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Scaling up data mining algorithms for data of both high dimensionality and cardinality has been
lately recognized as one of the most challenging problems in data mining research. The reason is
that typical data mining tasks, such as clustering, cannot produce high quality results when applied
on high-dimensional and/or large —in terms of cardinality— datasets. Data pre-processing and in
particular dimensionality reduction constitute promising tools to deal with this problem. However,
most of the existing dimensionality reduction algorithms share also the same disadvantages with
data mining algorithms, when applied on large datasets of high dimensionality. In this paper, we
propose a fast and efficient dimensionality reduction algorithm (FEDRA), which is particularly
scalable and therefore suitable for challenging datasets. FEDRA follows the landmark-based
paradigm for embedding data objects in a low-dimensional projection space. By means of a
theoretical analysis, we prove that FEDRA is efficient, while we demonstrate the achieved quality
of results through experiments on datasets of higher cardinality and dimensionality than those
employed in the evaluation of competitive algorithms. The obtained results prove that FEDRA
manages to retain or ameliorate clustering quality while projecting in less than 10% of the initial
dimensionality. Moreover, our algorithm produces embeddings that enable the faster convergence
of clustering algorithms. Therefore, FEDRA emerges as a powerful and generic tool for data
pre-processing, which can be integrated in other data mining algorithms, thus enhancing their
performance.

Categories and Subject Descriptors: H.Ztabase Management]: Database ApplicationsBata Mining
H.3.3 [Information Systems]: Information Storage and RetrievalGlustering H.3.4 [Information Systems):
Systems and SoftwareRerformance evaluation fciency and gectiveness)

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Landmarks, Dimensionality Reduction, Clustering Quality

1. INTRODUCTION

An increasing number of contemporary applications produessive volumes of very
high-dimensional data. In scientific databases, for exaiplis common to encounter

large sets of observations, represented by hundreds ortheeisands of coordinates.

Unfortunately the rate of data generation and accumulaigmificantly outperforms our
ability to explore and analyze it. Nevertheless, in ordeextract knowledge from these
datasets, we need to access the underlying, hidden infermaltiowever, the size and
complexity of these collections makes their processing amalysis impractical or even
ineffective [Beyer et al. 1999]. Therefore, scaling up data ngratgorithms for data of

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 220



2 : Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

both high dimensionality and cardinality has been recarttpgnized as one of the top-10
problems in data mining research [Yang and Wu 2006].

A potential solution to this problem is provided by data precessing techniques and
particularly dimensionality reduction. Dimensionaligduction addresses these challenges
by projecting data from the original high-dimensional sp&x a new, lower dimensional
space while retaining useful data properties such as pgrdistances or other statistical
properties (i.e., variance). However, the vast amount obgggted data dictates methods
that are both fast and exhibit low memory requirements. tuofately, the vast majority
of existing algorithms are either computationalffigent at the expense of high memory
requirements or they require limited memory at the expefsgyaificant computational
cost.

The main focus and application area of our work is the enhraroe of the quality
of clustering algorithms for high-dimensional datasetpatticularly high cardinality, by
means of #ficient and scalable dimensionality reduction. To this ene,propose-E-
DRA a fast and #icient dmensionality eduction_&orithm, that aims to address these
challenges directly. FEDRA belongs to the familylahdmark-basedlimensionality re-
duction algorithms. The basic intuition is thlatn-dimensional objects are selected as
landmarksand they are embedded tdkalimensional projection space, by retaining their
exact pairwise distances. Then, the remaining objectsrabedded in thé-dimensional
space, by requiring that their distances to the landmarks:aactly retained.

FEDRA is computationally ficient without high memory requirements (compared to
existing algorithms) and as demonstrated experimentaflifieves high quality results
when applied to typical clustering tasks. In particularDHA manages to successfully
reproduce the original cluster structure in a space of dgioerlity lower than 10% of the
initial dimensions while the obtained embedding signifitaaccelerates the convergence
rate ofk-Means. We emphasize that our experimental evaluation@maignificantly
larger datasets than those used in the study of competititesf-the-art algorithms. The
results verify the applicability of FEDRA on large-scalestiering tasks. The individual
contributions of this work are summarized as follows:

(1) We provide a theoretic and experimental study of the ffawii landmark-based di-
mensionality reduction algorithms. Each algorithm is ased with respect to its
computational resources requirements as well as its aiplity and viability in hard
dimensionality reduction problems.

(2) We present FEDRA, a provably fast ani@ent dimensionality reduction algorithm
that follows the principles of landmark-based dimensiiypatduction.

(3) We provide a thorough theoretical analysis of FEDRA theludes the calculation of
computational complexity, the proof of embedding exiseeran assessment of pro-
jection quality and a geometric interpretation.

(4) We propose two extensions of the basic algorithm, inolgidn dfective landmark
selection heuristic as well as a heuristic for choosing th&t bmbedding for a data
object out of a set of possible embeddings.

(5) Inspired by our previous work [Magdalinos et al. 2006§ demonstrate the appli-
cability of FEDRA in a widely distributed setting, where das not available at one
centralized location but instead it is horizontally fragrtezl over a set of independent
nodes in the network.
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Symbol | Description

n Dimensionality of original space

k Dimensionality of projection space
d Cardinality of dataset

pi or P Data point

liorL; Landmark point

p Data point in the new space

Pi.j The j-th coordinate ofy

dp(pi, pj) | Minkowski distance betweep and p;, dy(pi, pj) = (O (P — p“)p)%’
d(pi, p;) | Euclidean distance betweghandp; (p = 2)

dy(pi, p;) | Distance betweep; andp; in original space

dp(pi, p;) | Distance betweep; andp; in projection space

fg Thed-dimensional Euclidean space with Minkowski distance rogdr

Table I. Overview of basic symbols.

(6) By means of an extensive evaluation on large-scale efatase validate the behavior
of FEDRA by comparing it against other state-of-the-artimark-based dimension-
ality reduction techniques.

The rest of this paper is structured as follows: Section Zipges a brief survey of
related work in dimensionality reduction algorithms. Ircgen 3, we present FEDRA and
describe in detail the embedding algorithm. Then, we pmuaitdanalysis of our theoretical
findings in Section 4. The extensions of our basic algorithepeesented in Section 5. In
Section 6, we demonstrate the results of the experimerahlation. Finally, we conclude
the paper and sketch future research directions in Section 7

2. RELATED WORK

In this section, we provide an overview of the area of dimemaiity reduction. We com-
mence by providing a classification scheme for dimensionedduction algorithms cou-
pled with various metrics for the evaluation of their resulFurthermore, we outline the
most dominant linear techniques and present in details # soteset, namely landmark-
based methods that are prominent for théliceency in terms of consumption of computa-
tional resources. Due to the emergence of distributed kedygéd discovery, we report the
latest results in the area of distributed dimensionalijution and elaborate on the ex-
tensibility and applicability of state-of-the-art algthins in distributed environments. The
section concludes with a comparative assessment of thgzaabhlgorithms in terms of
time and space requirements.

In the following, we assume that the dataset is composddiafa objects represented as
points in then-dimensionabriginal spacehat are going to be embedded ik-dimensional
projection spacgwith k significantly lower tham (k < 0.1n). The Minkowski distance
between two pointg; andp; in the original space is depicteddg(pi, p;), while d;(pi, p;)
denotes their distance in the projection space. In the ddke &uclidean distance we drop
the subscript and simply uskp;, p;). For a complete overview of the basic symbols used
in the following, we refer to Table I.
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2.1 Classification Scheme and Quality Measures

2.1.1 Classification SchemeDimensionality reduction problems can be broadly clas-
sified into three distinct categories [Carreira-Perpin@®7]. Hard problemswhere data is
defined in a space consisting of hundreds or even thousamd®adinates and drastic di-
mensionality reduction is required, possibly of orders aigmitude Soft problemswhere
the requirement for reduction is milder, aNtsualization problemswhere data of high
dimensionality is mapped to few dimensions, such that itectire becomes perceivable
by humans. The algorithms that solve these problems arsifidabwith respect to the way
they manage data [de Silva and Tenenbaum 20Q0&gar algorithmsembed any object in
the identified low-dimensional space by deriving a lineanbmation of its coordinates.
This procedure implies that high-dimensional data lay oaproximately linear manifold
of significantly lower dimensionality. On the other hanon linear methodassume that
such global linearity does not exist and operate on smattifras of the high-dimensional
manifold that can be perceived as locally linear. If we cdesthe dimensionality of the
projection space, then reduction methods are distingdibbveerglobalandlocal [Lian
and Chen 2009]Global methodembed data in a common low-dimensional space while
local methodgroject small data partitions to a dimensionality whichadcalated by the
corresponding partition’s local statistics. Finally, dading on whether or not the pairwise
distances of points are exactly retained in the projectfmats, dimensionality reduction
algorithms can also be classified @sproximateor exact In the context of this work we
will primarily focus on the family of approximate, lineadadpal dimensionality reduction
methods and specifically on one of its subsets, namely laridvesed algorithms.

2.1.2 Quality Metrics. We also provide an overview of appropriate quality metrars f
the evaluation of dimensionality reduction algorithms.

Distortion. While there exist dferent methods for assessing the quality of an algorithm,
the most popular metric @istortion[Hjaltason and Samet 2003]. Distortion quantifies the
change in the distance between any two pofifs; due to the projection and is defined as
the lowestc; ¢, value withcy,c, > 1, which guarantees that:

1 4
C_ldp(pi, pj) < dy(pi, Pj) < c2dp(pis Pj) 1)

Stress. Distortion implies the existence of theoretic upper anddowounds to the
distance deviation induced by an algorithm. However, thévdton of explicit bounds
may not be possible for some algorithms, while others majbéxorse theoretic bounds
compared to their actual behavior. In such cases, an afiplieariented metric likestress
is employed. Stress quantifies the capability of an algorith approximate the original
pairwise distances, by comparing the original set of distarwith the one obtained in the
projection space. Stress is calculated by formula 2.

d 59 (do(pi, pi) = d4(pi, Pi))2
Strese. Jz.lz,l( o(pi, i) — do(pi, pi) o

L 2L, do(pi, pj)?
Task-related Metrics. Another approach of indirectly assessing the quality ofraethi-

sionality reduction algorithm is to compare the performean€ a data mining task (i.e.,
clustering or classification) prior and after the applicatbf dimensionality reduction.
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Typical examples include th€lustering Preservation Rati(CPR), theRelative Classifi-
cation Ability MaintenancédRCAM) and theRelative Clustering Disability Degradation
(RCDD). CPR [Gabriela and Martin 1999] validates an embegldiith respect to its abil-
ity to maintain the original cluster structure. Assumingttdata labels are known in ad-
vance, CPR employs a nearest neighbor classification schatheneasures how many
cluster labels have changed due to the repositioning ofctbjey the projection. In the
same spirit, RCAM and RCDD [Magdalinos et al. 2009] quantiifg amelioration of the
performance of classification and clustering algorithmee tb dimensionality reduction.
Finally, for the specific case of nearest neighbor retrigha&Pruning Power(PP) and the
Computational Cos(CC) metrics [Lian and Chen 2009] can be employed. PP measure
the number of objects that are pruned in the low-dimensispate using the triangle in-
equality without introducing false dismissals while CC m@@s the number of distance
computations that take place in the original high-dimenaispace, after the completion
of the pruning phase.

2.2 Prominent Dimensionality Reduction Techniques

Dimensionality reduction can be simply viewed as a trams&dion that embeds data in
a low-dimensional space. One of the key issues however igéfinition of the corre-
sponding transformation matrix. The latter is accomplisivith the use of linear algebra
techniques which operate in the heart of most algorithmgefdecomposition, QR factor-
ization and Singular Value Decomposition (SVD) comprisehsexamples [Stewart 2001].
One of the initial dimensionality reduction methods is ridithensional scaling (MDS)
often referred to as classic MDS [Togerson 1958]. MDS embatisin a low-dimensional
space by projecting on a space spanned by the eigenvedbrotinespond to thielargest
eigenvalues of the data cross product maiiX'. Principal Components Analysis (PCA)
[Chakrabarti 2002] is a closely related method to MDS thatvde the corresponding

eigenvectors from the data covariance matfgﬁ,TY, whereX signifies data matriX with
means subtracted across dimensions. MDS req@(e?) space and(d?) time while
PCA O(n®) andO(n?) respectively. Linear Disciminant Analysis (LDA) [SwetschWeng
1996] is a technique closely related to PCA, in the sensethiegtboth project points on
a set of axis that best discriminate the data. However, apnto PCA that maximizes
data covariance, LDA attempts to best discriminate datsela The poor scaling ability
of classic LDA in conjunction with its high quality resultsspired the definition of many
alternatives such as Nonparametric LDA [Li et al. 2009], &ional LDA [Sharma and
Paliwal 2008] and QR-based LDA [Ye et al. 2004]. Like PCA, L#quiresO(n®) time
andO(n?) space. The direct application of SVD &nresulted in methods such as Corre-
spondence analysis (CA) [Payne and Edwards 1999] and Lasmantic Indexing (LSI)
[Deerwester et al. 1990].

Due to the fact that the eigenanalysis and singular valuerdposition of a matrix are
quite expensive in terms of computational resources, noasanethods have attempted to
approximate their results. Instead of using the leadingudar vectors of the original data
matrix A, in [Drineas et al. 2006] the authors choose directly a duffsslumns and rows
from the actual dataset and perform an approximation of thygnal data matrix through
multiplication CUR C andR are matrices populated with columns and rows frame-
spectively whileU is defined as a product &f,R andA. Despite its simplicity, this method
yields results of high quality since it induces a boundedreslightly larger than that of
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SVD. Apart from its simplicity, the key properties of CUR a@eposition are its low time
and space requirements; assuming the selectidrodvs and columns, time complexity
is upper-bounded b@(k®) while memory load reache3(d + n). By introducing a new
row and column selection procedure [Mahoney and Drinea82@%: authors managed to
further reduce the approximation error without additioc@hputational load, thus further
ameliorating the quality of the decomposition.

Trying to solve the high time requirements of MDS, Faloutsmsl Lin introduced
FastMap [Faloutsos and Lin 1995]. FastMap is an alternativielDS which employs
elementary Euclidean geometry and achieves high quabtyltewith considerably lower
time requirement®(dk). A significant drawback of FastMap is its memory requiretaen
which reachO(d?). The latter is partially addressed in a variation of theogthm that
takes as input the original points, thus losing its dimemality agnostic nature. Then,
memory requirements are reduced@(k + n)), however computational complexity rises
since it requires computation of high-dimensional diseshc

A powerful yet extremely simple and computationalfig@ent dimensionality reduction
method is Random Projection. Random Projection comprisgeeial case alata obliv-
ioustechnique [Ailon and Chazelle 2010] since, contrary to @bl other approaches,
defines a transformation matrix without using any directnalirect information from the
underlying dataset. Indeed, data points are embedd& with the use of a randomly
generated matrix ) through muItipIication%(XRT. The idea of the projection is based
on the Johnson-Lindenstrauss lemma.

Lemmal. Johnson-Lindenstrauss. For any 0< ¢ < 1 and any integed, letk be a
positive integer such th&t > 4(2/2 — £3/3)~!Iind. Then for any seV of d points inR"
there is a mag : R" — R<such that for alu,ve V : (1 - &)llu— V| < ||f(u) - (V)| <
(1 + &)]lu— Vv|[2. Further, this map can be found in randomized polynomiaktim

An elementary proof of this lemma is provided in [Dasguptd &upta 2003]. Since the
embedding of a dataset froffj to 5',‘) (p = 1) is acquired through a matrix multiplication
procedure, time requirements are upper-bounde@®ukn). Memory requirements are
low, O(kn), since the algorithm requires only the constant existeftdge random matrix in
main memory. Addition of a new point results@(kn) computational overhead. Random
Projection is immune to massive additions of points, beedausoes not employ data-
dependent information for the embedding, such as distareteia® between processed
data, which can beffected by subsequent additions.

Random Projection can be significantly accelerated in madty employing an ap-
propriately defined sparse projection matrix. In [Achlap®001], two simple distribu-
tions are proposed that prove rather robust and can easiappked on large datasets.
Running time is then significantly reduced becai&seomprises either a full matrix of
+/ — 1 or a sparse matrix with approximat%yof its cells set to 0. Thé&ast Johnson-
Lindenstrauss TransforifiFJLT) introduced in [Ailon and Chazelle 2010; 2006] marsege
to produce an even sparser matrix, thus further accelgrtiienprocedure. FJILT reduces
the number of non-zero elementsknby introducing an additionafast Fourier Trans-
form based preprocessing step. Thus, overall time requireragathen upper-bounded
by O(dnlogn+ nlogde—2), however the latter is achieved at the expense of guaragtee

1In the context of this paper we follow the first variation whiis the one appearing in the original publica-
tion [Faloutsos and Lin 1995].
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distance distortion bounds only for projecting frgfto £, p = {1, 2}, and not for generic
Minkowski distance functions.

2.3 Landmark-based Dimensionality Reduction

In order to address the high memory requirements of MDS ahérhark-based projection
methodology has been introduced. Instead of mapping al slatultaneously to the pro-
jection space, landmark-based algorithms initially estteasmall fraction of points which
are embedded in the projection space. Subsequently, basind @assumption that these
points remain fixed (landmarks in the projection space)réiseof the dataset is projected
by employing distance preservation techniques. The firshatkobeying this paradigm
was Triangulation-based Sequential Mapping (TSM) [Led.et377].

The most prominent algorithm of this methodology is Landkiultidimensional Scal-
ing (Landmark MDS) [de Silva and Tenenbaum 2004; 2002], tvkiicectly addresses the
scalability problem of MDS. Initially, Landmark MDS selsdt points (landmark points),
on which classic MDS is applied, with the constraint> k. Afterwards, a distance-
based triangulation procedure, which uses as input distattcalready embedded land-
mark points, determines the projection of the remaininghisoi PCA can optionally be
employed to align the result to the principal axes of the data An obvious question
is related to the landmarks selection process. Althoughdaanselection produces re-
sults of acceptable quality, the authors additionally psgppthe MAXMIN heuristic. In
MAXMIN, the first landmark is randomly picked from the set dfjects while a new land-
mark is selected provided that it maximizes the minimumeadgtiseé to any of the already
selected landmarks. Following our notation, LMDS requio¢$d) memory. The time
requirements vary depending on the setup selected. Asguaridlom selection in the first
step and no normalization, time complexityQ¢k fd + f3), otherwise (heuristic selection
of landmarks and PCA alignment) it @(kfd + 3 + k?d + k%). Finally the addition of
a new point necessitates the execution of only the last dtépealgorithm, resulting in
O(f(n + K)) extra load.

An approach combining the simplicity of FastMap with thegefigm of landmark-based
projection is Vantage Obijects [Vleugels and Veltkamp 1999k idea of Vantage Objects
is quite simple; the embedding of a poimis identified by concatenating its distances to
a set of preselected reference objects (henceforth callethge objects). Thgth coor-
dinate of pointp; is attributed the distance @ to vantage poinY;, P = d(pi, Vj). The
selection of Vantage Objects is accomplished either ramglonteuristically. In [Vleugels
and Veltkamp 1999], the use of the MAXMIN heuristic is suggéssimilarly to LMDS.
Trying to identify methodologies for the selection of vageabbjects, the authors of [Hen-
nig and Latecki 2003] came up with a larger set of heurist&$hough these proposals
provide high quality results, they are resource-consumimttherefore their application is
prohibitive in large-scale datasets.

Metric Map [Wang et al. 2005] is a recent approach similapiniswith Vantage Objects
and FastMap. The intuition behind Metric Map is to emplé&yobjects as reference points
and use them for the embeding of the whole dataset in thettapgee. The algorithm
initially maps the small data sample d€ Roints on the base vectors of a pseudo-Euclidean,
2k-dimensional space. Then by employing a customised distantction, Metric Map
calculates the sampled points squared distance m@ijiarfd establishes the target space
through the eigendecompositionBf Finally, each remaining points is mappedRfiby
using its custom squared distances to all reference p@inslar to FastMap, Metric Map
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is also agnostic towards the initial dimensionality of tlatadet and requires as input only
distance information and the target dimensionality. Spagairements for Metric Map are
upper-bounded b@(k?). Time requirements are analogousdk® + k%), while the cost
of adding a new point i©(k?).

BoostMap [Athitsos et al. 2008] is another algorithm thasuseference points, in order
to embed data in the low-dimensional space. BoostMap defimesnber of embeddings
following the methodology of FastMap and then treats eacheslding as a classifier that
predicts whether a poirX is closer to reference poinsor B. The combination of these
weak classifiers results in the definition of a strong one #ithuse of Adaboost [Freund
and Schapire 1995] which finally provides the embedding ephojection space. The
algorithm require©(dT) time, whereT is the size of the sampled training set (the various
triplets) andO(d) space. The addition of a new point necessit&@g distance computa-
tions.

Sparse Map [Gabriela and Martin 1999] is a landmark-basgarigthm that operates
using a powerful embedding technique, namely Lipschitz esdings [Bourgain 1985].
Lipschitz embeddings require the definitionloggd data subsets organized in a matrix
format with O(log.d) rows, with rowi having O(log.d) sets of cardinality 2 The em-
bedding of an object in the projection space requires thepetation oflogsd coordinates,
where thd-th coordinate identifies the minimum distance of the preed®bject from any
of the points of the(i — 1)/(log.d) + 1] subset. In order to speed up the computations and
reduce the dimensionality of the resulting embedding, Spktap introduces a number of
heuristics. The reduction of high dimensional distance patattions is accomplished by
approximating it with the use of the already derived low-dirsional coordinates. Addi-
tionally, given a fixed value fdk, Sparse Map iteratively employs the stress metric in order
to identify a subset ok features from the obtained embedding that provides thedbwe
stress value. Time and space complexity of Sparse MaP@t®g,d) andO(dlogsd) re-
spectively, however this bound can be misleading in practince the actual requirements
vary depending on the implementation of the various hdusist

2.4 Distributed Dimensionality Reduction

The large number of distributed applications that appeaiede the beginning of the
decade in conjunction with the high rate of data generatiawvetighlighted the inap-
plicability of centralized approaches in current resegnadblems. Therefore it becomes
obvious that a paradigm shift, towards the decentralinpadfodata mining methods, is re-
quired in order to address these problems. This paradigitvghialso have a significant
effect on the area of dimensionality reduction which comprésesnportant step for data
preprocessing.

Distributed dimensionality reduction algorithms assuratadlistributed across a set of
nodes and the existence of some kind of network organizatiheme. The simplest case
are structured peer-to-peer networks, where organizatigmts by construction. In such
networks, a distributed hash table (DHT) determines the mbere each data object is
stored. Examples include Chord [Stoica et al. 2001] and CRatfasamy et al. 2001]. In
unstructured P2P networks, the organization may be indgedeans of physical topol-
ogy (i.e., a router) or by means of a hierarchical scheme [kzwidis et al. 2007]. In both
cases however, a node undertakes all computations thatttbdee performed centrally.
The most prominent approaches in the area are adaptati®®GfKargupta et al. 2000;
Qi et al. 2004; Qu et al. 2002]. Two distributed alternatigésastmap [Abu-Khzam et al.
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2002] have also been proposed, but their application reBesily on the synchronization
of network nodes, thus they can only be applied in contridlédboratory environments.
Recently, K-Landmarks [Magdalinos et al. 2006] has beep@sed as a promising solu-
tion for distributed dimensionality reduction in unstruietd peer-to-peer networks.

It has to be stressed out at this point that almost all culemmark-based dimen-
sionality reduction approaches can be applied in a diggibenvironment. Assuming the
existence of a hierarchical organization scheme, eachsgéexts a set of landmark points
and forwards it to an aggregator node. The latter appliesdine part of the algorithm
and forwards the result to all subsuming nodes. Finallyhewde projects its local data
independently from the rest. Landmark MDS, Vantage Objents Metric Map can be
directly employed in such context. Finally, it is worth miening that Random Projection
is also applicable in network environments. Indeed, th@doh-Lindenstrauss lemma and
its independence of any data related metric allows a singteio generate the projec-
tion matrix and forward it to all nodes, thus significantlynimizing the required network
bandwidth.

2.5 Comparative Assessment

In the context of this paragraph, we provide a comparatisessnent of the aforedescribed
algorithms. Since we focus on hard dimensionality reducticoblems on datasets of
particularly high cardinality, we exclude methods thatibitime or space requirements
analogous to or higher thad(d?) or O(n®). It is therefore natural to focus on the family
of landmark-based dimensionality reduction algorithmebl& Il provides an overview of
the requirements induced by landmark-based algorithnh Blgiorithm is presented with
respect to its time and space requirements for the projeofid points fromR” to R¥. In
the last column, we provide the cost of adding a new point texasting embedding. We
useT to denote the cardinality of the test dataset employed bysBdap.

| Algorithm | Time | Space [ Addition ]
Landmark MDS O(kfd+ 3) O(fd) O(fn+ fk)
Vantage Objects O(dk) O(nk) O(k)
SparseMap O(dloged) | O(dlogad) | O(log2d)
MetricMap O(diZ + k3) o(k%) o(k%)
BoostMap o(dT) O(d) O(k)
Random Projection O(dkn) O(kn) O(kn)

Table Il. Time and space requirements of landmark-baseéniionality reduction algorithms.

Despite its high quality results, SparseMap exhibits gritiviely large space and time
requirements as well as poor scaling ability. For exampiea idataset of 10points,
SparseMap necessitates the definition of approximatelypgB8Bdets of objects, 18 of which
would reach a cardinality of8. Even if we speed up the process by approximating the
original distance through the use of the derived coordB)dite identification ok features
that exhibit low stress value is extremelyfatiult to be applied in practice. The reason
is quite simple; following the methodology proposed in [@ala and Martin 1999] we
should sample 10% of the dataset, of p@ints and define a matrix of #elements. Ob-
viously this induces a huge memory load while in parallefrggjuent application (at least
k times) requires considerable time. BoostMap exhibitslaingcaling problems due to

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 . Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

its dependence on the size of the training set as well as tjugreenent of frequent execu-
tion of the classification algorithm. On the other hand LaadtMDS, Vantage Obijects,
Random Projection and Metric Map appear as promising swlgtio our problem.

3. THE FEDRA ALGORITHM

In this section, we present FEDRA, a linear dimensionaktyuction algorithm that di-
rectly addresses the two major disadvantages of classic,MBx&ely its high computa-
tional complexity and high memory requirements, while éiting low stress values and
preserving data distribution. It is designed to handle laléges of dimensionality reduc-
tion problems, however it emphasizes on hard problems. itoétion of the algorithm
follows the landmark-based projection methodology [de&5dnd Tenenbaum 2004; Lee
etal. 1977; Wang et al. 2005]. However, compared to exidéingmark-based dimension-
ality reduction algorithms and other embedding method$)RE introduces significant
advances in terms of time and space requirements. Morefigpdigi

—FEDRA acquires the projection through an iterative setafpomial equations, thus
achieving low computational complexity and memory requieats.

—In comparison to other dimensionality reduction algarigthat are restricted to the Eu-
clidean distance (cf. [Hjaltason and Samet 2003]), our @ggir is applicable for any
Minkowski distance metric. Therefore, FEDRA is appropeitdr applications that re-
quire the use of more complex distance functions than théd&an distance, or neces-
sitate the definition of a mapping froffj to f‘é wherep > 1.

—The proposed algorithm guarantees that an amount of thielipairwise distances is
exactly sustained, in spite of the projection.

—Finally, FEDRA establishes a bound for the error introdlidae to the dimensionality
reduction, thus providing theoretical guarantees for ity of the projection.

3.1 Theory Underlying FEDRA

Before delving into the details of FEDRA, we provide a theotaat sets the methodolog-
ical and practical foundations of our algorithm. Theorenognhprises the cornerstone of
FEDRA and encapsulates in a coherent manner the methodoldhg algorithm as well
as the main concepts related to its application. For easeeséptation, we omit the proof
of the theorem and provide it in the Appendix (Section 8).Ha tontext of this section,
we argue about the key implications of FEDRA through anfitits/e example.

Tueorem 2. A set of k+ 1 points p,i = 1,...,k+ 1, described only by their pairwise
distances which have been defined with the use of a Minkovesande metric p, can be
embedded in Rwithout distortion through the following equations:

/ / / J_l / J_l / /
LR 1P =10 = Pl P+ 2y IR P =2 P — P P

, +0p(Pj+1, Pi)P — dp(pi, P)P = 0 ifj<i-2
P = b i2 o pyd U 3

(dp(pi, PP = 223 1 P IP)P ifj=i-1

0 otherwise

Additionally the embedding is determined in polynomiaktim
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Theorem 2 requires the exact preservation of points’ pagwlistances, captured by the
following set of equationsd’(p;, p;) = d(pi, p;), j = 1..k+ 1,i = L.k + 1. The system of
equations is obviously non-linear, since even for the Eieelh distance we need to solve
a second-order equation. Although confusing at first sigghgolution is in essence quite
simple and is based in practice on the axioms of Euclideamg&g. In order to understand
its rationale, we provide an illustrative step-by-stepregte of the embedding of 4 points
{P1, P2, P3. P4} that reside in an unknown high-dimensional space R¥t(Fig.1).

The projection of the first poin; is quite simple, as no constraints are imposed on its
exact position yet. For reasons of simplicity, we choosanbed it in the beginning of the
coordinates system, at poidt Naturally, the projection of one single point implies that
axes are required. Poipt must be projected on the circumference of a sphere with cente
O and radiugd(py, p2), in order to preserve its distance pg in the original space. For
simplicity reasons, we choose to assignthe coordinatesd(pz, p2), 0, 0), as depicted in
Fig. 1(a). Note that we are using only one axis, thereforether axes are depicted with
dotted lines.

The embedding ob3 should satisfy simultaneousti(p1, ps) = d(pz, ps) andd’(p2, p3) =
d(p2, p3). These requirements depict two circles with cenpgrand p, and radiid(pz, ps)
andd(pz, ps) respectively. The intersection of these circles provitiesembedding ops
in the projection space, as shown in Fig. 1(b). Two possibfaalions ofps are identified,
both symmetric with respect to the line definedfyandp,. We randomly select one to
be the desired projection @k.

In the final step, we embed the fourth popit The embedding should satisfy simul-
taneouslyd’(p1, ps) = d(p1, pa), d'(P2, P4) = d(p2, p4) andd’(ps, ps) = d(ps, ps). These
equations describe intersecting sphereé®®inThe intersection of two spheres results in the
definition of a circle, which in turn intersects with the thgphere in two points (entrance
and exit points), both symmetric with respect to the plarfandd by pointsps, p2, andps
(Fig.1(c)). We choose again one of the two possible depistat random and obtain the
mapping ofp, in R, as illustrated in Fig.1(d).

Generalizing this embedding methodology, distance mlatbetweetk + 1 points can
be expressed with at mdstndependent variables, therefore these points can be efatied
in R¢ without distortion. The key remaining issue is the idendifion of the intersecting
points of the hyperspheres. This task is not trivial, esgdiscin the general case of any
Minkowski distance metric. However, recall that we are gsir 1 non-zero coordinates
for the projection of tha-th point, therefore the derived embedding is in the form of a
lower triangular matrix. Consequently, we can make the leraleasier by exploiting this
structure as well as calculating one coordinate at a time.

Recall that the first poinp; is placed a0 with coordinates (00, ..., 0). This signifies
that for any pointp; the corresponding hypersphere will be of the fdrpi, [P + | p{, I
+ot | Py [P= dp(p1, pi)P. Similarly, if we consider the second embedded p@nthe
equation would bé p{; — p5; [P + | p{, IP +..+ | pf, [P= dp(p2, p))P. In order to
identify the intersection of these hyperspheres, we sobth@ second equation from the
first and ge p{; P — | p; — Pyq [P= dp(pa, Pi)P — dp(p2, pi)P. The system can be
easily solved with the use of Newton-Raphson method, thusidg the coordinatep; ;.
Consequently, for the computation of tli¢h coordinate ofp] we simply subtract the
(j + 1)-th equation from the first and identify the single root gf-arder equation of the
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Fig. 1. Projecting 4 pointspy, p2, p3. Pa} from a high-dimensional space & using FEDRA.

form| x [P — | x—a|P —d = 0 whered € Randp € N\{0}2. The ¢-1)-th (last) coordinate
of p! is calculated by substituting all obtained coordinatesinftrst equation and solving
forp/._,.

Thlé (1:ost of this procedure is polynomial. The requirememtsife computation of the
@ coordinates are @k%) wherec is the cost of the method employed for determining
the root of the previous equation (i.e., Newton Rapshonha# to be stressed out at this
point that we have intentionally omitted further analyskated to the symmetric projec-
tions, as well as the existence of intersection between yperspheres. Both issues are
discussed in the theoretic analysis of FEDRA in Section 4.

3.2 Landmark-based Dimensionality Reduction Algorithm

FEDRA requires as input the projection dimensionakly the pairwise distances between
the points of the datasebj and the employed Minkowski distance metrf.( The only
requirement is that the triangular inequality is sustaiimettie original space.

2The proof that equatiohx [P — | x— a |P —d = 0 has a single root is provided in the Appendix.
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Initially, k points are selected from the dataset that are going to beasst&ahdmark
points in the subsequent projection phase. This set of pdigfines the landmarks det
We map the first landmark poiht € R” to O € R¥. All remaining landmarksl{,i = 2...K)
are projected, by requiring that their distances to alrgadjected landmarks are equal to
those in the original space. Essentially, we employ the odlogy of Theorem 2 and
derive the set of equations (4) for the landmarks embeddioggalure.

P =10 =ty P P
vo- =S4 I =V P +dp(len, )P = do(ln, )P =0 ifj <i -2 @)
R CRCHDLES WAL ifj=i-1

0 otherwise

This process, apart from its inherent simplicity and fagtvesgence, guarantees that
landmarks pairwise distances are exactly preserved inrtfjeqtion space. Following the
same principle, we embed all remaining poipis(j = 1..d — K) in the lower dimen-
sional spacd, requiring that their distances to any landmark paiatre preserved. The
projection is derived by the solution of the non-linear sysiof equations (5).

d'(li, p;) = d(li, pj).i = L,....K (5)

Similarly to the landmarks projection process, the coatéin here can be obtained in
polynomial time according to (6).

1By P =10y =g P+ R 1P
P = _ij;11 P ¢— I'j+1,f [P +dp(pi, lj42)P = dp(l, p)P =0 ifj<i-1 (6)
(@p(l2. P)P = X7 1 9l IP)? ifj =k

Based on this analysis, FEDRA is derived and its pseudocplesented in Algorithm
1. At first, we randomly seledt landmark points (lines 5-8) and embed them in the pro-
jection space with the use of equation 4 (lines 12-15). Ndt&t other heuristic landmark
selection techniques can be integrated in the algorithnsitoply replacing functiorSe-
lectLandmark() We propose such techniques in Section 5. Then, we projebtremain-
ing non-landmark point with the use of equation 6 (lines DJ-Zhe embedded points in
R¢ are represented as a &t

At this point, it should be stressed that the order in whiah ldimdmarks are selected
does not fiect the projection. The onlyfiect is a simple shift of the coordinates of all
points, however the projection remains the same, sincebidased on the initial pairwise
distances and not on actual coordinates.

4. THEORETIC PROPERTIES

In this section, we present the theoretic properties of FEDR first, we analyze its
computational complexity in a comparative way (Section dagainst the state-of-the-art
approaches presented in Section 2. Afterwards, we gearaiyjrinterpret the methodol-
ogy of FEDRA (Section 4.2), and prove that for every pointgassed by our algorithm
there always exists at least one possible embedding inwher dlimensional space (Section
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Algorithm 1 FEDRA.
1: Input: Projection dimensionalityk], data distances iR"(D), distance metric)
. Output: New dataset iR (P")
. Initialize set of landmark&={0}
. Initialize new datasel’={0}
: fori=1tokdo
li «— SelectLandmark()
L LUl
: end for
. Initialize set of projected landmarks={0}
:Setl] =0¢ R«
UL ul]
: fori=2tokdo
I! « Calculate coordinates using Eq.(4)
UL ull
. end for
P=P UL
: for i = 1 to all remaining point®; do

© O N O U ®WN

I O S Y
N o U~ WNBREO

18:  p; « Calculate coordinates using Eq.(6)
190 PP<Pup
20: end for

4.3). Finally, we assess the quality of the produced primjeeind provide a lower and up-
per bound of the distortion induced by applying FEDRA in thiginal (high-dimensional)
dataset (Section 4.4).

4.1 Computational Complexity

Based on the algorithmic description, FEDRA requireskDPfor the projection of a point
in the low-dimensional spade. Therefore, overall time requirements for the projection
of d points inR¢ are exactlyO(cdK). We employ parameterin order to capture the re-
quirements posed by the solution of the equativif’ — | x—a|P —d = 0. Consequentlg

is indirectly dependent on the Minkowski distance mefrias well as on the convergence
rate of the employed method. In particular, when FEDRA is leggrd with the Euclidean
metric (p = 2), cis equal to 1 since the solution of the equatiox is "2%:‘ In addition,
our approach exhibits lower memory requirements than LaaltdDS and Random Pro-
jection. The space complexity of FEDRA is analogous(?), because it require%2

in the first step (landmarks pairwise distances) éznei k in the second (embedded land-
mark coordinates and distances between processed poihtselandmarks in the original
space).

In order to practically validate the linear dependence ddRB on the size of the dataset
as well as the overhead of the Newton-Rapshon method we musitple experiments.
We generated a random dataset of 5000 1000-dimensiona$amid projected it in a lower
dimensional space of dimensionality equal to 2%, 4%, 6%, 8&1®% of initial dimen-
sions. In the context of the first experiment, we assessedapendence of FEDRA on
the size of the processed dataset. In order to accomplishitbdixedp = 2 and initiated
the procedure with a dataset of 100 points and progressivgjynented it by adding each
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Time Requirements with respect to Dataset Size Time requirements with respect to Dataset Size
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for various values ok for various values op

Fig. 2. Experimental assessement of FEDRA's time requirésne

time 100 more instances. Fig. 2(a) illustrates the required where, as expected from
theory, FEDRA exhibits a linear dependence on the size ofitaset. Based on this re-
sult, our approach is ideal for large datasets that call fastit dimensionality reduction.

In our second experiment, we fixéd= 100 (i.e., 10% of initial dimensions) and varied
the value ofp from 1 to 5. The obtained results are presented in Fig.2(byi@sly, time
requirements areffected byp; in particular time requirements are almost doubled when
changing distance metric from= 2 to p = 3. The latter is attributed to the convergence
requirements of Newton-Raphson. However, the results @ng encouraging, since the
required time for projecting 5000 points fpr= 1 and 2 is less than a second, while for
p = 5 it marginally reaches 2 seconds.

FEDRA is indiferent to the initial dimensionality of the dataset, and phiperty makes
it appropriate for datasets where only similafiigtance information is available. This is
usually the case when objects either cannot be represent@d/éctor space or such a
representation does not exist and only pairwise distaneeawailable. Further, the sub-
sequent addition of a point in an already existing projectiesults in O¢K) additional
load, while it is as fast andiécient as in FastMap (when evaluated with the Euclidean dis-
tance). Although FJLT-based Random Projection is fastm thur algorithm it provides
guaranteed distortion bounds only when projecting fé@jrto f';, with p = {1, 2}, whereas
FEDRA provides corresponding bounds while projecting firto f',g for p > 1 (Section
4.4 and Appendix). Concluding, FEDRA successfully addredke high time and space
requirements of MDS and emerges as fiitient solution in cases of hard dimensionality
reduction problems on large datasets.

When compared to other methods, FEDRA exhibits the advantagycombination of
fast and simple arithmetic computations. An intuitive exéaris derived when comparing
FEDRA with SVD with respect to their time requirements ashasltheir implementation
requirements. Notice that the first step of our procedurelmamlternatively replaced
by applying SVD on a set ok randomly selected landmarks. Assume that the set of
landmarks defines matric,. The latter can be projectedRf through the transformation
Xl = XxnQp,, Where the columns o are the singular vectors of. The relationship
between the inner products matrix of the projected datapgnd the inner products matrix
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of the original dataQ) is given by the following computations:
C’ = XX ke = RicxrQixr Koxr Qi) = KixrXion = C (7

Moreover, each celi(j) of C is populated by the valumxjT and based on equaliy = C’
we conclude thaxiij = xi’x’jT. Then the new distance between poixts; is:

K k

d' (%, Xj) = \JZ(x{f - X()? = le(x’izf + X3 = 2% X () = \/x’ix’iT + XX = 2XiX ]
=1 =1

(8)

But sincex; ij = xi'x]T the new distance can also be expressed as:

d'(x, xj) = \/x.xlT + xijT - 2xixl.T = d(, X;) 9)

Hence, the projection df points fromR" to R¢ with the use of SVD produces exactly the
same results as FEDRA fgr= 2. These results however were anticipated due to Theorem
2. Consequently, the key remaining issue is the time reddioethe projection. FEDRA
manages to embed the dataset wilftk?) computations whereas SVD requir@gki?)

or O(k%) in case we provide as inputkxk distance matrix. Arguably, if we consider the
second case, for small valueskahe diference might be negligible; still however FEDRA

is preferable to SVD due to its implementation simplicitprifrary to our algorithm which
acquires the embedding through a set of equations, SVDs-sirtiplest form- requires a
series of Householder transformations followed by the Q&bd®osition of a bidiagonal
matrix([Stewart 2001]5.

Intuitively, FEDRA owes its low memory and computationaju@ements to the mini-
mization criterion employed. Instead of trying to minimibhe distance discrepancies be-
tween all projected points (stress minimization criteyjdfEDRA minimizes the distance
deviation between the landmarks and the point under piojeddne could argue that this
simplification results in deteriorating projection qualiHowever, existing theory [de Silva
and Tenenbaum 2004] and experiments (cf.Section 6) sutigeghis simplification pro-
duces results of acceptable quality. Additionally, in thiéowing paragraphs, we provide
theoretical bounds regarding the distance distortiondadiby FEDRA and prove that a
percentage of initial pairwise distances are exactly pwesk in spite of the projection.

4.2 Geometric Interpretation

The core idea of FEDRA is the exact preservatiok dfstances per non-landmark point.
This is achieved by requesting that distances from landrpaitkts are exactly retained,
which is captured in equatiort(li, p) = dp(li, p), i = 1..k. Each equation describes a
hypersphere with centdrand radiugly(l;, p). The algorithm essentially searches for the
common trace of thi hyperspheres, which is the projection of pgirin RX.

An illustrative example of the embedding is provided in Fg&{a). In this elementary
case, we project three points from an unknown high-dimeradiepace tdR?>. Two of
the points are employed as landmarks while the remaining(Bnés processed as non-
landmark. Two circles are defined by applying FEDRA. The camtnace of these circles

SIf d >> nitis preferable to first compute the QR decomposition of tigut matrix and then according to the
aforedescribed methodology calculate the SVIRof
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Fig. 4. Geometric interpretation of FEDRA for embedding B-dimensional space.

provides the depiction dP in R?. As shown in Fig. 3(b), two potential depictions exist,
both symmetric with respect to the line definedlbyandL,. Taking also into account

equation set (6) this observation can be generalized; esiclh gan be embedded in two
possible places, both symmetric with respect to the hypagtefined by the selected
landmarks. In terms of arithmetics, this is because we daowipute the actual value of
thek-th coordinate, but its absolute value.

From a methodological point of view this fact appears duaéamethodology employed
for the solution of the system of non-linear equations. Bsaky, by subtracting any
equation from the first we define the hyperplane on which tlieesponding variable lies.
For example, in Fig. 4, a step-by-step example is depictgatajecting a poinP in R®
from an unknowm-dimensional space. In the first step of the procedure, waitzk the
value of coordinatX and derive valua. Consequently, any point on the plake= a can
be the projection oP in R®. By performing the same task for dimensigiwe calculate
valueb. The intersection of these two planes defines a line, and am¢ pelonging to
this line satisfies both requirements. In the final step, vagckefor all pointsP of the
line that additionally satisfy the prerequislé(P,O) = |P’| = dp(L1,P). These points
correspond to the intersection of lie= a, Y = b with a sphere centered @ with radius
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dp(L1, P). There are at most two points satisfying these requiresp@atand P,, one of
which becomes the projection Bfin RS,

4.3 Existence of Embedding

Generalizing the last observation, the intersection okthd hyperplanes defines a line in
R¥. Consequently, the two possible values ofltka variable depict the intersecting points
of this line with a hypersphere centered in the beginnindiefdoordinates system, with
radius the distance of the point under projection from th& fandmark in the original
space. A natural question that arises is whether theresexistise that the line has no
intersecting point with the hypersphere. However, the tiexdrem guarantees that there
always exists at least one intersecting point (the linetlegiadjacent to or intersects with
the sphere), provided that the triangular inequality idansd in the original space.

Recall that each hyperplane corresponds to the intersecfibwo hyperspheres (i.e.,
the intersection of two spheres defines a circle which in b@longs to a two-dimensional
plane). Consequently, the line captures the intersectid-ol hyperspheres. Finally, if
the line does not intersect with the last hypersphere it méaat one of the hyperspheres
has no intersection with the last one. Therefore, in the tiedrem we prove that any two
hyperspheres defined by FEDRA will have an intersectionyigesl that the triangular
inequality is sustained in the original space.

Tueorem 3. For any non-linear system of equations defined by FEDRAgthbvays
exists at least one solution, provided that the triangufequality is sustained in the orig-
inal space.

Proor. By contradiction. Assume that there exists no solutiorttersystem of equa-
tions defined by FEDRA, hence there exists no common tracedeetthe defined hyper-
spheres.

Let p be a point being projected amgdl; (i # j) any two landmarks. These three points
define triangld; pl; in R". Without loss of generality we assume that:

dp(li, p) < dp(l}. P) (10)
Consequently, based on the triangular inequality we derive

dp(li, p) — dp(l}, p) < dp(lj. 1i) < dp(li, p) + dp(l}, P) (11)

In addition, Theorem 2 guarantees that distances betwdahpand all landmarks are
exactly preserved iR, thus deriving:

dp(li. P) = (1, p) (12)

Landmarks pairwise distances are also exactly preseneahimg that the following equal-
ity holds true for any pair of landmarks:

dp(li, 1) = dy(li, 1) (13)
Since there exists no common trace between the defined Ipyyees, it implies that
one of the following situations has occurred; either onedngphere is enclosed inside the
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other or they are far apart and do not intersect. We examicle ease separately in the
following.
If one hypersphere is enclosed inside the other:

di(lj, 1i) < dy(li, p) — di(l, p) (14)
and based on equations 12 and 13:

dp(lj, 1i) < dp(li, P) = dp(l}, P) (15)

which contradicts with equation 11.
If the hyperspheres are far from each other and they do rersett:

dp(li, ) + di (15, p) < dip(1. 1) (16)
and based on equations 12 and 13:

dp(li, p) + dp(l}, p) < dp(l}, 1i) (17)

which again contradicts with equation 11. Thus, in both satiee triangular inequality
is violated in the original space. To conclude, the systermguastion always has a so-
lution, provided that the triangular inequality is sus&adrin the initial, high-dimensional
space. [

4.4 Quality Assessment

4.4.1 Distance PreservationFEDRA guarantees that a certain amount of pairwise
distances are exactly preserved. Indeed, the landmardegt®m and projection phases
preserve exactlyk@ pairwise distances. The subsequent embedding of the rémain
(d — k) data points retains anothet £ k)k distances. However, the latter is misleading
since distance preservation is aldteated by the value af. In order to overcome this
burden, we distinguish two cases, specificdllg nandd > n. In the subsequent analysis
we will assume thak signifies the dimensionality of the projection space as etifra
of the number of initial dimension%l while y corresponds to the dimensionality of the
projection space as a fraction of the number of employediemids (—;).

Whend < n, according to Theorem 2 arky> d — 1 retains all distances. Consequently
in a space ofl — 1 dimensions we exactly preser@ distances. Additionally any value
fo k satisfyingd — 1 < k < n also guarantees exact distance preservation. Assumihg tha
d-1 ~ d the percentage of pairwise distances that remaiffected, due to the projection,
is:

Kk-1)+2d-Kk k2d-k-1 2d-k-1 2-y-1/d
dd-1)  d @-1» Y d-1 Y 1-1d

Given the fact thatl is usually excessively large (& d) we can easily ignoré, since
its value is close to zero, thus deriving the following:

f(x.y) = (18)

y2-y) ifO0<y<1l0<x<1

19
1 ify>1 (19)

f(X,Y)={

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 . Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

(a) FEDRA's original distances maintenance affil} PointsA,B, Ly and L, in a high-dimensional
ity. space.

Fig. 5.

On the other hand, il > n we obtain exact distance preservation fox k < d.
Therefore, equation 19 is transformed as:

y2-y) if0<y<1l0<x<1

20
1 ifx>1 (20)

f(xy) = {

This analysis proves that a percentage of distances remaaltered, in spite of the
projection. Fig. 5(a) shows the fractidifx, y) of distances that are not modified, because
of the projection. The x-axis depicts the dimensionalityhaf projection space calculated
as a fractionx of the number of the initial dimensions. The y-axis corregtoto the
percentage of points that are employed as landma)ksHor example, if the projection
dimensionality is equal to 30% of the initial dimensions<0.3) and the number of initial
dimensions is equal to the dataset cardinality= n) then the embedding acquired by
FEDRA will not afect 51% of the initial distances.

4.4.2 Distortion. We will now attempt to go one step further and calculate tiséodi
tion induced due to the projection to the rest of the pairwiistances. For this purpose
we will use two pointsA and B, and study their projection with the use of two random
landmarks pointsl.; and L, (Fig. 5(b)). For ease of presentation, we drop the formal
distance notation and signify the distance between p&iraadZ asXZ and also assume
thatp = 2.

Each point together with the two landmarks forms a trianglee linear segmentaA,
andBBjy correspond to the altitudes of trianglesAL, andL;BL, respectively. Using the
cosine law on trianglé; AL, we derive the length ofA,.

L1A2 + L]_L% - L2A2
2L,
Analogously, we derive from triangle, BL, the length ofL; B,.

LiAy = X = (21)

|_;|_B2 + L]_L% - |_zB2
LB, =y = 22
1By =y il (22)
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(a) Projection on dferent planes (b) Projection on the same plane

Fig. 6. Projection symmetric with respect to lihgl,

Segmentd” B is the orthogonal projection o&AB on a plane perpendicular to the line
defined by the landmarks. Obviously, sinfs&” is parallel toL;L,, it is equal toA,By. By
applying the Pythagorean theorem on trianiy#&’'B we derive:

AB? = A"B? + (Y - X)° (23)
Additionally with the use of the triangular inequality @tfB,B we derive:
A'B<A’B,+B,B=
A’B<AA +BB, =
A'B? < AA% + B,B? + 2AABB,

Consequently, by employing equality 23, we provide an uppend of the initial distance
AB:

AB? < AA + BB] + 2AA BB, + (X - Y) (24)

whereAA, = |/AL? — x2 andBB, = /BL? - y? are obtained by the application of the
Pythagorean theorem &L, Ay andBL, By respectively.

While projecting, FEDRA will replicate the two triangles.o@sequently, we have two
ways of projecting that are depicted in Fig.6. The projawtiof the original point#\,B
are depicted a8’ andB’ respectively, whild_} andL’, are the projections of the landmark
points in the new, two-dimensional space. Due to the fadt HEDRA guarantees the
exact replication of the two triangles, we know thet\ =AAy, B'B=BB,, B'L|=BL;
andA’Li=AL;. Consequently, the new distanféB’ can be calculated by applying the
Pythagorean theorem on triang{€E B'. In the first case (Fig.6(a)), we calculate’>=(y—
X)2 + (AA, — BB,)?, while in the second (Fig.6(b)A'B?=(y — X)2 + (AA, + BB,)%. By
combining the last relation with the bound AB obtained in the high-dimensional space
(Eg. 24), we have thaAB < A’B’. Notice also that the squares of the two new distance
values diter only by 4AA/BB,. Consequently, a unique lower bound can be obtained
through relation:

AB? - 4AABB, < A'B* (25)

The upper bound can be simply derived by the triangular iakiywn triangleA” B,B
(Fig.5(b)). SinceA” By = AA, andA”ABis orthogonal we have that:
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|IAA, - BB| < A"B=
(AA - BB)’ < A"B? =

(AA —BB)?+ (Y- X? < A'B?> + (Y- X)? =

(AA, - BB)? + (Y- X)? < AB* =

(AA, - BB))? + (Y - X)?> + 4AA BB, < AB? + 4AABB, =
(AA, + BB))? + (y— X)? < AB? + 4AABB,

and since AA, — BB))? + (y — X)? < (AA, + BB,)? + (y — X)? we derive a unique upper
bound:

A'B? < AB? + 4AABB, (26)

Consequently, by combining equations 25 and 26 we derivergaton 1 which pro-
vides a bound for the new distand&’ in the case of the Euclidean distance metric.

Osservation 1. Using any two landmarks;l.L,, FEDRA can project any two points A,
B in a given low-dimensional space while guaranteeing thairtnew distance /8’ will
be bounded according to:

4AABB, 4AABB,
AB,/l—W <AB sABw/1+W 27)

where A4, BB, are the lengths of the altitudes of trianglegAL,, L1BL; respectively.

Another way of approximating the error induced by the priigecis with the use of the
cosine law. As discussed previously, FEDRA essentialljicates the manifold defined
by k + 1 high-dimensional points in the new lower dimensional sgc In our previous
example (Fig.5(b)), this signifies that angkek; L, andBL; L, (i.e ¥, w respectively) will
remain unaltered (Fig.6). Consequently the new distannebeacalculated a#'B? =
ALZ + BLZ - 2BL1AL; cos{y + / — w) while the original distance wasB? = AL? + BLZ -
2BL3 AL, cosg), whereg = AL;B. Adding and subtracting valueB2;AL; cosg) from
the first relation we obtail'B? = AB? — 2BL;ALy(cos{/ + / — w) — cosg)). Since
-1 < cogx) < 1 we can bound'B’ as:

4B L]_A L]_ 4B I—lA I—l
AB,/1- ——— < AB <AB,+/14+ ——— 28
! AR P SRRV TR (28)

Relation 28 is extremely important for the derivation of thilowing observation.

OsservatioN 2. Given a point X in a high-dimensional spac® Rll points that are at
most r from X in R are projected in Rin a circle with center the embedding of X if R
and radius r+ 2d(L;, X), where I, is the landmark point closest to X.

Proor. From the previous analysis we have that the new distaneesketpoint X and
unknown point Y is at most’ (X, Y)? < d(X, Y)? + 4d(X, Ly)d(Y, L;), whereL,; is any land-
mark point. Unfortunately we are not aware of the exact valud(Y, L;) but we can
substitute it with the larger value that can satisfy our @geiisites, that ig(X, L;) +r. Con-
sequently all points satisfying our prerequisite lay inralei with center the embedding of
X in R¢and radius +2d(X, L;). In order to minimize the diameter of the circle, we choose
to assess the distance with the use of the closest landmark.
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Based on equation 27, we derive the distortion prodiumstfor FEDRA which is equiva-
lentto /2222%. Attempting a head-to-head comparison with Random Priojedhe

corresponding in the case of FEDRA is exact@ﬁ”% which is diferent for every pair
of points. Unfortunately, FEDRA is unable to provide a glidbaunde for all points since

it is a data-awaremethod. Contrary to Random Projection that define an expulita-
obliviousdistortion bound using only the target dimensionaliti)(and the cardinality of
the datasetd), FEDRA exploits information from the underlying dataset.( landmarks
distances) in order to produce the embedding. Thereforertoe due to the projection
is directly related to the selected landmarks. The latterosstrange to algorithms of
its genre; for example FastMap’s low distortion bound fazjpcting in one dimension is
AB? - (x-y)? = A'B’? < AB? with x,y being defined by the employed pivot points, similar
to FEDRA.

The aforedescribed analysis can be generalized for theofass Minkowski distance
metric by taking into account the general expression folRyitnagorean theorem and the
cosine law. The generalization is provided in the Appen&igation 8, observations 3,4
and lemma 6).

5. FEDRA EXTENSIONS

In this section we present three extensions to the basicitdgo The first is a heuristic

— directly derived from the theoretic properties of FEDRAhattenables the selection of
landmarks that improve the quality of the embedding (Sedid). The second is a com-
plementary heuristic, which is employed to further improlve quality of the produced

results (Section 5.2). Finally, the application of FEDRAainvidely distributed environ-

ment, such as a large-scale peer-to-peer networks, is @sernted (Section 5.3).

5.1 Landmark Selection Heuristic

So far, we have implicitly assumed that landmarks are ramyglsedected. Although this
approach produces results of acceptable quality, we int®a heuristic which is able to
intentionally select a set of landmarks that minimizes tiseodtion induced by the embed-
ding.

Based on the analysis of Section 4.4, we have identified thedfor the distance distor-
tion between any two points,B as /AB? — 4AAyBBY< A'B’ < 4/AB? + 4AAyBBY The
minimization of the induced distortion implies the miniraiion of the product AAyBBY,
which in turn is achieved by the simultaneous minimizatibrAéy and BBy. However,

recall thatAAy = ,/AL% — X2 and BBy = ,/BL% —y2, thus both values are minimized

whenAL; — x —» 0 andBL; — y — 0. Considering the case &fand substituting with
L1A2+L1L§*L2A2
2L4L,

we obtain:
LA+ LS - LAY (LA Lk - LA(LA - Lils + LoA) .
2L;L, B 2L4L,

Consequently, the minimization is achieved whew ~ L1A — LiLy or LoA = Lil, —
LiA. The first condition occus when landmarks are selected ih ausay that they ex-
hibit minimum distance from each other. The latter is irteity verified by considering a
random triangld_; AL,. If L;L, is small compared th; A thenL,A will be approximately

ALy 0 (29
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equal toL; A, thusL,A =~ L1A - L;L, holds true. Our landmark selection algorithm works
in the following way. We select the first landmark at randord Hren we iteratively select
a new one by requiring that it minimizes the overall distafioen all previously selected
landmarks. Assuming we have selected 1 landmarks, thef-th will be point p that
ssatifiesargminzjf;ll do(p, 15).

This procedure however is costly for datasets of high catiyn(millions of records),
since all data points need to be processed before a new lakdnsalected. Therefore, we
propose a morefkcient strategy based on sampling. We draw uniforBigata samples
of cardinalityC and apply the proposed heuristic. In the end, the set withmimémum
distance sum is retained as the global landmark set. Theguoe yields a memory cost
of O(Cn), C € N and time requirements analogou(s K.

It has to be stressed out at this point that this procedurdnirently heuristic, therefore
it cannot always guarantee that the selected set of landmdtkbe the optimal one. A
potential case of failure may appear if one or more landmaifktp are outliers. The latter
is due to the fact that any outlier landmatk) when combined with another landmark
will not validate expressiohoA ~ LjA — LjL, sincelL;A < LiL,. A simple remedy to this
deficiency is the re-application of the landmark selectimtpss each time with aftierent
starting point.

We have intentionally ignored the second case since it s more laborious and
computational expensive approach. Conditigi ~ L;L, — L; A requires that landmarks
are choosen so as to exhibit minimum distances from a setinfgpand maximum dis-
tances from another set. Considering a dataset that enjdystar structure with clusters
well separated and far from each other, this condition ielwahen we employ the cluster
centroids as landmarks. Assuming thais the center of the cluster in whichis situated
andL; is the center of another cluster thepA is small whileL,L; is approximately of
the same length ds,A. Unfortunately, in order to guarantee fast computatiorhefland-
marks we need to be aware in advance of this structure orsitdeasupplied with specific
data statistics. However, in general, we will be obligedxecaite a clustering algorithm
which will result in significant load to the system. Conseaflyewe decide to ignore this
approach.

5.2 Projection Heuristic

The independent projection of each point with respect tather non-landmark points is
one of the factors for the reduced complexity of FEDRA. Hogrethis simplification may
sometimes come at a cost, as it cannot always guaranteedinaige distances between
non-landmark points are also well-approximated. Therastdue to the fact that the new
distance is calculated by the result of a linear combinatibtine initial distance as well
as the distances between the selected landmarks. Thigipbterse of failure is depicted
in the analysis of Section 4.4, where it is obvious that twasely situated points in the
original space may end up far apart in the projection spaiteifengths of the altitudes of
the corresponding triangles are large. However, this woulgt be a significant problem,
if it would occur for every pair of landmarks; consequenthis situation rarely appears
in practice. Nevertheless, we provide a fast heuristic tvlietects such a problematic
situation and defines the best possible embedding for ednh po

The proposed evaluation algorithm (Algorithm 2) takes gmitrthe original distances
(D), the set of already projected non landmark poiMER), the set of projected landmarks
(PL), the Minkowski distance metrigj and the point under projectionand tries to find
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Algorithm 2 Projection Heuristic
1: Input: Original Distances @), Minkowski metric (), Point under projectionxj,
Projected non landmark pointsl LP), Projected landmark point® ()
: Output: X
: NL « randomly seleck points fromNLP
. Calculatex; andx, the two possible embeddings »f
: SetC; «0,Co <0
: fori=1tokdo
Selectnl; from NL
Calculated; andd, from d;)(nli, X1) andd;)(nli, X2)
if [d1 — dp(nli, X)| < |d2 — dp(nl;, X)| then
C]_ «— Cl +1
else
Cz — C2 +1
end if
. end for
:if Cy < Cy then
X — X
: else
X «— X1
:end if

© O N O U R WN

P e O ol o
© 0N R WDNRO

the embedding that minimizes the distance distortion betwgointx and k randomly
selected, already projected, non-landmark points. Thedddlue of this heuristic lays
in the fact that it guarantees minimum distortion for aduitildk — k? pairwise distances,
thus further ameliorating FEDRA's quality. Moreover, catttime and space requirements
are analogous t®(dk) andO(k?) respectivel§, thus not posing any significant overhead
to the basic algorithm.

5.3 Distributed Dimensionality Reduction with Landmark Points

The fact that FEDRA operates with only a fraction of the ollefataset and achieves re-
sults of high quality promotes it as an attractive candidatepplication in a distributed
context. As already stated in Section 2, the area of digeibknowledge discovery poses
a humber of new challenges that primarily originate fromftia that no network element
can gather all available data. Unfortunately, existingknioithe area of distributed dimen-
sionality reduction fails to provide a robust solution. atghms based on eigen analysis
deteriorate and need to recompute the decomposition, icetbeethat many new points are
added. The two adaptations of FastMap require a high amdws®amanged messages,
thus they work well only when node availability and intercoomication are guaranteed,
otherwise the synchronization of network nodes is praltyicapossible.

Itis therefore obvious that a distributed dimensionakgtuction algorithm should com-
bine the salient features of the aforementioned technjguésrms of network load, algo-
rithmic complexity and quality of results, while being immaito subsequent changes in

4Contrary to the pseudocode of Algorithm 2, the actual ingutrily x since all other information is provided
through pointers to the permanent storage medium. Duriegeifecution of the algorithm we only have to
occupy X + kZ space on main memorys, x; andk k-dimensional points.
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the processed data (i.e., massive addition or deletion iotg)o Moreover, the algorithm
should be adaptable to potential network failures, as vgetbpology changes. Finally it
has to apply to the full extent of distributed applicatiostarting from controllable labora-
tory environment and reaching large-scale peer-to-peemanks.

Inspired by our previous work [Magdalinos et al. 2006], w&dduce the distributed
application of FEDRA. Obviously, the distributed extemsaf FEDRA bares similarities
with K-Landmarks with respect to the decentralization metilogy, however dierenti-
ates significantly with respect to the implementation ofhestep as well as the exhibited
time requirements. Moreover, FEDRA is applicable with anplkéwski distance metric,
contrary to K-Landmarks that is confined to the Euclideamagice. The corresponding
extension is presented in Algorithm 3. The only assumpti@uenis the existence of a
hierarchical network overlay, where an aggregator nodst®xDoulkeridis et al. 2007].
The aggregator usdslandmark pointsi() sampled from the whole network (lines 9-11)
and projects them tB¥ using equation 4. The original set of landmark points andjére
erated mapping() are forwarded to all nodes (line 19), which in turn projeddl points
independently (lines 25-28).

The proposed algorithm filers significantly from other widely employed distributed
dimensionality reduction approaches, since it achieveptbjection of the vast majority
of points independently from the rest, implying that onlg firojection of few landmarks
is done in a centralized manner. Moreover, it is nééeted by any changes in the network
topology or any subsequent data unavailability since alitsaare projected with respect
to the landmark points. Consequently, no re-computatidh@frojection is required, in
order to guarantee the preservation of projection qudiityally, the network load imposed
is lower than the load of other algorithms. The network cégt@application of FEDRA in
a distributed environment i3(nkM) whereM is the number of peers in the network, while
distributed PCA [Qi et al. 2004] necessitatBeMn? + nkM). However, there exists one
disadvantage; the agnostic nature of centralized FEDRAtdsvthe initial dimensionality
of the dataset is lost, since points pairwise distancesatdrenknown in advance.

6. EXPERIMENTS

In this section we present the experimental evaluation dRAE, which verifies the ex-
pected performance. Thus, FEDRA emerges as an attractivgsosofor hard dimension-
ality reduction problems on large-scale datasets. The &tfmeoexperimental assessment
process is threefold:

(1) To validate the fectiveness andfigciency of FEDRA on hard dimensionality reduc-
tion problems and highlight its scalability.

(2) To demonstrate the enhancement of a typical data miasig such as clustering, due
to the application of FEDRA.

(3) To experimentally show the merits of FEDRA in a distrdmisetup, where restrictions
are usually imposed on the amount of data that can be exciange

The obtained results prove the suitability and viabilityoafr algorithm for problems
where data is described by hundreds of coordinates andiagyclustering algorithm is
highly demanding in terms of time and space requirements.
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Algorithm 3 Distributed FEDRA
1: Input: Projection dimensionalityk, node id {), number of landmark points of node
i (k), local dataset defined R (P)

2: Output: local dataset defined iR¢ (P’)

3: Initialize new datase®’={0}

4: Initialize set of landmarkk={0}

5: Initialize set of projected landmarks={0}
6: Initialize local set of landmarkis;={0}

7: Li « RandomLandmarkSelection()

8: if node is aggregatahen

9: for j =1toall nodesdo

10: Receivek; landmarks [ ;) from nodej
11 L« LUl

12:  end for

13:  Setl; =0eR

14:  Setl’ « L' U}

15:  for j=2tokdo

16: I’j « Calculate coordinates using Eq. (4)
17: L~ Lu I;

18: end for

19:  Communicatd., L’ to all nodes

20: else

21:  SendL; to aggregator

22:  Receivel, L’

23: end if

24: PP <P UL’

25: for j =1 to all remaining point®; do

26: ) Calculate coordinates using Eq. (6)
27 P=P'uU p’j

28: end for

6.1 Experimental Methodology

In the context of FEDRA's validation, we run a series of disienality reduction experi-
ments.

Algorithms and Datasets. We compare the performance of FEDRA against FastMap,
Metric Map, Landmark MDS, Random Projection, Vantage Ofsjemd PCA. We em-
ployed eight real world and artificial datasets in our experits. Four of them were ac-
quired from the UCI Machine Learning RepositerMore specifically lonosphere, Seg-
mentation, Musk and Synthetic Control were used. lonospb@ntains radar observations
of earth’s ionosphere while Segmentation and Musk contgin-tevel numeric-valued at-
tributes corresponding to images and molecules respéctiiaally, the Synthetic Control
is a set of synthetically generated control charts. Ancther, of particularly high cardi-
nality and dimensionality, were acquired from the Pascaje&cale Challen§ehat took

Shitpy/archive.ics.uci.edml/
6http;//largescale.first.fraunhofen@ele)oul
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place in ICML 2008. To the best of our knowledge these dadametthe largest that have
ever been employed for the experimental assessment of asiiomality reduction algo-
rithm. The datasets together with their properties are sarined in Table IIl. All datasets
were embedded in a space of dimensionality equal to 2%, 4% 868@nd 10% of their
initial dimensions. In the case of the three smaller UCI skiis, where these values are
unattainable, we set the lower dimensionality to 3, 4, 5,&Arespectively.

| Dataset [| Cardinality | Dimensionality | Classes] Description |
lonosphere 351 34 2 Radar Observations
Segmentation 2100 19 7 Image Segmentation Data
Musk 476 166 2 Molecules Data
Synthetic Control 600 60 6 Synthetic dataset
alpha 500000 500 2 Pascal Large Scale '08
beta 500000 500 2 Pascal Large Scale '08
gamma 500000 500 2 Pascal Large Scale '08
delta 500000 500 2 Pascal Large Scale '08
Table lll. Datasets used in the experiments.

Due to the fact that the application of PCA is infeasible oa Bascal datasets, we
employ the covariance aggregation scheme of Global PCA &3PQi et al. 2004]. The
latter is based on the simple observation that given glploaihtered data the eigenvector
of matrix (m— 1)coMX) + (p— 1)coY) is also an eigenvector ofi(+ p— 1)cor[XTYT]T)
wherecovdenotes the covariance matrik, Y are the data samples anxip the respective
cardinalities. Consequently, our implementation of PCAassitates three passes over the
whole dataset, one for calculating the global mean, a setmmthe calculation of the
covariance matrix and a final one for the projection of theskt.

In order to calculate the various heuristics on the Pasdabdts we iteratively drew 10
uniform random samples equal to 1% of the original datasg®@5nstances). For each
sample, we apply the heuristic and retain the sample thatshésfies the corresponding
conditions. In the case of the MAXMIN heuristic of LMDS, wleewe seek to maximize
the landmarks minimum distances, we choose to retain thplsaihmt maximizes the sum
of distances. On the contrary, for FEDRA's landmark setectieuristic, we maintain the
one that minimizes the overall sum. Obviously, this strate@y not yield results equal
to those when the heuristic is applied on the whole dataseit gtill provides results of
acceptable quality. For the projection heuristic of ourmaillym we randomly sampli
already projected points and use them for the projectionallyi, for Random Projection
we employ the two distributions of [Achlioptas 2001] whilevollow the simple imple-
mentation methodology described in [Ailon and Chazelle®@01

All algorithms (with the exception of PCA) were executed tods. Consequently, all
reported values correspond to the obtained mean. Fastnmpepoyed only with the 4
small datasets and evaluated against FEDRA with respeletexhibited time and stress
values. Although FastMap cannot scale for datasets offgignt cardinality, we employed
it as an evaluation benchmark of our algorithnffeetiveness andiciency. The statistical
significance of all experiments has been verified with atuéth confidence level set to
0.99.

Metrics. In order to support theficiency claims made earlier in the paper, we report
the execution time of FEDRA and compare it against the cpomeding requirements of
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the other algorithms. Following the concept of the appiarabriented evaluation metrics
(see Section 2.1), we certify th&ectiveness of FEDRA by comparing its original distance
maintenance capability with the one exhibited by other taack-based algorithms. The
comparison is accomplished through the computatiosti@fss Due to the fact that the
computation of stress requires large amounts of time antkspge employed the four UCI
datasets for this purpose.

Furthermore, in order to demonstrate FEDRA's capabilitemtiance the quality of a
clustering algorithm, we evaluated the original and prigidaatasets with the use kf
Means. Each result dMeans is evaluated according to tRerity (P) metric. Purity
considers the mapping of a clus@r (i = 1...a) to a classS; (i = 1...a) based on the
highest observed overlap. The quality of this assignmemeéssured by counting the
number of correctly classified instances and dividing byttit@l number of instance$\|.
Purity is formally defined acN;} ijzl max|Ci N Sjl).

For each algorithm, we present its clustering quality meiahce capability, which is
defined a§ whereP,, is the purity score obtained in the projection space, whieor-
responds to the value obtained from the original datasétclAétering experiments were
repeated 10 times and we report here the obtained mean vahgesn, their statistical
significance has been verified with a t-test with confidengellset to 099. Finally, we
measure the time requirementskeMeans in the projection space and compare it against
those in the original space. The algorithm is obviously kreg¢ed because of the reduced
dimensionality, however it still exhibits fierent time requirements for each of the embed-
ded datasets. This is due to the fact that each algorithmupesda dferent embedding,
which dfects the convergence rate leMeans. In all experiments, we employ the Eu-
clidean distance metric.

Distributed Setup. Using the distributed variation of FEDRA, we also consid#ranc-
ing the quality of distributed clustering. In order to execthese experiments, we assume
that a large dataset is distributed among the nodes of atpgerer network and the task
is to derive the global clustering model, without imposimgngficant network load. All
algorithms assume the existence of a star overlay netwdréreveach peer communicates
its sample (or result) to an aggregator node that undertiddeetask of performing any
subsequent computations.

We use the Pascal datasets and employ as reference the \Rluig obtained by the
distributedk-Means algorithm of [Datta et al. 2006] (DKMeans). The assent method-
ology of DKMeans follows the same principles as the on&-8eans. Additionally, in
all cases, we measure the communication cost imposed byx#dwaition of the various
dimensionality reduction algorithms. All experimentskquace in a simulated peer-to-
peer environment of 500 nodes where topology was randonmgrgéed with nodes being
connected with 5% probability. Again reported results espond to the mean value of 10
executions.

Experimental Setup and Source Code. All algorithms have been implemented in
MATLAB R2009a. For the experiments we used four Intel Core da@ processors at
2.4GHz with 4GB of RAM running Ubuntu Linux v.9.0&-Means and DKMeans have
been implemented in Jala

“The full source code accompanied by deployment instrustictan be found at httpwvww.db-
net.aueb.gpanagisTKDD200Y
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Fig. 7. Assessment of FEDRA's variants with respect to thtaiobd stress values.

6.2 Sensitivity Analysis of FEDRA

We first evaluate theffect of FEDRA's heuristics (one for the landmark selectioncess
and another one for the projection) on the basic algorithheiffcombination yields four
different variants of FEDRA. The first is the basic FEDRA alganitivhich employs ran-
dom landmark selection and random projection. The secondntaemploys intentional
landmark selection process (denote@#B®RA Land Heurand projects all data randomly,
while the third variant uses assisted projection and randonimarks (denoted &EDRA
Proj Heur). Finally, FEDRA can be deployed by employing both the laadaselection
and projection heuristics (denotedflEDRA L& P Heur). The purpose of our sensitivity
analysis is to provide an empirical study regarding tfiiciency of these heuristics as well
as the cost induced by their execution.

Regarding the quality of the produced embedding in term&efeixhibited stress, we
notice that all configurations exhibit approximately thensabehavior. In the case of the
Segmentation dataset (Fig.7(a)), the random and assisigatfion setups provide the best
results, while intentional landmark selection exhibitglsly larger values due to inappro-
priate selection of landmarks. Indeed, the intentionadtaark selection process, due to
its heuristic nature, cannot guarantee that the best seindiarks will be selected and
therefore that the subsequent projection phase will befsigntly enchanced. In general,
provided that we pick a set of closely positioned landmattkes,intentional landmark se-
lection is expected to exhibit better behaviour than theloam FEDRA configuration, a
fact that appears in Figure 7(d).
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Fig. 8. Assessment of FEDRA's configurations with respecelative clustering quality maintenance

However, ak grows — and therefore the number of selected landmarks -ethdts of
all variants tend to decrease and converge to approximitelgame value. Same results
have been obtained by the lonosphere dataset (Fig.7(bBrewthe assisted projection
produced slightly better results. The merit of both heigsshowever is demonstrated in
the first two iterations with the Synthetic control dataseg(7(c)), where the embeddings
produced by the assisted projection heuristic were of Bagmitly better quality than those
of the other configurations. On the other hand, in the lastiterations we notice that the
variants employing the intentional landmark selectionileixfa slight deterioration in the
stress (0.05-0.07), again due to inappropriate selectidanaimarks. Finally, the musk
dataset comprises an excellent example of the power of thjeqgtion heuristic as well
as the power of the landmarks random selection (Fig.7(d)g [atter highlights that the
projection heuristic comprises the key enabling compofargtress minimization.

Similar results were obtained in the evaluation of the @rtisg quality of the produced
embedding. All configurations of the algorithm exhibit ampgmately the same behavior.
Inthe case of the alpha dataset (Fig.8(a)), the assistgetion heuristics produced results
of higher quality than the rest, however the amelioratiomed be considered significant.
In the remaining datasets (Figs.8(b), 8(c), 8(d)), theltesvere approximately the same.

As expected, the time requirements of the four varianfedsignificantly (Figs.9(a),
9(b), 9(c), 9(d)). The basic algorithm necessitates thst l@amount of time, while the use
of both heuristics requires significantly more time. The tragticeable fact however is
the behavior of the assisted projection setup comparecetintbntional landmark selec-
tion. According to theory, we would expect both configurai®co behave approximately
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Fig. 9. Assessment of FEDRA's configurations with respettiéoexhibited time requirements. Time is measured
in seconds

the same. Although this cannot be justified theoreticallis due to the experimentation
strategy we employed. Recall that the landmark selectioogss requires drawing a num-
ber of samples, a fact which is directly translated to disgeagses. The latter is absent in
the case of assisted projection, where we use the alreagbcted points which reside in
memory.

Finally, we would like to validate the quality of the producembedding in terms of
the convergence speedleMeans. Obviously, the obtained cluster structures argoée
quality, however the convergenceloMeans is influenced by the separation of the clus-
ters. Well-separated clusters enable the algorithm toym®desults faster, while a more
fuzzy layout necessitates additional loops. This expaminmighlights the power of the
combination of both heuristics, where in two cases (Figg)l@nd 10(b)) they enable the
k-Means algorithm to converge significantly faster that ttteep variants. It should be
stressed out that in both experiments, when dimensionalityhes 50-Means converges
almost 4 times faster on the dataset produced by the asgistgttion. Intuitively, this
fact is explained using the underlying theory as presemnteSieiction 5. The landmark
heuristic guarantees that the selected landmark set m®wdjood approximation of the
points pairwise distances. However, the addition of thégutmn heuristic directs FEDRA
to place points originally situated near in the high-dimenal space nearer in the projec-
tion space. On the other hand, distant points are projeateiddm each other. Essentially,
the combination of the landmarks selection and points ptigje heuristics enables FE-
DRA to produce an embedding that best discriminates clsisteus enabling the faster
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Fig. 10. Assessment of FEDRA's configurations with respedhe exhibited time requirements kfMeans.
Time is measured in seconds

convergence ok-Means. The latter is also depicted in the case of the twor atiiasets,
although in less extent (Figs.10(c) and 10(d)).

We conclude that the best configuration for FEDRA is the omelining the landmarks
selection and points projection heuristics. However, Wsth pointing out the fact that
the basic FEDRA appears as a good compromising solutioecesly with respect to the
imposed time requirements. Indeed, the basic algorithmagesito maintain clustering
quality, while exhibiting low stress values and the loweass$gible time requirements. On
the other hand, the obtained results signify that landmdokisot ameliorate significantly
the resulting embedding. Although the intentional landare®lection process enhances
the results, the required cost may not always justify itdiapfion.

6.3 Comparative Study

After having analyzed FEDRA and its variants, we proceedaimmare its performance
with that of well-known linear dimensionality reductiorgafithms. We compare FEDRA
against FastMap, Metric Map, Landmark MDS (LMDS), Randorojéution (RP), Van-
tage Objects (VO) and PCA. The algorithms were chosen spaltyffor their low time and
space requirements, while PCA is employed as benchmarkpdtsehigh quality results.
Landmark MDS was deployed both with random landmark sela@s well as MAXMIN,
while in both cases the selected landmarks were two times than the projection dimen-
sionality (f = 2k). Additionally, we used both distributions for Random Rjon and the
four different configurations of FEDRA. However, for ease of presemtawe report here
only the best results obtained from each algorithm.
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Fig. 11. Comparative assessment of all methods with respattess

(a) Stress values obtained while evaluating FEDRA and Fagtbh the Segmentation and lonosphere
datasets.

Segmentation lonosphere
k=3 | k=4 | k=5 | k=6 | k=7 || k=3 | k=4 | k=5 | k=6 | k=7
FastMap 0.14] 0.12 | 0.10 | 0.08 | 0.05 || 0.47 | 0.44| 0.36 | 0.33 | 0.30
FEDRA 0.15| 0.09 | 0.05| 0.03 | 0.01 || 0.43 | 0.42| 0.35 | 0.30 | 0.27

FEDRA Land Heur|| 0.28 | 0.18 | 0.15 | 0.07 | 0.07 || 0.40 | 0.38 | 0.36 | 0.32 | 0.28
FEDRA Proj Heur || 0.13 | 0.08 | 0.05| 0.04 | 0.02 || 0.41 | 0.37 | 0.31 | 0.29 | 0.26
FEDRA L& P Heur || 0.21 | 0.13 | 0.07 | 0.06 | 0.03 || 0.38 | 0.38 | 0.32 | 0.31 | 0.25

(b) Stress values obtained while evaluating FEDRA and Fagtdh the Synthetic control and Musk datasets.

Synthetic Musk
k=3 | k=4 | k=5 | k=6 | k=7 || k=3 | k=6 | k=9 | k=12 | k=15
FastMap 029 | 0.28 | 0.22 | 0.19 | 0.20 || 043 | 0.27 | 0.19 | 0.16 0.15
FEDRA 0.69| 066 | 0.61| 0.59 | 0.54 || 0.57 | 0.50 | 0.47 | 0.45 | 0.40

FEDRA Land Heur|| 0.69 | 0.64 | 0.64 | 0.63 | 0.62 || 0.57 | 0.48 | 0.43 | 0.40 | 0.36
FEDRA ProjHeur || 0.52 | 0.61 | 0.60 | 0.58 | 0.54 || 0.47 | 0.32 | 0.28 | 0.23 | 0.19
FEDRA L& P Heur || 0.50 | 0.60 | 0.63 | 0.62 | 0.59 || 0.49 | 0.33 | 0.27 | 0.23 | 0.19

Table IV. Stress values for FEDRA and FastMap on the varimallssize datasets

FEDRA's ability in maintaining distance information whiteojection becomes evident,
when compared against other algorithms. FEDRA manageatode embeddings of high
quality, while sometimes approximating the quality of PCAdepicted in Figs.11(a) and
11(b). In both experiments, FEDRA was slightly outperfodnoamly by PCA. However,
FEDRA should not be considered as an alternative to PCA tiu¢ras a fast approxima-
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Fig. 12. Comparative assessment of all methods with respeetative clustering quality maintenance

tion algorithm which manages to produce results of accéptlmlity compared to those
obtained by similar algorithms of its genre. Indeed, stodyigs.11(c) and 11(d), we
notice that this time FEDRA is significantly outperformed Bg€A, however it produces
better results than the other landmark-based algorithroth 8bservations have been val-
idated also when performing an experimental comparatisesssnent with FastMap. In 2
out of 4 cases, FEDRA behaved extremely well, managing tdywre results comparable
or even better than FastMap (Table 1V(a)), while in the remimgj datasets FEDRA was
outperformed (Table 1V(b)). The latter was expected sirestMap essentially comprises
a heuristic approximation of PCCAtherefore it exhibits approximately the same behavior.
The next experiments however highlights the merits of degéprocessing with dimen-
sionality reduction. Recall that our methodology diredts projection in a space with
dimensionality ranging from 2% to 10% of the initial dimemrss. Applying this on a 500
coordinates space results projecting in a space ranging fi®to 50 dimensions. Obvi-
ously, the indirect gains of this procedure are immensesidening the fact that the output
dataset is going to be used as input for another data minikgawledge discovery task.
The most important outcome however is the clustering maartee results (Figs. 12(a),
12(b), 12(c), 12(d)), where almost all algorithms manageth&intain the original clus-
tering quality, and even slightly ameliorate it by 2%-3%.eTthest results were obtained
by Vantage Objects, which managed to produce an embeddihgsthibited better ame-
lioration of clustering quality than the other approaches8 iout of 4 datasets. FEDRA
behaved approximately equal to the other algorithms withamdeviations which are not

8The selection of the most distant objects for the projedtipirastMap essentially approximates the selection of
the maximum variance axis of PCA
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Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

Segmentation lonosphere
k=3 | k=4 | k=5 | k=6 | k=7 || k=3 | k=4 | k=5 | k=6 | k=7
FastMap 0.27] 032] 035| 0.35| 0.39 || 0.07| 0.09| 0.10 | 0.12 | 0.13
FEDRA 024 029 | 0.34| 0.37 | 0.37 || 0.08 | 0.07 | 0.08 | 0.07 | 0.08
FEDRA Land Heur|| 0.27 | 0.31 | 0.34 | 0.37 | 0.41 || 0.09 | 0.10 | 0.13 | 0.11 | 0.12
FEDRA ProjHeur || 0.37 | 045 | 0.52 | 0.57 | 0.62 || 0.08 | 0.08 | 0.10 | 0.12 | 0.14
FEDRA L& P Heur || 040 | 049 | 0.54| 0.65| 0.69 || 0.11 | 0.14| 0.15 | 0.14 | 0.15

(b) Time requirements (in seconds) while evaluating FEDR& BastMap on the Synthetic control and Musk

datasets.
Synthetic Musk

k=3 | k=4 | k=5 | k=6 | k=7 k=3 | k=6 | k=9 | k=12 | k=15

FastMap 0.14| 0.16 | 0.17 | 0.19 | 0.23 || 0.15| 0.15| 0.19 | 0.20 0.24
FEDRA 0.11| 0.12 | 0.13| 0.15| 0.17 || 0.13 | 0.14 | 0.16 | 0.19 0.22
FEDRA Land Heur|| 0.15| 0.15| 0.18 | 0.18 | 0.19 0.21| 0.21| 0.24 | 0.27 0.31
FEDRA Proj Heur 0.14| 0.15| 0.19| 0.18 | 0.21 || 0.15| 0.18 | 0.23 | 0.27 0.31
FEDRA L& P Heur || 0.18 | 0.20| 0.25| 0.25 | 0.27 || 0.21 | 0.24 | 0.29 | 0.32 0.37

Table V. Time requirements (in seconds) for FEDRA and Faptbtathe various small-size datasets

considered significant.
Time requirements follow the theoretic analysis as preskm Section 2.5. The base
FEDRA configuration exhibits similar behavior to FastMap aometimes manages to
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Fig. 14. Comparative assessment of all methods with redpetie exhibited time requirements kfMeans.
Time is measured in seconds

produce results slightly faster. The overall results of tumparison appear in Tables V(a)
and V(b). As far as the large datasets are concerned, Randgjecton is faster in all
experiments, which is expected since the only requirensahgi definition of a rather sim-
ple projection matrix. On the other hand, PCA is generalg/iost expensive algorithm
in most cases. Metric Map is influenced by the augmentatidhenvalue ofk. Finally,
FEDRA, Vantage Objects and Landmark MDS require approxgahe same time. The
overall results are provided in Figs. 13(a), 13(b), 13(8Jd). All time measurements also
encapsulate the time requirements imposed for accessnugitd disk, since the datasets
do not reside in main memory.

In the final experiment, we compare the convergence reqemérofk-Means on the
embeddings produced by all algorithms. In this case, tw@bigur experiments highlight
FEDRA's ability to enable faster convergencekafleans, while Vantage Objects require
the most time (Figs. 14(a) and 14(b)). In parallel, Metricivdso produces embeddings
that suppork-Means. Additionally, it is worth noticing that the projemts obtained by
Random Projection were those that required significanttiaaail time in the gamma and
delta datasets (Figs. 14(c) and 14(d)). In general, Metap idnd FEDRA exhibited the
most stable results and produced consistent results iasdts. We note at this point that
the execution ok-Means on the original datasets required 296 seconds fbaaB?24 sec-
onds for beta, 400 seconds for gamma and 383 seconds for@éli@ining results of equal
quality in less than 10 seconds, obviously comprises a hoggleration of the algorithm.
Of course, based on the reported time requirements, ond aoglie that the application of
k-Means on the original dataset is still faster than that ofatisionality reduction. How-
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Fig. 15. Comparative assessment with respect to relatsteluited clustering quality maintenance

ever, these results were obtained bifatient programming languages (MATLAB and Java
respectively) and therefore cannot be considered direotlyparable.

Based on our experimental study, we conclude that FEDRA ialaersolution for hard
dimensionality reduction problems. In our experimentdibaion process, FEDRA man-
aged to combine low stress values with low time requiremantsproduced embeddings
that enabled the fast and accurate convergendeMéans. These features were hardly
combined in the majority of the competitive solutions. Desgheir high quality results,
Vantage Objects and Metric Map exhibit high stress valuestriglMap additionally ne-
cessitates significantly more time that Vantage Objectd&10RA. Additionally, Vantage
Objects produced embeddings that slowed dkviteans in 3 out of 4 cases. The same re-
sults were obtained for Random Projection, thus leading tise conclusion that FEDRA
is an attractive solution in terms of the quality factors veeédnanalyzed so far.

6.4 Distributed Dimensionality Reduction

In the final set of experiments, we validate the applicabit FEDRA in a distributed
context, where each node has a fragment of the whole da¥¥eatompare the distributed
version of FEDRA with the corresponding adaptations of Hikeo algorithms. The major
assumption made in these simulations is the existence af awtrlay network where the
central node undertakes the tasks that need to be carriezkotrally. For the Random
Projection and Vantage Obijects, the aggregator definestiiection matrix or the refer-
ence objects and forwards them to all peers. In the case of BlD#odes initially compute
their local means and forward them to the aggregator. Ther ledmputes the global mean
and disseminates it network-wide. Afterwards, all peetsutate their local covariance
matrixes and forward them to the aggregator, which finallaeixthek principal eigen-
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vectors and eigenvalues and sends them back. This mettyydslim accordance with the
directives of GPCA. For the rest of the algorithms, peersctébcally their landmarks and
forward them to the aggregator which, in turn, calculatésegitheir projection or the pro-
jection matrix and replies with the result. Then, each peejegts each of its local points
independently from the rest.

The assessment methodology follows the same principlefasebét first, we validate
the clustering quality of the produced embedding and thesert the induced network
load by the application of dimensionality reduction. Welaged the landmark selection
heuristics of FEDRA and LMDS, because on one hand their egipdin would produce
additional network load, while on the other hand in our poergiexperiments gave similar
results with the random selection process.

The overall obtained results are provided in Figs. 15(ajb}8.5(c) and 15(d). The
common characteristic in all graphs is the clustering dqualiaintenance in every pro-
jection. Additionally, Vantage Objects behave slightlytteethan the other approaches
exhibiting an amelioration ranging from 0.5% to 1.5%. FEDBé&haves similarly to the
other algorithms and manages to clearlffetientiate from Random Projection and Land-
mark MDS in the alpha and beta datasets. The network loadsetpby this operation
is presented in Fig. 16. We have intentionally omitted PCAce the aggregation of
the covariance matrix results in an overall cost of apprataty 1GB. Although the latter
is tolerable, since it amounts less that 50% of the size oftdted dataset, it is signifi-
cantly larger than the load of the other algorithms. Baseth@nanalysis, we conclude
that FEDRA can also be applied in a distributed context, peady high quality results
comparable to PCA, while also managing to keep network aopsion low.

7. CONCLUSIONS AND FURTHER WORK

In the context of this paper we proposed FEDRA, a novel, lidgaensionality reduction
algorithm with low time and space requirements. FEDRA emsluda in the new space by
following the landmark-based projection methodology, vereelimited set of points is used
to assist the reduction process. We thoroughly analyzedR#&xheoretic properties and
based on this analysis we proposed two extensions comptargea the base algorithm.
Moreover we introduced the distributed adaptation of FEORAs making it an attractive
candidate for distributed data preprocessing.

Through extensive experimental validation we highlighteeimerits of FEDRA as well
as its applicability in hard dimensionality reduction plerbs. FEDRA produced results
comparable to the best algorithms in all assessment expetithus combined all salient
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characteristics that an ideal dimensionality reductiothmé should have, namely low
time and space requirements, minimum distortion valuessisaw clustering structure and
quality preservation. With respect to the latter we obsgthe acceleration df-Means
when it was applied on the projected dataset obtained franalgorithm. In future work
we will exploit FEDRA in the context of similarity search andarest neighbor retrieval in
large and distributed databases.
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8. APPENDIX.

In the context of the appendix we provide some further aiglyiskey issues which indi-
rectly support the definition and analysis of FEDRA. At firg provide the proof of Theo-
rem 4 which comprises a fundamental step for the succesgfplication of our algorithm.
Furthermore we provide the proof of Theorem 2. In the end, vawige the extension
of the Pythagorean theorem and the Cosine Law for any Minkbdistance metric and
present the generalized distortion study. Although moseolations presented here can
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be considered elementary, they have been included in acvdsmrdure completeness (i.e.,
support the provision of a standalone document).

Tueorem 4. Any equation of the form(k) =| x |" — | x—a |" —d where ae R\{0},
d € R and ne N\{0} has a single root in R.

Proor. f(x) is differentiatable and continuousksince it is polynomial. Consequently
in order to have a single root it must exhibit a sign chand@irhile also being monotonous.
The successful validation of these two requirements wdgltfy that f (x) intersects with
axis X at a single point, thus has a single root. In order to definatrvative f/(x) of
f(x) we distinguish two cases, according to the valua.of

—a>0=
—f'(x)=n|x|"* -n|x-a|"!>0whenx>0,x>a
—f'(X)=n|x|"t+n|x—a|"'>0whenx>0,x<a
—f'(X) =-n|x|"t +n|x-—a|"’> 0whenx<0,x<a
—a<0=
—f'(x) =n| x|"* —n| x—a|"!< 0 whenx > 0
—f'(x)=-n|x|"! -n|x-a|" < 0whenx<0,x>a
—f'(X) =-n|x|"t+n|x-—a|"t< O0Owhenx<0,x<a

Consequentlyf(x) is monotonous irR and specifically is ascending whan> 0 and
descending when < 0. Next we must prove that there exists a single root. In omer
accomplish that we will use the Bolzano theorem. We decfila:e‘a%n and distinguish four
cases, according to the valuesdodindc:

—d>00<c<l>
—f@=1la"-ca"=(1-c)a">0
—f(0)=-a"-ca"=(-1-¢c)a" <0
—d>0,c>1=>
—f@=1la"-ca"=(1-c)a"<0
—f(ca) = |cd" - |ca—a" - cla" > 0 since [c|"— |c— 1" — ¢)|a" > 0 which necessitates
Ic"—|c—1"-c> 0orequivalently + | 1 - % " —# > 0. Assuming tha% ~0
then our relation holds true sinté — % "< 1
—d<0,c<-1=>
—f@=1la"-ca"=(1-c)a">0
—f(0)=—a"-ca"=(-1-0)a" <0
—d<0,-1<c<0=
—f@=1a"-cla"=(1-c)a"<0
—f(-ca) =|-cad"-|-ca-a"-ca" > 0since [c|" - [c+ 1|" — ¢)|]a" > 0 which

necessitatefg|" — [c + 1| — ¢ > 0 or equivalently + | 1 + % " —&% > 0. Assuming

R
that & ~ 0 then our relation holds true sinté + <1

Based on the latter and with the use of the Bolzano theorenowelede thatf (x) has a
root in (—co, +oo)which is single since our function is monotonousinin particular
—if d > 0and 0< leui" < 1 then the root lays in ()

—ifd>0 andleuin > 1 then the root lays ina(ca)

—ifd<0 andleuin > —1 then the root lays in ()
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—if d<0and-1< \al” < 0 then the root lays ing,—ca)

O

Tueorem 5. A set of k+ 1 points p,i = 1,...,k+ 1, described only by their pairwise
distances which have been defined with the use of a Minkovesande metric p, can be
embedded in Rwithout distortion through the following equations:

j-1 j-1
| pi’,j |p - | pi/,j - p/j+1,j |p +Zf:]_| pi/yf |p _Zf:]_| pi/,f - p/jyf |p

o= +dp(Pj+1, Pi)P — dp(pi, P)P = 0 if j <i—2 0
M o po)P - A R IP)P ifj=i-1
0 otherwise

Additionally the embedding is determined in polynomiaktim

Proor. By denoting ag; the i-th point of the dataset, the aforedescribed requirgsne
are precisely captured by the system of non linear equat&i)s

di(pis Pj) = do(Pis Pj)s j = Lok+ Li=1.k+1 (31)

Despite its non linear nature, this system can be solvedHestigh an iterative set of
polynomial equations. We employ the following techniguedchieving this goal. The first
pointp; is mapped in the beginning of the coordinates system, thattrisuted coordinates
O = (0,0,...,0). The second point is projected under the requirementd}(@, p2) =
dp(p1, P2), Which essentially can be expresseddgfO, p2) = dp(p1. p2). Obviously, p
can be mapped at any point lying on the circumference of arsppere with centep;
and radiuglp(pz, p2), however we choose to embed it dj(p1, p2), 0,0, ..., 0). Essentially
our choice is a simple verification of the fact that the diseahetween two points can be
expressed in an 1D space. Having projegiedve proceed withps. In this case, our
system (32) is augmented with one additional equation .

dp(Ps, Pi) = dp(ps, pi),1=1,2 (32)

The reader may notice that the system in question has anténfinimber of solutions.
Indeed, we havk unknowns and only two equations. Geometrically, our eguatdefine
two hypersheres; any of the points that lay in their inteisaccan be the projection of
ps in R¢. In order to overcome this, we calculate as before, only thémum number
of coordinates that are needed in order for our preregsigitéold true and assign a zero
value to the rest. The miminum number of non-zero coordmnieset toi — 1, where
i is the index of the point under projection. Consequentlyekyanding both equations
and subtracting the second from the first, we assign to thecbirdinate ofps the single
root (recall Theorem (4) ) of p3; P — | p3; — P5y 1P —dp(Ps, P1)P + dp(ps, P2)P = 0.
The second coordinate is derived by substituplg in the first equation, thus deriving

| P32 1= (d(ps, p)P— | P34 P)7.
Adhering to the above methodology we define the non lineaesy$33) for the third
landmark and proceed accordingly in order to define the edibgaf p, in R¥.

ACM Journal Name, Vol. V, No. N, Month 20YY.



44 . Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

B {0.y)
|
|
|
B | c

X

A(0,0) C (40) x

(a) Orthogonal triangle BAC (b) Triangle ABC with its altitude Ax

Fig. 17.
dy(Pa, Pi) = dp(Pa, pi), 1 =1,2,3 (33)

We expand all three equations and calculgte andpj , by subtracting the second and
third equations respectively from the first. The final nonezeoordinatep), 5, is defined
by substituting the calculated values in the first equati@®y. iteratively applying this
procedure for alk — 1 points we manage to embed thenRi Based on this methodology
we derive the set of equations (34).

/ / / Jfl / Jfl / /
| pi,j |p - | pi,,- - pj+1,j |p +Zf:1 | pi’f |p _Zf::L | pi’f - pj’f |p

| +dp(pj+1, P)P = dp(pi, p1)P =0 ifj<i-2
ij = i— , 1 e
P @ppi p)P - R 1R 1P)? if j=i-1
0 otherwise
(34)

The cost of this procedure is polynomial. The requiremeresaick?) wherec is the
cost of the method employed for determining the root of thea¢ign. [

Osservation 3. Given an orthogonal triangl8AC and a Minkowski distance metric p,
the length of the hypotenuse BC of the triangle is given by B@BP + ACP.

Proor. Assuming triangleBAC as in Fig. 17(a) the lengths of its sides &€ = x,
AB=y, BC = (IXP + lyP)?. Obviously, we conclude th&CP = ABP + ACP. [J

OsservaTioN 4. Given a triangIeB/A\C and a Minkowski distance metric p, the length of
the segment Bx, where x is the intersecting point of theudkibf angleA with line BC is
given by the single root of Bx- (BC — Bx)P — AB? + ACP =0

Proor. Assume triangleABC as in Fig. 17(b). The application of the Pythagorean
theorem on triangl&BxgivesABP = AxP + BxP. Accordingly on triangléAC xwe derive
ACP = AXP + (BC — BX)P sinceBC = Bx+ Cx. Subtracting the second equation from the
first we deriveBx? — (BC — BX)P — ABP + ACP = 0 which according to theorem 4 has a
single rootinR. O

Lemma6. Using any two landmarkss;, L, and a Minkowski distance metrig, FE-
DRA can project any two point4, Bin a given low-dimensional space while guaranteeing
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that their new distanc&’B’ will be bounded by ABP — A)% < AB < (AB° + A)% with
A = (AA + BB))? — (AA, — BB,)? whereAA, BB, are the lengths of the altitudes of
trianglesL1AL,, L1 BL, respectively.

Proor. We will now extend the analysis of Section 4 with respechi® distortion for
any Minkowski distance metrip. Towards this end we will employ Observations 3 and 4.
Following the same analysis as in Paragraph 4.4.2 but usangrevious generalizations,
in the high-dimensional space we obtain tA&® = A”BP + (x — y)? andABP < (AA, +
BB,)P + (x — y)P wherex andy are obtained from the solution of equatiotfs— (L;L, -
X)P+ AL, — ALY = 0 andy? — (L1 Lo - y)P + BL, — BL} = 0 respectively which according to
Theorem 4 have a single roothh Using Observation 3 we also obtaiiy = (AL’l) - xp)%
andBBy= (BL! - yP)?.

The new distance betwee¥y, B’ is eitherA’B’? = (x - y)P + (AA, — BB,)? or AB'P =
(x-Yy)P + (AA, + BB))P. We define ad\ = (AA, + BBy)P — (AA, — BB)P the diference
between the obtained values and obtain the lower bourdRifas ABP — A)%’ <AB.

The upper bound can be derived similarly. We have &) — BB,| < A"B = (AA, -
BB)P < A’BP = (AA - BB))P + (y—X)P < A’BP + (y— X)P = (AA - BB)P + (y—X)P <
ABP = (AA-BB)P+ (Y- X)P + A< ABP + A = (AA + BB)P + (Y- X)P < ABP + A
and since AA, — BB))? + (y — X)P < (AA, + BBy)P + (y — X)P we derive the upper bound
A'BP < ABP + A.

Consequently,ABP — A)%’ <A'B < (ABP + A)%. O
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