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The scalability of learning algorithms has always been a central concern for Data Mining Researchers and nowadays, with
the rapid increase of data storage capacities and availability, its importance has grown further. To this end, samplinghas
been studied by several researchers in an effort to derive sufficiently accurate models using only small data fractions. Inthis
paper we focus on Spectralk-Means, i.e. thek-Means approximation as derived by the spectral relaxation, and propose a
sequential sampling framework that iteratively enlarges the sample size until thek-Means results (objective function and
cluster structure) become indistinguishable from the asymptotic (infinite-data) output. In the proposed framework weadopt
a commonly applied principle in Data Mining research that considers the use of minimal assumptions concerning the data
generating distribution. This restriction imposes several challenges mainly related to the efficiency of the sequential sampling
procedure. These challenges are addressed using elements of Matrix Perturbation Theory and Statistics. Moreover, although
the main focus is on Spectralk-Means, we also demonstrate that the proposed framework canbe generalized to handle
Spectral Clustering.

The proposed sequential sampling framework is consecutively employed for addressing the Distributed Clustering prob-
lem, where the task is to construct a global model for data that reside in distributed network nodes. The main challenge in
this context is related to the bandwidth constraints that are commonly imposed, thus requiring that the distributed clustering
algorithm consumes a minimal amount of network load. This illustrates the applicability of the proposed approach as it en-
ables the determination of a minimal sample size that can be used for constructing an accurate clustering model that entails
the distributional characteristics of the data. As opposedto the relevant distributedk-means approaches, our framework takes
into account the fact that the choice of the number of clusters has a crucial effect on the required amount of communica-
tion. More precisely, the proposed algorithm is able to derive a statistical estimation of the required relative sizes for all
possible values ofk. This unique feature of our distributed clustering framework enables a network administrator to choose
an economic solution that identifies the crude cluster structure of a dataset and not devote excessive network resourcesfor
identifying all the “correct” detailed clusters.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data Mining; I.5.3 [Pattern
Recognition]: Clustering—Algorithms

General Terms: Spectral, Clustering, Asymptotic Convergence, Sampling

Additional Key Words and Phrases: Matrix Perturbation Theory, Bootstrapping, Distributed Clustering

1. INTRODUCTION

An important practical problem in Data Mining is related to the determination of the sufficient
sample size that is required such that an accurate model, that reflects the distributional characteristics
of the data is constructed [Domingo et al. 2002; Provost and Kolluri 1999; Provost et al. 1999;
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Scheffer and Wrobel 2003; Scholz 2005]. Depending on the nature of the data (such as stream data,
dynamic data or static data) and the properties of the learning algorithms (such as asymptotically
convergent or inconsistent) various approaches have been proposed. However, albeit the importance
and significance of this problem, there exist certain popular data mining paradigms, such as Spectral
Clustering [von Luxburg 2007] and Spectralk-means1 [Ding and He 2004; Zha et al. 2001; Gordon
and Henderson 1977] that have not been adequately analyzed in this respect.

The relatively small attention that Spectralk-means has received can be attributed to the fact
that the Lloyd’s standardEM-stylek-means algorithm [Lloyd 1982] presents an efficient and easy
to implement approach for approximating the minimum sums ofsquares clustering problem. If
we attempt to make a high-level comparison between Spectralk-means and Lloyd’sk-means the
arguments will boil down to the standard dilemma between transforming the original clustering for-
mulation to an easy-to-solve, deterministic and convex optimization problem, as opposed to using
a heuristic, local-minima algorithm that requires certaintuning (such as the initialization of cluster
centers) but performs remarkably well in practice. Due to the popularity of Lloyd’s algorithm, sev-
eral efficient sampling strategies have been proposed in various application contexts (such as [Ailon
et al. 2009; Datta et al. 2009; Zhou et al. 2007; Bradley et al.1998]).

These methods generally consider the desired number of clustersk as input and aim to derive
a sufficiently accurate estimation of the cluster centers or the cluster objective. One issue that is
commonly overlooked is the fact that the choice ofk can have a significant effect on the required
sample size for approximating the cluster results. As we analyze in detail in Sections 7.2 and 7.3,
the discovery of the detailed cluster structure or even a wrong choice ofk that attempts to split a
dense cluster, can require large sample sizes, much larger than whenk is correctly configured to
identify the crude cluster structure of the data. Thus, if weconsider that the data gathering process
is associated with a cost, it is natural to desire a mechanismthat is able to provide us with the
comparative sample size requirements for all possible choices ofk. As we analyze in Sections 7.2
and 7.3 the proposed framework has this property and can derive that the construction of a reliable
clustering fork clusters requires a smaller bandwidth than for and other number of clusters.

The little attention that Spectral Clustering has receivedwith respect to sufficient sample size de-
termination can be attributed to the fact that its asymptotic behavior, i.e. its behavior as sample size
tends to infinity has only recently been characterized [von Luxburg et al. 2008]. The recent results
in [von Luxburg et al. 2008] demonstrate that Spectral Clustering is consistent, i.e. converges under
mild assumptions to a steady partition of the whole data space, thus motivating the consideration
of algorithms that aim in determining the required sample size such that the clustering algorithm
approximates sufficiently the asymptotic-infinite data cluster structure.

Sampling strategies have been extensively considered in the application area of Distributed Data
Mining where the main task is to construct a reliable clustering (such as [Datta et al. 2009] and
references therein) of the available network data while using a minimal amount of bandwidth re-
sources. The consumption of bandwidth resources is necessary since each network node has only a
certain portion of the available data and thus, the fragmented information needs to be accumulated
in order to construct a reliable cluster model that reflects the global distributional characteristics of
the network data. The role of a distributed clustering algorithm is to ensure that the data accumu-
lation process will be performed in an economic manner, consuming a minimal amount of network
resources. This illustrates the direct applicability of the proposed sequential sampling framework to
Distributed Clustering, since it allows for the determination of the minimal sample size that needs
to be communicated such that a reliable clustering is constructed.

It should be noted that although this work presents the first approach that considers the problem
of Distributed Spectral Clustering and Distributed Spectral k-means, there exists a large body of
literature on Distributed Lloyd’sk-means for several types of networks [Datta et al. 2009; Bandy-
opadhyay et al. 2006; Datta et al. 2006; Forman and Zhang 2000; Dhillon and Modha 2000]. A

1Throughout the rest of this paper we will refer to the continuous relaxation approach for approximatingk-Means, as Spectral
k-Means.
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shortcoming of these approaches is that they are committed to a fixed number of clustersk and do
not take into account the effect that the choice ofk has to the required bandwidth consumption. We
should note here that there exist some works that aim in detecting the number of well separated
clusters in a distributed manner [Tasoulis and Vrahatis 2004], however these approaches do not
quantitatively relate the “correct” number of clusters with the required sample size ofk-means. As
we have stated earlier, the choice ofk can have a significant effect on the sample size requirements,
and thus an inappropriatek selection can lead to excessive network load consumption. Based on this
observation it can be argued that a distributed clustering algorithm should have the ability to esti-
mate the relevant bandwidth requirements for allk, thus providing a network administrator with the
ability to select ak that derives an economic crude cluster structure of a dataset. The proposed Dis-
tributed Spectral Clustering and Distributed Spectralk-means approaches have this feature and in
fact this constitutes a distinct advantage they have over the relevant Lloyd-type Distributedk-means
approaches.

Before we present the contributions of this work we will provide a brief non-technical summary
of the proposed framework. The sequential sampling algorithm initially considers as input a large
dataset that cannot be directly analyzed and randomly splits it in smaller samples. Consequently,
these samples are iteratively merged in a sequential manner, until our theoretical analysis guarantees
that the desired approximation levels with respect to the objective function and the cluster results are
reached. In the heart of the proposed approach lies an efficient Bootstrap-based methodology that
assesses at each sequential step whether the input approximation requirements are achieved. The
efficiency of the proposed methodology is based on Matrix Perturbation Theory results that allow
us to relate the accuracy of the elements of the input data matrix to the accuracy of its spectrum. We
also demonstrate that our framework can be generalized to handle Normalized Spectral Clustering,
when the object-similarity (which is an input in Spectral Clustering) is defined in the form of an
inner-product. Experiments demonstrate the convergent behavior of the proposed framework and
also provide insights on the appropriate choice of the inputparameters. More precisely, the exper-
imental results lead to the definition of an automated selection process for the input requirements
such that the quality of the sub-sample considered at the termination of the sequential sampling
process tightly approximates the asymptotic classes-cluster performance. Based on the automatic
tuning of the input-requirements, our approach can be considered as a stand-alone algorithm that
automatically determines the required sample size such that the clustering performance does not
further improve when larger data sizes are considered. Withregards to the application focus, we
conduct extensive experiments against distributedk-Means approaches and demonstrate the superi-
ority of our approach with respect to bandwidth consumption.

The contributions of this paper can be summarized in the following:

— A new perspective to sequential sampling k-means:We introduce a novel perspective to the
sequential sampling problem for Spectralk-means and demonstrate that it can be reduced to the
statistical estimation of the appropriate feature-to-feature similarities. This view is different than
most sampling approaches fork-means that aim in accurately estimating the relevant cluster cen-
ters or objective function. As we will analyze subsequentlyin more detail, this is an important
distinction and allows our framework to be independent of anad-hoc prior selection of parameter
k.

— Efficient statistical accuracy estimation of the appropriate quantities: In the proposed frame-
work, we do not make any assumptions regarding the data generating distribution, thus a challenge
that arises is concerned with the efficient computation of the appropriate statistical accuracyes-
timates. In this context we propose an efficient bootstrap-based methodology that presents an
improvement in terms of efficiency over the direct application of Bootstrapping on the spectral
solution.

— Number of clusters and required sample size:Another novel feature of the proposed framework
is that it provides at each step of the sequential sampling process an estimation of the required
relative sample sizes for all possible values ofk. I.e. based on our framework we can identify
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the number of clustersk that attains the smallest sample size requirements, and we can also draw
conclusions such as: “the reliable identifications of a three cluster structure requires less data
than a two cluster structure but more data than a four clusterstructure”. This is a unique feature
that, to the extend of our knowledge, is not provided by otherrelevant sampling-based clustering
frameworks.

— Number of clusters and required bandwidth: In the context of Distributed clustering, our ap-
proach offers the unique feature of providing a statistical estimation of the relative bandwidth
requirements for all possible values ofk. This is an important feature that provides a network
administrator with better control over the Distributed Clustering process.

2. DISTRIBUTED CLUSTERING AND SAMPLING APPROACHES

In the Data Mining literature, the term “Distributed Clustering” is largely overloaded and is em-
ployed to refer to diverse distributed data mining problems. Thus, in order to clarify the application
context of this work, we will initially provide a brief categorization of the distributed clustering
literature and also present the central problems that are considered. In this analysis we will also
highlight the relevance of sampling approaches and justifywhy it is natural to consider the applica-
tion of distributed clustering to the proposed sequential sampling framework.

An initial categorization of the Distributed Clustering literature can be made on the basis of the
type of distributed network that is considered. Several Distributed Clustering approaches have been
proposed for structured and unstructured Peer-to-Peer networks (such as [Datta et al. 2009; Bandy-
opadhyay et al. 2006; Hammouda and Kamel 2007]) and Sensor networks (such as [Younis and
Fahmy 2004; Bandyopadhyay and Coyle 2003]). These networksspecify several different require-
ments, for example in sensor networks, due to the low energy resources, it is required that a minimal
number of local (sensor level) computations are performed.Apart from the application specific ap-
proaches, there exist more generic works that define a set of requirements for the structure of the
network or the data that are contained (such as [Datta et al. 2006; Januzaj et al. 2004; Kargupta
et al. 2000; Klusch et al. 2003; Kriegel et al. 2005; Zhang et al. 2008]) and then design distributed
clustering algorithms that satisfy these requirements. The diversity of distributed data mining meth-
ods can be observed even in specific application areas, such as P2P networks, where there exist
several differentiations between various types of P2P networks such as structured, unstructured or
semi-structured. Albeit the large diversity that exists, arequirement that is commonly imposed is
related to the minimization of the required bandwidth resources. This requirement highlights the
relevance of sequential sampling that allows for the determination of the minimal sample size that
needs to be communicated for constructing a representativeclustering model of the whole network.
The relevance of random sampling in distributed networks can also be illustrated by the fact that it
has been considered as a separate research problem (i.e. in [Arai et al. 2007; Awan et al. 2006]).

Due to the large volume of work that exists in the topic of distributed clustering, prior to present-
ing the specific technical details of the proposed frameworkwe will carefully identify the research
problems that still remain open in the area. An open problem can be considered as the definition of
“distributed-versions” of centralized algorithms that have not yet been introduced. The “distributal-
ization” of centralized algorithms would enhance the toolsthat networks administrations can employ
and possibly define new, or highlight the importance of old research problems in Distributed Data
Mining. Based on this observation we consider in this paper the sampling-based “distributalization”
of Spectralk-means and Spectral Clustering. To the extend of our knowledge there do not exist sam-
pling based distributed versions for these algorithms. Theproposed framework introduces a novel
perspective to the Distributedk-means problems which is reduced to the statistical estimation of the
feature-to-feature similarities as opposed to the relevant Distributedk-means approaches that focus
on the estimation of the respective cluster centers or cluster objective. This introduces certain novel
insights and could lead to a development of network-specificcommunication efficient algorithms
for feature-feature similarity estimations.

Another open problem that can be considered is related to theanalysis of the effect of clustering
parameters to the required bandwidth consumption. For certain parameters, such as the number of
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clusters, it is known that clearly separated clusters require less data/bandwidth for the statistical es-
timation of their cluster centers [Guha et al. 1998]. To the extend of our knowledge, this qualitative
knowledge has not been quantitatively analyzed for specificdistributed clustering algorithms. Based
on this observation, we consider in this paper a DistributedClustering algorithm, that can automati-
cally assess the relative required sample sizes for all possible choices ofk (number of clusters). This
is a “built-in” feature of the proposed framework and no extra resources need to be devoted for this
estimation.

Now that we have presented the main open problems that will beconsidered in the application
area of Distributed Clustering, we can move on and provide a brief introduction to the algorithms
we study, i.e. Spectralk-means and Spectral Clustering. Their introduction will clarify the differen-
tiations between Spectralk-means and Lloyd’sk-means that will eventually lead to the formulation
of the proposed sequential sampling framework.

3. K-MEANS, SPECTRAL K-MEANS AND SPECTRAL CLUSTERING

k-Means clustering, is one of the most popular methods for identifying groups in data. It considers
as input the numberk of clusters and aims in retrieving thek clusters that minimize the following
objective function.

Jk =

k
∑

j=1

∑

i∈Ck

||xi −mj ||2

wherexi are the input data andmk are the cluster centroids. The most well known heuristic fork-
Means is Lloyd’s algorithm [Lloyd 1982]. Due to its wide use and practical effectiveness, Lloyd’s
algorithm is commonly referred to as thek-Means algorithm.

Another approach that has been proposed, considers the spectral relaxation for approximating the
k-Means objective [Ding and He 2004; Zha et al. 2001; Gordon and Henderson 1977]. These ap-
proaches are based on the fact that thek-Means optimization problem is equivalent to the following
trace maximization problem.

minY(Tr (XXT) − Tr (YTXXTY)) ≡
maxY(Tr (YT XXTY))

(1)

WhereX is theobject× featurematrix2 andY is a matrix with sizen× k (n is the number of objects
andk is the number of clusters).Y is defined as:

Yic =

{ 1√
|πc|

if object i ∈ πc

0 otherwise

with |πc| denoting the size of clusterc. It can be observed thatY is an orthonormal matrix that
contains the discrete cluster assignments for the data objects.

The formulation ofk-Means as a trace maximization problem makes apparent the relevance of
spectral techniques, since if we relax matrixY to be any orthogonal matrix, the continuous relaxation
solution can be derived by thek dominant eigenvectors3 of the object-similarity matrixXXT. More
precisely, the matrixY that maximizes the objective function (with the continuousrelaxation and
the constraintYTY = Ik) contains thek dominant eigenvectors as columns. Since the results are
continuous, and do not correspond to crisp cluster assignments, an additional step is required for
discretizing the results. To this end several approaches have been proposed for discretizing the
continuous solutions ([von Luxburg 2007] and references within), with the most popular choice
being Lloyd’sk-Means.

2In the context of this work we will always denoteX as theobject× featurematrix
3In the context of this work we will refer to thek dominant eigenvectors as the eigenvectors that correspondto thek largest
eigenvalues
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Normalized Spectral clustering works in a similar manner and aims in retrieving thek clusters
that minimize the Normalized Cut objective function (whichis alsoNP-Hard):

NCut(A1, ...,Ak) =
k
∑

i=1

cut(Ai,Ai)
vol(Ai)

wherecut(A,A) =
∑

i∈A, j<A W(i, j), vol(A) =
∑

i∈A
∑n

j=1 W(i, j), n is the number of objects andW(i, j)
is the similarity between objectsi and j.

This problem can also be stated as a Trace minimization problem [Shi and Malik 2000] in the
form:

minYTr (YT(I − D−1/2WD−1/2)Y) (2)

whereW is the object similarity matrix,D is the degree matrix as induced byW andY is the orthog-
onal matrix with sizen× k (n number of objects andk the number of clusters) defined in a similar
manner as above. EssentiallyY contains the discrete cluster assignments for the data objects. If we
relax the matrixY to be any orthogonal matrix, the continuous relaxation solution can be derived
by thek eigenvectors that correspond to thek smallest eigenvalues of the normalized Laplacian
L = I − D−1/2WD−1/2. It should be noted that in the case of 2-way clustering, the eigenvector that
corresponds to the second smallest eigenvalue should be employed.

4. SPECTRAL LEARNING BASED ON FEATURE-SIMILARITY MATRICES

4.1. Spectral k-Means

It can be observed that both Spectral Clustering and Spectral k-Means are based onobject× object
matrices. More precisely, Spectralk-Means is based on the object inner-product similarity matrix
XXT and (normalized) Spectral Clustering is based on theobject× object“distance” matrixL. As
the sample size grows, the sizes of these matrices change accordingly, thus enhardening the study
of the asymptotic clustering behavior.

In order to facilitate the study of Spectralk-Means with growing sample sizes we make the obser-
vation that the algorithm’s output can be derived by a feature-similarity matrix that remains constant
in size as the sample size grows. More precisely, we can observe that ifλi andui is an eigenvalue-
eigenvector pair of the feature inner-product similarity matrix XTX, thenλi andXui/||Xui ||, is an
eigenvalue-eigenvector pair of the object inner-product similarity matrix. This observation illus-
trates that we can derive the cluster solutions by simply projecting the data matrixX onto the eigen-
vectors of the feature inner-product similarity matrix. This is a crucial observation and allows us to
confine our study to the constant in size feature similarity matrix.

It can be observed that as the sample size grows, the objective function ofk-Means becomes
larger, not converging to a constant value. In order to address this issue, we consider the normalized
feature inner-product similarity matrix1nXTX (n is the number of objects), that produces exactly
the same eigenvectors (and thus continuous solutions) asXTX. As we will analyze in section 6, the
factor 1

n can guarantee the convergence of the objective function in the context of the law of large
numbers asn→ ∞. Based on these considerations we can state the Spectralk-Means optimization
problem as:

maxY(Tr (YT [
1
n

XTX]Y)) (3)

The connection between SpectralK-Means and the spectrum of feature similarity matrices was
also taken into account in the work of [Ding and He 2004], where the authors have demonstrated that
by conducting an appropriate continuous relaxation to the original clustering problem, the solution
of k-Means can be derived by the projections of the data on thek-1 principal vectors. Their main
result is summarized in the following theorem.
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Theorem 4.1 ([Ding and He 2004]). When optimizing the k-Means objective function, the con-
tinuous solution for the transformed discrete cluster membership indicator vectors4 are given by
(v1, ..., vk−1), where vi = 1√

λi
Xcui . Theλi and ui , i = 1, ..., k− 1 are the k− 1 largest eigenvalues and

the respective eigenvectors of the input covariance matrix, and Xc is the centered object× feature
data matrix.

It can be observed in the above theorem that the authors employ k − 1 (and notk) eigenvectors
for solving thek-Means clustering problem, and also that they employ the feature covariance matrix
(which can be considered as a centered inner-product similarity for the features) and not the fea-
ture inner-product similarity. The reason is that the relaxation is performed on a slightly different
objective function.

maxYTr (YT XcXT
c Y) − Tr (XcXT

c ) ≡
maxYTr (YT XcXT

c Y)
(4)

whereY is an orthogonaln × (k − 1) matrix andXc is the centered data matrix. For details on the
derivation, the interested reader can refer to [Ding and He 2004]. As it will become apparent in the
subsequent sections, our methodological approach can be equally applied to both spectralk-Means
formulations.

4.2. Normalized Spectral Clustering

Similar results can be derived for the normalized Laplacian, when the instance-similarity matrixW
can be expressed as an inner product matrix at a fixed feature space. By using the word “fixed” we
refer to a feature space that remains constant as the sample size grows, i.e. Gaussian and Polynomial
Kernels do not fall into this category. Examples of validW choices include the simple inner product
W = XXT and other inner-product variations ofW such as the normalized inner-productW =

XD−1
Y XT (with DY being a diagonal matrix andDY( j, j) =

∑

i X(i, j)).
In order to demonstrate that the Spectral Clustering results can be derived by a feature-similarity

matrix whenW = XXT, we define the weighted feature-similarity matrixTermS imas:

TermS im= (XTD−1X) (5)

whereD is the graph degree matrix as derived by matrixW. Now if we considerλi andui , i = 1, ..., n
to be the eigenvalues and the respective eigenvectors of theTermS immatrix, then it can be easily
shown that 1− λi is an eigenvalue andc · (D−1/2X)ui the respective eigenvector of normalized
LaplacianL, wherec is a constant that guarantees that the norm of the eigenvector is equal to 1.
Similar results can be derived for other inner-product versions ofW.

Based on the above, we have established the direct connection between the eigenvectors of
TermS imand the eigenvectors of normalized LaplacianL. Taking into account this observation
we can study the behavior of the clustering results as the sample size grows, using the fixed size
feature similarity matrixTermS im.

5. QUALITY MEASURES: OBJECTIVE FUNCTION AND CLUSTER RESULT S

5.1. Objective Function

Recall that the Spectralk-Means and the Spectral Clustering optimization problems are stated as
trace maximization problems (equations 2,3,4) and the dominant eigenvectors of the respective
feature similarity matrices are employed for deriving the continuous cluster solutions. Thus, the
appropriate objective function can be derived by the sum of the eigenvalues that correspond to
eigenvectors employed for the (continuous) clustering solution. More precisely we can state the fol-
lowing three observations that are a direct consequence of apopular theorem of Ky Fan (theorem
3.2 in [Ding and He 2004]).

4The theorem refers to the continuous relaxation defined in [Ding and He 2004]
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Observation 1 (Spectral k-Means, based on eq. 3). Given an input object-feature data matrix
X, the objective function for the continuous relaxation of optimization problem 3 is derived by
∑k

i=1 λi , whereλi , i = 1, ..., k are the k dominant eigenvalues of the feature-similarity matrix XTX.

Observation 2 (Spectral k-Means, based on eq. 4). Given an input object-feature data matrix
X, the objective function for the continuous relaxation of optimization problem 4 is derived by
∑k−1

i=1 λi , whereλi , i = 1, ..., k − 1 are the k− 1 dominant eigenvalues of the feature-covariance
matrix.

Observation 3 (Spectral Clustering, based on eq. 2). Given an input object-feature data ma-
trix X, and W = XXT, the objective function for the continuous relaxation of the optimization
problem 2 for k> 2 clusters is derived by

∑k
i=1 λi , whereλi , i = 1, ..., k are the k dominant eigenval-

ues of the TermS im= XTD−1X matrix. When k= 2 the objective is derived byλ2, whereλ2 is the
second largest eigenvalue of matrix TermS im.

Based on the above, it is evident that in order to measure the asymptotic (infinite-limit data)
approximation level for the objective function of Spectralk-Means and Normalized Spectral Clus-
tering, one should measure the proximity of the sample-based eigenvalues to the asymptotic ones.
Statistics provides us with a formal framework for studyingthe proximity of the sample-based esti-
mates to their expected value results. More precisely, based on statistical accuracy and asymptotic
analysis we can derive that a sample size is sufficient for producing adequately accurate estimations
with high confidence i.e. if we draw different samples (of the same size) from the data generating
distribution the approximation requirement will hold withhigh probability (i.e. in 95% of experi-
ments). This is an extensively studied issue in the statistical literature, and depending on the assump-
tions that one can make concerning the data generating distribution, there exist several approaches
for deriving the statistical accuracy and asymptotic properties of the sample eigenvalues (a literature
review for certain types of random matrices can be found in [Bai 1999]).

5.2. Clustering Results

In the afore subsection, we have demonstrated that the objective function approximation can be cast
as an eigenvalue estimation problem. Since, the (continuous) clustering results are derived by the
appropriate eigenvectors, one can analogously consider the problem of measuring the asymptotic
(infinite-limit data) approximation level of the clustering results as an eigenvector estimation prob-
lem. However, this a slightly harder problem than one needs to solve, since the continuous results
actually depend on the space spanned by the employed eigenvectors, rather than the eigenvectors
themselves. This is because the cluster results are derivedby projecting the original data onto the
estimated eigenvectors, thus any basis of the space that is spanned by these eigenvectors would suf-
fice to produceexactly the same distances between the projected objects. The Euclidean distances
between the projected data is employed by many authors for deriving the discrete cluster solutions
([von Luxburg 2007] and references therein), thus preserving the same distances in the projected
space would suffice to produce the same clustering results.

In order to illustrate the problematic nature of studying the behavior of eigenvectors, consider
a feature similarity matrix that converges (asymptotically) to a matrix whose largest eigenvalueλ
has algebraic multiplicity 2 (i.e. the largest eigenvalue corresponds to two eigenvectorsu,u′). It
can be easily observed that any basis of the space that is spanned byu andu′, produces a valid
pair of eigenvectors that correspond to eigenvalueλ. Although the eigenvectors in this case are
highly unstable, the projection of a data matrix to their eigenspace produces constant distances,
independent of the basis chosen for the projection. This example illustrates that there can be cases
where the eigenvectors do not converge to a stable solution,while the eigenspaces exhibit a coherent
behavior.

This observation allows us to cast the problem of approximating the asymptotic cluster results as
a statistical-estimation problem of the appropriate eigenspace (i.e. the space spanned by the eigen-
vectors that take part in the clustering solution). Based onthe analysis presented we can elaborate
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on the original research goals.
Original Goal:

— Find a sufficiently large sub-sample of the dataset such that the desired approximation thresholds
are achieved with high confidence.

Equivalent Goals:

— Find a sufficiently large sub-sample of the dataset such that the appropriate sample-based eigen-
values approximate the asymptotic eigenvalues with high confidence.

— Find a sufficiently large sub-sample of the dataset such that the appropriate sample-based
eigenspace approximates the asymptotic eigenspace with high confidence.

6. APPROXIMATING THE ASYMPTOTIC RESULTS

6.1. Objective Function

We will now present the proposed methodological approach for deriving the sample-based approx-
imations to the asymptotic Objective function, which as analyzed in the previous section, can be
cast as an eigenvalue estimation problem. The issue of statistical estimation of sample eigenvalues
has been extensively studied and several methodological approaches and algorithms have been pro-
posed. However, in the context of this work we assume that we do not have any knowledge of the
data generating distribution, thus severely reducing the range of methods that can be employed.

A popular approach for measuring the accuracy of statistical estimates without making unnec-
essary distributional assumptions is Bootstrapping [Efron and Tibshirani 1993]. Given a random
sample, generated by an unknown probability distribution and a statistic of interest, the bootstrap-
ping procedure generates several independent bootstrap samples by sampling with replacement and
consequently computes the appropriate standard errors andconfidence intervals based on the varia-
tion exhibited by the statistic of interest. The theoretical justification for Bootstrapping relies on the
Glivenko-Cantelli theorem (can be found in [Chung 1974]), that in the context of an iid sample, as-
serts that the empirical distribution, as derived by sampling with replacement, converges uniformly
with probability 1 to the unknown data generating distribution. Moreover, a smoothness condition
on the function used for estimating the statistic is required such that the convergence to the asymp-
totic results is guaranteed.

Bootstrapping has been previously used for computing the statistical accuracy of eigenvalues
[Efron and Tibshirani 1993]. However, it is evident that theBootstrapping approach would im-
pose a significant computational overhead as it would require the computation of the eigenvalue-
decomposition multiple times (1000-2000 bootstrap samples are commonly required for construct-
ing confidence intervals). In order to address this issue, weemploy Matrix Perturbation Theory that
allows us to relate the statistical accuracy of the elementsof a matrix to its eigenvalues.

Theorem 6.1 (Weyl’s Theorem [Stewart and Sun 1990]). Let A be a symmetric matrix with
eigenvaluesλ1 ≥ λ2 ≥ ... ≥ λn and E a symmetric perturbation with eigenvaluesǫ1 ≥ ǫ2 ≥ ... ≥ ǫn.
Then for i= 1, ..., n the eigenvaluesλi of A+ E will lie in the interval[λi + ǫn, λi + ǫ1].

In the context of this workA is the appropriate feature similarity matrix that is used for computing
the objective function. Weyl’s theorem allows us to initially evaluate the statistical accuracy of the
elements of the input matrix (as encoded by error-matrixE), and consequently assess the effect
of error matrixE to the eigenvalues. In order to compute matrixE, we can consider the task of
estimating the statistical accuracy of all the feature-similarity pairs (i.e. all the elements of the
feature-similarity matrix), by means of confidence intervals. Recall that confidence intervals present
us with a standard approach for determining the range of values a statistic of interest will assume
around its expected value, with high confidence. Having computed the confidence intervals, we can
defineE in the same manner as in [Mavroeidis and Vazirgiannis 2007; Mavroeidis and Bingham
2008; 2010], i.e. as the maximum difference between the feature similarities and the endpoints of
the corresponding confidence interval. Thus, high values for elements of matrixE will correspond to
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wide confidence intervals, while small values will correspond to highly accurate estimates. Having
definedE, we can employ Weyl’s theorem and directly assess the effect of the (in)-accuracy of the
input matrix elements to its eigenvalues. The size of the eigenvalues of matrixE will determine the
upper bound on the objective function estimation. It is evident that this process avoids the multiple
eigenvalue computations, thus significantly reducing the computational overhead imposed by the
bootstrap process.

6.2. Clustering Results

We will now present the proposed methodological approach for deriving the sample-based approxi-
mations to the asymptotic Clustering results, which as analyzed in the previous section, can be cast
as an eigenspace estimation problem. It can be observed thatin order to measure the approximation
to the asymptotic eigenspace, the definition of a distance measure between subspaces is required. In
the context of this work we employ the norm-difference between the respective projection operators
that is a popular measure for evaluating the distance between subspaces. As in the case of eigen-
values, bootstrapping directly the eigenspaces would impose a significant computational overhead
since it would require the computation of the eigenvector-decomposition multiple times. In order
to address this issue, we employ Strewart’s theorem on the perturbation of invariant subspaces.
The subsequent theorem presents a slightly modified versionof the original Stewart’s theorem, as
presented in [Papadimitriou et al. 1998]:

Theorem 6.2 (Stewart’s theorem [Stewart and Sun 1990]). Let A and A+E be n×n symmetric
matrices and let V= [V1 V2] be an orthogonal matrix, with V1 ∈ d × n and V2 ∈ (n− d) × n, where
range(V1) is an invariant subspace for A. Partition the matrices VT AV and VTEV as follows:

VT AV =

[

Q1 0
0 Q2

]

VT EV =

[

E11 E12
E21 E22

]

if

δ = λmin − µmax− ||E11||2 − ||E22||2 > 0

whereλmin is the smallest eigenvalue of Q1 andµmax is the largest eigenvalue of Q2 and ||E12||2 ≤
δ/2, then there exists a matrix P∈ (n − d) × d with ||P||2 ≤ 2

δ
||E21||2, such that the columns of

V′1 = (V1 + V2P)(I + PTP)
1
2 form an orthonormal space that is invariant for A+ E. Moreover,

concerning the distance between the projection operators corresponding to V1 and V′1 we have that

||PV1 − PV′1
||2 ≤

2
δ
||E21||2

Given matricesA andE, Stewart’s upper bound requires the computation of:V1, V2, λmin µmax,
E11, E22 andE21. In Spectralk-means the solution is derived by thek dominant eigenvectors of the
input matrix, thusV1 is defined by the top-k eigenvectors ofA (as columns) andV2 is defined by the
restn− k eigenvectors. Based on these definitions forV1 andV2 we will have thatλmin = λk, i.e. the
kth largest eigenvalue of matrixA andµmax= λk+1, i.e. thek+ 1 largest eigenvalue of matrixA. The
above specifications clarify how Stewart’s upper bound can be computed given the input matricesA
andE.

We will also derive here two simplified expressions of Stewart’s bound. One simplified bound
includes only termsλk, λk+1 and E21, while the other includes solelyλk, λk+1 and E. In order to
derive these bounds we need to make a stronger assumption forthe size of the eigengap than the
one employed in Stewart’s theorem. The eigengap requirement in Stewart’s theorem is expressed
in the formulaδ = λmin − µmax − ||E11||2 − ||E22||2 > 0, which translates in our context as:λk −
λk+1 − ||E11||2 − ||E22||2 > 0. If we now impose a stronger assumption for the size of the eigengap,
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λk − λk+1 > 2(||E11||2 + ||E22||2) we can derive for the upper bound employed in Stewart’s theorem
that 2

δ
||E21||2 ≤ 4||E21||2

λk−λk+1
. Thus, 4||E21||2

λk−λk+1
can serve as an upper bound to the continuous results. Notice

that this bound can be computed using solely the appropriateE21 matrix and the eigenvalues ofA.
If we further observe that||E21||2 ≤ ||E||2 then we can derive that4||E21||2

λk−λk+1
≤ 4||E||2
λk−λk+1

, thus 4||E||2
λk−λk+1

can
also serve as an upper bound to the continuous results.

MatricesA andE that are required as input for computing Stewart’s upper bound are derived in
a similar manner as in [Mavroeidis and Vazirgiannis 2007; Mavroeidis and Bingham 2008; 2010]
using the following procedure:

— Employ Bootstrapping (of objects) and compute confidence intervals for the elements of the ap-
propriate feature-similarity matrixS.

— Define perturbation matrixE such thatE(i, j) contains the maximum difference between theS(i, j)
and the endpoints of the respective confidence interval.

— Compute an upper bound on the difference of the eigenvalues betweenS andS + E based on
Weyl’s theorem.

— Compute an upper bound on the difference of the eigenspaces betweenS andS + E based on
Stewart’s theorem.

The efficiency of this procedure is based on Matrix Perturbation Theory results that allows us
to perform the bootstrap process on the elements of the appropriate feature-similarity matrix and
consequently measure the effect of the variability of the matrix elements to the matrix’sspectrum.
Thus, this method does not require the computation of the eigen-decomposition ofS as opposed to
the naive application of Bootstrapping that would require 1000-2000 such computations. Although
this approach provides us with an efficient Bootstrap-based proximity estimation of the sample-
based spectrum to its expectation, it can be argued that it isnot practically efficient in the cases
where a large number of features is used. This is because the sequential sampling procedure would
require the bootstrap-estimation of all the feature-to-feature confidence intervals multiple times until
convergence. In Section 7.1 we address this issue and enhance the efficiency of this procedure by
demonstrating that the desired bound can be derived by computing at each sequential stepk · m
confidence intervals (k is the number of clusters andm the number of features), instead ofm2 that
are computed by the aforementioned approach.

It is evident that the afore approximation bounds are derived for the continuous cluster results,
thus it is natural to inquire as to whether these bounds extend to the discrete cluster solutions. Based
on the favorable empirical performance of Spectral Clustering and Spectralk-means, also reported
in the experimental section of this paper, it can be argued that in practice the spectral clustering
output can serve as a good approximation to the discrete cluster results. From the theoretical point
of view, recent results [Huang et al. 2009] have demonstrated that under certain assumption the
norm-distance between the continuous solutions can serve as an upper bound for the difference in
the discrete cluster results. Thus, there exist empirical and theoretical evidence, that justify the use
continuous bounds for measuring the proximity between two spectral solutions.

7. THE SEQUENTIAL SAMPLING ALGORITHM

7.1. The Algorithm

We will now formally define the sequential sampling process that terminates when the theoretical
analysis, as described in the previous section, guaranteesthat the required approximation levels are
reached. This procedure consists of two components, one accounting for the sequential sampling
process and the other accounting for the efficient computation of the Bootstrap confidence intervals.
In the first component there are several practical issues that need to be resolved. One such issue is
related to the sequential sampling scheduling, i.e. the determination of the initial sample size as well
as the specification of the increase of the sample size at eachsequential step. Several approaches
have been proposed in the relevant literature for addressing these issues [Guha et al. 1998; Banerjee
and Ghosh 2002; Domingos and Hulten 2001; Provost et al. 1999]. These approaches employ the
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popular Hoeffding and Chernoff inequalities for determining the initial (or directly the required)
sample size and also consider sophisticated sampling strategies, such as the geometric increase of
the sample size at each sequential step.

In the context of this work, we do not utilize Hoeffding or Chernoff type bounds for estimating the
initial (or required) sample size since these are worst-case bounds and commonly overestimate the
required sample size. Moreover, with respect to the sampling scheduling mechanism, we consider a
simple sampling procedure that enlarges linearly the sample size until the convergence criteria are
met. In relevant approaches, there exist more sophisticated sampling scheduling mechanisms, such
as geometrical sampling [Provost et al. 1999], however the empirical evidence in the experiments
section suggests that linear sampling suffices to achieve a quick converge to the asymptotic results.

The sequential sampling algorithm is illustrated in Algorithm 1, while the Bootstrap-based accu-
racy estimation process, described in the previous section, is summarized in Algorithm 2. We should
stress here that there exist various Bootstrap procedures for generating the desired confidence inter-
vals[Efron and Tibshirani 1993] but this choice does not affect the general intuitions of the proposed
approach.

With regards to the time complexity of Algorithm 1, each sequential sampling step requires
O(m3+m2 ·n) time, wherem is the number of features andn is the number of objects. Them3 factor
refers to the required eigendecomposition for computing the bounds based on Weyl and Stewart
Theorems, whilem2 · n refers to the computation of the feature similarity matrix and the cost of
constructing the confidence intervals. It is evident that assoon as the number of objects becomes
larger than the number of features, i.e.n > m, the component that dominates the time complexity
is m2 · n. A hidden computational burden that is not apparent in theO-based analysis is related to
the estimation of the bootstrap confidence intervals. This is because it is generally accepted that
1000-2000 bootstrap samples are required for computing reliable confidence intervals[Efron and
Tibshirani 1993]. Thus, the bootstrap process requiresB = 1000− 2000 estimations of the feature
similarity matrix, resulting in a total ofB ·m2 · n such computations. It should be noted that the time
complexity of both Bias Corrected and accelerated (BCa) confidence intervals as well as percentile
intervals (that are consecutively employed in the experiments) is dominated by the multiple com-
putations of the feature similarities. For details and the appropriate formulas for computing these
confidence intervals the interested reader can refer to [Efron and Tibshirani 1993].

It can be observed that a large portion of the computational burden for deriving Stewart’s upper
bound is associated with the Bootstrap confidence intervals. This is due to the fact that bootstrap
confidence intervals have to be computed for all feature-to-feature similarities repeatedly (1000-
2000 times at each sequential sampling step). Thus, it wouldbe desirable if one could avoid this
burden and compute solely an “informative” subset of these confidence intervals. This potential
arises if we observe that one of the simplified bounds derivedin the previous paragraph,4||E21||2

λk−λk+1

employs matrixE21 which is smaller in size matrix thanE. The use of this bound does not attain
any direct advantages sinceE21 is a submatrix ofVTEV and notE, thus it requires the prior com-
putation of the fullE matrix. However, as we will demonstrate subsequently, the norm of E21 can
be approximated using a submatrix ofE, thus requiring in the computation of solely a subset of the
feature-feature similarities.

In order to achieve this goal we will firstly make some observations regarding matricesE and
VTEV. In the context of our workV contains as columns the eigenvectors of the appropriate feature-
similarity matrix, thus the matricesE andVT EV are similar, in the linear algebra sense, i.e. they
have exactly the same eigenvalues and thus also the same Frobenius and spectral norms. Moreover,
Gerschgorin’s theorem [Stewart and Sun 1990] (commonly referred to as Gerschgorin’s disks) as-
serts that each eigenvalueλ of E andVT EV is bounded by the sum of the absolute value of the
elements of a certain line (or column), i.e.|λ| ≤ ∑i |ai j |. Based on these three observations, i.e.
eigenvalue equality, Frobenius norm equality (which also implies the equality of the element-wise
squared sums), and also Gerschgorin’s theorem, we can assert that the submatrices ofE andVT EV

ACM Journal Name, Vol. V, No. N, Article A, Publication date:January YYYY.



A:13

will have a similar structure andVTEV will not tend to overconcentrate the values ofE in certain
submatrices.

Based on the above observations, we consider the use of an appropriate submatrix of the original
E matrix and not of the transformedVT EV for estimating the desired bound. This would enhance
the efficiency of the bootstrap process, since we would avoid computing all them2 feature-similarity
confidence intervals, and concentrate solely onm× (k− 1) intervals. One issue that is immediately
raised is concerned with the choice of the appropriateE21 submatrix (of the originalE matrix). Since
each row and column ofE corresponds to a specific feature, this question is essentially related to the
selection of the appropriate features that will be utilizedin the computation ofE21. In the context of
this work we employ the (k − 1) features that exhibit the highest variance. The justification of this
choice is based on the relationship between the sampling variance of a covariance estimate and the
variance of the individual features, that asserts that features with high variance are expected to have
larger confidence intervals. Thus, selecting thek − 1 features with the highest variance follows the
general intuition of selecting a worst-case submatrix of the originalE matrix.

The proposed efficient computation of Stewart’s bound is illustrated in Algorithm 3. It should
be noted that Algorithm 3 does not compute the fullE matrix, thus it cannot derive Weyl’s upper
bound on the objective function. Albeit the theoretical justifications of the efficient Bootstrap-based
computation of the cluster approximation bounds, it is easyto construct counter examples where the
appropriate submatrix of the originalE matrix will underestimate the norm of the respective subma-
trix of VTEV. This illustrates the need for extensive experimental evaluation. The empirical results,
presented in Section 9 demonstrate that the proposed efficient approach (illustrated in Algorithm 3)
can provide us with reliable estimates of the convergence tothe asymptotic cluster results and also
enhance substantially the efficiency of the sequential sampling framework.

ALGORITHM 1: Sequential Sampling Spectralk-Means

1: Input:
2: Training dataD generated by unknown probability distribution.
3: Required Approximation Level for Objective FunctionThresOb j.
4: Required Approximation Level for Cluster ResultsThresClust.
5: Cardinality of sequential sampling stepc.
6: Algorithm:
7: Generate a random sequence of sub-samples{d1,d2, ...,dn}, with di ⊆ D and #di = c
8: step= 0;dataset= ∅
9: repeat

10: step← step+ 1
11: dataset← dataset∪ dstep

12: converged=(Efficient)BootCheck(dataset,ThresObj,ThresClust)
13: until ( Coverged==True OR step==n )

7.2. Factors that affect Convergence

Since the sequential sampling process terminates when the approximation requirements are met,
a question that naturally arises is related to the conditions under which termination is achievable
(i.e. the algorithm does converge as the sample size grows).In this section we demonstrate that
the algorithm converges both with respect to the objective function, as well as to the cluster results
under quite general assumptions. It is also demonstrated that the convergence of cluster results is
harder and depends on the existence of a cluster structure inthe dataset under study. The existence
of a clear cluster structure will result in fast convergencefor the algorithm, while the absence of a
cluster structure will result in slow convergence or even divergence.
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ALGORITHM 2: BootCheck
1: Input:
2: Training data sampledi .
3: Threshold for Objective FunctionThresOb j.
4: Threshold for Cluster ResultsThresClust.
5: Algorithm:
6: Compute feature-similarity matrixS.
7: Compute Bootstrap confidence intervals for elements ofS.
8: Compute error-perturbation matrixE.
9: Compute upper bound on the Objective Function based on Weyl’s theorem.

10: Compute upper bound on Cluster Results based on Stewart’s theorem.
11: if Thresholds are achievedthen
12: Return True.
13: else
14: Return False.
15: end if

ALGORITHM 3: EfficientBootCheck
1: Input:
2: Training data sampledi .
3: Threshold for Cluster ResultsThresClust.
4: Algorithm:
5: Compute feature-similarity matrixS.
6: Compute thek− 1 features with highest variance.
7: Compute Bootstrap confidence intervals for thek− 1 features with allm features.
8: Compute error-perturbation matrixE21.
9: Compute upper bound on Cluster Results based on Stewart’s theorem.

10: if Thresholds are achievedthen
11: Return True.
12: else
13: Return False.
14: end if

7.2.1. Convergence of Objective Function. Recall that the upper bound that quantifies the diver-
gence of the sample-based Objective Function is based on error Matrix E, as derived by the lengths
of the feature-similarity confidence intervals. LargeE value entries signify highly inaccurate sim-
ilarity estimations, while small values indicate that the similarities have almost converged to their
expectations. It is evident that if the feature-similarities indeed converge as the sample size grows,
the lengths of the respective confidence intervals will become smaller at each sequential step even-
tually converging to zero. This means that the eigenvalues of E matrix will also be decreased in
absolute value, until they also converge to zero. We can summarize these observations in the fol-
lowing corollary:

Corollary 7.1. Algorithm 1 will achieve the input requirements related to the Objective Func-
tion with a finite data sample if the theoretical assumptionsof Bootstrapping hold and the elements
of the appropriate Feature-Similarity Matrix converge asymptotically to their “true values”.

Recall that in the case of optimization problem 3 we considerthe matrix1
nXTX whereX is theob-

ject× feature, and in the case of the optimization problem 4 the feature covariance matrix. Since the
elements of both matrices are averaged byn, i.e. the number of objects, the convergence to the “true
feature-similarities” is guaranteed under mild assumptions by the Law of Large Numbers. Similar
considerations have to be taken into account forTermS imin the case of normalized clustering. It
should be noted that for complexW andTermS imdefinitions we can use the sequential sampling
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Fig. 1: Relevant Eigengap vs. Cluster centroid Distance

process to determine whether the Feature-similarities converge to their “true values”. An indicator
for divergence would be that the values of the feature-similarities change as the sample size grows,
while the sizes of the confidence intervals get smaller.

7.2.2. Convergence of Cluster Results. In an analogous manner we can state that the convergence
of the eigenspaces (i.e. cluster results) is achieved when the elements of the feature-similarity matrix
converge to their expectations and therelevant eigengapconverges to a non-zero number. We use
the termrelevant eigengapto refer to the minimum difference between the eigenvalues employed
in the spectral solution with the rest. Thus therelevant eigengapin the case of Spectralk-Means,
as derived by optimization problem 3, is the difference between thek and thek + 1 eigenvalues;
while in Spectralk-Means, as derived by optimization problem 4, therelevant eigengapis the dif-
ference between thek − 1 and thek eigenvalue (eigenvalues shorted in decreasing order). In order
to understand why we need the relevant eigengap to converge to a positive number, one should ob-
serve that in the prerequisites of Stewart’s theorem, the relevant eigengap is required to be strictly
larger than some expression of the norm of the error-perturbation matrix. Thus, if the eigengap is 0
then the prerequisites of Stewart’s theorem will not be satisfied for any error-perturbation matrixE.
Moreover, when the eigengap is small, larger samples would be required such that the confidence
intervals become small enough to satisfy the prerequisitesof Stewart’s theorem.

The size of therelevant eigengapsalso provides us with a measure of the cluster structure exhib-
ited in the dataset. More precisely, if the dataset has denseand well separated clusters, then small
perturbations will not affect the cluster structure. On the other hand, a Spectral Clustering solution
with a largerelevant eigengap, will also not be severely affected from small perturbations of the
input (this is a direct derivation of Stewart’s theorem). Thus, if the Spectral Clustering algorithm
indeed succeeds in identifying the correct cluster structure, then the size of the eigengaps can be
employed as a heuristic for measuring the cluster structureexhibited in the dataset.

In order to demonstrate this behavior empirically we have considered a two-cluster scenario
where the data is generated by a mixture of two Gaussians withprior 1/2 each. It is evident that in
this context the cluster structure depends on the distance between the two cluster centers. In Figure
1 we report therelevant eigengapof Spectralk-Means as the distance between the two clusters be-
comes larger. As expected, the enlargement of the cluster distances increases the relevant eigengap.
We can summarize the discussion of this subsection in the following corollary:

Corollary 7.2. Algorithm 1 will achieve the input requirements related to the cluster results
with a finite data sample if the theoretical assumptions of Bootstrapping hold, the elements of the
appropriate Feature-Similarity Matrix converge their “true values” and also if the relevant eigen-
gap does not converge to 0.

ACM Journal Name, Vol. V, No. N, Article A, Publication date:January YYYY.



A:16

−5 0 5 10 15 20
−10

−5

0

5

10
Inter Cluster Distance = 6

−5 0 5 10 15 20
−4

−2

0

2

4
Inter Cluster Distance =0

−5 0 5 10 15 20

−6

−4

−2

0

2

4

6

Inter Cluster Distance = 3

−5 0 5 10 15 20
−10

−5

0

5

10
Inter Cluster Distance = 9

−5 0 5 10 15 20
−10

−5

0

5

10
Inter Cluster Distance = 12

−5 0 5 10 15 20
−10

−5

0

5

10
Inter Cluster Distance = 16

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

Distance between Separated Clusters

R
e

le
v
a

n
t 
E

ig
e

n
g

a
p

s

Behavior of Eigengaps

 

 

Eigengap for k=2
Eigengap for k=3

Fig. 2: Relevant Eigengap vs. Separated Cluster Distance

7.3. Number of Clusters and Sample Size/Bandwidth Requirem ents

In Stewart’s theorem we can observe that a requirement for deriving a stable solution is that the
relevant eigengap is larger than some expression of the normof the E perturbation matrix. As we
have analyzed earlier, the norm ofE will be reduced as sample size becomes larger because of the
increase in the accuracy of the feature-similarity estimates. Thus, one can consider selecting the
appropriatek that maximizes the relevant eigengap, since a large relevant eigengap will require a
smaller sample to converge to the asymptotic infinite-data solution. In the data mining literature
the heuristic of selecting the number of clusters that maximizes the relevant eigengap has been
employed by several authors (see [von Luxburg 2007] and references therein). These approaches
are commonly justified based on perturbation theory or graphtheoretic arguments. To the extend of
our knowledge sample size arguments in the context of Spectral k-means, have not been employed
in the discussion of this heuristic.

Based on the analysis of the sample size requirements, we canconsider that the goal should not
be to identify of the “correct” number of clusters, but rather to select among a set of plausible
clusterings the one that is easier to model. In order to illustrate the notion of multiple plausible
clusterings and their relation to the relevant eigengap, weprovide the following example for Spectral
k-means in Figure 2. In this example, we have generated three 3-dimensional gaussian clusters each
containing 1000 objects, projected in 2-dimensional spacefor the needs of visualization. In the
left part of Figure 2 we report the position change of the three clusters that shifts from an initially
observable 2 cluster structure in the upper-left image (2 cluster centers initially overlap) to finally
reach a clear 3 cluster structure in the bottom-right image.In the right side of Figure 2 we report
the evolution of the relevant eigengap fork = 2 andk = 3. It can be observed that in the cases
where the 2 clusters are very close to each other, the eigengap for k = 2 dominates. This illustrates
that a smaller sample size is required for constructing a reliable 2-cluster model for the data. This
clustering solution would group together the two clusters that are situated closely together. On the
other hand, as the two clusters become well-separated the relevant eigengap fork = 3 dominates
and a smaller sample size is required for modeling the three-cluster structure.

An interesting observation in Figure 2 is that the relevant eigengap fork = 2 not only becomes at
some point smaller than the relevant eigengap fork = 3 but reaches almost a zero value. This can
be justified if we observe that in the bottom right clustering, the cluster centers lie on the vertices
of an equilateral triangle. Thus, settingk = 2 would force the Spectralk-means to group two of the
three clusters together. However, due to the symmetrical positioning of the clusters, this grouping
would be highly unstable as there does not exist a pair of clusters that are closer together and
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different samples will produce different groupings due to the small differences in each sample. Since
a fully symmetrical dataset cannot be constructed (and is also highly unlikely to exist in practical
applications), the 2-cluster solution would eventually converge to the asymptotic solution, but it
would require a very large data sample.

8. RELATED WORK

We will now summarize the research work that is relevant to the proposed framework. The related
work section is divided in two subsections: The first subsection presents the recent developments
on the characterization of the asymptotic behavior of Spectral Clustering and also also summarizes
the relevant sequential sampling approaches, while the second presents the relevant distributed PCA
andk-Means approaches. Although the latter are not conceptually related to the proposed framework
their summarization is required, since we compare against them in the experimental section.

8.1. Sequential Sampling and Asymptotic Behavior

Although, Spectral Clustering algorithms have received significant attention from data mining re-
searchers, only recently has their asymptotic behavior been characterized [von Luxburg et al. 2008].
In the work of von Luxburg et al. the infinite-limit data behavior of Normalized and Unormalized
Spectral Clustering is studied and the convergence requirements are analyzed. Interestingly it is de-
rived that Normalized Spectral Clustering converges undermore general conditions than unormal-
ized spectral clustering, thus providing a theoretically justified preference for Normalized Spectral
Clustering. To the extend of our knowledge there have been noattempts to define sequential sam-
pling algorithms that aim in achieving a pre-defined approximation to the asymptotic behavior of
Spectralk-Means. Such sequential sampling algorithms have been proposed for several other data
mining paradigms [Domingos and Hulten 2001; Provost et al. 1999; Banerjee and Ghosh 2002].

Although not directly relevant, there exist several efficient sampling strategies for Lloyd’sk-
means in various application contexts (such as [Ailon et al.2009; Datta et al. 2009; Zhou et al.
2007; Bradley et al. 1998]), that provide rigorous approximation guarantees to the clustering objec-
tive. A key difference of the proposed approach is that we take advantage of the “built-in” feature
of Spectralk-means (and Spectral Clustering) that can provide, throughthe appropriate eigengap,
an estimation of the relevant sample size requirements for all possible values ofk. Naturally, we
could consider patching Lloyd’sk-means with a preprocessing step that selects (based on a certain
objective) the appropriate number of clusters. However, this would impose an extra computational
cost and we are not aware of any such approach that explicitlyaims in specifying the number of
clusters that can be reliably modeled with a small sample size. Moreover, we are not aware of any
such approach that can quantitatively assess the relevant sample size requirements for allk values.

We should also clarify that there exists a vast bibliographyon sampling and N¨ystrom approx-
imation methods (such as [Fowlkes et al. 2004; Drineas et al.1999]) that aim in approximating
the a fixed size matrix and not the asymptotic infinite-data results. However, these approaches are
conceptually different than the problem we address in this work.

8.2. Distributed k-Means and PCA

As we have stated in the introductory section, to the extend of our knowledge there do not exist any
relevant Distributed Spectralk-means and Distributed Spectral Clustering algorithms. This high-
lights that a contribution of this work can be considered as the “distributalization” of an algorithm
that has not been introduced in this application context. Itshould be noted though that with respect
the popular Lloyd’sk-means algorithm and other clustering algorithms there exists a large body
of literature for a diverse range of distributed networks [Datta et al. 2009; Bandyopadhyay et al.
2006; Hammouda and Kamel 2007; Younis and Fahmy 2004; Zhang et al. 2008; Bandyopadhyay
and Coyle 2003; Datta et al. 2006; Januzaj et al. 2004; Kargupta et al. 2000; Klusch et al. 2003;
Kriegel et al. 2005].

As compared to these approaches, a key difference is that our framework is able to derive the
relative bandwidth requirements for all possible values ofk. This allows for the selection of the ap-
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propriatek-value that requires the minimal bandwidth. Naturally, onecould consider employing as a
preprocessing step the distributed selection of the appropriate number of clusters [Tasoulis and Vra-
hatis 2004]. However, the use of such algorithms would require the consumption of bandwidth and
moreover, these are not specifically tailored for identifying the number of clusters that minimizes
the required bandwidth consumption of a clustering algorithm.

In order to demonstrate the appropriateness of sampling in the distributed Clustering framework,
we will compare our approach against certain Distributed Lloyd’s typek-Means algorithms. These
algorithms consider the task of computing the cluster structure of a dataset that is distributed among
nodes in a network. That is, each node contains a fraction of the dataset and the goal is to approxi-
mate the full-data solution, while minimizing the amount ofdata that needs to be transmitted across
the network. Since, to the extend of our knowledge, no Distributed Spectral Clustering algorithms
have been proposed, we will compare against Lloyd’s type Distributedk-Means approaches.

A prominent approach in this context was proposed by [Datta et al. 2006] (P2PKMeans).
P2PKMeans is an adaptation of the classick-Means algorithm especially designed for application in
peer-to-peer networks. Each network node appliesk-Means iteratively on its dataset and combines
the resulting centroids with the centroids of other peers. The algorithm halts when all nodes have
reached a stable state (i.e. the computed centroids in iteration i are the same as those ofi − 1 or
exhibit insignificant distortion).

Since we employ PCA to derive the continuousk-Means solution we will also refer to distributed
PCA approaches. The intuition behind most distributed PCA approaches is based on the aggrega-
tion of a fragmented covariance matrix. A prominent distributed PCA approach is Collective PCA
(CPCA [Kargupta et al. 2000]). In CPCA, each network node forwards a sample of its projected
dataset together with its set of local eigenvectors to an aggregator node. Afterwards the aggregator
combines the projected data from all sites and calculates the global eigenvectors. CPCA was also
employed as an integral step of the distributed clustering methodology, described in [Kargupta et al.
2000]. CPCA requires O((c f)2+

∑nodes
i=1 diki + skn) network load (c is the overall sample size,di the

sample size of locationi, ki the number of principal components retained in sitei and f =
∑nodes

i=1 ki
the dimensionality of the aggregated array).

One significant drawback of CPCA is that it is only applicablein vertically distributed datasets.
Global PCA (GPCA [Qi et al. 2004]) addresses this issue by providing a simple covariance ag-
gregation scheme for the horizontal case. GPCA assumes centered data (i.e. mean=0), and derives
that if u is an eigenvector of matrix (m− 1)cov(X) + (p − 1)cov(Y), thenu is also an eigenvector
of (m + p − 1)cov([XTYT ]T) (herecov denotes the covariance matrix,X andY are the data ma-
trices contained in each peer andm and p the respective cardinalities). Based on this observation,
each pair of peers can combine their eignevectors and define their locally global set of eigenvectors.
By iteratively applying this procedure a network wide global set of eigenvectors can be defined and
communicated to all nodes. GPCA requires O((sn)2+skn) network resources, wheres is the number
of nodes,k the number of retained eigenvectors andn the number of dimensions.

It is evident that the aforementioned distributed PCA andk-Means approaches aim in approxi-
mating the full-data solution that is contained in a distributed network. Thus, their scalability de-
pends crucially on the size of the network as well as the size of the data collection. Moreover, there
are issues related to the required model updates for dynamicdata. In the experimental section we
will demonstrate that the proposed sampling-based approach can obtain high quality solutions with
significantly lower bandwidth consumption. Since the proposed framework relies on Bootstrap con-
fidence intervals we should also note that there exist several algorithms for accumulating uniform
data samples in distributed networks with irregular degrees of connectivity and different data sizes
(such as [Arai et al. 2007]).

9. EXPERIMENTS

In order to validate and assess the quality of our approach wehave conducted a series of experiments
on a set of large, real life and artificial datasets. The aim ofthis process is threefold:
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(1) Demonstrate the convergent behavior and the efficiency of the Sequential Sampling Framework.
(2) Consider automated tuning strategies of input parameters.
(3) Show the virtues of sampling in a distributed setup, where restrictions are imposed on the

amount of data that can be communicated.

In order to demonstrate the convergence behavior of the sequential sampling framework as the
sample size grows, we used benchmark datasets that enjoy a clustered structure. As we have ana-
lyzed theoretically in section 7.2, if the datasets are clearly clustered, it is expected that the algorithm
will converge rapidly to the required approximation levels. This behavior is indeed demonstrated in
the experimental results of Section 9.3. In Section 9.3 we also report the execution time of our
algorithm that empirically certifies the efficiency claims made earlier in this paper.

In order to illustrate the need for automatically tuning theinput parameters, recall that the ap-
proximation requirement for the cluster results is provided by means of an upper bound on the
difference between the respective projection operators. It is evident that this measure is related to
the continuous results and does not provide us with a direct evaluation of the approximation to the
asymptotic discrete cluster assignments. Thus, in subsection 9.4, we empirically assess how small
this upper bound should be such that the clustering performance approximates sufficiently the dis-
crete asymptotic cluster results. Interestingly, based onthe derived parameter tuning process, it is
demonstrated that datasets with millions of instances require solely a few thousand for converging
to the asymptotic cluster results. This signifies that the consideration of larger data samples does
not further improve the clustering performance. It can be observed that with the automatic tuning of
the input parameter (as derived by subsection 9.4), our approach can be considered as a stand-alone
algorithm that automatically determines the required sample size for approximating the asymptotic
cluster results.

Based on the observation that our algorithm converges with solely a small fraction of the avail-
able data, we consider in subsection 9.5 the problem of Distributed Clustering. In this context it
is commonly assumed that a large dataset is distributed among nodes in a network and the task is
to derive a global data model (such as clustering) of the whole dataset. The naive approach would
be to collect all the data centrally (to a network node), however this is usually not possible due to
bandwidth limitations, that allow only a small fraction of the available data to be communicated.
The imposed limitations make apparent the relevance of our approach to Distributed Clustering
problems. As we have analyzed earlier in this paper, a distinct feature of the proposed framework as
compared to the relevant distributed clustering approaches, is that is is able to estimate the relative
sample size requirements for all possible values ofk. However, in the experiments we consider the
correct number of clusters as input and compare our framework against relevant approaches that
attempt to approximate the full-datak-means model. The experiments demonstrate the superiority
of our approach with respect to bandwidth consumption.

9.1. Datasets and Clustering Quality Measures

We have experimented with four real world and artificial datasets. Three of them were acquired from
the UCI Machine Learning Repository5 and one was acquired from the Large Scale Challenge that
took place in ICML 20086. All of them contained a large number of instances, a featurethat enabled
us to highlight both the theoretic and practical merits of the proposed approach. The first dataset is
the MAGIC Gamma Telescope Data Set that contains the simulated readings of a Gamma Telescope.
The dataset contains two classes, one corresponding to normal and the other to noise readings.
The second and third dataset were generated by the Waveform Database Generator. These datasets
contain three classes corresponding to three types of waves. Based on the Waveform generator
we have produced two noiseless dataset of 10000 and 1000000 instances respectively. The fourth

5http://archive.ics.uci.edu/ml/
6http://largescale.first.fraunhofer.de/about/
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Table I: Datasets used in the evaluation

Dataset Objects Features Classes Description
Waveform 10000 21 3 Artificial dataset

Waveform1M 1000000 21 3 Artificial dataset
Magic 19020 10 2 Gamma telescope readings
delta 500000 500 2 Large Scale Challenge ICML’08

dataset is the delta dataset that was employed in the Large Scale Challenge. The datasets along with
a brief description are summarized in Table I.

The assessment ofk-means clustering results can be performed using various quality measures
(such as F-measure, Mutual Information etc.). Although certain measures are generally regarded by
practitioners as more appropriate, the issue of adapting the right measures fork-means clustering is
still considered an interesting research topic, with a recent relevant publication appearing on ACM
KDD 2009 [Wu et al. 2009]. In their conclusions, the authors of [Wu et al. 2009] identify the “best”
measures that can successfully evaluate the clustering results even under “extreme” situations (such
as imbalanced cluster sizes, lack of knowledge of correct number of clusters etc.). In our experi-
mental setup all the datasets (with the exception of MAGIC dataset) have balanced cluster sizes and
the correct number of clusters is provided as input. Based onthis setup, we have employed the mea-
sures: Purity (P), Normalized Mutual Information (NMI) and F-measure (Fm) that are commonly
used by researchers and practitioners for evaluating thek-means clustering performance.

Purity considers the mapping of a cluster(Ci, i = 1...k) to a class (S j , i = 1...k) based on the
highest observed overlap. The quality of this assignment ismeasured by counting the number of
correctly classified instances and dividing by the total number of instances (N). Normalized Mutual
Information on the other hand attempts to quantify the information gain by the assignment of an
instance belonging to classSi to clusterC j wherei, j = 1...k. Finally, F-measure is the weighted
harmonic mean of precision and recall. Table??provides an overview of these metrics. In the case
of NMI, I (C,S) =

∑k
i, j=1

|Ci∩S j |
N log

N|Ci∩S j |
|Ci ||S j | , H(C) = −∑k

i=1
|Ci |
N log |Ci |

N andH(S) = −∑k
i=1
|Si |
N log |Si |

N .
For F-measure,

Recall= TruePositives
TruePositives+FalseNegativesandPrecision= TruePrositives

TruePositives+FalsePositives.

Table II: Clustering Quality Evaluation Metrics

Abbreviation Name Definition
P Purity 1

N

∑k
i, j=1 max(|Ci ∩ S j |)

NMI Normalized Mutual Information 2I (C,S)
H(C)H(S)

Fm F-measure 2RecallPrecision
Recall+Precision

Before we move on to analyze the empirical results of the proposed sequential sampling frame-
work, we present some experiments that compare the performance of Spectralk-means (SKM),
Spectral Clustering (SC) and Lloyd’sk-means (KM). In these experimental results all three algo-
rithms have almost identical performance on all four datasets we have employed.

9.2. Sampling Approximation Quality Measures

In order to assess the quality of the approximation of the sequential sampling process, we have
defined a set of evaluation metrics. These measures are briefly outlined in Table IV.

The first quality measure we employ is theStability Factor(SF). SF is based on the size of the
relevant eigengapas well as the norm of the error-perturbation matrixE. Formally, concerning
Spectralk-Means as derived by optimization problem 4,SF is defined asλk−1−λk

4·||E||2 , whereλk−1 − λk
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Table III: Comparison of Loyd’sk-Means (KM) with Spectral Cluster-
ing (SC) and Spectralk-Means (SKM).

(a) Comparison of KM, SC and SKM with
Magic

KM SC SKM
Fm 0.58 0.51 0.56
Pur 0.65 0.60 0.63
NMI 0.012 0.015 0.014

(b) Comparison of KM, SC and SKM
with Waveform

KM SC SKM
Fm 0.51 0.51 0.50
Pur 0.39 0.39 0.39
NMI 0.37 0.37 0.37

(c) Comparison of KM, SC and SKM
with Waveform 1M

KM SC SKM
Fm 0.50 0.50 0.50
Pur 0.39 0.39 0.39
NMI 0.37 0.37 0.37

(d) Comparison of KM, SC and SKM with
Delta

KM DPCA/SKM
Fm 0.50 0.50
Pur 0.50 0.50
NMI 4 ∗ 10−5 5 ∗ 10−5

Table IV: Evaluations Metrics

Abbreviation Name Definition
S Fm Mean Stability Factor S Fm = average[( relevant eigengap

4·||E||2 )i ]

ES Fm Mean Efficient Stability Factor ES Fm = average[( relevant eigengap
4·||E21||2 )i ]

Fub
m Objective Function’s Mean Upper Bound Fub

m = average[(#eigs· λE
1 )i ]

∆POm Projection Operators’ Mean Difference ∆POm = average[||POi − POf d||2]

is the relevant eigengap andE is the respective error-perturbation matrix. In the context of our
experiments, in order to deriveS Fm for a fixed sample sizem, we draw 10 random sub-samples of
sizem and compute the averageStability factor. Formally,S Fm is defined as:

S Fm = average[(
λk−1 − λk

4 · ||E||2
)i ]

where (λk−1−λk
4·||E||2 )i denotes theS Fas derived in theith sample. In order to understand the semantics of

SFone should observe that the prerequisites of Stewart’s theorem hold whenλk−1−λk
4·||E||2 > 1 [Mavroei-

dis and Vazirgiannis 2007] and moreover, as the fraction becomes larger, the upper bound on the
sample eigenspace becomes tighter. It should also be noted that this quantity has been employed by
[Mavroeidis and Bingham 2008; 2010] to study the stability of eigenspaces.

In the experiments we have also employed the efficient version of the stability factor that is
described in Section 7.1. Recall that the formula for computing the efficient stability factor is:

ES Fm = average[(
relevant eigengap

4 · ||E21||2
)i ]

whereE21 does not contain all them2 confidence interval lengths, but solely a subset of them thus
enhancing the efficiency of the bootstrap-process.

Another metric, directly derived by Weyl’s theorem, is the objective function’s upper bound. The
latter is defined asFub = #eigs· (λE

1 ) where #eigs is the number of eigenvectors employed in the
cluster solution and (λE

1 ) is the largest eigenvalue of the error-perturbation matrix E. Fub
m is defined

for a fixed sample sizem and is also calculated as the average of multiple runs.

Fub
m = average[#eigs· (λE

1 )i ]
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The difference of projection operators∆PO computes the difference between the sample-based
projection operator and the full-data solution. It is defined as∆PO= ||POs−POf d||2 wherePs is the
projection operator of the sample andPf d is the projection operator of the full-data solution. The
projection operator is defined by the eigenvectors employedin the cluster solution, i.e. in Spectral
k-Means, based on equation 3, the projection operator is derived byVVT , where the columns ofV
contain thek dominant eigenvectors of the respective feature similarity matrix. This metric aims
in demonstrating the convergence of the projection operators to the full-data solution. Although,
we have stated that the aim of this work is to guarantee converge to the asymptotic solution, the
convergence to the full-data solution can be achieved as a by-product when convergence takes place
for a sub-sample of the original dataset.

In order to derive the mean difference of projection operators∆POm for a fixed sample sizem,
we draw 10 random sub-samples of sizem, and compute for each the corresponding∆PO value.

∆POm = average[||POi − POf d||2]

wherePi is the projection operator in theith sample of sizem andPf d is the projection operator of
the full-data solution.

9.3. Convergent Behavior and Efficiency

In order to study the convergence behavior of the proposed algorithm we present the evolution of
the upper bounds on the objective function and the clustering results, i.e.S Fm ES Fm andFub

m . In
Figure 3 we illustrate the evolution ofS Fm of Spectralk-means with respect to the data sample.
Sample size steps were configured to depict the rate of convergence of the clustering algorithm in
each dataset. Consequently in the case of the Waveform datasets the sampling step was set to 200
instances and in the case of Magic 100 instances. With regards toS Fm we employ solely the three
UCI datasets that possess a small number of features.

In Figure 7 we report the evolution of the efficient stability factorES Fm of Spectralk-means with
respect to the data sample for all four datasets. It can be observed that the behavior ofES Fm is
similar to S Fm and the convergence rates are very similar. The efficiency enhancements ofES Fm
are consecutively illustrated in Figure 8, where we report the total time that is required for a single
step of the sequential sampling process. The time requirements are reported for an Intel Core 2 Duo,
2Ghz, 4GB RAM running Ubuntu 9.10.

In the Spectralk-Means experiments we relied on optimization problem 4. Moreover the appropri-
ate error perturbation matricesE were derived by Bias Corrected and accelerated (BCa) confidence
intervals [Efron and Tibshirani 1993], based on 1000 bootstrap samples. In Spectral Clustering the
confidence intervals were derived by the percentile method using also 1000 bootstrap samples. Fi-
nally the coverage in all experiments was set to.95.

In Figure 4 we depict the evolution ofFub
m of Spectralk-means with respect to the data sample

size. We can observe thatFub
m is influenced by the evolution ofS Fm. More precisely, we notice

the minimization of the objective function’s mean upper bound when the stability factor value is
maximized. In parallel, fluctuations, due to sampling variance, in the stability factor evolution are
also observable in the behavior ofFub

m . The same conclusions are drawn by observing the graphs
derived by the application of our sequential sampling framework on Normalized Spectral Clustering.
Figures 5,6 depict the corresponding results.

9.4. Automated Tuning of input parameters

Recall that the approximation requirement for the cluster results is provided by means of an up-
per bound for the difference between the respective projection operators. Although it has been
demonstrated that under certain assumption a bound on the continuous results can be meaningful
for bounding the difference in the discrete cluster assignments [Huang et al. 2009], in this section
we will seek to verify this claim empirically. Moreover, we will explore how tight the continuous
bound should be such that the asymptotic discrete cluster structure is sufficiently approximated. In
all experiments we have observed that if we require thatS Fm = 1, then the resulting cluster quality
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does not further improve when larger samples are considered. Intuitively, since the Stability Factor
depends on both the coherence of cluster structure (as encoded by the relevant eigengap), as well as
the approximation accuracy of the sample feature-similarities, we can derive thatS Fm = 1 achieves
the correct balance between the accuracy of the feature similarities and the cluster structure. A co-
herent cluster structure (large eigengap) requires less accurate feature-similarity estimations while
in the absence of a clear cluster structure highly accurate feature-similarities must be derived. With
respect toES Fm, experiments illustrate that a value ofES Fm = 2 is required. In order observe
this phenomenon we report in Figures 9, 10 the∆POm measures for all four datasets for Spectral
k-means and for the Magic and Waveform for Spectral Clustering.

The evolution of∆POm and its relation toS Fm is depicted in all Figures, however it is more
evident in the 9(c) when evaluated together with 3(c). The minimization rate of∆POm is decreased
as soon asS Fm exceeds 1 (when sample size reaches 2000) and continues to decrease at a constant
rate as sample continues to grows. The same analysis holds for ES Fm = 2.

Additionally we measured the evolution of clustering quality throughout the sampling procedure.
In each sampling step we used the derived projection operators and acquired the projection of the
dataset on the corresponding space. Afterwards we discretized the solution using Lloyd’sk-Means.
Figure 11 presents the results for spectralk-means. The derived box-and-whisker plots highlight
the variance in the clustering results. The red line highlights the maximum value exhibited in each
sample iteration (the largest exhibited cluster quality value in the 10 iterations of sample sizem),
the green line the minimum value while the blue line the mean value. In the cases where we simply
report the average values, the variance was negligible fromthe initial sample. In certain figures we
can observe that initially the variance of clustering results is high and is decreased with the addition
of more data samples, untilS Fm ≥ 1 (or ES Fm ≥ 2) is satisfied. The latter is clearly demonstrated
in the case of the Magic dataset. In all Figures it is depictedthatS Fm = 1 can be considered as a
sufficient condition for the convergence of the clustering quality. In the Waveform case it is shown
that this is not a necessary condition since convergence is achieved even beforeS Fm = 1. The same
experiments are also reported for Spectral Clustering in Figure 12. Again in this case we notice the
same behavior that verify the validity of automatically tuning S Fm = 1 (or ES Fm = 2) as an input
approximation requirement.

It can be observed that the quality of the converged cluster output for the delta dataset in terms of
NMI is very low. This can be explained by the fact that even when the whole dataset is employed for
deriving a cluster solution, the performance of all the algorithms considered in this paper remains
very low (as illustrated in Table III). Thus, the low clusterquality can be attributed to the poor
performance ofk-means on the whole dataset. This can be verified if one inspects Figure 9(d). This
Figure illustrates that the projection operator employed by the sequential sampling process quickly
becomes very similar to the projection operator of the full data matrix. Thus, the low cluster quality
can be attributed to the poor performance ofk-means on the whole dataset.

9.5. Distributed Clustering

Based on the observation that our algorithm converges with solely a small fraction of the avail-
able data, we consider the problem of Distributed Clustering. In order to execute these experi-
ments we assumed that a large dataset is distributed among the nodes of a peer-to-peer network
and the task was to derive the global clustering model without communicating the whole dataset.
Both Sequential Sampling Spectralk-Means (S3KM) and Sequential Sampling Distributed Spectral
Clustering (S3DC) methods have been experimentally validated against distributed clustering and
distributed PCA approaches that aim in approximating the full-data solutions. The methods (S3KM)
and (S3DC) exploit the automated tuning methodology analyzed in the previous section and termi-
nate the network sampling process as soon as they reachS Fm = 1. Moreover, in order to validate the
utility the efficient stability factorES Fm we have also experimented with terminating the sampling
procedure as soon asES Fm = 2. When theES Fm termination criterion is used we will denote our
algorithms asS3

F KM andS3
FDC.
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(a) Clustering quality and network requirements for Magic.Network of 500 peers

KM SC P2P KM S3KM S3
FKM S3DC S3

F DC DPCA/SKM
Fm 0.58 0.51 0.59 0.60 0.60 0.55 0.54 0.56
Pur 0.65 0.60 0.62 0.63 0.63 0.60 0.53 0.63
NMI 0.012 0.015 0.015 0.015 0.015 0.015 0.014 0.014
NLMB N/A N/A 1.71 0.5 0.35 1.48 1.00s 0.42

(b) Clustering quality and network requirements for Waveform. Network of 500 peers

KM SC P2P KM S3KM S3
F KM S3DC S3

FDC DPCA/SKM
Fm 0.51 0.51 0.54 0.51 0.51 0.51 0.51 0.50
Pur 0.39 0.39 0.60 0.39 0.39 0.40 0.40 0.39
NMI 0.37 0.37 0.37 0.37 0.37 0.38 0.38 0.37
NLMB N/A N/A 3.61 0.09 0.30 1.50s 0.34 1.84

(c) Clustering quality and network requirements for Waveform 1M. Network of 5000 peers

KM SC P2P KM S3KM S3
F KM S3DC S3

FDC DPCA/SKM
Fm 0.50 0.50 0.53 0.51 0.51 0.51 0.50 0.50
Pur 0.39 0.39 0.60 0.40 0.40 0.41 0.39 0.39
NMI 0.37 0.37 0.37 0.37 0.37 0.38 0.37 0.37
NLMB N/A N/A 508.7 0.09 1.81 3.35s 1.76 20.14

(d) Clustering quality and network requirements for Delta.Network of 5000
peers

KM P2P KM S3
FKM DPCA/SKM

Fm 0.50 0.51 0.50 0.50
Pur 0.50 0.50 0.50 0.50
NMI 4 ∗ 10−5 3.5 ∗ 10−5 1.6 ∗ 10−5 5 ∗ 10−5

NLMB N/A 7.71∗ 103 38 9.55∗ 103

Table V: Clustering quality and network requirements as obtained from
the experiments.S3KM corresponds to Sequential Sampling Spectral
k-Means whileS3DC to Sequential Sampling Spectral k-Means. Sub-
scriptF identifies their fast vast version. Superscripts signifies that al-
though the experiment was not concluded (S F < 1 or ES F < 2) the
behavior of the sampling procedure indicated that approximately this
value would appear.

As a first evaluation benchmark we used the clustering quality of the algorithms executed cen-
trally on the whole datasets. Given the distributed nature of our approach we also evaluated our
algorithms against P2PKMeans and GPCA. Unfortunately, CPCA is not directly comparable to our
approach since it is specifically designed and tuned to address cases of vertically distributed datasets
while we focus on the horizontal case.

All experiments took place in a simulated peer-to-peer environment where topology was ran-
domly generated with nodes being connected with 5% probability. In the case of the two largest
datasets we have created a network of 5000 nodes while for thetwo smaller sets we have used 500
nodes. It should be stressed out at this point that all the reported results are averaged over 10 exe-
cutions. All algorithms, except from P2PKMeans, assume theexistence of a star overlay network,
where each peer communicates its sample (or result) to an aggregator node that undertakes the task
of performing any subsequent computations. Finally, the aggregator node forwards the final result
to all peers.
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In Tables IV(a), IV(b),IV(c), IV(d) we present the results of all experiments. The Network Load
is reported in Megabytes (NLMB). Apart from the network requirements we report the clusterqual-
ity in terms of F-measure, Purity and NMI. It can be observed that GPCA provides results of equal
quality to that of centralizedk-Means while exhibiting low bandwidth requirements.S3KM always
produces the same clustering quality results but with significantly lower (in two out of three exper-
iments) bandwidth consumption. It worths noting the fact that in the case of Waveform1MS3KM
requires a couple of KBs while GPCA requirements are in the order of MBs. AlthoughS3DC re-
quires additional resources compared toS3KM, it is still in an acceptable level, and in two out of
three experiments requires less resources than GPCA. Despite its excellence in cluster performance,
P2PKMeans exhibits excessively larger requirements in terms of network bandwidth. It is worth
noting that although only centroids are communicated during the P2PKMeans execution, the ex-
hibited network load marginally reaches the size of the dataset itself. In Tables IV(a), IV(b),IV(c),
IV(d) bold values signify the minimum exhibited network load

We should stress here that in these experiments we have not evaluated the full extent of the
capabilities of the proposed distributed spectral clustering framework. This is because we have
provided all our algorithms with the correct number of clusters as input. As opposed to the relevant
distributedk-means approaches, our algorithm would not have the danger of consuming a large
bandwidth due to an inappropriatek input. This is achieved by its “built-in” ability to estimate the
appropriateness of eachk through the computation of the relevant eigengap. We shouldrecall here
that these arguments apply when the goal is to derive a good approximation of the cluster results
and not when the target is to derive a good approximation of solely the objective function. As we
have analyzed in Section 7.2 the former depends on the cluster structure of the dataset while the
latter does not.

10. CONCLUSIONS AND FURTHER WORK

In conclusion, we have proposed a sequential sampling framework for Spectralk-Means that ter-
minates when the algorithm’s output is indistinguishable from the asymptotic results. In order to
formulate our approach we assume that the data is generated by an unknown probability distribu-
tion and consequently employ an efficient-bootstrap based methodology for assessing the conver-
gence of the cluster results. Extensive experiments have demonstrated the convergent behavior of
the proposed approach and also promote our approach as a viable solution to distributed clustering
problems where bandwidth restrictions commonly impose limitations on the amount of data that
can be communicated.

Concerning further work, we aim to extend the proposed approach to handle Kernelk-Means as
well as Spectral Clustering based on Kernel object-similarities. Moreover, we will investigate the
potential of defining sequential sampling Clustering algorithms for Time Series and stream data,
where the dependence structure enhardens the application of bootstrapping.
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Fig. 12: Clustering Quality Evolution - Spectral Clustering

ACM Journal Name, Vol. V, No. N, Article A, Publication date:January YYYY.


