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Scaling up data mining algorithms for data of both high dimensionality and cardinality has been
lately recognized as one of the most challenging problems in data mining research. The reason is
that typical data mining tasks, such as clustering, cannot produce high quality results when applied
on high-dimensional and/or large –in terms of cardinality– datasets. Data pre-processing and in
particular dimensionality reduction constitute promising tools to deal with this problem. However,
most of the existing dimensionality reduction algorithms share also the same disadvantages with
data mining algorithms, when applied on large datasets of high dimensionality. In this paper, we
propose a fast and efficient dimensionality reduction algorithm (FEDRA), which is particularly
scalable and therefore suitable for challenging datasets. FEDRA follows the landmark-based
paradigm for embedding data objects in a low-dimensional projection space. By means of a
theoretical analysis, we prove that FEDRA is efficient, while we demonstrate the achieved quality
of results through experiments on datasets of higher cardinality and dimensionality than those
employed in the evaluation of competitive algorithms. The obtained results prove that FEDRA
manages to retain or ameliorate clustering quality while projecting in less than 10% of the initial

dimensionality. Moreover, our algorithm produces embeddings that enable the faster convergence
of clustering algorithms. Therefore, FEDRA emerges as a powerful and generic tool for data
pre-processing, which can be integrated in other data mining algorithms, thus enhancing their
performance.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data Mining;
H.3.3 [Information Systems]: Information Storage and Retrieval—Clustering; H.3.4 [Information Systems]:
Systems and Software—Performance evaluation (efficiency and effectiveness)

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Landmarks, Dimensionality Reduction, Clustering Quality

1. INTRODUCTION

An increasing number of contemporary applications producemassive volumes of very
high-dimensional data. In scientific databases, for example, it is common to encounter
large sets of observations, represented by hundreds or eventhousands of coordinates.
Unfortunately the rate of data generation and accumulationsignificantly outperforms our
ability to explore and analyze it. Nevertheless, in order toextract knowledge from these
datasets, we need to access the underlying, hidden information. However, the size and
complexity of these collections makes their processing andanalysis impractical or even
ineffective [Beyer et al. 1999]. Therefore, scaling up data mining algorithms for data of
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2 · Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

both high dimensionality and cardinality has been recentlyrecognized as one of the top-10
problems in data mining research [Yang and Wu 2006].

A potential solution to this problem is provided by data pre-processing techniques and
particularly dimensionality reduction. Dimensionality reduction addresses these challenges
by projecting data from the original high-dimensional space to a new, lower dimensional
space while retaining useful data properties such as pairwise distances or other statistical
properties (i.e., variance). However, the vast amount of generated data dictates methods
that are both fast and exhibit low memory requirements. Unfortunately, the vast majority
of existing algorithms are either computationally efficient at the expense of high memory
requirements or they require limited memory at the expense of significant computational
cost.

The main focus and application area of our work is the enhancement of the quality
of clustering algorithms for high-dimensional datasets ofparticularly high cardinality, by
means of efficient and scalable dimensionality reduction. To this end, we proposeFE-
DRA, a fast and efficient dimensionality reduction algorithm, that aims to address these
challenges directly. FEDRA belongs to the family oflandmark-baseddimensionality re-
duction algorithms. The basic intuition is thatk n-dimensional objects are selected as
landmarksand they are embedded to ak-dimensional projection space, by retaining their
exact pairwise distances. Then, the remaining objects are embedded in thek-dimensional
space, by requiring that their distances to the landmarks are exactly retained.

FEDRA is computationally efficient without high memory requirements (compared to
existing algorithms) and as demonstrated experimentally,achieves high quality results
when applied to typical clustering tasks. In particular, FEDRA manages to successfully
reproduce the original cluster structure in a space of dimensionality lower than 10% of the
initial dimensions while the obtained embedding significantly accelerates the convergence
rate ofk-Means. We emphasize that our experimental evaluation employs significantly
larger datasets than those used in the study of competitive state-of-the-art algorithms. The
results verify the applicability of FEDRA on large-scale clustering tasks. The individual
contributions of this work are summarized as follows:

(1) We provide a theoretic and experimental study of the family of landmark-based di-
mensionality reduction algorithms. Each algorithm is assessed with respect to its
computational resources requirements as well as its applicability and viability in hard
dimensionality reduction problems.

(2) We present FEDRA, a provably fast and efficient dimensionality reduction algorithm
that follows the principles of landmark-based dimensionality reduction.

(3) We provide a thorough theoretical analysis of FEDRA thatincludes the calculation of
computational complexity, the proof of embedding existence, an assessment of pro-
jection quality and a geometric interpretation.

(4) We propose two extensions of the basic algorithm, including an effective landmark
selection heuristic as well as a heuristic for choosing the best embedding for a data
object out of a set of possible embeddings.

(5) Inspired by our previous work [Magdalinos et al. 2006], we demonstrate the appli-
cability of FEDRA in a widely distributed setting, where data is not available at one
centralized location but instead it is horizontally fragmented over a set of independent
nodes in the network.
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Symbol Description

n Dimensionality of original space
k Dimensionality of projection space
d Cardinality of dataset
pi or Pi Data point
l i or Li Landmark point
p′i Data point in the new space
pi, j The j-th coordinate ofpi

dp(pi , pj ) Minkowski distance betweenpi andpj , dp(pi , pj) = (
∑n

l=1(pi,l − pj,l )p)
1
p

d(pi , pj ) Euclidean distance betweenpi andpj (p = 2)
dp(pi , pj ) Distance betweenpi andpj in original space
d′p(pi , pj ) Distance betweenpi andpj in projection space
ℓd

p Thed-dimensional Euclidean space with Minkowski distance metric p

Table I. Overview of basic symbols.

(6) By means of an extensive evaluation on large-scale datasets, we validate the behavior
of FEDRA by comparing it against other state-of-the-art landmark-based dimension-
ality reduction techniques.

The rest of this paper is structured as follows: Section 2 provides a brief survey of
related work in dimensionality reduction algorithms. In Section 3, we present FEDRA and
describe in detail the embedding algorithm. Then, we provide an analysis of our theoretical
findings in Section 4. The extensions of our basic algorithm are presented in Section 5. In
Section 6, we demonstrate the results of the experimental evaluation. Finally, we conclude
the paper and sketch future research directions in Section 7.

2. RELATED WORK

In this section, we provide an overview of the area of dimensionality reduction. We com-
mence by providing a classification scheme for dimensionality reduction algorithms cou-
pled with various metrics for the evaluation of their results. Furthermore, we outline the
most dominant linear techniques and present in details a small subset, namely landmark-
based methods that are prominent for their efficiency in terms of consumption of computa-
tional resources. Due to the emergence of distributed knowledge discovery, we report the
latest results in the area of distributed dimensionality reduction and elaborate on the ex-
tensibility and applicability of state-of-the-art algorithms in distributed environments. The
section concludes with a comparative assessment of the analyzed algorithms in terms of
time and space requirements.

In the following, we assume that the dataset is composed ofd data objects represented as
points in then-dimensionaloriginal spacethat are going to be embedded in ak-dimensional
projection space, with k significantly lower thann (k ≤ 0.1n). The Minkowski distance
between two pointspi andp j in the original space is depicted asdp(pi , p j), whiled′p(pi , p j)
denotes their distance in the projection space. In the case of the Euclidean distance we drop
the subscript and simply used(pi, p j). For a complete overview of the basic symbols used
in the following, we refer to Table I.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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2.1 Classification Scheme and Quality Measures

2.1.1 Classification Scheme.Dimensionality reduction problems can be broadly clas-
sified into three distinct categories [Carreira-Perpinan 1997].Hard problems, where data is
defined in a space consisting of hundreds or even thousands ofcoordinates and drastic di-
mensionality reduction is required, possibly of orders of magnitude,Soft problems, where
the requirement for reduction is milder, andVisualization problems, where data of high
dimensionality is mapped to few dimensions, such that its structure becomes perceivable
by humans. The algorithms that solve these problems are classified with respect to the way
they manage data [de Silva and Tenenbaum 2002].Linear algorithmsembed any object in
the identified low-dimensional space by deriving a linear combination of its coordinates.
This procedure implies that high-dimensional data lay on anapproximately linear manifold
of significantly lower dimensionality. On the other hand,non linear methodsassume that
such global linearity does not exist and operate on small fractions of the high-dimensional
manifold that can be perceived as locally linear. If we consider the dimensionality of the
projection space, then reduction methods are distinguished betweenglobalandlocal [Lian
and Chen 2009].Global methodsembed data in a common low-dimensional space while
local methodsproject small data partitions to a dimensionality which is calculated by the
corresponding partition’s local statistics. Finally, depending on whether or not the pairwise
distances of points are exactly retained in the projection space, dimensionality reduction
algorithms can also be classified asapproximateor exact. In the context of this work we
will primarily focus on the family of approximate, linear, global dimensionality reduction
methods and specifically on one of its subsets, namely landmark-based algorithms.

2.1.2 Quality Metrics. We also provide an overview of appropriate quality metrics for
the evaluation of dimensionality reduction algorithms.

Distortion. While there exist different methods for assessing the quality of an algorithm,
the most popular metric isdistortion[Hjaltason and Samet 2003]. Distortion quantifies the
change in the distance between any two pointspi ,p j due to the projection and is defined as
the lowestc1c2 value withc1,c2 > 1, which guarantees that:

1
c1

dp(pi , p j) ≤ d′p(pi, p j) ≤ c2dp(pi , p j) (1)

Stress. Distortion implies the existence of theoretic upper and lower bounds to the
distance deviation induced by an algorithm. However, the derivation of explicit bounds
may not be possible for some algorithms, while others may exhibit worse theoretic bounds
compared to their actual behavior. In such cases, an application-oriented metric likestress
is employed. Stress quantifies the capability of an algorithm to approximate the original
pairwise distances, by comparing the original set of distances with the one obtained in the
projection space. Stress is calculated by formula 2.

S tress=

√√√∑d
i=1
∑d

j=1 (dp(pi, p j) − d′p(pi , p j))2

∑d
i=1
∑d

j=1 dp(pi, p j)2
(2)

Task-related Metrics. Another approach of indirectly assessing the quality of a dimen-
sionality reduction algorithm is to compare the performance of a data mining task (i.e.,
clustering or classification) prior and after the application of dimensionality reduction.
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Typical examples include theClustering Preservation Ratio(CPR), theRelative Classifi-
cation Ability Maintenance(RCAM) and theRelative Clustering Disability Degradation
(RCDD). CPR [Gabriela and Martin 1999] validates an embedding with respect to its abil-
ity to maintain the original cluster structure. Assuming that data labels are known in ad-
vance, CPR employs a nearest neighbor classification schemeand measures how many
cluster labels have changed due to the repositioning of objects by the projection. In the
same spirit, RCAM and RCDD [Magdalinos et al. 2009] quantifythe amelioration of the
performance of classification and clustering algorithms, due to dimensionality reduction.
Finally, for the specific case of nearest neighbor retrieval, thePruning Power(PP) and the
Computational Cost(CC) metrics [Lian and Chen 2009] can be employed. PP measures
the number of objects that are pruned in the low-dimensionalspace using the triangle in-
equality without introducing false dismissals while CC measures the number of distance
computations that take place in the original high-dimensional space, after the completion
of the pruning phase.

2.2 Prominent Dimensionality Reduction Techniques

Dimensionality reduction can be simply viewed as a transformation that embeds data in
a low-dimensional space. One of the key issues however is thedefinition of the corre-
sponding transformation matrix. The latter is accomplished with the use of linear algebra
techniques which operate in the heart of most algorithms. Eigendecomposition, QR factor-
ization and Singular Value Decomposition (SVD) comprise such examples [Stewart 2001].

One of the initial dimensionality reduction methods is multidimensional scaling (MDS)
often referred to as classic MDS [Togerson 1958]. MDS embedsdata in a low-dimensional
space by projecting on a space spanned by the eigenvectors that correspond to thek largest
eigenvalues of the data cross product matrix,XXT. Principal Components Analysis (PCA)
[Chakrabarti 2002] is a closely related method to MDS that derives the corresponding

eigenvectors from the data covariance matrix,1
nX

T
X, whereX signifies data matrixX with

means subtracted across dimensions. MDS requiresO(d3) space andO(d2) time while
PCA O(n3) andO(n2) respectively. Linear Disciminant Analysis (LDA) [Swets and Weng
1996] is a technique closely related to PCA, in the sense thatthey both project points on
a set of axis that best discriminate the data. However, contrary to PCA that maximizes
data covariance, LDA attempts to best discriminate data classes. The poor scaling ability
of classic LDA in conjunction with its high quality results inspired the definition of many
alternatives such as Nonparametric LDA [Li et al. 2009], Rotational LDA [Sharma and
Paliwal 2008] and QR-based LDA [Ye et al. 2004]. Like PCA, LDArequiresO(n3) time
andO(n2) space. The direct application of SVD onX resulted in methods such as Corre-
spondence analysis (CA) [Payne and Edwards 1999] and LatentSemantic Indexing (LSI)
[Deerwester et al. 1990].

Due to the fact that the eigenanalysis and singular value decomposition of a matrix are
quite expensive in terms of computational resources, numerous methods have attempted to
approximate their results. Instead of using the leading singular vectors of the original data
matrixA, in [Drineas et al. 2006] the authors choose directly a subset of columns and rows
from the actual dataset and perform an approximation of the original data matrix through
multiplicationCUR. C andR are matrices populated with columns and rows fromA re-
spectively whileU is defined as a product ofC,RandA. Despite its simplicity, this method
yields results of high quality since it induces a bounded error slightly larger than that of
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SVD. Apart from its simplicity, the key properties of CUR decomposition are its low time
and space requirements; assuming the selection ofk rows and columns, time complexity
is upper-bounded byO(k3) while memory load reachesO(d + n). By introducing a new
row and column selection procedure [Mahoney and Drineas 2009], the authors managed to
further reduce the approximation error without additionalcomputational load, thus further
ameliorating the quality of the decomposition.

Trying to solve the high time requirements of MDS, Faloutsosand Lin introduced
FastMap [Faloutsos and Lin 1995]. FastMap is an alternativeto MDS which employs
elementary Euclidean geometry and achieves high quality results with considerably lower
time requirementsO(dk). A significant drawback of FastMap is its memory requirements,
which reachO(d2). The latter is partially addressed in a variation of the algorithm that
takes as input the original points, thus losing its dimensionality agnostic nature. Then,
memory requirements are reduced toO(d(k+ n)), however computational complexity rises
since it requires computation of high-dimensional distances1.

A powerful yet extremely simple and computationally efficient dimensionality reduction
method is Random Projection. Random Projection comprises aspecial case ofdata obliv-
ious technique [Ailon and Chazelle 2010] since, contrary to almost all other approaches,
defines a transformation matrix without using any direct or indirect information from the
underlying dataset. Indeed, data points are embedded inRk with the use of a randomly
generated matrix (Rkxn) through multiplication 1√

k
XRT. The idea of the projection is based

on the Johnson-Lindenstrauss lemma.

Lemma1. Johnson-Lindenstrauss: For any 0< ε < 1 and any integerd, let k be a
positive integer such thatk ≥ 4(ε2/2 − ε3/3)−1lnd. Then for any setV of d points inRn

there is a mapf : Rn → Rk such that for allu, v ∈ V : (1− ε)||u− v||2 ≤ || f (u) − f (v)||2 ≤
(1+ ε)||u− v||2. Further, this map can be found in randomized polynomial time.

An elementary proof of this lemma is provided in [Dasgupta and Gupta 2003]. Since the
embedding of a dataset fromℓn

2 to ℓk
p (p ≥ 1) is acquired through a matrix multiplication

procedure, time requirements are upper-bounded byO(dkn). Memory requirements are
low, O(kn), since the algorithm requires only the constant existenceof the random matrix in
main memory. Addition of a new point results inO(kn) computational overhead. Random
Projection is immune to massive additions of points, because it does not employ data-
dependent information for the embedding, such as distance metrics between processed
data, which can be affected by subsequent additions.

Random Projection can be significantly accelerated in practice by employing an ap-
propriately defined sparse projection matrix. In [Achlioptas 2001], two simple distribu-
tions are proposed that prove rather robust and can easily beapplied on large datasets.
Running time is then significantly reduced becauseR comprises either a full matrix of
+/ − 1 or a sparse matrix with approximately2

3 of its cells set to 0. TheFast Johnson-
Lindenstrauss Transform(FJLT) introduced in [Ailon and Chazelle 2010; 2006] manages
to produce an even sparser matrix, thus further accelerating the procedure. FJLT reduces
the number of non-zero elements inR by introducing an additionalFast Fourier Trans-
form based preprocessing step. Thus, overall time requirementsare then upper-bounded
by O(dnlogn+ nlogdǫ−2), however the latter is achieved at the expense of guaranteeing

1In the context of this paper we follow the first variation which is the one appearing in the original publica-
tion [Faloutsos and Lin 1995].
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distance distortion bounds only for projecting fromℓn
2 to ℓk

p, p = {1, 2}, and not for generic
Minkowski distance functions.

2.3 Landmark-based Dimensionality Reduction

In order to address the high memory requirements of MDS, the landmark-based projection
methodology has been introduced. Instead of mapping all data simultaneously to the pro-
jection space, landmark-based algorithms initially extract a small fraction of points which
are embedded in the projection space. Subsequently, based on the assumption that these
points remain fixed (landmarks in the projection space), therest of the dataset is projected
by employing distance preservation techniques. The first method obeying this paradigm
was Triangulation-based Sequential Mapping (TSM) [Lee et al. 1977].

The most prominent algorithm of this methodology is Landmark Multidimensional Scal-
ing (Landmark MDS) [de Silva and Tenenbaum 2004; 2002], which directly addresses the
scalability problem of MDS. Initially, Landmark MDS selects f points (landmark points),
on which classic MDS is applied, with the constraintf > k. Afterwards, a distance-
based triangulation procedure, which uses as input distances to already embedded land-
mark points, determines the projection of the remaining points. PCA can optionally be
employed to align the result to the principal axes of the dataset. An obvious question
is related to the landmarks selection process. Although random selection produces re-
sults of acceptable quality, the authors additionally propose the MAXMIN heuristic. In
MAXMIN, the first landmark is randomly picked from the set of objects while a new land-
mark is selected provided that it maximizes the minimum distance to any of the already
selected landmarks. Following our notation, LMDS requiresO( f d) memory. The time
requirements vary depending on the setup selected. Assuming random selection in the first
step and no normalization, time complexity isO(k f d+ f 3), otherwise (heuristic selection
of landmarks and PCA alignment) it isO(k f d + f 3 + k2d + k3). Finally the addition of
a new point necessitates the execution of only the last step of the algorithm, resulting in
O( f (n+ k)) extra load.

An approach combining the simplicity of FastMap with the paradigm of landmark-based
projection is Vantage Objects [Vleugels and Veltkamp 1999]. The idea of Vantage Objects
is quite simple; the embedding of a pointp is identified by concatenating its distances to
a set of preselected reference objects (henceforth called vantage objects). Thej-th coor-
dinate of pointpi is attributed the distance ofpi to vantage pointV j , p′i, j = d(pi,V j). The
selection of Vantage Objects is accomplished either randomly or heuristically. In [Vleugels
and Veltkamp 1999], the use of the MAXMIN heuristic is suggested similarly to LMDS.
Trying to identify methodologies for the selection of vantage objects, the authors of [Hen-
nig and Latecki 2003] came up with a larger set of heuristics.Although these proposals
provide high quality results, they are resource-consumingand therefore their application is
prohibitive in large-scale datasets.

Metric Map [Wang et al. 2005] is a recent approach similar in spirit with Vantage Objects
and FastMap. The intuition behind Metric Map is to employ 2k objects as reference points
and use them for the embeding of the whole dataset in the target space. The algorithm
initially maps the small data sample of 2k points on the base vectors of a pseudo-Euclidean,
2k-dimensional space. Then by employing a customised distance function, Metric Map
calculates the sampled points squared distance matrix (D) and establishes the target space
through the eigendecomposition ofD. Finally, each remaining points is mapped inRk by
using its custom squared distances to all reference points.Similar to FastMap, Metric Map

ACM Journal Name, Vol. V, No. N, Month 20YY.



8 · Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

is also agnostic towards the initial dimensionality of the dataset and requires as input only
distance information and the target dimensionality. Spacerequirements for Metric Map are
upper-bounded byO(k2). Time requirements are analogous toO(dk2 + k3), while the cost
of adding a new point isO(k2).

BoostMap [Athitsos et al. 2008] is another algorithm that uses reference points, in order
to embed data in the low-dimensional space. BoostMap definesa number of embeddings
following the methodology of FastMap and then treats each embedding as a classifier that
predicts whether a pointX is closer to reference pointsA or B. The combination of these
weak classifiers results in the definition of a strong one withthe use of Adaboost [Freund
and Schapire 1995] which finally provides the embedding in the projection space. The
algorithm requiresO(dT) time, whereT is the size of the sampled training set (the various
triplets) andO(d) space. The addition of a new point necessitatesO(k) distance computa-
tions.

Sparse Map [Gabriela and Martin 1999] is a landmark-based algorithm that operates
using a powerful embedding technique, namely Lipschitz embeddings [Bourgain 1985].
Lipschitz embeddings require the definition oflog2

2d data subsets organized in a matrix
format with O(log2d) rows, with row i havingO(log2d) sets of cardinality 2i . The em-
bedding of an object in the projection space requires the computation oflog2

2d coordinates,
where thei-th coordinate identifies the minimum distance of the processed object from any
of the points of the⌊(i − 1)/(log2d) + 1⌋ subset. In order to speed up the computations and
reduce the dimensionality of the resulting embedding, Sparse Map introduces a number of
heuristics. The reduction of high dimensional distance computations is accomplished by
approximating it with the use of the already derived low-dimensional coordinates. Addi-
tionally, given a fixed value fork, Sparse Map iteratively employs the stress metric in order
to identify a subset ofk features from the obtained embedding that provides the lowest
stress value. Time and space complexity of Sparse Map areO(dlog2d) andO(dlog2

2d) re-
spectively, however this bound can be misleading in practice, since the actual requirements
vary depending on the implementation of the various heuristics.

2.4 Distributed Dimensionality Reduction

The large number of distributed applications that appearedsince the beginning of the
decade in conjunction with the high rate of data generation have highlighted the inap-
plicability of centralized approaches in current researchproblems. Therefore it becomes
obvious that a paradigm shift, towards the decentralization of data mining methods, is re-
quired in order to address these problems. This paradigm shift will also have a significant
effect on the area of dimensionality reduction which comprisesan important step for data
preprocessing.

Distributed dimensionality reduction algorithms assume data distributed across a set of
nodes and the existence of some kind of network organizationscheme. The simplest case
are structured peer-to-peer networks, where organizationexists by construction. In such
networks, a distributed hash table (DHT) determines the peer where each data object is
stored. Examples include Chord [Stoica et al. 2001] and CAN [Ratnasamy et al. 2001]. In
unstructured P2P networks, the organization may be inducedby means of physical topol-
ogy (i.e., a router) or by means of a hierarchical scheme [Doulkeridis et al. 2007]. In both
cases however, a node undertakes all computations that haveto be performed centrally.
The most prominent approaches in the area are adaptations ofPCA [Kargupta et al. 2000;
Qi et al. 2004; Qu et al. 2002]. Two distributed alternativesof Fastmap [Abu-Khzam et al.
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2002] have also been proposed, but their application reliesheavily on the synchronization
of network nodes, thus they can only be applied in controllable laboratory environments.
Recently, K-Landmarks [Magdalinos et al. 2006] has been proposed as a promising solu-
tion for distributed dimensionality reduction in unstructured peer-to-peer networks.

It has to be stressed out at this point that almost all currentlandmark-based dimen-
sionality reduction approaches can be applied in a distributed environment. Assuming the
existence of a hierarchical organization scheme, each peerselects a set of landmark points
and forwards it to an aggregator node. The latter applies thecore part of the algorithm
and forwards the result to all subsuming nodes. Finally, each node projects its local data
independently from the rest. Landmark MDS, Vantage Objectsand Metric Map can be
directly employed in such context. Finally, it is worth mentioning that Random Projection
is also applicable in network environments. Indeed, the Johnson-Lindenstrauss lemma and
its independence of any data related metric allows a single node to generate the projec-
tion matrix and forward it to all nodes, thus significantly minimizing the required network
bandwidth.

2.5 Comparative Assessment

In the context of this paragraph, we provide a comparative assessment of the aforedescribed
algorithms. Since we focus on hard dimensionality reduction problems on datasets of
particularly high cardinality, we exclude methods that exhibit time or space requirements
analogous to or higher thanO(d2) or O(n3). It is therefore natural to focus on the family
of landmark-based dimensionality reduction algorithms. Table II provides an overview of
the requirements induced by landmark-based algorithms. Each algorithm is presented with
respect to its time and space requirements for the projection of d points fromRn to Rk. In
the last column, we provide the cost of adding a new point to anexisting embedding. We
useT to denote the cardinality of the test dataset employed by BoostMap.

Algorithm Time Space Addition

Landmark MDS O(k f d+ f 3) O( f d) O( f n+ f k)
Vantage Objects O(dk) O(nk) O(k)

SparseMap O(dlog2d) O(dlog2
2d) O(log2

2d)
MetricMap O(dk2 + k3) O(k2) O(k2)
BoostMap O(dT) O(d) O(k)

Random Projection O(dkn) O(kn) O(kn)

Table II. Time and space requirements of landmark-based dimensionality reduction algorithms.

Despite its high quality results, SparseMap exhibits prohibitively large space and time
requirements as well as poor scaling ability. For example, in a dataset of 106 points,
SparseMap necessitates the definition of approximately 324subsets of objects, 18 of which
would reach a cardinality of 218. Even if we speed up the process by approximating the
original distance through the use of the derived coordinates, the identification ofk features
that exhibit low stress value is extremely difficult to be applied in practice. The reason
is quite simple; following the methodology proposed in [Gabriela and Martin 1999] we
should sample 10% of the dataset, or 105 points and define a matrix of 1010 elements. Ob-
viously this induces a huge memory load while in parallel itsfrequent application (at least
k times) requires considerable time. BoostMap exhibits similar scaling problems due to
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its dependence on the size of the training set as well as the requirement of frequent execu-
tion of the classification algorithm. On the other hand Landmark MDS, Vantage Objects,
Random Projection and Metric Map appear as promising solutions to our problem.

3. THE FEDRA ALGORITHM

In this section, we present FEDRA, a linear dimensionality reduction algorithm that di-
rectly addresses the two major disadvantages of classic MDS, namely its high computa-
tional complexity and high memory requirements, while exhibiting low stress values and
preserving data distribution. It is designed to handle all classes of dimensionality reduc-
tion problems, however it emphasizes on hard problems. The intuition of the algorithm
follows the landmark-based projection methodology [de Silva and Tenenbaum 2004; Lee
et al. 1977; Wang et al. 2005]. However, compared to existinglandmark-based dimension-
ality reduction algorithms and other embedding methods, FEDRA introduces significant
advances in terms of time and space requirements. More specifically:

—FEDRA acquires the projection through an iterative set of polynomial equations, thus
achieving low computational complexity and memory requirements.

—In comparison to other dimensionality reduction algorithms that are restricted to the Eu-
clidean distance (cf. [Hjaltason and Samet 2003]), our approach is applicable for any
Minkowski distance metric. Therefore, FEDRA is appropriate for applications that re-
quire the use of more complex distance functions than the Euclidean distance, or neces-
sitate the definition of a mapping fromℓn

p to ℓk
p wherep ≥ 1.

—The proposed algorithm guarantees that an amount of the initial pairwise distances is
exactly sustained, in spite of the projection.

—Finally, FEDRA establishes a bound for the error introduced due to the dimensionality
reduction, thus providing theoretical guarantees for the quality of the projection.

3.1 Theory Underlying FEDRA

Before delving into the details of FEDRA, we provide a theorem that sets the methodolog-
ical and practical foundations of our algorithm. Theorem 2 comprises the cornerstone of
FEDRA and encapsulates in a coherent manner the methodologyof the algorithm as well
as the main concepts related to its application. For ease of presentation, we omit the proof
of the theorem and provide it in the Appendix (Section 8). In the context of this section,
we argue about the key implications of FEDRA through an illustrative example.

T 2. A set of k+ 1 points pi , i = 1, ..., k + 1, described only by their pairwise
distances which have been defined with the use of a Minkowski distance metric p, can be
embedded in Rk without distortion through the following equations:

p′i, j =



| p′i, j |p − | p′i, j − p′j+1, j |
p +
∑ j−1

f=1 | p
′
i, f |

p −∑ j−1
f=1 | p

′
i, f − p′j, f |

p

+dp(p j+1, pi)p − dp(pi , p1)p = 0 if j ≤ i − 2

(dp(pi , p1)p −∑i−2
f=1 | p′i, f |p)

1
p if j = i − 1

0 otherwise

(3)

Additionally the embedding is determined in polynomial time.
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Theorem 2 requires the exact preservation of points’ pairwise distances, captured by the
following set of equations:d′(pi , p j) = d(pi , p j), j = 1...k+ 1, i = 1...k+ 1. The system of
equations is obviously non-linear, since even for the Euclidean distance we need to solve
a second-order equation. Although confusing at first sight,its solution is in essence quite
simple and is based in practice on the axioms of Euclidean geometry. In order to understand
its rationale, we provide an illustrative step-by-step example of the embedding of 4 points
{p1, p2, p3, p4} that reside in an unknown high-dimensional space intoR3 (Fig.1).

The projection of the first pointp1 is quite simple, as no constraints are imposed on its
exact position yet. For reasons of simplicity, we choose to embed it in the beginning of the
coordinates system, at pointO. Naturally, the projection of one single point implies thatno
axes are required. Pointp2 must be projected on the circumference of a sphere with center
O and radiusd(p1, p2), in order to preserve its distance top1 in the original space. For
simplicity reasons, we choose to assignp2 the coordinates (d(p1, p2), 0, 0), as depicted in
Fig. 1(a). Note that we are using only one axis, therefore theother axes are depicted with
dotted lines.

The embedding ofp3 should satisfy simultaneouslyd′(p1, p3) = d(p1, p3) andd′(p2, p3) =
d(p2, p3). These requirements depict two circles with centersp1 andp2 and radiid(p1, p3)
andd(p2, p3) respectively. The intersection of these circles providesthe embedding ofp3

in the projection space, as shown in Fig. 1(b). Two possible depictions ofp3 are identified,
both symmetric with respect to the line defined byp1 andp2. We randomly select one to
be the desired projection ofp3.

In the final step, we embed the fourth pointp4. The embedding should satisfy simul-
taneouslyd′(p1, p4) = d(p1, p4), d′(p2, p4) = d(p2, p4) andd′(p3, p4) = d(p3, p4). These
equations describe intersecting spheres inR3. The intersection of two spheres results in the
definition of a circle, which in turn intersects with the third sphere in two points (entrance
and exit points), both symmetric with respect to the plane defined by pointsp1, p2, andp3

(Fig.1(c)). We choose again one of the two possible depictions at random and obtain the
mapping ofp4 in R3, as illustrated in Fig.1(d).

Generalizing this embedding methodology, distance relations betweenk + 1 points can
be expressed with at mostk independent variables, therefore these points can be embedded
in Rk without distortion. The key remaining issue is the identification of the intersecting
points of the hyperspheres. This task is not trivial, especially in the general case of any
Minkowski distance metric. However, recall that we are using i − 1 non-zero coordinates
for the projection of thei-th point, therefore the derived embedding is in the form of a
lower triangular matrix. Consequently, we can make the problem easier by exploiting this
structure as well as calculating one coordinate at a time.

Recall that the first pointp1 is placed atO with coordinates (0, 0, ..., 0). This signifies
that for any pointpi the corresponding hypersphere will be of the form| p′i,1 |p + | p′i,2 |p
+...+ | p′i,k |

p= dp(p1, pi)p. Similarly, if we consider the second embedded pointp2 the
equation would be| p′i,1 − p′2,1 |

p + | p′i,2 |
p +...+ | p′i,k |

p= dp(p2, pi)p. In order to
identify the intersection of these hyperspheres, we subtract the second equation from the
first and get| p′i,1 |

p − | p′i,1 − p′2,1 |
p= dp(p1, pi)p − dp(p2, pi)p. The system can be

easily solved with the use of Newton-Raphson method, thus deriving the coordinatep′i,1.
Consequently, for the computation of thej-th coordinate ofp′i we simply subtract the
( j + 1)-th equation from the first and identify the single root of ap-order equation of the
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Fig. 1. Projecting 4 points{p1, p2, p3, p4} from a high-dimensional space toR3 using FEDRA.

form | x |p − | x− a |p −d = 0 whered ∈ R andp ∈ N\{0}2. The (i-1)-th (last) coordinate
of p′i is calculated by substituting all obtained coordinates in the first equation and solving
for p′i,i−1.

The cost of this procedure is polynomial. The requirements for the computation of the
(k+1)2

2 coordinates are O(ck2) wherec is the cost of the method employed for determining
the root of the previous equation (i.e., Newton Rapshon). Ithas to be stressed out at this
point that we have intentionally omitted further analysis related to the symmetric projec-
tions, as well as the existence of intersection between the hyperspheres. Both issues are
discussed in the theoretic analysis of FEDRA in Section 4.

3.2 Landmark-based Dimensionality Reduction Algorithm

FEDRA requires as input the projection dimensionality (k), the pairwise distances between
the points of the dataset (D) and the employed Minkowski distance metric (p). The only
requirement is that the triangular inequality is sustainedin the original space.

2The proof that equation| x |p − | x− a |p −d = 0 has a single root is provided in the Appendix.
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Initially, k points are selected from the dataset that are going to be usedas landmark
points in the subsequent projection phase. This set of points defines the landmarks setL.
We map the first landmark pointl1 ∈ Rn to O ∈ Rk. All remaining landmarks (l i ,i = 2...k)
are projected, by requiring that their distances to alreadyprojected landmarks are equal to
those in the original space. Essentially, we employ the methodology of Theorem 2 and
derive the set of equations (4) for the landmarks embedding procedure.

l′i, j =



| l′i, j |p − | l′i, j − l′j+1, j |
p +
∑ j−1

f=1 | l
′
i, f |

p

−∑ j−1
f=1 | l

′
i, f − l′j+1, f |

p +dp(l j+1, l i)p − dp(l1, l i)p = 0 if j ≤ i − 2

(dp(l1, l i)p −∑i−1
f=1 | l′i, f |p)

1
p if j = i − 1

0 otherwise

(4)

This process, apart from its inherent simplicity and fast convergence, guarantees that
landmarks pairwise distances are exactly preserved in the projection space. Following the
same principle, we embed all remaining pointsp j ( j = 1...d − k) in the lower dimen-
sional spaceRk, requiring that their distances to any landmark pointl i are preserved. The
projection is derived by the solution of the non-linear system of equations (5).

d′(l i , p j) = d(l i , p j), i = 1, ..., k (5)

Similarly to the landmarks projection process, the coordinates here can be obtained in
polynomial time according to (6).

p′i, j =



| p′i, j |p − | p′i, j − l′j+1, j |p +
∑ j−1

f=1 | p
′
i, f |

p

−∑ j−1
f=1 | p

′
i, f − l′j+1, f |

p +dp(pi, l j+1)p − dp(l1, pi)p = 0 if j ≤ i − 1

(dp(l1, pi)p −∑k−1
f=1 | p′i, f |

p)
1
p if j = k

(6)

Based on this analysis, FEDRA is derived and its pseudocode is presented in Algorithm
1. At first, we randomly selectk landmark points (lines 5-8) and embed them in the pro-
jection space with the use of equation 4 (lines 12-15). Notice that other heuristic landmark
selection techniques can be integrated in the algorithm, bysimply replacing functionSe-
lectLandmark(). We propose such techniques in Section 5. Then, we project each remain-
ing non-landmark point with the use of equation 6 (lines 17-20). The embedded points in
Rk are represented as a setP′.

At this point, it should be stressed that the order in which the landmarks are selected
does not affect the projection. The only effect is a simple shift of the coordinates of all
points, however the projection remains the same, since it isbased on the initial pairwise
distances and not on actual coordinates.

4. THEORETIC PROPERTIES

In this section, we present the theoretic properties of FEDRA. At first, we analyze its
computational complexity in a comparative way (Section 4.1), against the state-of-the-art
approaches presented in Section 2. Afterwards, we geometrically interpret the methodol-
ogy of FEDRA (Section 4.2), and prove that for every point processed by our algorithm
there always exists at least one possible embedding in the lower dimensional space (Section
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Algorithm 1 FEDRA.
1: Input: Projection dimensionality (k), data distances inRn(D), distance metric (p)
2: Output: New dataset inRk (P′)
3: Initialize set of landmarksL={∅}
4: Initialize new datasetP′={∅}
5: for i = 1 to k do
6: l i ← SelectLandmark()
7: L← L ∪ l i
8: end for
9: Initialize set of projected landmarksL′={∅}

10: Setl′1 = O ∈ Rk

11: L′ ← L′ ∪ l′1
12: for i = 2 to k do
13: l′i ← Calculate coordinates using Eq.(4)
14: L′ ← L′ ∪ l′i
15: end for
16: P′=P′ ∪ L′

17: for i = 1 to all remaining pointspi do
18: p′i ← Calculate coordinates using Eq.(6)
19: P′ ← P′ ∪ p′i
20: end for

4.3). Finally, we assess the quality of the produced projection and provide a lower and up-
per bound of the distortion induced by applying FEDRA in the original (high-dimensional)
dataset (Section 4.4).

4.1 Computational Complexity

Based on the algorithmic description, FEDRA requires O(ck) for the projection of a point
in the low-dimensional spaceRk. Therefore, overall time requirements for the projection
of d points inRk are exactlyO(cdk). We employ parameterc in order to capture the re-
quirements posed by the solution of the equation| x |p − | x− a |p −d = 0. Consequentlyc
is indirectly dependent on the Minkowski distance metricp as well as on the convergence
rate of the employed method. In particular, when FEDRA is employed with the Euclidean
metric (p = 2), c is equal to 1 since the solution of the equation isx = d+a

2a . In addition,
our approach exhibits lower memory requirements than Landmark MDS and Random Pro-
jection. The space complexity of FEDRA is analogous toO(k2), because it requiresk

2

2

in the first step (landmarks pairwise distances) andk2

2 + k in the second (embedded land-
mark coordinates and distances between processed points and the landmarks in the original
space).

In order to practically validate the linear dependence of FEDRA on the size of the dataset
as well as the overhead of the Newton-Rapshon method we run two simple experiments.
We generated a random dataset of 5000 1000-dimensional points and projected it in a lower
dimensional space of dimensionality equal to 2%, 4%, 6%, 8% and 10% of initial dimen-
sions. In the context of the first experiment, we assessed thedependence of FEDRA on
the size of the processed dataset. In order to accomplish that, we fixedp = 2 and initiated
the procedure with a dataset of 100 points and progressivelyaugmented it by adding each
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Fig. 2. Experimental assessement of FEDRA’s time requirements.

time 100 more instances. Fig. 2(a) illustrates the requiredtime where, as expected from
theory, FEDRA exhibits a linear dependence on the size of thedataset. Based on this re-
sult, our approach is ideal for large datasets that call for drastic dimensionality reduction.
In our second experiment, we fixedk = 100 (i.e., 10% of initial dimensions) and varied
the value ofp from 1 to 5. The obtained results are presented in Fig.2(b). Obviously, time
requirements are affected byp; in particular time requirements are almost doubled when
changing distance metric fromp = 2 to p = 3. The latter is attributed to the convergence
requirements of Newton-Raphson. However, the results are very encouraging, since the
required time for projecting 5000 points forp = 1 and 2 is less than a second, while for
p = 5 it marginally reaches 2 seconds.

FEDRA is indifferent to the initial dimensionality of the dataset, and thisproperty makes
it appropriate for datasets where only similarity/distance information is available. This is
usually the case when objects either cannot be represented in a vector space or such a
representation does not exist and only pairwise distances are available. Further, the sub-
sequent addition of a point in an already existing projection results in O(ck) additional
load, while it is as fast and efficient as in FastMap (when evaluated with the Euclidean dis-
tance). Although FJLT-based Random Projection is faster than our algorithm it provides
guaranteed distortion bounds only when projecting fromℓn

2 to ℓk
p with p = {1, 2}, whereas

FEDRA provides corresponding bounds while projecting fromℓn
p to ℓk

p for p ≥ 1 (Section
4.4 and Appendix). Concluding, FEDRA successfully addresses the high time and space
requirements of MDS and emerges as an efficient solution in cases of hard dimensionality
reduction problems on large datasets.

When compared to other methods, FEDRA exhibits the advantageous combination of
fast and simple arithmetic computations. An intuitive example is derived when comparing
FEDRA with SVD with respect to their time requirements as well as their implementation
requirements. Notice that the first step of our procedure canbe alternatively replaced
by applying SVD on a set ofk randomly selected landmarks. Assume that the set of
landmarks defines matrixXkxn. The latter can be projected inRk through the transformation
X′kxk = XkxnQT

kxn where the columns ofQ are the singular vectors ofX. The relationship
between the inner products matrix of the projected data (C′) and the inner products matrix
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of the original data (C) is given by the following computations:

C′ = X′kxkX
′T
kxk = XkxnQ

T
kxn(XkxnQ

T
kxn)

T = XkxnX
T
kxn = C (7)

Moreover, each cell (i, j) of C is populated by the valuexi xT
j and based on equalityC = C′

we conclude thatxi xT
j = x′i x

′
j
T . Then the new distance between pointsx′i ,x

′
j is:

d′(xi , x j) =

√√√ k∑

f=1

(x′i f − x′j f )
2 =

√√√ k∑

f=1

(x′2i f + x′2j f − 2x′i f x′j f ) =
√

x′ i x′Ti + x′ j x′Tj − 2x′i x′Tj

(8)
But sincexi xT

j = x′i x
′
j
T the new distance can also be expressed as:

d′(xi , x j) =
√

xi xT
i + x j xT

j − 2xi xT
j = d(xi , x j) (9)

Hence, the projection ofk points fromRn to Rk with the use of SVD produces exactly the
same results as FEDRA forp = 2. These results however were anticipated due to Theorem
2. Consequently, the key remaining issue is the time required for the projection. FEDRA
manages to embed the dataset withO(ck2) computations whereas SVD requiresO(kn2)
or O(k3) in case we provide as input akxk distance matrix. Arguably, if we consider the
second case, for small values ofk the difference might be negligible; still however FEDRA
is preferable to SVD due to its implementation simplicity. Contrary to our algorithm which
acquires the embedding through a set of equations, SVD -in its simplest form- requires a
series of Householder transformations followed by the QR decomposition of a bidiagonal
matrix([Stewart 2001]).3

Intuitively, FEDRA owes its low memory and computational requirements to the mini-
mization criterion employed. Instead of trying to minimizethe distance discrepancies be-
tween all projected points (stress minimization criterion), FEDRA minimizes the distance
deviation between the landmarks and the point under projection. One could argue that this
simplification results in deteriorating projection quality. However, existing theory [de Silva
and Tenenbaum 2004] and experiments (cf.Section 6) suggestthat this simplification pro-
duces results of acceptable quality. Additionally, in the following paragraphs, we provide
theoretical bounds regarding the distance distortion induced by FEDRA and prove that a
percentage of initial pairwise distances are exactly preserved, in spite of the projection.

4.2 Geometric Interpretation

The core idea of FEDRA is the exact preservation ofk distances per non-landmark point.
This is achieved by requesting that distances from landmarkpoints are exactly retained,
which is captured in equationsd′p(l i , p) = dp(l i , p), i = 1...k. Each equation describes a
hypersphere with centerl′i and radiusdp(l i , p). The algorithm essentially searches for the
common trace of thek hyperspheres, which is the projection of pointp in Rk.

An illustrative example of the embedding is provided in Fig.3(a). In this elementary
case, we project three points from an unknown high-dimensional space toR2. Two of
the points are employed as landmarks while the remaining one(P) is processed as non-
landmark. Two circles are defined by applying FEDRA. The common trace of these circles

3If d >> n it is preferable to first compute the QR decomposition of the input matrix and then according to the
aforedescribed methodology calculate the SVD ofR.
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Fig. 3. Projecting with FEDRA from a high-dimensional spaceto R2.

Fig. 4. Geometric interpretation of FEDRA for embedding in a3-dimensional space.

provides the depiction ofP in R2. As shown in Fig. 3(b), two potential depictions exist,
both symmetric with respect to the line defined byL1 andL2. Taking also into account
equation set (6) this observation can be generalized; each point can be embedded in two
possible places, both symmetric with respect to the hyperplane defined by the selected
landmarks. In terms of arithmetics, this is because we do notcompute the actual value of
thek-th coordinate, but its absolute value.

From a methodological point of view this fact appears due to the methodology employed
for the solution of the system of non-linear equations. Essentially, by subtracting any
equation from the first we define the hyperplane on which the corresponding variable lies.
For example, in Fig. 4, a step-by-step example is depicted ofprojecting a pointP in R3

from an unknownn-dimensional space. In the first step of the procedure, we calculate the
value of coordinateX and derive valuea. Consequently, any point on the planeX = a can
be the projection ofP in R3. By performing the same task for dimensionY we calculate
valueb. The intersection of these two planes defines a line, and any point belonging to
this line satisfies both requirements. In the final step, we search for all pointsP of the
line that additionally satisfy the prerequisited′p(P,O) = |P′| = dp(L1,P). These points
correspond to the intersection of lineX = a,Y = b with a sphere centered inO with radius
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dp(L1,P). There are at most two points satisfying these requirements, P1 andP2, one of
which becomes the projection ofP in R3.

4.3 Existence of Embedding

Generalizing the last observation, the intersection of thek− 1 hyperplanes defines a line in
Rk. Consequently, the two possible values of thek-th variable depict the intersecting points
of this line with a hypersphere centered in the beginning of the coordinates system, with
radius the distance of the point under projection from the first landmark in the original
space. A natural question that arises is whether there exists a case that the line has no
intersecting point with the hypersphere. However, the nexttheorem guarantees that there
always exists at least one intersecting point (the line is either adjacent to or intersects with
the sphere), provided that the triangular inequality is sustained in the original space.

Recall that each hyperplane corresponds to the intersection of two hyperspheres (i.e.,
the intersection of two spheres defines a circle which in turnbelongs to a two-dimensional
plane). Consequently, the line captures the intersection of k − 1 hyperspheres. Finally, if
the line does not intersect with the last hypersphere it means that one of the hyperspheres
has no intersection with the last one. Therefore, in the nexttheorem we prove that any two
hyperspheres defined by FEDRA will have an intersection, provided that the triangular
inequality is sustained in the original space.

T 3. For any non-linear system of equations defined by FEDRA, there always
exists at least one solution, provided that the triangular inequality is sustained in the orig-
inal space.

P. By contradiction. Assume that there exists no solution forthe system of equa-
tions defined by FEDRA, hence there exists no common trace between the defined hyper-
spheres.

Let p be a point being projected andl i , l j (i , j) any two landmarks. These three points
define trianglel i pl j in Rn. Without loss of generality we assume that:

dp(l i , p) ≤ dp(l j, p) (10)

Consequently, based on the triangular inequality we derive:

dp(l i , p) − dp(l j, p) ≤ dp(l j , l i) ≤ dp(l i , p) + dp(l j , p) (11)

In addition, Theorem 2 guarantees that distances between point p and all landmarks are
exactly preserved inRk, thus deriving:

dp(l i , p) = d′p(l i , p) (12)

Landmarks pairwise distances are also exactly preserved, meaning that the following equal-
ity holds true for any pair of landmarks:

dp(l i , l j) = d′p(l i , l j) (13)

Since there exists no common trace between the defined hyperspheres, it implies that
one of the following situations has occurred; either one hypersphere is enclosed inside the
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other or they are far apart and do not intersect. We examine each case separately in the
following.

If one hypersphere is enclosed inside the other:

d′p(l j , l i) < d′p(l i , p) − d′p(l j, p) (14)

and based on equations 12 and 13:

dp(l j , l i) < dp(l i , p) − dp(l j, p) (15)

which contradicts with equation 11.
If the hyperspheres are far from each other and they do not intersect:

d′p(l i , p) + d′p(l j , p) < d′p(l j , l i) (16)

and based on equations 12 and 13:

dp(l i , p) + dp(l j , p) < dp(l j , l i) (17)

which again contradicts with equation 11. Thus, in both cases, the triangular inequality
is violated in the original space. To conclude, the system inquestion always has a so-
lution, provided that the triangular inequality is sustained in the initial, high-dimensional
space.

4.4 Quality Assessment

4.4.1 Distance Preservation.FEDRA guarantees that a certain amount of pairwise
distances are exactly preserved. Indeed, the landmarks’ selection and projection phases
preserve exactlyk(k−1)

2 pairwise distances. The subsequent embedding of the remaining
(d − k) data points retains another (d − k)k distances. However, the latter is misleading
since distance preservation is also affected by the value ofn. In order to overcome this
burden, we distinguish two cases, specificallyd ≤ n andd > n. In the subsequent analysis
we will assume thatx signifies the dimensionality of the projection space as a fraction
of the number of initial dimensions (k

n) while y corresponds to the dimensionality of the
projection space as a fraction of the number of employed landmarks (kd ).

Whend ≤ n, according to Theorem 2 anyk ≥ d − 1 retains all distances. Consequently
in a space ofd−1 dimensions we exactly preserved(d−1)

2 distances. Additionally any value
fo k satisfyingd − 1 ≤ k ≤ n also guarantees exact distance preservation. Assuming that
d−1 ≃ d the percentage of pairwise distances that remain unaffected, due to the projection,
is:

f (x, y) =
k(k− 1)+ 2(d− k)k

d(d− 1)
=

k
d

2d− k− 1
(d− 1)

= y
2d− k− 1

d − 1
= y

2− y− 1/d
1− 1/d

(18)

Given the fact thatd is usually excessively large (1≪ d) we can easily ignore1d , since
its value is close to zero, thus deriving the following:

f (x, y) =


y(2− y) if 0 < y < 1, 0 < x < 1

1 if y ≥ 1
(19)
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On the other hand, ifd > n we obtain exact distance preservation forn ≤ k ≤ d.
Therefore, equation 19 is transformed as:

f (x, y) =


y(2− y) if 0 < y < 1, 0 < x < 1

1 if x ≥ 1
(20)

This analysis proves that a percentage of distances remainsunaltered, in spite of the
projection. Fig. 5(a) shows the fractionf (x, y) of distances that are not modified, because
of the projection. The x-axis depicts the dimensionality ofthe projection space calculated
as a fractionx of the number of the initial dimensions. The y-axis corresponds to the
percentage of points that are employed as landmarks (y). For example, if the projection
dimensionality is equal to 30% of the initial dimensions (x = 0.3) and the number of initial
dimensions is equal to the dataset cardinality (d = n) then the embedding acquired by
FEDRA will not affect 51% of the initial distances.

4.4.2 Distortion. We will now attempt to go one step further and calculate the distor-
tion induced due to the projection to the rest of the pairwisedistances. For this purpose
we will use two pointsA and B, and study their projection with the use of two random
landmarks points,L1 and L2 (Fig. 5(b)). For ease of presentation, we drop the formal
distance notation and signify the distance between pointsX andZ asXZ and also assume
that p = 2.

Each point together with the two landmarks forms a triangle.The linear segmentsAAy

andBBy correspond to the altitudes of trianglesL1AL2 andL1BL2 respectively. Using the
cosine law on triangleL1AL2 we derive the length ofL1Ay.

L1Ay = x =
L1A2 + L1L2

2 − L2A2

2L1L2
(21)

Analogously, we derive from triangleL1BL2 the length ofL1By.

L1By = y =
L1B2 + L1L2

2 − L2B2

2L1L2
(22)
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Fig. 6. Projection symmetric with respect to lineL1L2

SegmentA′′B is the orthogonal projection ofAB on a plane perpendicular to the line
defined by the landmarks. Obviously, sinceAA′′ is parallel toL1L2, it is equal toAyBy. By
applying the Pythagorean theorem on triangleAA′′B we derive:

AB2 = A′′B2 + (y− x)2 (23)

Additionally with the use of the triangular inequality onA′′ByB we derive:
A′′B ≤ A′′By + ByB⇒
A′′B ≤ AAy + BBy⇒
A′′B2 ≤ AA2

y + ByB2 + 2AAyBBy

Consequently, by employing equality 23, we provide an upperbound of the initial distance
AB:

AB2 ≤ AA2
y + BB2

y + 2AAyBBy + (x− y)2 (24)

whereAAy =

√
AL2

1 − x2 and BBy =

√
BL2

1 − y2 are obtained by the application of the
Pythagorean theorem onAL1Ay andBL1By respectively.

While projecting, FEDRA will replicate the two triangles. Consequently, we have two
ways of projecting that are depicted in Fig.6. The projections of the original pointsA,B
are depicted asA′ andB′ respectively, whileL′1 andL′2 are the projections of the landmark
points in the new, two-dimensional space. Due to the fact that FEDRA guarantees the
exact replication of the two triangles, we know thatA′A′y=AAy, B′B′y=BBy, B′L′1=BL1

andA′L′1=AL1. Consequently, the new distanceA′B′ can be calculated by applying the
Pythagorean theorem on triangleA′EB′. In the first case (Fig.6(a)), we calculateA′B′2=(y−
x)2 + (AAy − BBy)2, while in the second (Fig.6(b)),A′B′2=(y − x)2 + (AAy + BBy)2. By
combining the last relation with the bound ofAB obtained in the high-dimensional space
(Eq. 24), we have thatAB ≤ A′B′. Notice also that the squares of the two new distance
values differ only by 4AAyBBy. Consequently, a unique lower bound can be obtained
through relation:

AB2 − 4AAyBBy ≤ A′B′2 (25)

The upper bound can be simply derived by the triangular inequality on triangleA′′ByB
(Fig.5(b)). SinceA′′By = AAy andA′′AB is orthogonal we have that:
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|AAy − BBy| ≤ A′′B⇒
(AAy − BBy)2 ≤ A′′B2⇒
(AAy − BBy)2 + (y− x)2 ≤ A′′B2 + (y− x)2 ⇒
(AAy − BBy)2 + (y− x)2 ≤ AB2⇒
(AAy − BBy)2 + (y− x)2 + 4AAyBBy ≤ AB2 + 4AAyBBy⇒
(AAy + BBy)2 + (y− x)2 ≤ AB2 + 4AAyBBy

and since (AAy − BBy)2 + (y − x)2 ≤ (AAy + BBy)2 + (y − x)2 we derive a unique upper
bound:

A′B′2 ≤ AB2 + 4AAyBBy (26)

Consequently, by combining equations 25 and 26 we derive observation 1 which pro-
vides a bound for the new distanceA′B′ in the case of the Euclidean distance metric.

O 1. Using any two landmarks L1, L2, FEDRA can project any two points A,
B in a given low-dimensional space while guaranteeing that their new distance A′B′ will
be bounded according to:

AB

√
1−

4AAyBBy

AB2
≤ A′B′ ≤ AB

√
1+

4AAyBBy

AB2
(27)

where AAy, BBy are the lengths of the altitudes of triangles L1AL2, L1BL2 respectively.

Another way of approximating the error induced by the projection is with the use of the
cosine law. As discussed previously, FEDRA essentially replicates the manifold defined
by k + 1 high-dimensional points in the new lower dimensional space Rk. In our previous
example (Fig.5(b)), this signifies that angleŝAL1L2 andB̂L1L2 (i.eψ, ω respectively) will
remain unaltered (Fig.6). Consequently the new distance can be calculated asA′B′2 =
AL2

1 + BL2
1− 2BL1AL1 cos(ψ+�−ω) while the original distance wasAB2 = AL2

1 + BL2
1−

2BL1AL1 cos(φ), whereφ = ÂL1B. Adding and subtracting value 2BL1AL1 cos(φ) from
the first relation we obtainA′B′2 = AB2 − 2BL1AL1(cos(ψ + � − ω) − cos(φ)). Since
−1 ≤ cos(x) ≤ 1 we can boundA′B′ as:

AB

√
1− 4BL1AL1

AB2
≤ A′B′ ≤ AB

√
1+

4BL1AL1

AB2
(28)

Relation 28 is extremely important for the derivation of thefollowing observation.

O 2. Given a point X in a high-dimensional space Rn, all points that are at
most r from X in Rn are projected in Rk in a circle with center the embedding of X in Rk

and radius r+ 2d(Li,X), where Li is the landmark point closest to X.

P. From the previous analysis we have that the new distance between point X and
unknown point Y is at mostd′(X,Y)2 ≤ d(X,Y)2 + 4d(X, Li)d(Y, Li), whereLi is any land-
mark point. Unfortunately we are not aware of the exact valueof d(Y, Li) but we can
substitute it with the larger value that can satisfy our prerequisites, that isd(X, Li)+ r. Con-
sequently all points satisfying our prerequisite lay in a circle with center the embedding of
X in Rk and radiusr +2d(X, Li). In order to minimize the diameter of the circle, we choose
to assess the distance with the use of the closest landmark.
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Based on equation 27, we derive the distortion productc1c2 for FEDRA which is equiva-

lent to
√

AB2+4AAyBBy

AB2−4AAyBBy
. Attempting a head-to-head comparison with Random Projection, the

correspondingǫ in the case of FEDRA is exactly4AAyBBy

AB2 which is different for every pair
of points. Unfortunately, FEDRA is unable to provide a global boundǫ for all points since
it is a data-awaremethod. Contrary to Random Projection that define an explicit data-
obliviousdistortion boundǫ using only the target dimensionality (k) and the cardinality of
the dataset (d), FEDRA exploits information from the underlying dataset (i.e., landmarks
distances) in order to produce the embedding. Therefore theerror due to the projection
is directly related to the selected landmarks. The latter isnot strange to algorithms of
its genre; for example FastMap’s low distortion bound for projecting in one dimension is
AB2− (x− y)2 = A′B′2 ≤ AB2 with x,y being defined by the employed pivot points, similar
to FEDRA.

The aforedescribed analysis can be generalized for the caseof any Minkowski distance
metric by taking into account the general expression for thePythagorean theorem and the
cosine law. The generalization is provided in the Appendix (Section 8, observations 3,4
and lemma 6).

5. FEDRA EXTENSIONS

In this section we present three extensions to the basic algorithm. The first is a heuristic
– directly derived from the theoretic properties of FEDRA – that enables the selection of
landmarks that improve the quality of the embedding (Section 5.1). The second is a com-
plementary heuristic, which is employed to further improvethe quality of the produced
results (Section 5.2). Finally, the application of FEDRA ina widely distributed environ-
ment, such as a large-scale peer-to-peer networks, is also presented (Section 5.3).

5.1 Landmark Selection Heuristic

So far, we have implicitly assumed that landmarks are randomly selected. Although this
approach produces results of acceptable quality, we introduce a heuristic which is able to
intentionally select a set of landmarks that minimizes the distortion induced by the embed-
ding.

Based on the analysis of Section 4.4, we have identified the bound for the distance distor-
tion between any two pointsA,B as

√
AB2 − 4AAyBBY≤ A′B′ ≤

√
AB2 + 4AAyBBY. The

minimization of the induced distortion implies the minimization of the product 4AAyBBY,
which in turn is achieved by the simultaneous minimization of AAy andBBy. However,

recall thatAAy =
√

AL2
1 − x2 and BBy =

√
BL2

1 − y2, thus both values are minimized
whenAL1 − x → 0 andBL1 − y → 0. Considering the case ofA and substitutingx with
L1A2+L1L2

2−L2A2

2L1L2
we obtain:

AL1 −
L1A2 + L1L2

2 − L2A2

2L1L2
=

(L1A− L1L2 − L2A)(L1A− L1L2 + L2A)
2L1L2

→ 0 (29)

Consequently, the minimization is achieved whenL2A ≃ L1A− L1L2 or L2A ≃ L1L2 −
L1A. The first condition occus when landmarks are selected in such a way that they ex-
hibit minimum distance from each other. The latter is intuitively verified by considering a
random triangleL1AL2. If L1L2 is small compared toL1A thenL2A will be approximately

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

equal toL1A, thusL2A ≃ L1A− L1L2 holds true. Our landmark selection algorithm works
in the following way. We select the first landmark at random and then we iteratively select
a new one by requiring that it minimizes the overall distancefrom all previously selected
landmarks. Assuming we have selectedf − 1 landmarks, thef -th will be point p that
satifiesargmin

∑ f−1
j=1 dp(p, l j).

This procedure however is costly for datasets of high cardinality (millions of records),
since all data points need to be processed before a new landmark is selected. Therefore, we
propose a more efficient strategy based on sampling. We draw uniformlyS data samples
of cardinalityC and apply the proposed heuristic. In the end, the set with theminimum
distance sum is retained as the global landmark set. The procedure yields a memory cost
of O(Cn), C ∈ N and time requirements analogous toO(S k).

It has to be stressed out at this point that this procedure is inherently heuristic, therefore
it cannot always guarantee that the selected set of landmarks will be the optimal one. A
potential case of failure may appear if one or more landmark points are outliers. The latter
is due to the fact that any outlier landmark (Lo) when combined with another landmarkLi

will not validate expressionLoA ≃ Li A− LiLo sinceLi A < Li Lo. A simple remedy to this
deficiency is the re-application of the landmark selection process each time with a different
starting point.

We have intentionally ignored the second case since it implies a more laborious and
computational expensive approach. ConditionL2A ≃ L1L2 − L1A requires that landmarks
are choosen so as to exhibit minimum distances from a set of points and maximum dis-
tances from another set. Considering a dataset that enjoys acluster structure with clusters
well separated and far from each other, this condition is valid when we employ the cluster
centroids as landmarks. Assuming thatL1 is the center of the cluster in whichA is situated
andL2 is the center of another cluster thenL1A is small whileL2L1 is approximately of
the same length asL2A. Unfortunately, in order to guarantee fast computation of the land-
marks we need to be aware in advance of this structure or at least be supplied with specific
data statistics. However, in general, we will be obliged to execute a clustering algorithm
which will result in significant load to the system. Consequently we decide to ignore this
approach.

5.2 Projection Heuristic

The independent projection of each point with respect to theother non-landmark points is
one of the factors for the reduced complexity of FEDRA. However, this simplification may
sometimes come at a cost, as it cannot always guarantee that pairwise distances between
non-landmark points are also well-approximated. The latter is due to the fact that the new
distance is calculated by the result of a linear combinationof the initial distance as well
as the distances between the selected landmarks. This potential case of failure is depicted
in the analysis of Section 4.4, where it is obvious that two closely situated points in the
original space may end up far apart in the projection space ifthe lengths of the altitudes of
the corresponding triangles are large. However, this wouldonly be a significant problem,
if it would occur for every pair of landmarks; consequently,this situation rarely appears
in practice. Nevertheless, we provide a fast heuristic which detects such a problematic
situation and defines the best possible embedding for each point.

The proposed evaluation algorithm (Algorithm 2) takes as input the original distances
(D), the set of already projected non landmark points (NLP), the set of projected landmarks
(PL), the Minkowski distance metric (p) and the point under projectionx and tries to find
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Algorithm 2 Projection Heuristic
1: Input: Original Distances (D), Minkowski metric (p), Point under projection (x),

Projected non landmark points (NLP), Projected landmark points (PL)
2: Output: x′

3: NL← randomly selectk points fromNLP
4: Calculatex1 andx2 the two possible embeddings ofx
5: SetC1 ← 0,C2← 0
6: for i = 1 to k do
7: Selectnli from NL
8: Calculated1 andd2 from d′p(nli , x1) andd′p(nli, x2)
9: if |d1 − dp(nli , x)| ≤ |d2 − dp(nli , x)| then

10: C1 ← C1 + 1
11: else
12: C2 ← C2 + 1
13: end if
14: end for
15: if C1 ≤ C2 then
16: x′ ← x2

17: else
18: x′ ← x1

19: end if

the embedding that minimizes the distance distortion between point x and k randomly
selected, already projected, non-landmark points. The added value of this heuristic lays
in the fact that it guarantees minimum distortion for additionaldk− k2 pairwise distances,
thus further ameliorating FEDRA’s quality. Moreover, overall time and space requirements
are analogous toO(dk) andO(k2) respectively4, thus not posing any significant overhead
to the basic algorithm.

5.3 Distributed Dimensionality Reduction with Landmark Points

The fact that FEDRA operates with only a fraction of the overall dataset and achieves re-
sults of high quality promotes it as an attractive candidatefor application in a distributed
context. As already stated in Section 2, the area of distributed knowledge discovery poses
a number of new challenges that primarily originate from thefact that no network element
can gather all available data. Unfortunately, existing work in the area of distributed dimen-
sionality reduction fails to provide a robust solution. Algorithms based on eigen analysis
deteriorate and need to recompute the decomposition, in thecase that many new points are
added. The two adaptations of FastMap require a high amount of exchanged messages,
thus they work well only when node availability and intercommunication are guaranteed,
otherwise the synchronization of network nodes is practically impossible.

It is therefore obvious that a distributed dimensionality reduction algorithm should com-
bine the salient features of the aforementioned techniques, in terms of network load, algo-
rithmic complexity and quality of results, while being immune to subsequent changes in

4Contrary to the pseudocode of Algorithm 2, the actual input is only x since all other information is provided
through pointers to the permanent storage medium. During the execution of the algorithm we only have to
occupy 2k+ k2 space on main memory –x1, x2 andk k-dimensional points.
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the processed data (i.e., massive addition or deletion of points). Moreover, the algorithm
should be adaptable to potential network failures, as well as topology changes. Finally it
has to apply to the full extent of distributed applications,starting from controllable labora-
tory environment and reaching large-scale peer-to-peer networks.

Inspired by our previous work [Magdalinos et al. 2006], we introduce the distributed
application of FEDRA. Obviously, the distributed extension of FEDRA bares similarities
with K-Landmarks with respect to the decentralization methodology, however differenti-
ates significantly with respect to the implementation of each step as well as the exhibited
time requirements. Moreover, FEDRA is applicable with any Minkowski distance metric,
contrary to K-Landmarks that is confined to the Euclidean distance. The corresponding
extension is presented in Algorithm 3. The only assumption made is the existence of a
hierarchical network overlay, where an aggregator node exists [Doulkeridis et al. 2007].
The aggregator usesk landmark points (L) sampled from the whole network (lines 9-11)
and projects them toRk using equation 4. The original set of landmark points and thegen-
erated mapping (L′) are forwarded to all nodes (line 19), which in turn project local points
independently (lines 25-28).

The proposed algorithm differs significantly from other widely employed distributed
dimensionality reduction approaches, since it achieves the projection of the vast majority
of points independently from the rest, implying that only the projection of few landmarks
is done in a centralized manner. Moreover, it is not affected by any changes in the network
topology or any subsequent data unavailability since all points are projected with respect
to the landmark points. Consequently, no re-computation ofthe projection is required, in
order to guarantee the preservation of projection quality.Finally, the network load imposed
is lower than the load of other algorithms. The network cost of the application of FEDRA in
a distributed environment isO(nkM) whereM is the number of peers in the network, while
distributed PCA [Qi et al. 2004] necessitatesO(Mn2 + nkM). However, there exists one
disadvantage; the agnostic nature of centralized FEDRA towards the initial dimensionality
of the dataset is lost, since points pairwise distances cannot be known in advance.

6. EXPERIMENTS

In this section we present the experimental evaluation of FEDRA, which verifies the ex-
pected performance. Thus, FEDRA emerges as an attractive solution for hard dimension-
ality reduction problems on large-scale datasets. The aim of the experimental assessment
process is threefold:

(1) To validate the effectiveness and efficiency of FEDRA on hard dimensionality reduc-
tion problems and highlight its scalability.

(2) To demonstrate the enhancement of a typical data mining task, such as clustering, due
to the application of FEDRA.

(3) To experimentally show the merits of FEDRA in a distributed setup, where restrictions
are usually imposed on the amount of data that can be exchanged.

The obtained results prove the suitability and viability ofour algorithm for problems
where data is described by hundreds of coordinates and applying a clustering algorithm is
highly demanding in terms of time and space requirements.
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Algorithm 3 Distributed FEDRA
1: Input: Projection dimensionality (k), node id (i), number of landmark points of node

i (ki), local dataset defined inRn (P)
2: Output: local dataset defined inRk (P′)
3: Initialize new datasetP′={∅}
4: Initialize set of landmarksL={∅}
5: Initialize set of projected landmarksL′={∅}
6: Initialize local set of landmarksLi={∅}
7: Li ← RandomLandmarkSelection()
8: if node is aggregatorthen
9: for j = 1 to all nodesdo

10: Receivek j landmarks (L j) from nodej
11: L← L ∪ L j

12: end for
13: Setl′1 = O ∈ Rk

14: SetL′ ← L′ ∪ l′1
15: for j = 2 to k do
16: l′j ← Calculate coordinates using Eq. (4)
17: L′ ← L′ ∪ l′j
18: end for
19: CommunicateL, L′ to all nodes
20: else
21: SendLi to aggregator
22: ReceiveL, L′

23: end if
24: P′ ← P′ ∪ L′

25: for j = 1 to all remaining pointsp j do
26: p′j ← Calculate coordinates using Eq. (6)
27: P′=P′ ∪ p′j
28: end for

6.1 Experimental Methodology

In the context of FEDRA’s validation, we run a series of dimensionality reduction experi-
ments.

Algorithms and Datasets. We compare the performance of FEDRA against FastMap,
Metric Map, Landmark MDS, Random Projection, Vantage Objects and PCA. We em-
ployed eight real world and artificial datasets in our experiments. Four of them were ac-
quired from the UCI Machine Learning Repository5. More specifically Ionosphere, Seg-
mentation, Musk and Synthetic Control were used. Ionosphere contains radar observations
of earth’s ionosphere while Segmentation and Musk contain high-level numeric-valued at-
tributes corresponding to images and molecules respectively. Finally, the Synthetic Control
is a set of synthetically generated control charts. Anotherfour, of particularly high cardi-
nality and dimensionality, were acquired from the Pascal Large Scale Challenge6 that took

5http://archive.ics.uci.edu/ml/
6http://largescale.first.fraunhofer.de/about/
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place in ICML 2008. To the best of our knowledge these datasets are the largest that have
ever been employed for the experimental assessment of a dimensionality reduction algo-
rithm. The datasets together with their properties are summarized in Table III. All datasets
were embedded in a space of dimensionality equal to 2%, 4%, 6%, 8% and 10% of their
initial dimensions. In the case of the three smaller UCI datasets, where these values are
unattainable, we set the lower dimensionality to 3, 4, 5, 6 and 7 respectively.

Dataset Cardinality Dimensionality Classes Description

Ionosphere 351 34 2 Radar Observations
Segmentation 2100 19 7 Image Segmentation Data

Musk 476 166 2 Molecules Data
Synthetic Control 600 60 6 Synthetic dataset

alpha 500000 500 2 Pascal Large Scale ’08
beta 500000 500 2 Pascal Large Scale ’08

gamma 500000 500 2 Pascal Large Scale ’08
delta 500000 500 2 Pascal Large Scale ’08

Table III. Datasets used in the experiments.

Due to the fact that the application of PCA is infeasible on the Pascal datasets, we
employ the covariance aggregation scheme of Global PCA (GPCA) [Qi et al. 2004]. The
latter is based on the simple observation that given globally centered data the eigenvectoru
of matrix (m− 1)cov(X)+ (p− 1)cov(Y) is also an eigenvector of (m+ p− 1)cov([XTYT ]T)
wherecovdenotes the covariance matrix,X, Y are the data samples andm, p the respective
cardinalities. Consequently, our implementation of PCA necessitates three passes over the
whole dataset, one for calculating the global mean, a secondfor the calculation of the
covariance matrix and a final one for the projection of the dataset.

In order to calculate the various heuristics on the Pascal datasets we iteratively drew 10
uniform random samples equal to 1% of the original dataset (5000 instances). For each
sample, we apply the heuristic and retain the sample that best satisfies the corresponding
conditions. In the case of the MAXMIN heuristic of LMDS, where we seek to maximize
the landmarks minimum distances, we choose to retain the sample that maximizes the sum
of distances. On the contrary, for FEDRA’s landmark selection heuristic, we maintain the
one that minimizes the overall sum. Obviously, this strategy may not yield results equal
to those when the heuristic is applied on the whole dataset, yet it still provides results of
acceptable quality. For the projection heuristic of our algorithm we randomly samplek
already projected points and use them for the projection. Finally, for Random Projection
we employ the two distributions of [Achlioptas 2001] while we follow the simple imple-
mentation methodology described in [Ailon and Chazelle 2010].

All algorithms (with the exception of PCA) were executed 10 times. Consequently, all
reported values correspond to the obtained mean. Fastmap was deployed only with the 4
small datasets and evaluated against FEDRA with respect to the exhibited time and stress
values. Although FastMap cannot scale for datasets of significant cardinality, we employed
it as an evaluation benchmark of our algorithm’s effectiveness and efficiency. The statistical
significance of all experiments has been verified with a t-test with confidence level set to
0.99.

Metrics. In order to support the efficiency claims made earlier in the paper, we report
the execution time of FEDRA and compare it against the corresponding requirements of
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the other algorithms. Following the concept of the application-oriented evaluation metrics
(see Section 2.1), we certify the effectiveness of FEDRA by comparing its original distance
maintenance capability with the one exhibited by other landmark-based algorithms. The
comparison is accomplished through the computation ofstress. Due to the fact that the
computation of stress requires large amounts of time and space, we employed the four UCI
datasets for this purpose.

Furthermore, in order to demonstrate FEDRA’s capability toenhance the quality of a
clustering algorithm, we evaluated the original and projected datasets with the use ofk-
Means. Each result ofk-Means is evaluated according to thePurity (P) metric. Purity
considers the mapping of a clusterCi (i = 1...a) to a classS j (i = 1...a) based on the
highest observed overlap. The quality of this assignment ismeasured by counting the
number of correctly classified instances and dividing by thetotal number of instances (N).
Purity is formally defined as1N

∑a
i, j=1 max(|Ci ∩ S j |).

For each algorithm, we present its clustering quality maintenance capability, which is
defined asPn

Po
wherePn is the purity score obtained in the projection space, whilePo cor-

responds to the value obtained from the original dataset. All clustering experiments were
repeated 10 times and we report here the obtained mean values. Again, their statistical
significance has been verified with a t-test with confidence level set to 0.99. Finally, we
measure the time requirements ofk-Means in the projection space and compare it against
those in the original space. The algorithm is obviously accelerated because of the reduced
dimensionality, however it still exhibits different time requirements for each of the embed-
ded datasets. This is due to the fact that each algorithm produces a different embedding,
which affects the convergence rate ofk-Means. In all experiments, we employ the Eu-
clidean distance metric.

Distributed Setup. Using the distributed variation of FEDRA, we also consider enhanc-
ing the quality of distributed clustering. In order to execute these experiments, we assume
that a large dataset is distributed among the nodes of a peer-to-peer network and the task
is to derive the global clustering model, without imposing significant network load. All
algorithms assume the existence of a star overlay network, where each peer communicates
its sample (or result) to an aggregator node that undertakesthe task of performing any
subsequent computations.

We use the Pascal datasets and employ as reference the Purityvalues obtained by the
distributedk-Means algorithm of [Datta et al. 2006] (DKMeans). The assessment method-
ology of DKMeans follows the same principles as the one ofk-Means. Additionally, in
all cases, we measure the communication cost imposed by the execution of the various
dimensionality reduction algorithms. All experiments took place in a simulated peer-to-
peer environment of 500 nodes where topology was randomly generated with nodes being
connected with 5% probability. Again reported results correspond to the mean value of 10
executions.

Experimental Setup and Source Code. All algorithms have been implemented in
MATLAB R2009a. For the experiments we used four Intel Core 2 Quad processors at
2.4GHz with 4GB of RAM running Ubuntu Linux v.9.04.k-Means and DKMeans have
been implemented in Java7.

7The full source code accompanied by deployment instructions can be found at http://www.db-
net.aueb.gr/panagis/TKDD2009/
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(a) Stress evolution of FEDRA’s variants on
Segmentation
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(b) Stress evolution of FEDRA’s variants on
Ionosphere
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(c) Stress evolution of FEDRA’s variants on
Synthetic Control
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(d) Stress evolution of FEDRA’s variants on
Musk

Fig. 7. Assessment of FEDRA’s variants with respect to the obtained stress values.

6.2 Sensitivity Analysis of FEDRA

We first evaluate the effect of FEDRA’s heuristics (one for the landmark selection process
and another one for the projection) on the basic algorithm. Their combination yields four
different variants of FEDRA. The first is the basic FEDRA algorithm which employs ran-
dom landmark selection and random projection. The second variant employs intentional
landmark selection process (denoted asFEDRA Land Heur) and projects all data randomly,
while the third variant uses assisted projection and randomlandmarks (denoted asFEDRA
Proj Heur). Finally, FEDRA can be deployed by employing both the landmark selection
and projection heuristics (denoted asFEDRA L& P Heur). The purpose of our sensitivity
analysis is to provide an empirical study regarding the efficiency of these heuristics as well
as the cost induced by their execution.

Regarding the quality of the produced embedding in terms of the exhibited stress, we
notice that all configurations exhibit approximately the same behavior. In the case of the
Segmentation dataset (Fig.7(a)), the random and assisted projection setups provide the best
results, while intentional landmark selection exhibits slightly larger values due to inappro-
priate selection of landmarks. Indeed, the intentional landmark selection process, due to
its heuristic nature, cannot guarantee that the best set of landmarks will be selected and
therefore that the subsequent projection phase will be significantly enchanced. In general,
provided that we pick a set of closely positioned landmarks,the intentional landmark se-
lection is expected to exhibit better behaviour than the random FEDRA configuration, a
fact that appears in Figure 7(d).
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(a) Purity evolution of FEDRA’s variants on
alpha
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(b) Purity evolution of FEDRA’s variants on
beta
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(c) Purity evolution of FEDRA’s variants on
gamma
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(d) Purity evolution of FEDRA’s variants on
delta

Fig. 8. Assessment of FEDRA’s configurations with respect torelative clustering quality maintenance

However, ask grows – and therefore the number of selected landmarks – the results of
all variants tend to decrease and converge to approximatelythe same value. Same results
have been obtained by the Ionosphere dataset (Fig.7(b)), where the assisted projection
produced slightly better results. The merit of both heuristics however is demonstrated in
the first two iterations with the Synthetic control dataset (Fig.7(c)), where the embeddings
produced by the assisted projection heuristic were of significantly better quality than those
of the other configurations. On the other hand, in the last twoiterations we notice that the
variants employing the intentional landmark selection exhibit a slight deterioration in the
stress (0.05-0.07), again due to inappropriate selection of landmarks. Finally, the musk
dataset comprises an excellent example of the power of the projection heuristic as well
as the power of the landmarks random selection (Fig.7(d)). The latter highlights that the
projection heuristic comprises the key enabling componentfor stress minimization.

Similar results were obtained in the evaluation of the clustering quality of the produced
embedding. All configurations of the algorithm exhibit approximately the same behavior.
In the case of the alpha dataset (Fig.8(a)), the assisted projection heuristics produced results
of higher quality than the rest, however the amelioration cannot be considered significant.
In the remaining datasets (Figs.8(b), 8(c), 8(d)), the results were approximately the same.

As expected, the time requirements of the four variants differ significantly (Figs.9(a),
9(b), 9(c), 9(d)). The basic algorithm necessitates the least amount of time, while the use
of both heuristics requires significantly more time. The most noticeable fact however is
the behavior of the assisted projection setup compared to the intentional landmark selec-
tion. According to theory, we would expect both configurations to behave approximately
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(a) Time requirements of FEDRA’s variants
for alpha
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(b) Time requirements of FEDRA’s variants
for beta
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(c) Time requirements of FEDRA’s variants
for gamma

10 20 30 40 50
600

800

1000

1200

1400

1600

Projection Dimensionality

T
im

e(
se

c)

Time Requirements

 

 

FEDRA Random
FEDRA Land Heur
FEDRA Proj Heur
FEDRA L&P Heur

(d) Time requirements of FEDRA’s variants
for delta

Fig. 9. Assessment of FEDRA’s configurations with respect tothe exhibited time requirements. Time is measured
in seconds

the same. Although this cannot be justified theoretically, it is due to the experimentation
strategy we employed. Recall that the landmark selection process requires drawing a num-
ber of samples, a fact which is directly translated to disk-accesses. The latter is absent in
the case of assisted projection, where we use the already projected points which reside in
memory.

Finally, we would like to validate the quality of the produced embedding in terms of
the convergence speed ofk-Means. Obviously, the obtained cluster structures are of equal
quality, however the convergence ofk-Means is influenced by the separation of the clus-
ters. Well-separated clusters enable the algorithm to produce results faster, while a more
fuzzy layout necessitates additional loops. This experiment highlights the power of the
combination of both heuristics, where in two cases (Figs.10(a) and 10(b)) they enable the
k-Means algorithm to converge significantly faster that the other variants. It should be
stressed out that in both experiments, when dimensionalityreaches 50,k-Means converges
almost 4 times faster on the dataset produced by the assistedprojection. Intuitively, this
fact is explained using the underlying theory as presented in Section 5. The landmark
heuristic guarantees that the selected landmark set provides a good approximation of the
points pairwise distances. However, the addition of the projection heuristic directs FEDRA
to place points originally situated near in the high-dimensional space nearer in the projec-
tion space. On the other hand, distant points are projected far from each other. Essentially,
the combination of the landmarks selection and points projection heuristics enables FE-
DRA to produce an embedding that best discriminates clusters, thus enabling the faster

ACM Journal Name, Vol. V, No. N, Month 20YY.



P.Magdalinos, C.Doulkeridis and M.Vazirgiannis · 33

10 20 30 40 50
0

5

10

15

20

25

30

35

40

Projection Dimensionality

T
im

e(
se

c)

K−Means Time Requirements

 

 

FEDRA Random
FEDRA Land Heur
FEDRA Proj Heur
FEDRA L&P Heur

(a) Time requirements ofk-Means for alpha
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(b) Time requirements ofk-Means for beta
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(c) Time requirements ofk-Means for gamma
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Fig. 10. Assessment of FEDRA’s configurations with respect to the exhibited time requirements ofk-Means.
Time is measured in seconds

convergence ofk-Means. The latter is also depicted in the case of the two other datasets,
although in less extent (Figs.10(c) and 10(d)).

We conclude that the best configuration for FEDRA is the one combining the landmarks
selection and points projection heuristics. However, it isworth pointing out the fact that
the basic FEDRA appears as a good compromising solution, especially with respect to the
imposed time requirements. Indeed, the basic algorithm manages to maintain clustering
quality, while exhibiting low stress values and the lowest possible time requirements. On
the other hand, the obtained results signify that landmarksdo not ameliorate significantly
the resulting embedding. Although the intentional landmark selection process enhances
the results, the required cost may not always justify its application.

6.3 Comparative Study

After having analyzed FEDRA and its variants, we proceed to compare its performance
with that of well-known linear dimensionality reduction algorithms. We compare FEDRA
against FastMap, Metric Map, Landmark MDS (LMDS), Random Projection (RP), Van-
tage Objects (VO) and PCA. The algorithms were chosen specifically for their low time and
space requirements, while PCA is employed as benchmark, dueto its high quality results.
Landmark MDS was deployed both with random landmark selection as well as MAXMIN,
while in both cases the selected landmarks were two times more than the projection dimen-
sionality (f = 2k). Additionally, we used both distributions for Random Projection and the
four different configurations of FEDRA. However, for ease of presentation, we report here
only the best results obtained from each algorithm.
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(a) Stress evolution on Segmentation
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(b) Stress evolution on Ionosphere
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(c) Stress evolution on Synthetic Control
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(d) Stress evolution on Musk

Fig. 11. Comparative assessment of all methods with respectto stress

(a) Stress values obtained while evaluating FEDRA and FastMap on the Segmentation and Ionosphere
datasets.

Segmentation Ionosphere
k=3 k=4 k=5 k=6 k=7 k=3 k=4 k=5 k=6 k=7

FastMap 0.14 0.12 0.10 0.08 0.05 0.47 0.44 0.36 0.33 0.30
FEDRA 0.15 0.09 0.05 0.03 0.01 0.43 0.42 0.35 0.30 0.27

FEDRA Land Heur 0.28 0.18 0.15 0.07 0.07 0.40 0.38 0.36 0.32 0.28
FEDRA Proj Heur 0.13 0.08 0.05 0.04 0.02 0.41 0.37 0.31 0.29 0.26
FEDRA L& P Heur 0.21 0.13 0.07 0.06 0.03 0.38 0.38 0.32 0.31 0.25

(b) Stress values obtained while evaluating FEDRA and FastMap on the Synthetic control and Musk datasets.

Synthetic Musk
k=3 k=4 k=5 k=6 k=7 k=3 k=6 k=9 k=12 k=15

FastMap 0.29 0.28 0.22 0.19 0.20 0.43 0.27 0.19 0.16 0.15
FEDRA 0.69 0.66 0.61 0.59 0.54 0.57 0.50 0.47 0.45 0.40

FEDRA Land Heur 0.69 0.64 0.64 0.63 0.62 0.57 0.48 0.43 0.40 0.36
FEDRA Proj Heur 0.52 0.61 0.60 0.58 0.54 0.47 0.32 0.28 0.23 0.19
FEDRA L& P Heur 0.50 0.60 0.63 0.62 0.59 0.49 0.33 0.27 0.23 0.19

Table IV. Stress values for FEDRA and FastMap on the various small-size datasets

FEDRA’s ability in maintaining distance information whileprojection becomes evident,
when compared against other algorithms. FEDRA managed to provide embeddings of high
quality, while sometimes approximating the quality of PCA as depicted in Figs.11(a) and
11(b). In both experiments, FEDRA was slightly outperformed only by PCA. However,
FEDRA should not be considered as an alternative to PCA but rather as a fast approxima-
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(a) Purity evolution on alpha
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(b) Purity evolution on beta
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(c) Purity evolution on gamma
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(d) Purity evolution on delta

Fig. 12. Comparative assessment of all methods with respectto relative clustering quality maintenance

tion algorithm which manages to produce results of acceptable quality compared to those
obtained by similar algorithms of its genre. Indeed, studying Figs.11(c) and 11(d), we
notice that this time FEDRA is significantly outperformed byPCA, however it produces
better results than the other landmark-based algorithms. Both observations have been val-
idated also when performing an experimental comparative assessment with FastMap. In 2
out of 4 cases, FEDRA behaved extremely well, managing to produce results comparable
or even better than FastMap (Table IV(a)), while in the remaining datasets FEDRA was
outperformed (Table IV(b)). The latter was expected since FastMap essentially comprises
a heuristic approximation of PCA8, therefore it exhibits approximately the same behavior.

The next experiments however highlights the merits of data preprocessing with dimen-
sionality reduction. Recall that our methodology directs the projection in a space with
dimensionality ranging from 2% to 10% of the initial dimensions. Applying this on a 500
coordinates space results projecting in a space ranging from 10 to 50 dimensions. Obvi-
ously, the indirect gains of this procedure are immense, considering the fact that the output
dataset is going to be used as input for another data mining orknowledge discovery task.
The most important outcome however is the clustering maintenance results (Figs. 12(a),
12(b), 12(c), 12(d)), where almost all algorithms managed to maintain the original clus-
tering quality, and even slightly ameliorate it by 2%-3%. The best results were obtained
by Vantage Objects, which managed to produce an embedding that exhibited better ame-
lioration of clustering quality than the other approaches in 3 out of 4 datasets. FEDRA
behaved approximately equal to the other algorithms with minor deviations which are not

8The selection of the most distant objects for the projectionby FastMap essentially approximates the selection of
the maximum variance axis of PCA
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(a) Time requirements for alpha
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(b) Time requirements for beta
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(c) Time requirements for gamma
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(d) Time requirements for delta

Fig. 13. Comparative assessment of all methods with respectto the exhibited time requirements. Time is mea-
sured in seconds

(a) Time requirements (in seconds) while evaluating FEDRA and FastMap on the Segmentation and Iono-
sphere datasets.

Segmentation Ionosphere
k=3 k=4 k=5 k=6 k=7 k=3 k=4 k=5 k=6 k=7

FastMap 0.27 0.32 0.35 0.35 0.39 0.07 0.09 0.10 0.12 0.13
FEDRA 0.24 0.29 0.34 0.37 0.37 0.08 0.07 0.08 0.07 0.08

FEDRA Land Heur 0.27 0.31 0.34 0.37 0.41 0.09 0.10 0.13 0.11 0.12
FEDRA Proj Heur 0.37 0.45 0.52 0.57 0.62 0.08 0.08 0.10 0.12 0.14
FEDRA L& P Heur 0.40 0.49 0.54 0.65 0.69 0.11 0.14 0.15 0.14 0.15

(b) Time requirements (in seconds) while evaluating FEDRA and FastMap on the Synthetic control and Musk
datasets.

Synthetic Musk
k=3 k=4 k=5 k=6 k=7 k=3 k=6 k=9 k=12 k=15

FastMap 0.14 0.16 0.17 0.19 0.23 0.15 0.15 0.19 0.20 0.24
FEDRA 0.11 0.12 0.13 0.15 0.17 0.13 0.14 0.16 0.19 0.22

FEDRA Land Heur 0.15 0.15 0.18 0.18 0.19 0.21 0.21 0.24 0.27 0.31
FEDRA Proj Heur 0.14 0.15 0.19 0.18 0.21 0.15 0.18 0.23 0.27 0.31
FEDRA L& P Heur 0.18 0.20 0.25 0.25 0.27 0.21 0.24 0.29 0.32 0.37

Table V. Time requirements (in seconds) for FEDRA and FastMap on the various small-size datasets

considered significant.
Time requirements follow the theoretic analysis as presented in Section 2.5. The base

FEDRA configuration exhibits similar behavior to FastMap and sometimes manages to
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(a) Time requirements ofk-Means for alpha
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(b) Time requirements ofk-Means for beta
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(c) Time requirements ofk-Means for gamma
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(d) Time requirements ofk-Means for delta

Fig. 14. Comparative assessment of all methods with respectto the exhibited time requirements ofk-Means.
Time is measured in seconds

produce results slightly faster. The overall results of this comparison appear in Tables V(a)
and V(b). As far as the large datasets are concerned, Random Projection is faster in all
experiments, which is expected since the only requirement is the definition of a rather sim-
ple projection matrix. On the other hand, PCA is generally the most expensive algorithm
in most cases. Metric Map is influenced by the augmentation inthe value ofk. Finally,
FEDRA, Vantage Objects and Landmark MDS require approximately the same time. The
overall results are provided in Figs. 13(a), 13(b), 13(c), 13(d). All time measurements also
encapsulate the time requirements imposed for accessing the hard disk, since the datasets
do not reside in main memory.

In the final experiment, we compare the convergence requirements ofk-Means on the
embeddings produced by all algorithms. In this case, two outof four experiments highlight
FEDRA’s ability to enable faster convergence ofk-Means, while Vantage Objects require
the most time (Figs. 14(a) and 14(b)). In parallel, Metric Map also produces embeddings
that supportk-Means. Additionally, it is worth noticing that the projections obtained by
Random Projection were those that required significant additional time in the gamma and
delta datasets (Figs. 14(c) and 14(d)). In general, Metric Map and FEDRA exhibited the
most stable results and produced consistent results in all datasets. We note at this point that
the execution ofk-Means on the original datasets required 296 seconds for alpha, 324 sec-
onds for beta, 400 seconds for gamma and 383 seconds for delta. Obtaining results of equal
quality in less than 10 seconds, obviously comprises a huge acceleration of the algorithm.
Of course, based on the reported time requirements, one could argue that the application of
k-Means on the original dataset is still faster than that of dimensionality reduction. How-
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(a) Purity evolution on alpha
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(b) Purity evolution on beta
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(c) Purity evolution on gamma
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(d) Purity evolution on delta

Fig. 15. Comparative assessment with respect to relative distributed clustering quality maintenance

ever, these results were obtained by different programming languages (MATLAB and Java
respectively) and therefore cannot be considered directlycomparable.

Based on our experimental study, we conclude that FEDRA is a viable solution for hard
dimensionality reduction problems. In our experimental validation process, FEDRA man-
aged to combine low stress values with low time requirementsand produced embeddings
that enabled the fast and accurate convergence ofk-Means. These features were hardly
combined in the majority of the competitive solutions. Despite their high quality results,
Vantage Objects and Metric Map exhibit high stress values. Metric Map additionally ne-
cessitates significantly more time that Vantage Objects andFEDRA. Additionally, Vantage
Objects produced embeddings that slowed downk-Means in 3 out of 4 cases. The same re-
sults were obtained for Random Projection, thus leading us to the conclusion that FEDRA
is an attractive solution in terms of the quality factors we have analyzed so far.

6.4 Distributed Dimensionality Reduction

In the final set of experiments, we validate the applicability of FEDRA in a distributed
context, where each node has a fragment of the whole dataset.We compare the distributed
version of FEDRA with the corresponding adaptations of all other algorithms. The major
assumption made in these simulations is the existence of a star overlay network where the
central node undertakes the tasks that need to be carried outcentrally. For the Random
Projection and Vantage Objects, the aggregator defines the projection matrix or the refer-
ence objects and forwards them to all peers. In the case of PCA, all nodes initially compute
their local means and forward them to the aggregator. The latter computes the global mean
and disseminates it network-wide. Afterwards, all peers calculate their local covariance
matrixes and forward them to the aggregator, which finally extact thek principal eigen-
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Fig. 16. Network Requirements of all methods for distributed dimensionality reduction

vectors and eigenvalues and sends them back. This methodology is in accordance with the
directives of GPCA. For the rest of the algorithms, peers select locally their landmarks and
forward them to the aggregator which, in turn, calculates either their projection or the pro-
jection matrix and replies with the result. Then, each peer projects each of its local points
independently from the rest.

The assessment methodology follows the same principle as before. At first, we validate
the clustering quality of the produced embedding and then present the induced network
load by the application of dimensionality reduction. We excluded the landmark selection
heuristics of FEDRA and LMDS, because on one hand their application would produce
additional network load, while on the other hand in our previous experiments gave similar
results with the random selection process.

The overall obtained results are provided in Figs. 15(a), 15(b), 15(c) and 15(d). The
common characteristic in all graphs is the clustering quality maintenance in every pro-
jection. Additionally, Vantage Objects behave slightly better than the other approaches
exhibiting an amelioration ranging from 0.5% to 1.5%. FEDRAbehaves similarly to the
other algorithms and manages to clearly differentiate from Random Projection and Land-
mark MDS in the alpha and beta datasets. The network load imposed by this operation
is presented in Fig. 16. We have intentionally omitted PCA, since the aggregation of
the covariance matrix results in an overall cost of approximately 1GB. Although the latter
is tolerable, since it amounts less that 50% of the size of thetotal dataset, it is signifi-
cantly larger than the load of the other algorithms. Based onthis analysis, we conclude
that FEDRA can also be applied in a distributed context, producing high quality results
comparable to PCA, while also managing to keep network consumption low.

7. CONCLUSIONS AND FURTHER WORK

In the context of this paper we proposed FEDRA, a novel, linear dimensionality reduction
algorithm with low time and space requirements. FEDRA embeds data in the new space by
following the landmark-based projection methodology, where a limited set of points is used
to assist the reduction process. We thoroughly analyzed FEDRA’s theoretic properties and
based on this analysis we proposed two extensions complementary to the base algorithm.
Moreover we introduced the distributed adaptation of FEDRAthus making it an attractive
candidate for distributed data preprocessing.

Through extensive experimental validation we highlightedthe merits of FEDRA as well
as its applicability in hard dimensionality reduction problems. FEDRA produced results
comparable to the best algorithms in all assessment experiments thus combined all salient
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characteristics that an ideal dimensionality reduction method should have, namely low
time and space requirements, minimum distortion values as well as clustering structure and
quality preservation. With respect to the latter we observed the acceleration ofk-Means
when it was applied on the projected dataset obtained from our algorithm. In future work
we will exploit FEDRA in the context of similarity search andnearest neighbor retrieval in
large and distributed databases.
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8. APPENDIX.

In the context of the appendix we provide some further analysis of key issues which indi-
rectly support the definition and analysis of FEDRA. At first we provide the proof of Theo-
rem 4 which comprises a fundamental step for the successfullapplication of our algorithm.
Furthermore we provide the proof of Theorem 2. In the end, we provide the extension
of the Pythagorean theorem and the Cosine Law for any Minkowski distance metric and
present the generalized distortion study. Although most observations presented here can
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be considered elementary, they have been included in order to ensure completeness (i.e.,
support the provision of a standalone document).

T 4. Any equation of the form f(x) =| x |n − | x − a |n −d where a∈ R\{0},
d ∈ R and n∈ N\{0} has a single root in R.

P. f (x) is differentiatable and continuous inRsince it is polynomial. Consequently
in order to have a single root it must exhibit a sign change inRwhile also being monotonous.
The successful validation of these two requirements would signify that f (x) intersects with
axis X at a single point, thus has a single root. In order to define thederivative f ′(x) of
f (x) we distinguish two cases, according to the value ofa.

—a > 0⇒
— f ′(x) = n | x |n−1 −n | x− a |n−1> 0 whenx > 0 , x > a
— f ′(x) = n | x |n−1 +n | x− a |n−1> 0 whenx ≥ 0 , x < a
— f ′(x) = −n | x |n−1 +n | x− a |n−1> 0 whenx ≤ 0 , x < a

—a < 0⇒
— f ′(x) = n | x |n−1 −n | x− a |n−1< 0 whenx ≥ 0
— f ′(x) = −n | x |n−1 −n | x− a |n−1< 0 whenx ≤ 0 , x > a
— f ′(x) = −n | x |n−1 +n | x− a |n−1< 0 whenx < 0 , x < a

Consequentlyf (x) is monotonous inR and specifically is ascending whena > 0 and
descending whena < 0. Next we must prove that there exists a single root. In orderto
accomplish that we will use the Bolzano theorem. We definec = d

|a|n and distinguish four
cases, according to the values ofd andc:

—d > 0, 0 < c < 1⇒
— f (a) = |a|n − c|a|n = (1− c)|a|n > 0
— f (0) = −|a|n − c|a|n = (−1− c)|a|n < 0

—d > 0, c > 1⇒
— f (a) = |a|n − c|a|n = (1− c)|a|n < 0
— f (ca) = |ca|n− |ca− a|n− c|a|n > 0 since (|c|n− |c− 1|n− c)|a|n > 0 which necessitates
|c|n − |c− 1|n − c > 0 or equivalently 1− | 1− 1

c |
n − c

|c|n > 0. Assuming thatc
|c|n ≃ 0

then our relation holds true since| 1− 1
c |

n< 1

—d < 0, c < −1⇒
— f (a) = |a|n − c|a|n = (1− c)|a|n > 0
— f (0) = −|a|n − c|a|n = (−1− c)|a|n < 0

—d < 0,−1 < c < 0⇒
— f (a) = |a|n − c|a|n = (1− c)|a|n < 0
— f (−ca) = | − ca|n − | − ca− a|n − c|a|n > 0 since (|c|n − |c + 1|n − c)|a|n > 0 which

necessitates|c|n − |c+ 1|n − c > 0 or equivalently 1− | 1+ 1
c |

n − c
|c|n > 0. Assuming

that c
|c|n ≃ 0 then our relation holds true since| 1+ 1

c |
n< 1

Based on the latter and with the use of the Bolzano theorem we conclude thatf (x) has a
root in (−∞,+∞)which is single since our function is monotonous inR. In particular

—if d > 0 and 0< d
|a|n < 1 then the root lays in (0,a)

—if d > 0 and d
|a|n > 1 then the root lays in (a,ca)

—if d < 0 and d
|a|n > −1 then the root lays in (0,a)
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—if d < 0 and−1 < d
|a|n < 0 then the root lays in (a,−ca)

T 5. A set of k+ 1 points pi , i = 1, ..., k + 1, described only by their pairwise
distances which have been defined with the use of a Minkowski distance metric p, can be
embedded in Rk without distortion through the following equations:

p′i, j =



| p′i, j |p − | p′i, j − p′j+1, j |p +
∑ j−1

f=1 | p
′
i, f |p −

∑ j−1
f=1 | p

′
i, f − p′j, f |p

+dp(p j+1, pi)p − dp(pi , p1)p = 0 if j ≤ i − 2

(dp(pi , p1)p −∑i−2
f=1 | p′i, f |

p)
1
p if j = i − 1

0 otherwise

(30)

Additionally the embedding is determined in polynomial time.

P. By denoting aspi the i-th point of the dataset, the aforedescribed requirements
are precisely captured by the system of non linear equations(31).

d′p(pi , p j) = dp(pi , p j), j = 1...k+ 1, i = 1...k+ 1 (31)

Despite its non linear nature, this system can be solved fastthrough an iterative set of
polynomial equations. We employ the following technique for achieving this goal. The first
point p1 is mapped in the beginning of the coordinates system, thus isattributed coordinates
O = (0, 0, ..., 0). The second point is projected under the requirement thatd′p(p1, p2) =
dp(p1, p2), which essentially can be expressed asd′p(O, p2) = dp(p1, p2). Obviously,p2

can be mapped at any point lying on the circumference of a hypersphere with centerp1

and radiusdp(p1, p2), however we choose to embed it at (dp(p1, p2), 0, 0, ..., 0). Essentially
our choice is a simple verification of the fact that the distance between two points can be
expressed in an 1D space. Having projectedp2 we proceed withp3. In this case, our
system (32) is augmented with one additional equation .

d′p(p3, pi) = dp(p3, pi), i = 1, 2 (32)

The reader may notice that the system in question has an infinite number of solutions.
Indeed, we havek unknowns and only two equations. Geometrically, our equations define
two hypersheres; any of the points that lay in their intersection can be the projection of
p3 in Rk. In order to overcome this, we calculate as before, only the minimum number
of coordinates that are needed in order for our prerequisites to hold true and assign a zero
value to the rest. The miminum number of non-zero coordinates is set toi − 1, where
i is the index of the point under projection. Consequently, byexpanding both equations
and subtracting the second from the first, we assign to the first coordinate ofp3 the single
root (recall Theorem (4) ) of| p′3,1 |p − | p′3.1 − p′2,1 |p −dp(p3, p1)p + dp(p3, p2)p = 0.
The second coordinate is derived by substitutingp′3,1 in the first equation, thus deriving

| p′3,2 |= (d(p3, p1)p− | p′3,1 |
p)

1
p .

Adhering to the above methodology we define the non linear system (33) for the third
landmark and proceed accordingly in order to define the embedding of p4 in Rk.

ACM Journal Name, Vol. V, No. N, Month 20YY.



44 · Enhancing Clustering Quality through Landmark-based Dimensionality Reduction

(a) Orthogonal triangle BAC (b) Triangle ABC with its altitude Ax

Fig. 17. .

d′p(p4, pi) = dp(p4, pi), i = 1, 2, 3 (33)

We expand all three equations and calculatep′4,1 andp′4,2 by subtracting the second and
third equations respectively from the first. The final non-zero coordinate,p′4,3, is defined
by substituting the calculated values in the first equation.By iteratively applying this
procedure for allk−1 points we manage to embed them inRk. Based on this methodology
we derive the set of equations (34).

pi, j =



| p′i, j |p − | p′i, j − p′j+1, j |
p +
∑ j−1

f=1 | p
′
i, f |

p −∑ j−1
f=1 | p

′
i, f − p′j, f |

p

+dp(p j+1, pi)p − dp(pi , p1)p = 0 if j ≤ i − 2

(dp(pi , p1)p −∑i−2
f=1 | p′i, f |p)

1
p if j = i − 1

0 otherwise
(34)

The cost of this procedure is polynomial. The requirements are O(ck2) wherec is the
cost of the method employed for determining the root of the equation.

O 3. Given an orthogonal trianglêBAC and a Minkowski distance metric p,
the length of the hypotenuse BC of the triangle is given by BCp = ABp + ACp.

P. Assuming triangleBAC as in Fig. 17(a) the lengths of its sides areAC = x,
AB= y, BC = (|x|p + |y|p)

1
p . Obviously, we conclude thatBCp = ABp + ACp.

O 4. Given a triangleB̂AC and a Minkowski distance metric p, the length of
the segment Bx, where x is the intersecting point of the altitude of anglêA with line BC is
given by the single root of Bxp − (BC− Bx)p − ABp + ACp = 0

P. Assume triangleABC as in Fig. 17(b). The application of the Pythagorean
theorem on triangleABxgivesABp = Axp + Bxp. Accordingly on triangleACxwe derive
ACp = Axp + (BC− Bx)p sinceBC = Bx+Cx. Subtracting the second equation from the
first we deriveBxp − (BC− Bx)p − ABp + ACp = 0 which according to theorem 4 has a
single root inR.

Lemma6. Using any two landmarksL1, L2 and a Minkowski distance metricp, FE-
DRA can project any two pointsA, B in a given low-dimensional space while guaranteeing
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that their new distanceA′B′ will be bounded by (ABp − ∆)
1
p ≤ A′B′ ≤ (ABp + ∆)

1
p with

∆ = (AAy + BBy)p − (AAy − BBy)p whereAAy, BBy are the lengths of the altitudes of
trianglesL1AL2, L1BL2 respectively.

P. We will now extend the analysis of Section 4 with respect to the distortion for
any Minkowski distance metricp. Towards this end we will employ Observations 3 and 4.
Following the same analysis as in Paragraph 4.4.2 but using the previous generalizations,
in the high-dimensional space we obtain thatABp = A′′Bp + (x− y)p andABp ≤ (AAy +

BBy)p + (x − y)p wherex andy are obtained from the solution of equationsxp − (L1L2 −
x)p+ALp

2 −ALp
1 = 0 andyp− (L1L2−y)p+BLp

2−BLp
1 = 0 respectively which according to

Theorem 4 have a single root inR. Using Observation 3 we also obtainAAy= (ALp
1− xp)

1
p

andBBy= (BLp
1 − yp)

1
p .

The new distance betweenA′, B′ is eitherA′B′p = (x− y)p + (AAy − BBy)p or A′B′p =
(x − y)p + (AAy + BBy)p. We define as∆ = (AAy + BBy)p − (AAy − BBy)p the difference

between the obtained values and obtain the lower bound ofA′B′ as (ABp − ∆)
1
p ≤ A′B′.

The upper bound can be derived similarly. We have that|AAy − BBy| ≤ A′′B⇒ (AAy −
BBy)p ≤ A′′Bp⇒ (AAy−BBy)p+ (y− x)p ≤ A′′Bp+ (y− x)p ⇒ (AAy− BBy)p+ (y− x)p ≤
ABp ⇒ (AAy − BBy)p + (y− x)p + ∆ ≤ ABp + ∆ ⇒ (AAy + BBy)p + (y− x)p ≤ ABp + ∆

and since (AAy − BBy)p + (y− x)p ≤ (AAy + BBy)p + (y− x)p we derive the upper bound
A′B′p ≤ ABp + ∆.

Consequently, (ABp − ∆)
1
p ≤ A′B′ ≤ (ABp + ∆)

1
p .
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