
Knowledge Technologies Manolis Koubarakis1

An Introduction to OWL 2

Knowledge Technologies Manolis Koubarakis2

Acknowledgement

• This presentation is based on the OWL 2
Web Ontology Language Structural
Specification and Functional-Style Syntax
available at
http://www.w3.org/TR/owl2-syntax/

• Much of the material in this presentation is
verbatim from the above specification.

http://www.w3.org/TR/owl2-syntax/

Knowledge Technologies Manolis Koubarakis3

Outline

• Features of OWL 2

• Structural Specification

• Functional Syntax

• Other Syntaxes

• Examples

• Semantics of OWL 2

• OWL 2 Profiles

Knowledge Technologies Manolis Koubarakis4

The Semantic Web “Layer Cake”

Knowledge Technologies Manolis Koubarakis5

OWL 2 Basics

• OWL 2 is the current version of the
 Web Ontology Language and a
 W3C recommendation as of
 October 2009.

• The previous version of OWL (OWL 1) became
a W3C recommendation in 2004.

• All W3C documents about OWL 2 can be found
at
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
 .

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Knowledge Technologies Manolis Koubarakis6

The Structure of OWL 2

Knowledge Technologies Manolis Koubarakis7

OWL 2 Basics (cont’d)

• OWL 2 is language for writing ontologies
for the Web.

• It is based on well-known concepts and
results from description logics.

• Like DLs, OWL 2 is a language for
representing knowledge about things,
groups of things, and relations
between things.

Knowledge Technologies Manolis Koubarakis8

OWL 2 Terminology

• The things or objects about which
knowledge is represented (e.g., John,
Mary) are called individuals.

• Groups of things (e.g., female) are called
classes.

• Relations between things (e.g., married)
are called properties.

• Individuals, classes and properties are
called entities.

Knowledge Technologies Manolis Koubarakis9

OWL 2 Terminology (cont’d)

• As in DLs, entities can be combined using
constructors to form complex
descriptions called expressions.

• To represent knowledge in OWL (like in
any other KR language), we make
statements. These statements are called
axioms.

Knowledge Technologies Manolis Koubarakis10

Annotations

• Entities, expressions and axioms form the logical part of
OWL 2. They can be given a precise semantics and
inferences can be drawn from them.

• In addition, entities, axioms, and ontologies can be
annotated.

• Example: A class can be given a human-readable label
that provides a more descriptive name for the class.

• Annotations have no effect on the logical aspects of an
ontology. For the purposes of the OWL 2 semantics,
annotations are treated as not being present.

Knowledge Technologies Manolis Koubarakis11

IRIs

• Ontologies and their elements are
identified using International Resource
Identifiers (IRIs).

• In OWL 2, an IRI can be written in full or it
can be abbreviated as prefix:lname as
in XML qualified names where prefix is
a namespace and lname is the local
name with respect to the namespace.

Knowledge Technologies Manolis Koubarakis12

The Structure of an Ontology

Knowledge Technologies Manolis Koubarakis13

Ontology IRI and Version IRIs
• An ontology may have an ontology IRI, which is used to identify it.

• If an ontology has an ontology IRI, the ontology may additionally have a version IRI,
which is used to identify the version of the ontology. The version IRI may, but need
not be equal to the ontology IRI.

• An ontology series is identified using an ontology IRI, and each version in the series
is assigned a different version IRI. Only one version of the ontology is the current
one.

• Example:
– Ontology IRI: <http://www.example.com/my>
– Version IRIs: <http://www.example.com/my/1.0>,

<http://www.example.com/my/2.0>, …

• An ontology without an ontology IRI must not contain a version IRI.

• Ontology IRIs and version IRIs should satisfy various uniqueness constraints that
OWL 2 tools should check, for detecting possible problems.

Knowledge Technologies Manolis Koubarakis14

Ontology Document

• Each ontology is associated with an ontology
document which physically contains the
ontology stored in a particular way (e.g., a text
file).

• An ontology document should be accessible via
the IRIs determined by the rules defined in the
W3C specification.
– Example: The document of the current version of an

ontology should always be accessible via the ontology
IRI and the current version IRI.

Knowledge Technologies Manolis Koubarakis15

Imports

• An OWL 2 ontology can import (directly
or indirectly) other ontologies in order
to gain access to their entities,
expressions and axioms, thus providing
the basic facility for ontology
modularization.

• Example: an ontology of sensors can
import a geospatial ontology to specify the
location of sensors.

Knowledge Technologies Manolis Koubarakis16

OWL 2 Syntaxes
• The Functional-Style syntax. This syntax is designed to be easier

for specification purposes and to provide a foundation for the
implementation of OWL 2 tools such as APIs and reasoners. This is
the syntax we will use in this presentation.

• The RDF/XML syntax: this is just RDF/XML, with a particular
translation for the OWL constructs. Here one can use other popular
syntaxes for RDF, e.g., Turtle syntax.

• The Manchester syntax: this is a frame-based syntax that is
designed to be easier for users to read.

• The OWL XML syntax: this is an XML syntax for OWL defined by
an XML schema.

Knowledge Technologies Manolis Koubarakis17

BNF Grammar for the Functional
Syntax of OWL 2

ontologyDocument := { prefixDeclaration } Ontology
prefixDeclaration := 'Prefix' '(' prefixName '=' fullIRI
')'
Ontology :=
 'Ontology' '(' [ontologyIRI [versionIRI]]
 directlyImportsDocuments
 ontologyAnnotations
 axioms
 ')'
ontologyIRI := IRI
versionIRI := IRI
directlyImportsDocuments := { 'Import' '(' IRI ')' }
axioms := { Axiom }

Knowledge Technologies Manolis Koubarakis18

Example

Prefix(:=<http://www.example.com/ontology1#>)
Ontology(<http://www.example.com/ontology1>

 Import(<http://www.example.com/ontology2>)
 Annotation(rdfs:label "An example ontology")

 SubClassOf(:Child owl:Thing)
)

Knowledge Technologies Manolis Koubarakis19

Things One Can Define in OWL 2

Knowledge Technologies Manolis Koubarakis20

Classes

• Classes (e.g., a:Female) represent sets
of individuals.

• Built-in classes:
– owl:Thing, which represents the set of all

individuals.
– owl:Nothing, which represents the empty

set.

Knowledge Technologies Manolis Koubarakis21

Things One Can Define in OWL 2
(cont’d)

Knowledge Technologies Manolis Koubarakis22

Datatypes
• Datatypes are entities that represent sets of data values.

• OWL 2 offers a rich set of data types: decimal numbers, integers, floating
point numbers, rationals, reals, strings, binary data, IRIs and time instants.

• In most cases, these data types are taken from XML schema. From RDF
and RDFS, we have rdf:XMLLiteral, rdf:PlainLiteral and
rdfs:Literal.

• rdfs:Literal contains all the elements of other data types.

• There are also the OWL datatypes owl:real and owl:rational.

• Formally, the data types supported are specified in the OWL 2 datatype
map.

Knowledge Technologies Manolis Koubarakis23

Datatypes (cont’d)

• Each datatype is identified by an IRI and is
defined by the following components:
– The value space is the set of values of the datatype.

Elements of the value space are called data values.
– The lexical space is a set of strings that can be used

to refer to data values. Each member of the lexical
space is called a lexical form, and it is mapped to a
particular data value.

– The facet space is a set of pairs of the form (F,v)
where F is an IRI called a constraining facet, and v
is an arbitrary data value called the constraining
value. Each such pair is mapped to a subset of the
value space of the datatype.

Knowledge Technologies Manolis Koubarakis24

Facet Space

• For the XML Schema datatypes xsd:double,
xsd:float, and xsd:decimal, the constraining
facets allowed are: xsd:minInclusive,
xsd:maxInclusive, xsd:minExclusive and
xsd:maxExclusive.

• Example: The pair(xsd:minInclusive,v) of the
facet space denotes the set of all numbers x from the
value space of the datatype such that x=v or x>v.

• Similarly for other datatypes.

Knowledge Technologies Manolis Koubarakis25

Things One Can Define in OWL 2
(cont’d)

Knowledge Technologies Manolis Koubarakis26

Object Properties

• Object properties (e.g., a:parentOf)
connect pairs of individuals.

• Built-in object properties:
– owl:topObjectProperty, which connects

all possible pairs of individuals.
– owl:bottomObjectProperty, which does

not connect any pair of individuals.

Knowledge Technologies Manolis Koubarakis27

Object Property Expressions

• Object properties can be used to form
object property expressions.

Knowledge Technologies Manolis Koubarakis28

Inverse Object Property
Expressions

• An inverse object property expression
ObjectInverseOf(P) connects an individual
I1 with I2 if and only if the object property P
connects I2 with I1.

• Example: If an ontology contains the axiom
ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)

 then the ontology entails
ObjectPropertyAssertion(ObjectInverseOf(a:fatherOf) a:Stewie

a:Peter)

Knowledge Technologies Manolis Koubarakis29

Things One Can Define in OWL 2
(cont’d)

Knowledge Technologies Manolis Koubarakis30

Data Properties

• Data properties (e.g., a:hasAge)
connect individuals with literals.

• Built-in properties:
– owl:topDataProperty, which connects all

possible individuals with all literals.
– owl:bottomDataProperty, which does not

connect any individual with a literal.

Knowledge Technologies Manolis Koubarakis31

Data Property Expressions

• The only allowed data property
expression is a data property.

Knowledge Technologies Manolis Koubarakis32

Things One Can Define in OWL 2
(cont’d)

Knowledge Technologies Manolis Koubarakis33

Annotation Properties

• Annotation properties can be used to provide
an annotation for an ontology, axiom, or an IRI.

• Available built-in properties that can be used in
annotations:
– rdfs:label, rdfs:comment, rdfs:see,
rdfs:isDefinedBy

– owl:deprecated, owl:versionInfo,
owl:priorVersion,
owl:backwardCompatibleWith,
owl:incompatibleWith

Knowledge Technologies Manolis Koubarakis34

Things One Can Define in OWL 2
(cont’d)

Knowledge Technologies Manolis Koubarakis35

Individuals

• Individuals represent actual objects from the
domain.

• There are two types of individuals:
– Named individuals are given an explicit name (an

IRI e.g., a:Peter) that can be used in any ontology
to refer to the same object.

– Anonymous individuals do not have a global name.
They can be defined using a name (e.g.,
_:somebody) local to the ontology they are
contained in. They are like blank nodes in RDF.

Knowledge Technologies Manolis Koubarakis36

Things One Can Define in OWL 2
(cont’d)

Knowledge Technologies Manolis Koubarakis37

Literals

• Literals represent data values such as particular
strings or integers. They are analogous to RDF
literals.

• Examples:
– "1"^^xsd:integer (typed literal)
– "Family Guy" (plain literal, an abbreviation for
"Family Guy@"^^rdf:PlainLiteral).

– "Padre de familia"@es (plain literal with
language tag, an abbreviation for "Padre de
familia@es"^^rdf:PlainLiteral.

Knowledge Technologies Manolis Koubarakis38

Things One Can Define in OWL 2
(cont’d)

Knowledge Technologies Manolis Koubarakis39

Data Ranges
• Data ranges represent sets of tuples of literals. They are defined

using datatypes.

• Examples:
– The set of integers greater than 10.
– The set of strings that contain “good” as a substring.
– The set of (x,y) such that x and y are integers and x < y.

• Each data range is associated with a positive arity, which
determines the size of its tuples.

• Datatypes are themselves data ranges of arity 1.

• Data ranges are used in restrictions on data properties, as we will
see later when we define class expressions.

Knowledge Technologies Manolis Koubarakis40

Data Ranges

Knowledge Technologies Manolis Koubarakis41

BNF for Data Ranges
DataRange :=

 Datatype |
 DataIntersectionOf |
 DataUnionOf |
 DataComplementOf |
 DataOneOf |
 DatatypeRestriction

DataIntersectionOf := 'DataIntersectionOf' '(' DataRange DataRange
{ DataRange } ')'

DataUnionOf := 'DataUnionOf' '(' DataRange DataRange { DataRange }
')'

DataComplementOf := 'DataComplementOf' '(' DataRange ')'

DataOneOf := 'DataOneOf' '(' Literal { Literal } ')'

Knowledge Technologies Manolis Koubarakis42

Examples

DataIntersectionOf(xsd:nonNegativeInteger
xsd:nonPositiveInteger)

DataUnionOf(xsd:string xsd:integer)

DataComplementOf(xsd:positiveInteger)

DataOneOf("Peter" "1"^^xsd:integer)

Knowledge Technologies Manolis Koubarakis43

Datatype Restrictions

DatatypeRestriction :=
'DatatypeRestriction' '('
Datatype constrainingFacet
restrictionValue

 { constrainingFacet restrictionValue } ')’

constrainingFacet := IRI

restrictionValue := Literal

Knowledge Technologies Manolis Koubarakis44

Datatype Restrictions

• A datatype restriction DatatypeRestriction(DT F1 lt1
... Fn ltn) consists of a unary datatype DT and n
pairs(Fi,lti) where Fi is a constraining facet of DT
and lti a literal value.

• The data range represented by a datatype restriction is
unary and is obtained by restricting the value space of
DT according to the conjunction of all (Fi,lti).

• Observation: Thus, although the definition of data range
speaks of tuples of any arity, the syntax defined allows
only unary data ranges.

Knowledge Technologies Manolis Koubarakis45

Example

• The following data type restriction
represents the set of integers 5, 6, 7, 8,
and 9:

DatatypeRestriction(xsd:integer

xsd:minInclusive "5"^^xsd:integer

xsd:maxExclusive "10"^^xsd:integer)

Knowledge Technologies Manolis Koubarakis46

Things One Can Define in OWL 2
(cont’d)

Knowledge Technologies Manolis Koubarakis47

Class Expressions

• Class names and property expressions can be
used to construct class expressions.

• These are essentially the complex concepts or
descriptions that we can define in DLs.

• Class expressions represent sets of individuals
by formally specifying conditions on the
individuals' properties; individuals satisfying
these conditions are said to be instances of the
respective class expressions.

Knowledge Technologies Manolis Koubarakis48

Ways to Form Class Expressions

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data

property expressions.

Knowledge Technologies Manolis Koubarakis49

Boolean Connectives and Enumeration
of Individuals

Knowledge Technologies Manolis Koubarakis50

Intersection Class Expressions

• An intersection class expression
ObjectIntersectionOf(CE1 ... CEn)
contains all individuals that are instances
of all class expressions CEi for 1≤i≤n.

• Example:

ObjectIntersectionOf(a:Dog a:CanTalk)

Knowledge Technologies Manolis Koubarakis51

Union Class Expressions

• A union class expression
ObjectUnionOf(CE1 ... CEn)
contains all individuals that are instances
of at least one class expression CEi for

 1≤i≤n.

• Example:

ObjectUnionOf(a:Man a:Woman)

Knowledge Technologies Manolis Koubarakis52

Complement Class Expressions

• A complement class expression
ObjectComplementOf(CE) contains all
individuals that are not instances of the
class expression CE.

• Example:

ObjectComplementOf(a:Man)

Knowledge Technologies Manolis Koubarakis53

Example Inference

• From
DisjointClasses(a:Man a:Woman)
ClassAssertion(a:Woman a:Lois)

 we can infer

ClassAssertion(ObjectComplementOf(a:Man)
a:Lois)

Knowledge Technologies Manolis Koubarakis54

Enumeration of Individuals

• An enumeration of individuals
ObjectOneOf(a1 ... an) contains
exactly the individuals ai with 1≤i≤n.

• Example:

ObjectOneOf(a:Peter a:Lois
a:Stewie a:Meg a:Chris a:Brian)

Knowledge Technologies Manolis Koubarakis55

Example Inference

• From
EquivalentClasses(a:GriffinFamilyMember

 ObjectOneOf(a:Peter a:Lois a:Stewie a:Meg
a:Chris a:Brian))

DifferentIndividuals(a:Quagmire a:Peter a:Lois
a:Stewie a:Meg a:Chris a:Brian)

 we can infer

ClassAssertion(
ObjectComplementOf(a:GriffinFamilyMember)

a:Quagmire)

Knowledge Technologies Manolis Koubarakis56

Example Inference (con’td)
• From

ClassAssertion(a:GriffinFamilyMember a:Peter)
ClassAssertion(a:GriffinFamilyMember a:Lois)

ClassAssertion(a:GriffinFamilyMember a:Stewie)
ClassAssertion(a:GriffinFamilyMember a:Meg)

ClassAssertion(a:GriffinFamilyMember a:Chris)
ClassAssertion(a:GriffinFamilyMember a:Brian)

DifferentIndividuals(a:Quagmire a:Peter a:Lois a:Stewie
a:Meg a:Chris a:Brian)

 we cannot infer
ClassAssertion(

ObjectComplementOf(a:GriffinFamilyMember) a:Quagmire)

Knowledge Technologies Manolis Koubarakis57

Ways to Form Class Expressions
(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data

property expressions.

Knowledge Technologies Manolis Koubarakis58

 Object Property Restrictions

Knowledge Technologies Manolis Koubarakis59

Existential Quantification

• An existential class expression
ObjectSomeValuesFrom(OPE CE) consists of an
object property expression OPE and a class expression
CE, and it contains all those individuals that are
connected by OPE to an individual that is an instance of
CE.

• Example:
ObjectSomeValuesFrom(a:fatherOf a:Man)

• If OPE is simple, the above class expression is

equivalent with the class expression
ObjectMinCardinality(1 OPE CE)

Knowledge Technologies Manolis Koubarakis60

Example Inference

• From
ObjectPropertyAssertion(a:fatherOf

a:Peter a:Stewie)

ClassAssertion(a:Man a:Stewie)

 we can infer
ClassAssertion(

ObjectSomeValuesFrom(a:fatherOf
a:Man) a:Peter)

Knowledge Technologies Manolis Koubarakis61

Universal Quantification

• A universal class expression
ObjectAllValuesFrom(OPE CE) consists of an
object property expression OPE and a class expression
CE, and it contains all those individuals that are
connected by OPE to only individuals that are instances
of CE.

• Example:
ObjectAllValuesFrom(a:fatherOf a:Man)

• If OPE is simple, the above class expression is

equivalent with the class expression
ObjectMaxCardinality(0 OPE ObjectComplementOf(CE))

Knowledge Technologies Manolis Koubarakis62

Example Inference

• From
ObjectPropertyAssertion(a:hasPet a:Peter a:Brian)

ClassAssertion(a:Dog a:Brian)

ClassAssertion(
ObjectMaxCardinality(1 a:hasPet) a:Peter)

 we can infer

ClassAssertion(
ObjectAllValuesFrom(a:hasPet a:Dog) a:Peter)

Knowledge Technologies Manolis Koubarakis63

Individual Value Restriction

• An individual value class expression
ObjectHasValue(OPE a) consists of an object
property expression OPE and an individual a, and it
contains all those individuals that are connected by OPE
to a.

• Example:
ObjectHasValue(a:fatherOf a:Stewie)

• The above class expression is equivalent to the class
expression

 ObjectSomeValuesFrom(OPE ObjectOneOf(a)).

Knowledge Technologies Manolis Koubarakis64

Example Inference

• From

ObjectPropertyAssertion(a:fatherOf
a:Peter a:Stewie)

 we can infer

ClassAssertion(

ObjectHasValue(a:fatherOf a:Stewie)
a:Peter)

Knowledge Technologies Manolis Koubarakis65

Self-Restriction

• A self-restriction
ObjectHasSelf(OPE) consists of an
object property expression OPE, and it
contains all those individuals that are
connected by OPE to themselves.

• Example:

ObjectHasSelf(a:likes)

Knowledge Technologies Manolis Koubarakis66

Example Inference

• From

ObjectPropertyAssertion(a:likes
a:Peter a:Peter)

 we can infer

ClassAssertion(

ObjectHasSelf(a:likes) a:Peter)

Knowledge Technologies Manolis Koubarakis67

Ways to Form Class Expressions
(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data

property expressions.

Knowledge Technologies Manolis Koubarakis68

Object Property Cardinality
Restrictions

• Object property cardinality restrictions are distinguished
into:
– Qualified: apply only to individuals that are

connected by the object property expression and are
instances of the qualifying class expression.

– Unqualified: apply to all individuals that are
connected by the object property expression (this is
equivalent to the qualified case with the qualifying
class expression equal to owl:Thing).

Knowledge Technologies Manolis Koubarakis69

Object Property Cardinality
Restrictions

Knowledge Technologies Manolis Koubarakis70

Minimum Cardinality

• A minimum cardinality expression
ObjectMinCardinality(n OPE CE)
consists of a nonnegative integer n, an object
property expression OPE, and a class expression
CE, and it contains all those individuals that are
connected by OPE to at least n different
individuals that are instances of CE. If CE is
missing, it is taken to be owl:Thing.

• Example:
ObjectMinCardinality(2 a:fatherOf a:Man)

Knowledge Technologies Manolis Koubarakis71

Example Inference

• From
ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)

ClassAssertion(a:Man a:Stewie)

ObjectPropertyAssertion(a:fatherOf a:Peter a:Chris)

ClassAssertion(a:Man a:Chris)

DifferentIndividuals(a:Chris a:Stewie)

 we can infer
ClassAssertion(

ObjectMinCardinality(2 a:fatherOf a:Man) a:Peter)

Knowledge Technologies Manolis Koubarakis72

Maximum Cardinality

• A maximum cardinality expression
ObjectMaxCardinality(n OPE CE)
consists of a nonnegative integer n, an object
property expression OPE, and a class expression
CE, and it contains all those individuals that are
connected by OPE to at most n different
individuals that are instances of CE. If CE is
missing, it is taken to be owl:Thing.

• Example:
ObjectMaxCardinality(2 a:hasPet)

Knowledge Technologies Manolis Koubarakis73

Example Inference

• From
ObjectPropertyAssertion(a:hasPet

a:Peter a:Brian)

ClassAssertion(ObjectMaxCardinality(1
a:hasPet) a:Peter)

 we can infer
ClassAssertion(

ObjectMaxCardinality(2 a:hasPet)
a:Peter)

Knowledge Technologies Manolis Koubarakis74

Example Inference

• From
ObjectPropertyAssertion(a:hasDaughter

a:Peter a:Meg)

ObjectPropertyAssertion(a:hasDaughter
a:Peter a:Megan)

ClassAssertion(ObjectMaxCardinality(1
a:hasDaughter) a:Peter)

 we can infer
SameIndividual(a:Meg a:Megan)

Knowledge Technologies Manolis Koubarakis75

Exact Cardinality
• An exact cardinality expression ObjectExactCardinality(n

OPE CE) consists of a nonnegative integer n, an object property
expression OPE, and a class expression CE, and it contains all those
individuals that are connected by OPE to exactly n different
individuals that are instances of CE.

• Example:
ObjectExactCardinality(1 a:hasPet a:Dog)

• The above expression is equivalent to

ObjectIntersectionOf(
ObjectMinCardinality(n OPE CE)

 ObjectMaxCardinality(n OPE CE)).

Knowledge Technologies Manolis Koubarakis76

Example Inference
• From
ObjectPropertyAssertion(a:hasPet a:Peter a:Brian)

ClassAssertion(a:Dog a:Brian)

ClassAssertion(
ObjectAllValuesFrom(a:hasPet

ObjectUnionOf(ObjectOneOf(a:Brian)
ObjectComplementOf(a:Dog)))

 a:Peter)

 we can infer

ClassAssertion(ObjectExactCardinality(1 a:hasPet
a:Dog) a:Peter)

Knowledge Technologies Manolis Koubarakis77

Ways to Form Class Expressions
(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data

property expressions.

Knowledge Technologies Manolis Koubarakis78

Data Property Restrictions
• Data property restrictions are similar to the restrictions on object property

expressions.

• The main difference is that the expressions for existential and universal
quantification allow for n-ary data ranges.

• Given the syntax for data ranges given earlier, only unary data ranges are
supported.

• However, the specification aprovide the syntactic constructs needed to have
n-ary data ranges e.g., sets of rectangles defined by appropriate geometric
constraints.

• The “Data Range Extension: Linear Equations” W3C note proposes an
extension to OWL 2 for defining n-ary data ranges in terms of linear
(in)equations with rational coefficients. See
http://www.w3.org/TR/owl2-dr-linear/ .

http://www.w3.org/TR/owl2-dr-linear/

Knowledge Technologies Manolis Koubarakis79

Data Property Restrictions

Knowledge Technologies Manolis Koubarakis80

Existential Quantification
• An existential class expression DataSomeValuesFrom(DPE1 ...

DPEn DR) consists of n data property expressions DPEi,1≤i≤n, and a
data range DR whose arity must be n.

• Such a class expression contains all those individuals that are connected by
DPEi to literals lti,1≤i≤n, such that the tuple (lt1 ,...,ltn) is in DR.

• Example:
DataSomeValuesFrom(a:hasAge

DatatypeRestriction(xsd:integer xsd:maxExclusive
"20"^^xsd:integer))

• A class expression of the form DataSomeValuesFrom(DPE DR) is
equivalent to the class expression DataMinCardinality(1 DPE DR).

Knowledge Technologies Manolis Koubarakis81

Example Inference

• From
DataPropertyAssertion(a:hasAge a:Meg

"17"^^xsd:integer)

 we can infer

ClassAssertion(
DataSomeValuesFrom(a:hasAge

DatatypeRestriction(xsd:integer
xsd:maxExclusive "20"^^xsd:integer))

a:Meg)

Knowledge Technologies Manolis Koubarakis82

Universal Quantification
• A universal class expression DataAllValuesFrom(DPE1 ... DPEn

DR) consists of n data property expressions DPEi,1≤i≤n, and a data
range DR whose arity must be n.

• Such a class expression contains all those individuals that are connected by
DPEi only to literals lti,1≤i≤n, such that each tuple (lt1,...,ltn) is
in DR.

• Example:
DataAllValuesFrom(a:hasZIP xsd:integer)

• A class expression of the form DataAllValuesFrom(DPE DR) can be
seen as a syntactic shortcut for the class expression
DataMaxCardinality(0 DPE DataComplementOf(DR)).

Knowledge Technologies Manolis Koubarakis83

Example Inference

• From
DataPropertyAssertion(a:hasZIP _:a1

"02903"^^xsd:integer)

FunctionalDataProperty(a:hasZIP)

 we can infer

ClassAssertion(
DataAllValuesFrom(a:hasZIP xsd:integer)

_:a1)

Knowledge Technologies Manolis Koubarakis84

Literal Value Restriction

• A literal value class restriction DataHasValue(DPE
lt) consists of a data property expression DPE and a
literal lt, and it contains all those individuals that are
connected by DPE to lt.

• Example:
DataHasValue(a:hasAge "17"^^xsd:integer)

• Each such class expression is equivalent to the class
expression
DataSomeValuesFrom(DPE DataOneOf(lt)).

Knowledge Technologies Manolis Koubarakis85

Ways to Form Class Expressions
(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data

property expressions.

Knowledge Technologies Manolis Koubarakis86

Data Property Cardinality
Restrictions

• Data property cardinality restrictions can
be distinguished into:
– Qualified: they only apply to literals that are

connected by the data property expression
and are in the qualifying data range.

– Unqualified: they apply to all literals that are
connected by the data property expression.
This is equivalent to the qualified case with
the qualifying data range equal to
rdfs:Literal.

Knowledge Technologies Manolis Koubarakis87

Minimum Cardinality

• A minimum cardinality expression
DataMinCardinality(n DPE DR) consists of a
nonnegative integer n, a data property expression DPE,
and a unary data range DR, and it contains all those
individuals that are connected by DPE to at least n
different literals in DR. If DR is not present, it is taken to
be rdfs:Literal.

• Example:
DataMinCardinality(2 a:hasName)

• There are similar definitions for
DataMaxCardinality(n DPE DR) and
DataExactCardinality(n DPE DR).

Knowledge Technologies Manolis Koubarakis88

Example Inference

• From
DataPropertyAssertion(a:hasName a:Meg

"Meg Griffin")

DataPropertyAssertion(a:hasName a:Meg
"Megan Griffin")

 we can infer
ClassAssertion(

DataMinCardinality(2 a:hasName)
a:Meg)

Knowledge Technologies Manolis Koubarakis89

What Have we Achieved so far?

• We have explained what the “things” that one
can define in OWL 2 are.

• Now let us see how to use these “things” to
represent knowledge about a domain.

• In OWL 2 knowledge is represented by axioms:
statements that say what is true in the domain of
interest.

Knowledge Technologies Manolis Koubarakis90

Axioms

Knowledge Technologies Manolis Koubarakis91

 Class Expression Axioms

Knowledge Technologies Manolis Koubarakis92

Subclass Axioms

• A subclass axiom SubClassOf(CE1 CE2) states that
the class expression CE1 is a subclass of the class
expression CE2.

• Example:
SubClassOf(a:Child a:Person)

• The properties known from RDFS for SubClassOf hold
here as well:
– Reflexivity
– Transitivity
– If x is an instance of class A and class A is a subclass of class B,

then x is an instance of B as well.

Knowledge Technologies Manolis Koubarakis93

Example Inferences

• From
SubClassOf(a:Baby a:Child)
SubClassOf(a:Child a:Person)

ClassAssertion(a:Baby a:Stewie)

 we can infer
SubClassOf(a:Baby a:Person)

ClassAssertion(a:Child a:Stewie)
ClassAssertion(a:Person a:Stewie)

Knowledge Technologies Manolis Koubarakis94

Example Inferences
• From

SubClassOf(a:PersonWithChild
ObjectSomeValuesFrom(a:hasChild
ObjectUnionOf(a:Boy a:Girl)))

SubClassOf(a:Boy a:Child)

SubClassOf(a:Girl a:Child)

SubClassOf(ObjectSomeValuesFrom(a:hasChild a:Child)
a:Parent)

 we can infer

SubClassOf(a:PersonWithChild a:Parent)

Knowledge Technologies Manolis Koubarakis95

Equivalent Classes

• An equivalent classes axiom
EquivalentClasses(CE1 ... CEn) states that all
of the class expressions CEi,1≤i≤n, are semantically
equivalent to each other.

• Example:
EquivalentClasses(a:Boy

ObjectIntersectionOf(a:Child a:Man))

• An axiom EquivalentClasses(CE1 CE2) is
equivalent to the conjunction of the following two axioms:

SubClassOf(CE1 CE2)
SubClassOf(CE2 CE1)

Knowledge Technologies Manolis Koubarakis96

Example Inferences

• From
EquivalentClasses(a:Boy

ObjectIntersectionOf(a:Child a:Man))

ClassAssertion(a:Child a:Chris)

ClassAssertion(a:Man a:Chris)

 we can infer

ClassAssertion(a:Boy a:Chris)

Knowledge Technologies Manolis Koubarakis97

Example Inferences
• From

EquivalentClasses(a:MongrelOwner
ObjectSomeValuesFrom(a:hasPet a:Mongrel))

EquivalentClasses(a:DogOwner ObjectSomeValuesFrom(a:hasPet

a:Dog))

SubClassOf(a:Mongrel a:Dog)

ClassAssertion(a:MongrelOwner a:Peter)

 we can infer

SubClassOf(a:MongrelOwner a:DogOwner)

ClassAssertion(a:DogOwner a:Peter)

Knowledge Technologies Manolis Koubarakis98

Disjoint Classes

• A disjoint classes axiom
DisjointClasses(CE1 ... CEn) states that all of
the class expressions CEi, 1≤i≤n, are pairwise
disjoint.

• Example:
DisjointClasses(a:Boy a:Girl)

• An axiom DisjointClasses(CE1 CE2) is equivalent
to the following axiom:
SubClassOf(CE1 ObjectComplementOf(CE2))

Knowledge Technologies Manolis Koubarakis99

Disjoint Union of Classes
• A disjoint union axiom DisjointUnion(C CE1 ... CEn) states that a

class C is a disjoint union of the class expressions CEi,1≤i≤ n, all of
which are pairwise disjoint.

• Such axioms are sometimes referred to as covering axioms, as they state
that the extensions of all CEi exactly cover the extension of C.

• Example:
DisjointUnion(a:Child a:Boy a:Girl)

• Each such axiom is equivalent to the conjunction of the following two
axioms:

EquivalentClasses(C ObjectUnionOf(CE1 ... CEn))

DisjointClasses(CE1 ... CEn)

Knowledge Technologies Manolis Koubarakis100

Example Inferences

• From

DisjointUnion(a:Child a:Boy a:Girl)

 ClassAssertion(a:Child a:Stewie)

ClassAssertion(ObjectComplementOf(a:Girl)
a:Stewie)

 we can infer

ClassAssertion(a:Boy a:Stewie)

Knowledge Technologies Manolis Koubarakis101

Axioms (cont’d)

Knowledge Technologies Manolis Koubarakis102

Object Property Axioms

• OWL 2 provides axioms that can be used
to characterize and establish
relationships between object property
expressions.

Knowledge Technologies Manolis Koubarakis103

Object Property Axioms

Knowledge Technologies Manolis Koubarakis104

Object Subproperty Axioms

• Object subproperty axioms are analogous to subclass
axioms.

• The basic form of an object subproperty axiom is
SubObjectPropertyOf(OPE1 OPE2).

• This axiom states that the object property expression
OPE1 is a subproperty of the object property expression
OPE2 — that is, if an individual x is connected by OPE1
to an individual y, then x is also connected by OPE2 to
y.

• SubObjectPropertyOf is a reflexive and transitive
relation.

Knowledge Technologies Manolis Koubarakis105

Object Subproperty Axioms (cont’d)

• The more complex form is
SubObjectPropertyOf(

ObjectPropertyChain(OPE1 ... OPEn) OPE).

• This axiom states that, if an individual x is connected by
a sequence of object property expressions OPE1, ...,
OPEn with an individual y, then x is also connected with
y by the object property expression OPE.

• These axioms are known as complex role inclusions in
the DL literature.

Knowledge Technologies Manolis Koubarakis106

Example Inferences

• From

SubObjectPropertyOf(a:hasDog a:hasPet)

ObjectPropertyAssertion(a:hasDog a:Peter
a:Brian)

 we can infer

ObjectPropertyAssertion(a:hasPet a:Peter
a:Brian)

Knowledge Technologies Manolis Koubarakis107

Example Inferences
• From

SubObjectPropertyOf(
ObjectPropertyChain(a:hasMother a:hasSister)

a:hasAunt)

ObjectPropertyAssertion(a:hasMother a:Stewie a:Lois)

ObjectPropertyAssertion(a:hasSister a:Lois
a:Carol)

 we can infer

ObjectPropertyAssertion(a:hasAunt a:Stewie a:Carol)

Knowledge Technologies Manolis Koubarakis108

Equivalent Object Properties

• An equivalent object properties axiom
EquivalentObjectProperties(OPE1 ... OPEn)
states that all of the object property expressions
OPEi,1≤i≤n, are semantically equivalent to each
other.

• The axiom EquivalentObjectProperties(OPE1
OPE2) is equivalent to the following two axioms:

SubObjectPropertyOf(OPE1 OPE2)
SubObjectPropertyOf(OPE2 OPE1)

Knowledge Technologies Manolis Koubarakis109

Example Inferences

• From
EquivalentObjectProperties(a:hasBrother a:hasMaleSibling)

 ObjectPropertyAssertion(a:hasBrother a:Chris a:Stewie)

ObjectPropertyAssertion(a:hasMaleSibling a:Stewie a:Chris)

 we can infer

ObjectPropertyAssertion(a:hasMaleSibling a:Chris
a:Stewie))

ObjectPropertyAssertion(a:hasBrother a:Stewie a:Chris)

Knowledge Technologies Manolis Koubarakis110

Disjoint Object Properties

• A disjoint object properties axiom
DisjointObjectProperties(OPE1 ...
OPEn) states that all of the object property
expressions OPEi,1≤i≤n, are pairwise disjoint.

• Example:

DisjointObjectProperties(a:hasFather
a:hasMother)

Knowledge Technologies Manolis Koubarakis111

Inverse Object Properties

• An inverse object properties axiom
InverseObjectProperties(OPE1 OPE2)
states that the object property expression OPE1
is an inverse of the object property expression
OPE2.

• Each such axiom is equivalent with the following:

EquivalentObjectProperties(OPE1
ObjectInverseOf(OPE2))

Knowledge Technologies Manolis Koubarakis112

Example Inferences

• From
InverseObjectProperties(a:hasFather a:fatherOf)

ObjectPropertyAssertion(a:hasFather a:Stewie
a:Peter)

 ObjectPropertyAssertion(a:fatherOf a:Peter a:Chris)

we can infer

ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)

ObjectPropertyAssertion(a:hasFather a:Chris a:Peter)

Knowledge Technologies Manolis Koubarakis113

Object Property Domain Axioms

• An object property domain axiom
ObjectPropertyDomain(OPE CE) states that the
domain of the object property expression OPE is the
class expression CE — that is, if an individual x is
connected by OPE with some other individual, then x is
an instance of CE.

• Each such axiom is equivalent to the following axiom:
SubClassOf(ObjectSomeValuesFrom(OPE

owl:Thing) CE)

Knowledge Technologies Manolis Koubarakis114

Example Inferences

• From
ObjectPropertyDomain(a:hasDog a:Person)

ObjectPropertyAssertion(a:hasDog a:Peter
a:Brian)

we can infer

ClassAssertion(a:Person a:Peter)

Knowledge Technologies Manolis Koubarakis115

Object Property Range Axioms

• An object property range axiom
ObjectPropertyRange(OPE CE) states that the
range of the object property expression OPE is the class
expression CE — that is, if some individual is connected
by OPE with an individual x, then x is an instance of CE.

• Each such axiom is equivalent to the following axiom:
SubClassOf(owl:Thing ObjectAllValuesFrom(OPE

CE))

Knowledge Technologies Manolis Koubarakis116

Example Inferences

• From
ObjectPropertyRange(a:hasDog a:Dog)

ObjectPropertyAssertion(a:hasDog
a:Peter a:Brian)

we can infer

ClassAssertion(a:Dog a:Brian)

Knowledge Technologies Manolis Koubarakis117

Object Property Axioms (cont’d)

Knowledge Technologies Manolis Koubarakis118

Functional Object Properties

• An object property functionality axiom
FunctionalObjectProperty(OPE) states
that the object property expression OPE is
functional — that is, for each individual x, there
can be at most one distinct individual y such that
x is connected by OPE to y.

• Each such axiom is equivalent to the following
axiom:

SubClassOf(owl:Thing
ObjectMaxCardinality(1 OPE))

Knowledge Technologies Manolis Koubarakis119

Example Inferences

• From
FunctionalObjectProperty(a:hasFather)

ObjectPropertyAssertion(a:hasFather a:Stewie
a:Peter)

ObjectPropertyAssertion(a:hasFather a:Stewie
a:Peter_Griffin)

we can infer

SameIndividual(a:Peter a:Peter_Griffin)

Knowledge Technologies Manolis Koubarakis120

Inverse-Functional Object
Properties

• An object property inverse functionality axiom
InverseFunctionalObjectProperty(OPE) states
that the object property expression OPE is inverse-
functional — that is, for each individual x, there can be
at most one individual y such that y is connected by OPE
with x.

• Each such axiom is equivalent to the following axiom:
SubClassOf(owl:Thing ObjectMaxCardinality(1

ObjectInverseOf(OPE)))

Knowledge Technologies Manolis Koubarakis121

Example Inferences

• From
InverseFunctionalObjectProperty(a:fatherOf)

ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)

ObjectPropertyAssertion(a:fatherOf a:Peter_Griffin
a:Stewie)

we can infer

SameIndividual(a:Peter a:Peter_Griffin)

Knowledge Technologies Manolis Koubarakis122

Reflexive Object Properties

• An object property reflexivity axiom
ReflexiveObjectProperty(OPE) states
that the object property expression OPE is
reflexive — that is, each individual is connected
by OPE to itself.

• Each such axiom is equivalent to the following
axiom:

SubClassOf(owl:Thing
ObjectHasSelf(OPE))

Knowledge Technologies Manolis Koubarakis123

Example Inferences

• From
ReflexiveObjectProperty(a:knows)
ClassAssertion(a:Person a:Peter)

we can infer

ObjectPropertyAssertion(a:knows
a:Peter a:Peter)

Knowledge Technologies Manolis Koubarakis124

Irreflexive Object Properties

• An object property irreflexivity axiom
IrreflexiveObjectProperty(OPE) states
that the object property expression OPE is
irreflexive — that is, no individual is connected
by OPE to itself.

• Each such axiom is equivalent to the following
axiom:

SubClassOf(ObjectHasSelf(OPE)
owl:Nothing)

Knowledge Technologies Manolis Koubarakis125

Symmetric Object Properties

• An object property symmetry axiom
SymmetricObjectProperty(OPE) states that the
object property expression OPE is symmetric — that is,
if an individual x is connected by OPE to an individual y,
then y is also connected by OPE to x.

• Example:
SymmetricObjectProperty(a:friend)

• Each such axiom is equivalent to the following axiom:
SubObjectPropertyOf(OPE
ObjectInverseOf(OPE))

Knowledge Technologies Manolis Koubarakis126

Asymmetric Object Properties

• An object property asymmetry axiom
AsymmetricObjectProperty(OPE) states
that the object property expression OPE is
asymmetric — that is, if an individual x is
connected by OPE to an individual y, then y
cannot be connected by OPE to x.

• Example

AsymmetricObjectProperty(a:parentOf)

Knowledge Technologies Manolis Koubarakis127

Transitive Object Properties

• An object property transitivity axiom
TransitiveObjectProperty(OPE) states that the
object property expression OPE is transitive — that is, if
an individual x is connected by OPE to an individual y
that is connected by OPE to an individual z, then x is
also connected by OPE to z.

• Each such axiom is equivalent to the following axiom:
SubObjectPropertyOf(ObjectPropertyChain(OPE

OPE) OPE)

Knowledge Technologies Manolis Koubarakis128

Example Inferences

• From
TransitiveObjectProperty(a:ancestorOf)

ObjectPropertyAssertion(a:ancestorOf a:Carter

a:Lois)

ObjectPropertyAssertion(a:ancestorOf a:Lois a:Meg)

we can infer

ObjectPropertyAssertion(a:ancestorOf a:Carter a:Meg)

Knowledge Technologies Manolis Koubarakis129

Axioms (cont’d)

Knowledge Technologies Manolis Koubarakis130

Data Property Axioms

Knowledge Technologies Manolis Koubarakis131

Data Property Axioms (cont’d)

• OWL 2 also provides for data property
axioms. Their structure and semantics is
similar to the corresponding object
property axioms.

• We will not present data property axioms
in detail. We will only give some
examples.

Knowledge Technologies Manolis Koubarakis132

Examples

• From
SubDataPropertyOf(a:hasLastName a:hasName)

DataPropertyAssertion(a:hasLastName a:Peter
"Griffin")

we can infer

DataPropertyAssertion(a:hasName a:Peter
"Griffin")

Knowledge Technologies Manolis Koubarakis133

Examples (cont’d)
• The ontology

FunctionalDataProperty(a:hasAge)

DataPropertyAssertion(a:hasAge a:Meg
"17"^^xsd:integer)

DataPropertyAssertion(a:hasAge a:Meg

"17.0"^^xsd:decimal)

DataPropertyAssertion(a:hasAge a:Meg "+17"^^xsd:int)

is consistent because the different age literals given map to the same
value.

Knowledge Technologies Manolis Koubarakis134

Examples (cont’d)

• The ontology
FunctionalDataProperty(a:numberOfChildren)

DataPropertyAssertion(a:numberOfChildren

a:Meg "+0"^^xsd:float)

DataPropertyAssertion(a:numberOfChildren
a:Meg "-0"^^xsd:float)

 is unsatisfiable because literals "+0"^^xsd:float and
 "-0"^^xsd:float are mapped to distinct data values
+0 and -0 in the value space of xsd:float; these data
values are equal, but not identical.

Knowledge Technologies Manolis Koubarakis135

Axioms (cont’d)

Knowledge Technologies Manolis Koubarakis136

Datatype Definitions

• A datatype definition
DatatypeDefinition(DT DR) defines a new
datatype DT as being semantically equivalent to
the data range DR; the latter must be a unary
data range.

• The datatypes defined by datatype definition
axioms support no facets so they must not
occur in datatype restrictions.

Knowledge Technologies Manolis Koubarakis137

Example

DatatypeDefinition(a:SSN

DatatypeRestriction(xsd:string
xsd:pattern "[0-9]{3}-[0-9]{2}-

[0-9]{4}"))

DataPropertyRange(a:hasSSN a:SSN)

Knowledge Technologies Manolis Koubarakis138

Axioms (cont’d)

Knowledge Technologies Manolis Koubarakis139

Keys
• A key axiom

HasKey(CE (OPE1 ... OPEm) (DPE1 ... DPEn))
 states that each named instance of the class expression CE is uniquely

identified by the object property expressions OPEi and/or the data property
expressions DPEj.

• In this case, no two distinct named instances of CE can coincide on the
values of all object property expressions OPEi and all data property
expressions DPEj.

• A key axiom of the form HasKey(owl:Thing (OPE) ()) is similar to the
axiom InverseFunctionalObjectProperty(OPE). Their main
difference is that the former axiom is applicable only to individuals that are
explicitly named in an ontology, while the latter axiom is also applicable to
unnamed individuals.

Knowledge Technologies Manolis Koubarakis140

Example Inferences

• From
HasKey(owl:Thing () (a:hasSSN))

 DataPropertyAssertion(a:hasSSN a:Peter "123-45-
6789")

DataPropertyAssertion(a:hasSSN a:Peter_Griffin "123-
45-6789")

we can infer

SameIndividual(a:Peter a:Peter_Griffin)

Knowledge Technologies Manolis Koubarakis141

Example Inferences
• From

HasKey(a:GriffinFamilyMember () (a:hasName))

DataPropertyAssertion(a:hasName a:Peter "Peter")

ClassAssertion(a:GriffinFamilyMember a:Peter)

DataPropertyAssertion(a:hasName a:Peter_Griffin "Peter")

ClassAssertion(a:GriffinFamilyMember a:Peter_Griffin)

DataPropertyAssertion(a:hasName a:StPeter "Peter")

we can infer

SameIndividual(a:Peter a:Peter_Griffin)

Knowledge Technologies Manolis Koubarakis142

Example

• The ontology

HasKey(a:GriffinFamilyMember () (a:hasName))

DataPropertyAssertion(a:hasName a:Peter "Peter")

DataPropertyAssertion(a:hasName a:Peter "Kichwa-
Tembo")

ClassAssertion(a:GriffinFamilyMember a:Peter)

is consistent because a key axiom does not make all the properties
used in it functional.

Knowledge Technologies Manolis Koubarakis143

Axioms (cont’d)

Knowledge Technologies Manolis Koubarakis144

Declarations

• In an OWL 2 ontology, the entities (individuals,
classes, properties) used can be, and
sometimes even needs to be, declared.

• Declarations are nonlogical axioms. They have
no semantics but can helo OWL 2 tools to catch
errors.

• Declarations are optional. But in OWL DL
classes, datatypes and properties of various
kinds need to be declared as such.

Knowledge Technologies Manolis Koubarakis145

BNF for Entity Declarations

Declaration := 'Declaration' '(' axiomAnnotations
Entity ')‘

Entity :=
 'Class' '(' Class ')' |
 'Datatype' '(' Datatype ')' |
 'ObjectProperty' '(' ObjectProperty ')' |
 'DataProperty' '(' DataProperty ')' |
 'AnnotationProperty' '(' AnnotationProperty
')' |
 'NamedIndividual' '(' NamedIndividual ')'

Knowledge Technologies Manolis Koubarakis146

Example

Declaration(Class(a:Person))

Declaration(NamedIndividual(a:Peter))

ClassAssertion(a:Person a:Peter)

Knowledge Technologies Manolis Koubarakis147

Axioms (cont’d)

Knowledge Technologies Manolis Koubarakis148

Assertions

• OWL 2 supports a rich set of axioms for stating
assertions about individuals:
– Individual equality
– Individual inequality
– Class assertion
– Positive object property assertion
– Negative object property assertion
– Positive data property assertion
– Negative data property assertion

• Assertions are often also called facts. They are
part of the ABox in DLs.

Knowledge Technologies Manolis Koubarakis149

Individual Equality Axiom

• An individual equality axiom
SameIndividual(a1 ... an) states
that all of the individuals ai, 1≤i≤n, are
equal to each other.

Knowledge Technologies Manolis Koubarakis150

Example Inference

• From
SameIndividual(a:Meg a:Megan)

 ObjectPropertyAssertion(a:hasBrother a:Meg
a:Stewie)

we can infer

ObjectPropertyAssertion(a:hasBrother a:Megan
a:Stewie)

Knowledge Technologies Manolis Koubarakis151

Individual Inequality Axiom

• An individual inequality axiom
DifferentIndividuals(a1 ... an)
states that all of the individuals ai,
1≤i≤n, are different from each other.

• Example:
DifferentIndividuals(a:Peter a:Meg

a:Chris a:Stewie)

Knowledge Technologies Manolis Koubarakis152

Class Assertions

• A class assertion ClassAssertion(CE
a) states that the individual a is an
instance of the class expression CE.

• Example:

ClassAssertion(a:Dog a:Brian)

Knowledge Technologies Manolis Koubarakis153

Object Property Assertions

• A positive object property assertion
ObjectPropertyAssertion(OPE a1 a2)
states that the individual a1 is connected by the
object property expression OPE to the individual
a2.

• A negative object property assertion
NegativeObjectPropertyAssertion(OPE
a1 a2) states that the individual a1 is not
connected by the object property expression
OPE to the individual a2.

Knowledge Technologies Manolis Koubarakis154

Examples

ObjectPropertyAssertion(a:hasDog
a:Peter a:Brian)

NegativeObjectPropertyAssertion(a
:hasSon a:Peter a:Meg)

Knowledge Technologies Manolis Koubarakis155

Data Property Assertions

• A positive data property assertion
DataPropertyAssertion(DPE a lt) states
that the individual a is connected by the data
property expression DPE to the literal lt.

• A negative data property assertion
NegativeDataPropertyAssertion(DPE a
lt) states that the individual a is not connected
by the data property expression DPE to the literal
lt.

Knowledge Technologies Manolis Koubarakis156

Example Inference
• From

DataPropertyAssertion(a:hasAge a:Meg "17"^^xsd:integer)

SubClassOf(

 DataSomeValuesFrom(a:hasAge
 DatatypeRestriction(xsd:integer
 xsd:minInclusive "13"^^xsd:integer
 xsd:maxInclusive "19"^^xsd:integer
)
)
 a:Teenager
)

we can infer

ClassAssertion(a:Teenager a:Meg)

Knowledge Technologies Manolis Koubarakis157

Annotations

• OWL 2 applications often need ways to associate
additional information with ontologies, entities, and
axioms. To this end, OWL 2 provides for annotations on
ontologies, axioms, and entities.

• Annotations are first-class citizens in OWL 2; their
structure is independent of the underlying syntax and
they are different than comments that a syntax (e.g.,
OWL XML) might allow.

• Annotations have no formal semantics, thus they do not
participate in the meaning of an ontology (under the
OWL 2 direct semantics).

Knowledge Technologies Manolis Koubarakis158

Axioms (cont’d)

Knowledge Technologies Manolis Koubarakis159

Annotation of Entities and
Anonymous Individuals

• The axiom AnnotationAssertion(AP as av)
states that the annotation subject as is annotated with
the annotation property AP and the annotation value av.

• as can be an entity (i.e., individual, class or property) or
an anonymous individual.

• Example:
AnnotationAssertion(rdfs:label a:Person

"Represents the set of all people.")

Knowledge Technologies Manolis Koubarakis160

Annotations of Axioms, Annotations
and Ontologies

• OWL 2 also provides the construct
Annotation({A} AP v) where AP is an
annotation property, v is a literal, an IRI, or an
anonymous individual and {A} are 0 or more
annotations.

• The above construct can be used for
annotations of axioms and ontologies. It can
also be used for annotations of annotations
themselves.

Knowledge Technologies Manolis Koubarakis161

Examples

SubClassOf(

Annotation(rdfs:comment "Persons
are humans.") a:Person a:Human)

Knowledge Technologies Manolis Koubarakis162

Examples (cont’d)

Prefix(:=<http://www.example.com/ontology1#>)

Ontology(<http://www.example.com/ontology1>
 Import(<http://www.example.com/ontology2>)
 Annotation(rdfs:label "An example ontology")

 SubClassOf(:Child owl:Thing)

)

Knowledge Technologies Manolis Koubarakis163

Annotation Properties

• Various annotation properties can be defined by users
(e.g., an integer ID in the Foundational Model of
Anatomy ontology; see
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
).

• To help users in their modeling, OWL 2 also offers the
constructs:
– SubAnnotationPropertyOf(AP1 AP2) states that the

annotation property AP1 is a subproperty of the annotation
property AP2.

– AnnotationPropertyDomain(AP U) states that the domain
of the annotation property AP is the IRI U.

– AnnotationPropertyRange(AP U) states that the range of
the annotation property AP is the IRI U.

http://sig.biostr.washington.edu/projects/fm/AboutFM.html

Knowledge Technologies Manolis Koubarakis164

Metamodeling
• OWL 2 enables metamodeling by allowing the same IRI I to refer

to more than one type of entity (e.g., an individual and a class). This
is called “punning” in the literature.

• Example:
ClassAssertion(a:Father a:John)

ClassAssertion(a:SocialRole a:Father)

• In the above example, IRI a:Father is first used as a class and
then as an individual.

• The direct model-theoretic semantics of OWL 2 accommodates this
by understanding the class a:Father and the individual a:Father
as two different views on the same IRI, i.e. they are interpreted
semantically as if they were distinct.

Knowledge Technologies Manolis Koubarakis165

Semantics

• There are two alternative ways of assigning
meaning to ontologies in OWL 2:
– The direct model-theoretic semantics. This

provides a meaning for OWL 2 in a DL style by
understanding OWL 2 constructs as constructs of the
DL SROIQ. See
http://www.w3.org/TR/owl2-direct-semantics/ .

– The RDF-based semantics. This is an extension of
the semantics for RDFS and is based on viewing
OWL 2 ontologies as RDF graphs. See
http://www.w3.org/TR/owl2-rdf-based-semantics/.

http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/

Knowledge Technologies Manolis Koubarakis166

OWL 2 DL and OWL 2 Full
• Informally, the notion "OWL 2 DL" is used to refer to OWL 2

ontologies interpreted using the direct semantics, and the notion
"OWL 2 Full" is used when considering the RDF-based semantics.

• Formally, there are certain additional conditions which must be
met by an OWL 2 ontology to qualify as OWL 2 DL. For example:
– Reserved vocabulary (e.g., owl:Thing) should only be used for its

intended purpose.
– Strict typing conditions e.g., no IRI can be used as a class and a

datatype or as an object and datatype property.
– Classes, datatypes and properties need to be declared.
– Some global restrictions from SROIQ to ensure decidability.

• See the OWL 2 Structural Specification and Functional-Style Syntax
for the exact conditions.

Knowledge Technologies Manolis Koubarakis167

OWL 2 DL and OWL 2 Full (cont’d)

• We can think of the difference between OWL 2
DL and OWL 2 Full in two ways:
– OWL 2 DL is a syntactically restricted version of OWL

2 Full. OWL 2 Full is undecidable while OWL 2 DL is
not. There are several production quality reasoners
that cover the entire OWL 2 DL language (e.g., Pellet,
Fact++ and HermiT).

– OWL 2 Full is an extension of RDFS. As such, the
RDF-Based Semantics for OWL 2 Full follows the
RDFS semantics and general syntactic philosophy
(i.e., everything is a triple and the language is fully
reflective).

Knowledge Technologies Manolis Koubarakis168

OWL 2 Profiles
• In addition to OWL 2 DL and OWL 2 Full, OWL 2 specifies three

profiles: OWL 2 EL, OWL QL and OWL RL.

• These profiles are designed to be subsets of OWL 2 sufficient for
a variety of applications.

• Computational considerations are a major requirement of these
profiles; they are all much easier to implement with robust scalability
given existing technology.

• There are many subsets of OWL 2 that have good computational
properties. The selected OWL 2 profiles were identified as having
substantial user communities already.

• The OWL 2 Profiles document provides a clear template for
specifying additional profiles.

Knowledge Technologies Manolis Koubarakis169

OWL 2 EL
• The OWL 2 EL profile is a subset of OWL 2 that

– is particularly suitable for applications employing ontologies that define
very large numbers of classes and/or properties,

– captures the expressive power used by many such ontologies, and
– for which ontology consistency, class expression subsumption,

and instance checking can be decided in polynomial time.

• Example: OWL 2 EL is sufficient to express the very large
biomedical ontology SNOMED CT.

• The acronym EL comes from the fact that the profile is based on the
DL family of languages EL. See the relevant paper
– Pushing the EL Envelope. Franz Baader, Sebastian Brandt, and

Carsten Lutz. In Proc. of the 19th Joint Int. Conf. on Artificial Intelligence
(IJCAI 2005), 2005 . Available from
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf

http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf

Knowledge Technologies Manolis Koubarakis170

OWL 2 EL Specification

• Types of class restrictions allowed:
– existential quantification to a class expression

(ObjectSomeValuesFrom) or a data range
(DataSomeValuesFrom)

– existential quantification to an individual
(ObjectHasValue) or a literal (DataHasValue)

– self-restriction (ObjectHasSelf)
– enumerations involving a single individual

(ObjectOneOf) or a single literal (DataOneOf)
– intersection of classes (ObjectIntersectionOf)

and data ranges (DataIntersectionOf)

Knowledge Technologies Manolis Koubarakis171

OWL 2 EL Specification (cont’d)

• Types of axioms allowed:
– class inclusion (SubClassOf)
– class equivalence (EquivalentClasses)

– class disjointness (DisjointClasses)

– object property inclusion (SubObjectPropertyOf)
with or without property chains, and data property
inclusion (SubDataPropertyOf)

– property equivalence
(EquivalentObjectProperties and
EquivalentDataProperties)

Knowledge Technologies Manolis Koubarakis172

OWL 2 EL Specification (cont’d)

– transitive object properties (TransitiveObjectProperty)
– reflexive object properties (ReflexiveObjectProperty)
– domain restrictions (ObjectPropertyDomain and
DataPropertyDomain)

– range restrictions (ObjectPropertyRange and
DataPropertyRange)

– assertions (SameIndividual, DifferentIndividuals,
ClassAssertion, ObjectPropertyAssertion,
DataPropertyAssertion,
NegativeObjectPropertyAssertion, and
NegativeDataPropertyAssertion)

– functional data properties (FunctionalDataProperty)
– keys (HasKey)

Knowledge Technologies Manolis Koubarakis173

OWL 2 EL Specification (cont’d)

• Constructs not supported:
– universal quantification to a class expression

(ObjectAllValuesFrom) or a data range
(DataAllValuesFrom)

– cardinality restrictions (ObjectMaxCardinality,
ObjectMinCardinality, ObjectExactCardinality,
DataMaxCardinality, DataMinCardinality, and
DataExactCardinality)

– disjunction (ObjectUnionOf, DisjointUnion, and
DataUnionOf)

– class negation (ObjectComplementOf)
– enumerations involving more than one individual (ObjectOneOf

and DataOneOf)

Knowledge Technologies Manolis Koubarakis174

OWL 2 EL Specification (cont’d)

– disjoint properties (DisjointObjectProperties
and DisjointDataProperties)

– irreflexive object properties
(IrreflexiveObjectProperty)

– inverse object properties
(InverseObjectProperties)

– functional and inverse-functional object properties
(FunctionalObjectProperty and
InverseFunctionalObjectProperty)

– symmetric object properties
(SymmetricObjectProperty)

– asymmetric object properties
(AsymmetricObjectProperty)

Knowledge Technologies Manolis Koubarakis175

OWL 2 QL
• The OWL 2 QL profile is a subset of OWL 2 that provides a useful language for

writing ontologies that have computational properties similar to the ones that one
finds in relational databases.

• In this profile sound and complete query answering can be done with LOGSPACE
computational complexity with respect to the size of the data (assertions), while
providing many of the main features necessary to express conceptual models such
as UML class diagrams and ER diagrams.

• This profile contains the intersection of RDFS and OWL 2 DL.

• This profile is designed so that data (assertions) that is stored in a standard relational
database system can be queried through an ontology via a simple rewriting
mechanism, i.e., by rewriting the query into an SQL query that is then answered by
the RDBMS system, without any changes to the data.

• OWL 2 QL is based on the DL-Lite family of description logics.

• See the OWL 2 Language Profiles document for more details.

Knowledge Technologies Manolis Koubarakis176

OWL 2 RL
• The OWL 2 RL profile is aimed at applications that require scalable

reasoning without sacrificing too much expressive power.

• It is designed to accommodate both OWL 2 applications that can trade the
full expressivity of the language for efficiency, and RDF(S) applications that
need some added expressivity from OWL 2.

• This is achieved by defining a syntactic subset of OWL 2 which is
amenable to implementation using rule-based technologies and
presenting a partial axiomatization of the OWL 2 RDF-based semantics
in the form of first-order implications that can be used as the basis for
such an implementation.

• The design of OWL 2 RL was inspired by Description Logic Programs
and pD*.

• See the OWL 2 Language Profiles document for more details.

Knowledge Technologies Manolis Koubarakis177

OWL Syntaxes (cont’d)

• The Functional-Style syntax (used so far in these
slides).

• The RDF/XML syntax: this is just RDF/XML, with a
particular translation for the OWL constructs. Here one
can use other popular syntaxes for RDF, e.g., Turtle
syntax.

• The Manchester syntax: this is a frame-based syntax
that is designed to be easier for users to read.

• The OWL XML syntax: this is an XML syntax for OWL
defined by an XML schema.

Knowledge Technologies Manolis Koubarakis178

Example

• Jack is a person but not a parent.

Knowledge Technologies Manolis Koubarakis179

Functional-Style Syntax

ClassAssertion(

 ObjectIntersectionOf(:Person

 ObjectComplementOf(:Parent))

 :Jack

)

Knowledge Technologies Manolis Koubarakis180

RDF/XML Syntax
<rdf:Description rdf:about="Jack">
 <rdf:type>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="Person"/>
 <owl:Class>
 <owl:complementOf rdf:resource="Parent"/>
 </owl:Class>
 </owl:intersectionOf>
 </owl:Class>
 </rdf:type>
</rdf:Description>

Knowledge Technologies Manolis Koubarakis181

Turtle Syntax

:Jack rdf:type [

 rdf:type owl:Class;

 owl:intersectionOf (:Person

 [rdf:type owl:Class;

 owl:complementOf :Parent]

)

] .

Knowledge Technologies Manolis Koubarakis182

Manchester Syntax

Individual: Jack

Types: Person and not Parent

Knowledge Technologies Manolis Koubarakis183

OWL/XML Syntax

<ClassAssertion>
 <ObjectIntersectionOf>
 <Class IRI="Person"/>
 <ObjectComplementOf>
 <Class IRI="Parent"/>
 </ObjectComplementOf>
 </ObjectIntersectionOf>
 <NamedIndividual IRI="Jack"/>
</ClassAssertion>

Knowledge Technologies Manolis Koubarakis184

Readings
• The document

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/ gives an
overview of the OWL 2 specification of the W3C OWL Working
Group. In the documents referenced there, you will find all the
information that you may need.

• You should read at least the Primer (
http://www.w3.org/TR/owl2-primer/) and Structural Specification and
Functional Style Syntax (http://www.w3.org/TR/owl2-syntax/) .

• The DL SROIQ on which OWL 2 is based is described in the paper
– The Even More Irresistible SROIQ. Ian Horrocks, Oliver Kutz, and Uli

Sattler. In Proc. of the 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2006). AAAI Press, 2006. Available
from http://www.cs.manchester.ac.uk/~sattler/publications/sroiq-TR.pdf.

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-syntax/
http://www.cs.manchester.ac.uk/~sattler/publications/sroiq-TR.pdf

