
calculates the global covariance matrix dC, and transmits its first k eigenvectors
together with the global mean value x back to the s network nodes. Finally,
each node computes its dataset embedding as follows: Di = (Xi − 1xT )Uk.
Another approach, called Collective PCA, is considered in [6]. However it solves
the problem of vertical data partitioning, while we focus on the horizontal case.

In [9] two distributed adaptations of FastMap are proposed, the One-Time
Distributed FastMap and the Iterative Distributed FastMap. The former iter-
ates on the data of each node independently, and communicates the generated
pivot points to a randomly selected aggregator. Received pivots are used as
input to FastMap which generates a global pivot set that is broadcasted and
used for the subsequent projection of local datasets. On the other hand, the
Iterative Distributed FastMap employs an iteration-by-iteration pivots compu-
tation scheme where global pivots are computed on iteration basis according to
the find-distant-objects heuristic. Although the two adaptations do not guaran-
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Algorithmic Memory Addition of Network
Complexity Requirements a new point load

PCA O(n2d + n3) O(n2 + nd) O(kn) —

DPCA O(n2di + n3) O(n2 + ndi) O(kn) O(nsk)

FastMap O(dk) O((k + n)d + d2) O(k) —

One-Time O(dik) or O((k + n)di + d2
i ) O(k) O(skn + k2)

D.FastMap O(dik + sk2)

Iterative O(dik) or O((k + n)di + d2
i ) O(k) O(skn + k2)

D.FastMap O(dik + sk2)

LMDS O(kfd + f2 + f3)or O(f(n + k) + f2)or O(kf) —
O(kfd + f2 + f3 + k2d + k3) O(n2 + f2)

Distributed O(kfdi + f2) or O(f(n + k)) or O(kf) O(fn + fk)
LMDS O(kfdi + f2 + f3) O(f(n + k) + f2)

PAA O(d) O(n) O(1) 0

Table 1. Assessment of the various algorithms. Number of points (d), initial dimen-
sionality (n), projection space (k), nodes (s), and number of sampled points (f).

tee that the set of pivots selected will be identical with the ones of centralized
FastMap, in large data collections they approximate well the original set and
provide quality results marginally equal to the original approach.

Piecewise Aggregate Approximation (PAA) [7] is a simple and effective algo-
rithm that can be considered as DDR, which substitutes a set of ⌊n/k⌋ variables
with their mean value. The only drawback that PAA exhibits is its dependence
on the size of the rolling window (⌊n/k⌋). If the latter is big (k << n) then
sharp changes in data will be lost.

The final algorithm outlined is our proposition concerning the distributed
adaptation of LMDS, which we refer to as D-LMDS. LMDS is an algorithm that
by construction has been developed to work with only a fraction of the total
data. In our variation, the dataset is assumed to be distributed among s network
nodes. We initially select an aggregator node that will be assigned the classic
MDS computation. Afterwards, each node selects fi points (

∑s

i=1 fi = f) from
its local dataset and forwards them to the aggregator. The latter performs classic
MDS and produces their embedding in the Rk subspace. Then, the aggregator
forwards all landmark points and their embeddings to network nodes. Finally,
each node applies for each of the local points distance-based triangulation.

Table 1 provides a short comparative assessment of the algorithms presented
above. Under certain assumptions all presented algorithms provide potential
solutions to the DDR problem. DPCA or D-LMDS will deteriorate quickly and
need to recompute the decomposition in the case that many new points are
added. In addition, the sampling procedure in the case of D-LMDS will not
depict the current state of the network and will have to be recomputed.

Similar disadvantages occur in all other algorithms, except PAA. This is be-
cause all are adaptations of already existing centralized approaches that have not
been designed for distributed environments. For example, the application of the
Iterative Distributed FastMap can only take place in a context where commu-
nication between nodes as well as their availability is guaranteed (to ensure the
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large scale message exchange that is necessary) otherwise the synchronization of
network nodes is practically impossible. Moreover, the addition of new points in
an existing projection imposes the re-execution of FastMap, as its credibility lays
in the pivots selection. On the other hand, PAA seems to be a viable solution.

It is therefore obvious that a new approach is required, that will combine
the salient features of the aforementioned algorithms in terms of network load,
algorithmic complexity and quality of results, while being immune to subsequent
(after execution) changes in the processed data (i.e. massive addition or deletion
of points). Moreover, the algorithm sought has to be inherently distributed and
adaptable to potential network failures and topology changes. Finally it has to
apply to the full extend of distributed applications, starting from controllable
laboratory environment and reaching large scale P2P networks.

3 The K-Landmarks Algorithm

The K-Landmarks algorithm is a novel algorithm for DDR, designed specifically
for distributed environments. It conforms to the four requirements stated in the
introduction and in addition it is immune to data changes. K-Landmarks capi-
talizes on the general principles of D-LMDS, while differentiating in the way each
step is performed and exhibiting lower complexity and network traffic. Given d
resources represented as points in Rn, distributed arbitrarily in a network of s
nodes, with each node storing di resources, we want to find a projection of the
data in Rk, while retaining distances among points and the ability to achieve
clustering quality comparable to the one in the original space.

Theorem 1. A set of k points defined in Rn can be embedded in the Rk subspace
without loss of distance information (zero stress projection2).

Proof. The set of processed points define matrix Xkxn. The latter can be pro-
jected in Rk through the transformation X ′

kxk = XkxnQT
kxn where the Q rows

are the singular vectors of X. The relationship between the inner products ma-
trix of the projected data and the inner products matrix of the original data is
given by the following computations:

C ′ = X ′
kxkX ′T

kxk = XkxnQT
kxn(XkxnQT

kxn)T = XkxnXT
kxn = C

Moreover, each cell (i,j) of C is populated by the value xix
T
j and based on

equality C = C ′ we conclude that xix
T
j = x′

ix
′
j
T
. Then the new distance between

points x′
i,x

′
j is:

d(x′
i, x

′
j) =

√

∑k

p=1(x
′
ip − x′

jp)
2 =

√

∑k

p=1(x
′2
ip + x′2

jp − 2x′
ipx

′
jp)

=
√

x′
ix′T

i + x′
jx′T

j − 2x′
ix′T

j =
√

xixT
i + xjxT

j − 2xixT
j = d(xi, xj)

Hence, the projection of k points from Rn to Rk can be defined without loss of
distance information and consequently zero stress.

2 Stress measure, defined as
∑

(dij −d′

ij)
2/d2

ij , where dij is the distance of points i,j in
the original space and d′

ij their distance in the projection space, signifies the quality
of the projection in terms of distances preservation.



6 Panagis Magdalinos, Christos Doulkeridis, Michalis Vazirgiannis

Algorithm 1 K-Landmarks algorithm.

1: Input: Projection dimensionality (k), number of landmark points from node i (ki),
local dataset defined in Rn

2: Output: local dataset defined in Rk

3:
4: if node is aggregator then

5: Select ki points from local dataset
6: Create landmark set, LS=∅

7: Create projected landmark set, PLS=∅

8: for i = 1 to s do

9: Receive ki landmarks from node i
10: LS=LS ∪ ki

11: end for

12: PLS = FastMap(k, LS)
13: Communicate PLS, LS to all nodes
14: else

15: Select ki points from local dataset
16: Send points to aggregator
17: Receive LS, PLS
18: end if

19: for i = 1 to all local points x do

20: Solve ‖x
(k)
i − PLS

(k)
i ‖ = ‖x

(n)
i − LS

(n)
i ‖ for i=1 to k

21: end for

22: return x
(k)
i //the projection of x

(n)
i in Rk

Algorithm 1 is the formal description of K-Landmarks. In the first step, an
aggregator node is selected. The latter uses k landmark points (LS) sampled
from the network (line 9) and projects them to Rk with FastMap (line 12). The
original set of landmark points and the generated mapping (PLS) are forwarded
to all nodes (line 13), which in turn project local points independently (line 20).
The successful projection of a point in Rk maintains its distances from the
landmark points both in the original and in the projection space.

 

Fig. 1. Geometrical interpretation of the K-Landmarks algorithm. Projection of point
C from R3 (left) to R2 (right). A, B are the landmark points.
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The equation: ‖x
(k)
i − PLS

(k)
i ‖ = ‖x

(n)
i − LS

(n)
i ‖ represents a hypersphere

centered at PLS
(k)
i with radius ||x

(n)
i −LS

(n)
i ||. The algorithm searches the com-

mon trace of all k hyperspheres, which is the projection of point xi in the em-
bedding space. The result is obtained by solving the above system of non-linear
equations with the Newton method. An example of the algorithm is depicted in
Fig. 1. Note that the hyperspheres defined by the algorithm expose two common
traces, which are symmetric to the line defined by points A′B′. This is due to the
fact that the coordinates of each point result from a square root computation.
We choose to retain only positive results and therefore the implementation of
our algorithm discards the second solution. In any case, one can select either the
projection laying on plane Π1 or Π2 without affecting the final result, as long
as the same plane selection algorithm is employed for point D.

Theorem 2. For any non linear system of equations defined by K-Landmarks,
the Newton method produces a solution if the triangular inequality is sustained
in the original space.

Proof. For any point C of the initial space and any pair of landmark points A
and B, a triangle ABC is defined. Without loss of generality, we assume that
‖
−−→
CB‖ ≤ ‖

−→
CA‖ and based on the triangular inequality we derive:

‖
−→
CA‖ - ‖

−−→
CB‖ ≤ ‖

−−→
AB‖ ≤ ‖

−→
CA‖ + ‖

−−→
CB‖ (1)

The system defined for the projection is the following:

‖
−→
CA‖ = ‖

−−→
C ′A′‖ and ‖

−−→
CB‖ = ‖

−−−→
C ′B′‖

This system has no solution if there exists no common trace between the afore-

mentioned hyperspheres. This is translated to: ‖
−−−→
A′B′‖ < ‖

−−→
C ′A′‖ − ‖

−−−→
C ′B′‖ or

‖
−−−→
A′B′‖ > ‖

−−→
C ′A′‖ + ‖

−−−→
C ′B′‖ and equally:

‖
−−−→
A′B′‖ > ‖

−→
CA‖ + ‖

−−→
CB‖ (2) or ‖

−−−→
A′B′‖ < ‖

−→
CA‖ − ‖

−−→
CB‖ (3)

However, based on [10] and Theorem 1 we obtain a zero stress projection from
FastMap, thus deriving:

‖
−−−→
A′B′‖ = ‖

−−→
AB‖(4)

Consequently, based on (1), (4) we conclude that equations (2), (3) are never
true, meaning that the system in question always has a solution (there always
exists a projection) provided that the triangular inequality is sustained in the
original space.

One thing that has not yet been discussed is the selection of initial points.
K-Landmarks employs three different initialization techniques namely: random,
MaxMin and MaxDist. In random selection each node selects ki points from
its dataset randomly. The MaxMin heuristic [2] enforces the selection of points
that maximize the minimum distance from any of the already selected landmark
points while the MaxDist selects the furthest from the existing landmark points.
Both heuristics select their first point randomly and are applied on local datasets
for the retrieval of the ki points requested by the algorithm.

To sum up, the proposed algorithm differs significantly from other widely
employed DDR approaches since it achieves the projection of the vast majority
of points independently from the rest, implying that only the (few) landmark
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Algorithmic Memory Addition of Network
Complexity Requirements a new point load

K-Landmarks ((di − ki)k
3/3) O(kn + k2) O(k3/3) O(nk + k2)

Table 2. K-Landmarks evaluation matrix.

points’ projection will be done in a centralized manner. Moreover, the projec-
tion remains unaffected by subsequent additions of data points. This is due to
the fact that any new point will be mapped analogously close or far from the
landmark points depending on its distance from the latter in the original space.
Consequently, no re-computation of the projection is needed in order to guar-
antee projection quality preservation. Furthermore, the minimization criterion
employed by the algorithm (

∑

|LS| |distanceorig − distancenew|) is applied to
each point independently, contrary to the widely employed stress that is applied
to the whole dataset. Finally, the network load imposed (see Table 2) is lower
than the load of other algorithms.

Apart from the above, the proposed algorithm is inherently distributed, in
contrast to the other distributed algorithms described in Section 2. One can
imagine its usage in a P2P environment. These networks exhibit certain intrinsic
peculiarities, such as instability, bandwidth restrictions, etc. If K-Landmarks is
used, the sampling procedure will be carried out once in the lifetime of the
network and the result will be forwarded to all nodes entering the network at
any time. The added value of the approach is apparent, as its immunity to
additions saves both local and network resources.

4 Experiments

In this section, we study the comparative performance of K-Landmarks on vari-
ous datasets (Table 3) from the UCI Machine Learning Repository. We highlight
the use of datasets both of higher dimensionality (up to 617 dimensions) and
cardinality (up to 2000 objects) compared to other relevant research papers [3,
9]. Our goal is to achieve results of quality close to well-known centralized and
distributed algorithms.

4.1 Experimental Setup

The experimental scenario involves clustering various data sets before and after
the application of a DDR algorithm. The quality metrics we use are the stress
value and the clustering quality maintenance. Stress evaluates the quality of
the projection in terms of distances’ preservation, while the second measure
enables us to observe how DDR affects the clustering quality. We capitalize on the
well known clustering quality index F-Measure [1] and define clustering quality
preservation as the ratio of the F-measure values before and after the DDR

process, i.e. F−Measure(Rk)
F−Measure(Rn) . The clustering algorithm employed is K-Means [1].

The experiments also allow measuring the effect of changing the projection
dimensionality on the stress and F-measure values. Each dataset was evaluated
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Dataset Objects Dimensions Classes Description

Ionosphere 351 34 2 Radar observations

Isolet5 1559 617 26 Letters of the alphabet

Musk 476 166 2 Molecules descriptions

P.I.Diabetes 768 8 2 Medical observations

Segmentation 2000 19 7 Outdoor images segments

Synthetic control 600 60 6 Randomly generated data

Table 3. Datasets used in the experiments.
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Fig. 2. Clustering Quality vs. stress for the ”Ionosphere” and ”Musk” datasets.

with 5 different projection dimensions (5 points for each algorithm on the charts),
which were defined as a fraction of the initial dimensionality of the dataset. Each
time the projection dimensionality is increased by 2% of the initial dimensions.

Assume a network of s nodes, with d data vectors distributed evenly among
them. The vectors are defined in Rn and projected in Rk. The algorithms we
use in comparison to K-Landmarks are PCA, FastMap, Distributed FastMap,
Distributed PCA, Distributed LMDS and PAA. The notation employed in the
diagrams is the following: KL refers to K-Landmarks, LMDS to the D-LMDS and
DFM to distributed FastMap. DPCA uses the k principal eigenvectors generated
by each peer separately, while K-Landmarks and LMDS randomly select from
each node ⌈k/s⌉ and ⌈k+1/s⌉ points respectively. The reason for the selection of
⌈k+1/s⌉ points for LMDS lays in the original publication [2], where it is advised
to choose at least k + 1 landmarks. Also, the Newton method employed by K-
Landmarks is initialized with the k first coordinates of each processed vector
in the original space. All experiments have been carried out on a commodity
2.4GHz Pentium IV machine with 768MB of RAM. The results are mean values
of 50 executions and each setup simulates a network of s = 20 nodes.

4.2 Results

In the first set of experiments, we measure for each algorithm and target dimen-
sionality value the F-measure quality preservation (y-axis) versus the respective
stress value of the projection (x-axis). Our aim is to identify the DDR algorithms
that exhibit low stress while maintaining clustering quality.
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Fig. 3. Clustering Quality vs. stress for ”Isolet5” and ”image segmentation” datasets.
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Fig. 4. Results from experiments on ”P.I.diabetes” and ”synthetic control” dataset.

In Fig. 2 (left) experiments on the ”Ionosphere” dataset show that K-Landmarks
outperforms all its competitors, even the centralized approaches such as PCA
and FastMap. Most of the K-Landmarks measurements reflect extremely low
stress and high clustering quality maintenance, close to or higher than 100% (i.e.
centralized clustering quality). This is due to the empty space phenomenon and
the curse of dimensionality. LMDS exhibits the worst behavior proving rather
unstable. Similar behavior is observed using the ”musk” dataset (Fig. 2 - right).

Experiments on the ”Isolet5” and ”image segmentation” datasets (Fig. 3)
provide better insight. All algorithms except from PAA and LMDS performed
similarly, with PCA performing better. PAA also exhibits satisfactory results
in the clustering quality maintenance aspect, but higher stress than the rest.
Finally, LMDS proves to be rather unsatisfactory in both quality axes.

The experiments on ”pima indians diabetes” and ”synthetic control” (Fig. 4)
gave similar results to the ”ionosphere” dataset. K-Landmarks achieves the best
overall performance, showing both low stress and high clustering quality main-
tenance. PAA and LMDS achieve marginally equal clustering quality results,
compared to the rest of the approaches, but with higher stress values. However
PAA proves to be better than LMDS, when both measures are considered.

In Fig. 5, we measure F-measure maintenance and stress for different pro-
jection dimensionality values (k) for the ”image segmentation” dataset. The
aim is to study the effect of k on these two measures. Stress values decrease
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Fig. 5. Stress and F-Measure deviation in the ”image segmentation” dataset.
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Fig. 6. K-Landmarks immunity to the addition of data.

monotonously as k increases (Fig. 5 - left), because the ability to express dis-
tances between data increases too. The same general tendency appears in the
case of clustering quality maintenance (Fig. 5 - right). For the majority of the
algorithms, clustering quality maintenance ameliorates with k. The conclusion is
that DDR algorithms perform better with increasing projection dimensionality.
We clarify that the average variance of all measured values in the 50 executions
for all datasets is in the order of 10−4, showing the stability of our algorithm.

In the last set of experiments, we demonstrate the robustness of K-Landmarks
to retain clustering quality, with regards to new data points added to the dataset.
In Fig. 6, we study the algorithm’s different initialization setups. The new setup
depicted is KL-IRR, in which the algorithm was initiated with k points that
were randomly generated and did not belong to the dataset (we remind here the
3 other initialization setups: random, MaxMin and MaxDist).

The datasets are subsequently added to the projection. In the ”synthetic con-
trol” dataset, we added 600 points, while for the ”image segmentation” dataset
we added 2000. In both cases points were inserted after the algorithm’s execu-
tion with the initial k landmarks. The obtained results exhibit an aggravation
tendency in the stress measure, yet the clustering quality remains almost the
same. These experiments show K-Landmarks is barely affected by the massive
insertion of data points and can guarantee clustering quality maintenance with
a slight loss in the preservation of the original distances. Another conclusion,
clearly depicted on the right diagram, is that the results obtained by our algo-
rithm are not affected by the way initial points are selected. Therefore, based on
our experiments, we suggest the random selection initialization scheme (KL-RS).
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5 Conclusions and Future Work

In this paper we proposed a new effective, inherently distributed, algorithm for
DDR, K-Landmarks. We compared experimentally our approach to well known
DDR approaches with regards to stress and clustering quality preservation. The
results show that K-Landmarks is a robust algorithm outperforming existing
DDR approaches. Moreover, it is comparable and sometimes even superior to
centralized methods. Clustering quality is retained with dimensionality reduc-
tion, in spite of the small loss in distance preservation. Our future work will
mainly focus on the evaluation of K-Landmarks with text data and its combi-
nation with distributed clustering approaches.
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