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Tableau Proof Techniques for DLs
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Reasoning Services for DLs

• Terminating, complete and efficient algorithms for deciding
satisfiability – and all the other reasoning services – are
available for various DLs.

• Most of these algorithms are based on tableau proof
techniques.

• Such algorithms have been shown to be efficient for real
knowledge bases, even if the problem in the corresponding logic
is in PSPACE or EXPTIME. Most popular DL reasoners today
are based on tableau techniques e.g., FACT++
(http://owl.man.ac.uk/factplusplus/) and Pellet
(http://clarkparsia.com/pellet/).
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Tableau Proof Techniques

We will give a short introduction of tableau proof techniques for

• Propositional logic (PL)

• First-order logic (FOL)

before we move to the case of description logics.

What we want to demonstrate is that tableau techniques have been
standard proof techniques in other logics before they were used by
DL researchers. Regarding DLs, there are also close connections to
tableau techniques for modal logics but we will not introduce them
here in any detail.

In the literature, the term semantic tableau is also used.
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Tableau Proof Techniques - PL

Tableau are refutation systems for PL (like resolution). To
prove that a formula P is a tautology (or valid), we start with
¬P and produce a contradiction.

The procedure for doing this involves expanding ¬P so that
inessential details of its logical structure are cleared away.

In tableau proofs, such an expansion takes the form of a tree,
where nodes are labeled with formulas.

Each branch of this tree should be thought of as representing the
conjunction of the formulas appearing on it, and the tree itself as
representing the disjunction of its branches.
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Uniform Notation for PL

Theorem. (Unique Parsing) Every propositional formula is in
exactly one of the following categories:

1. atomic (propositional symbol, > or ⊥).

2. ¬X, for a unique propositional formula X.

3. (X ◦ Y ) for a unique binary symbol ◦ and unique propositional
formulas X and Y .
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Uniform Notation for PL (cont’d)

Based on the unique parsing theorem, we can group all
propositional formulas of the forms (X ◦ Y ) and ¬(X ◦ Y ) into two
categories, those that act conjunctively, which we call
α-formulas, and those that act disjunctively, which we call
β-formulas:

α α1 α2

X ∧ Y X Y

¬(X ∨ Y ) ¬X ¬Y

¬(X ⊃ Y ) X ¬Y

β β1 β2

¬(X ∧ Y ) ¬X ¬Y

X ∨ Y X Y

X ⊃ Y ¬X Y

Uniform notation allows us to have a large number of basic
connectives, and still not do unnecessary work in proofs.
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Tableau Expansion Rules

The following tableau expansion rules are used to manipulate
trees (transform a tree into another) in tableau proofs:

¬¬P

P

¬>
⊥

¬⊥
>

α

α1

α2

β

β1 β2

How are these rules used?
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Example

Let us assume that we want to show that the formula

(P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S)).

is a tautology. The following tree is a tableau proof of this formula.
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Example (cont’d)

¬[(P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))]

P ⊃ (Q ⊃ R)

¬((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))

P ∨ S

¬((Q ⊃ R) ∨ S)

¬(Q ⊃ R)

¬S

¬P Q ⊃ R

P S
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Closed Tableau

A branch θ of a tableau is called closed if both X and ¬X occur
on θ for some propositional formula X, or if ⊥ occurs on θ.

If A and ¬A occur on θ where A is atomic, or if ⊥ occurs, θ is said
to be atomically closed.

A tableau is (atomically) closed if every branch is (atomically)
closed.

A tableau proof of X is a closed tableau for {¬X}.
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Soundness and Completeness

Theorem. (Soundness) If a sentence φ of PL has a tableaux proof
then φ is a tautology.

Theorem. (Completeness) If a sentence φ of PL is a tautology
then φ has a tableau proof.
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The Example Revisited

¬[(P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))]

P ⊃ (Q ⊃ R)

¬((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))

P ∨ S

¬((Q ⊃ R) ∨ S)

¬(Q ⊃ R)

¬S

¬P Q ⊃ R

P S
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Example (cont’d)

Notice that all branches of the tableau in this example are closed.
In one of the branches, closure was on a non-atomic formula.

Thus, the tableau is closed and the given formula

(P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))

is a tautology.
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Uniform Notation for FOL

The uniform notation we introduced for PL can be extended to
FOL. The additional machinery is that all quantified formulas
and their negations are grouped into two categories, those that act
universally, which are called γ-formulas, and those that act
existentially, which are called δ-formulas. For each variety and
for each term t, an instance is defined.

γ γ(t)

(∀x)Φ Φ{x/t}
¬(∃x)Φ ¬Φ{x/t}

δ δ(t)

(∃x)Φ Φ{x/t}
¬(∀x)Φ ¬Φ{x/t}
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Tableau Proofs for FOL

In informal proofs, new constant symbols are routinely used.

The formal counterpart is parameters, constant symbols not part
of our original language.

In tableau proofs, we will use sentences of Lpar, the extension of
the given language L by the addition of a countable list of new
parameters.
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Tableau Expansion Rules for FOL

In the case of FOL, we have the PL tableau expansion rules
plus the following two:

γ

γ(t)

(for any closed

term t of Lpar)

δ

δ(p)

(for a new parameter

p of Lpar)



Knowledge Technologies M. Koubarakis
'

&

$

%

Example

Let us assume that we want to prove that the FOL formula

(∀x)(P (x) ∨Q(x)) ⊃ ((∃x)P (x) ∨ (∀x)Q(x))

is valid. The following tree is a tableau proof of this formula. The
resulting tableau is closed.
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Example (cont’d)

¬((∀x)(P (x) ∨Q(x)) ⊃ ((∃x)P (x) ∨ (∀x)Q(x)))

(∀x)(P (x) ∨Q(x))

¬((∃x)P (x) ∨ (∀x)Q(x))

¬(∃x)P (x)

¬(∀x)Q(x)

¬Q(c)

¬P (c)

P (c) ∨Q(c)

P (c) Q(c)
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Soundness and Completeness

Theorem. (Soundness) If a FOL sentence φ has a tableau proof
then φ is valid.

Theorem. (Completeness) If a sentence φ of FOL is valid, then φ

has a tableau proof.

Because FOL is not decidable, tableau proofs may not always
terminate. The source of this difficulty is the γ rule.

Trivial example: Suppose we have a tableau branch containing
both (∃x)¬P (x) and (∀y)P (y). We might apply the δ-rule to the
first formula, adding ¬P (c), where c is a new parameter. But then
using the γ-rule on the second, we might add one after the other
P (t1), P (t2), . . . where t1, t2, . . . are all distinct closed terms
different from c. In this way, we never produce the obvious closure.
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Deciding Satisfiability in DL Using Tableau

Tableau proofs are decision procedures for solving the problem of
satisfiability in a DL.

If a formula is satisfiable, the procedure will constructively exhibit
a model of the formula.

The basic idea (as in PL and FOL) is to incrementally build such a
model by looking at the formula and decomposing it in a top/down
fashion. The procedure exhaustively looks at all the possibilities.

If a formula is unsatisfiable, the procedure can eventually prove
that no model could be found.
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ALC - Revision

Syntax Semantics Terminology
A AI ⊆ ∆ atomic concept

R RI ⊆ ∆×∆ atomic role

> ∆ top (universal) concept

⊥ ∅ bottom concept

¬C ∆ \ CI concept complement

C uD CI ∩DI
concept conjunction

C tD CI ∪DI
concept disjunction

∀R.C {x | (∀y)((x, y) ∈ RI ⇒ y ∈ CI)} universal restriction

∃R.C {x | (∃y)((x, y) ∈ RI ∧ y ∈ CI)} existential restriction
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ALC - Examples

• Person u ¬Female
• Female t Male

• ∀child.Person
• ∃child.Person
• ∃child.Person u ∀child.Person
• (Female u ∀child.Person)(ANNA)
• child(BOB, ANNA)
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Tableau Proofs for ALC Concept Satisfiability

Given an ALC concept C, the tableau algorithm for concept
satisfiability tries to construct a finite interpretation I that
satisfies C i.e., it contains an element a such that a ∈ CI .

We follow the paper by Baader and Sattler (2001) given in the
readings, and use an ABox assertion C(a) to encode this.

In some papers of the literature, a constraint system is used to
implement the tableau (the two approaches are equivalent).
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Tableau Proofs: the High-Level Algorithm

1. We start with the ABox assertion C(a).

2. We add formulas to the tableau by applying certain
transformation rules. Transformation rules are either
deterministic or nondeterministic (result in branches).

3. We apply the transformation rules until either a
contradiction is generated in every branch, or there is a
branch where no more rule is applicable.

In the former case C is unsatisfiable. In the latter case, C is
satisfiable and this branch gives a non-empty model of C.
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Negation Normal Form

For the tableau techniques to work, the formula in question has to
be transformed into negation normal form.

Definition. A formula is in negation normal form if negation
appears only in front of atomic concepts.

Applying the following equivalences, we can transform any ALC
formula into an equivalent one in negation normal form:

• ¬(C uD) ≡ ¬C t ¬D

• ¬(C tD) ≡ ¬C u ¬D

• ¬(∀R.C) ≡ ∃R.¬C

• ¬(∃R.C) ≡ ∀R.¬C
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Transformation Rules: the AND rule

The transformation rules come straightforwardly from the
semantics of constructors.

If in an arbitrary interpretation I, whose domain contains an
arbitrary element a, we have that a ∈ (C uD)I , then from the
semantics we know that a should be in the intersection of CI and
DI , i.e. it should be in both CI and DI .

We can use ABox assertions to encode this in a transformation
rule as follows.
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The AND rule (or →u-rule)

If

• (C uD)(a) is in A, but

• C(a) and D(a) are not both in A
then

A := A ∪ {C(a), D(a)}
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The OR Rule (or →t-rule)

Similarly, we have the following rule.

If

• (C tD)(a) is in A, but

• neither C(a) nor D(a) is in A
then

A := A ∪ {C(a)}
or

A := A ∪ {D(a)}

This rule forces us to introduce sets of ABoxes as a formal tool
to represent tableau proofs.
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The SOME rule (or →∃-rule)

From the semantics, we have the following. If in an arbitrary
interpretation I, whose domain contains an arbitrary element a, we
have that a ∈ (∃R.C)I , then there must be an element b (not
necessarily distinct from a) such that (a, b) ∈ RI and b ∈ CI .

We can use ABox assertions to encode this in a transformation
rule as follows.
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The SOME rule (cont’d)

If

• (∃R.C)(a) is in A and

• there is no individual c such that both R(a, c) and C(c) are in
A

then

A := A ∪ {R(a, b), C(b)}
where b is an a new individual not occurring in A.
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The FORALL Rule (or →∀-rule)

Similarly, we have the following rule.

If

• (∀R.C)(a) is in A
• R(a, b) is in A, and

• C(b) is not in A
then

A := A ∪ {C(b)}
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Some Definitions

Definition. An ABox is called complete if none of the above
transformation rules applies to it.

While building a tableau proof, we can look for evident
contradictions to see if the tableau is not satisfiable. We call these
contradictions clashes.

Definition. An ABox A contains a clash if

• {⊥(a)} ⊆ A, or

• {C(a), (¬C)(a)} ⊆ A
for some individual a and concept C.

Definition. An ABox is called closed if it contains a clash, and open
otherwise.

Note: ABoxes correspond to branches in a tableau so the definitions
can be given for tableaux too.
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Tableau Proofs: the Algorithm Revisited

1. We start with the ABox assertion C(a).

2. We add formulas to the tableau by applying the previous rules.

3. We apply the rules until either a contradiction is generated in
every branch (all branches are closed ABoxes), or there is a
branch where no contradiction appears and no rule is
applicable (this branch is an open and complete ABox).

In the former case C is unsatisfiable. In the latter case, C is
satisfiable and this branch gives a non-empty model of C.
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Examples

Let us check whether the concept

(∀child.Male) u (∃child.¬Male)
is satisfiable. The tableau method will proceed as follows:

((∀child.Male) u (∃child.¬Male))(a)

(∀child.Male)(a) u-rule

(∃child.¬Male)(a)
child(a, b) ∃-rule

¬Male(b)
Male(b) ∀-rule

Clash!

The tableau is complete and there is a contradiction in every branch, thus
the given concept is unsatisfiable.
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Examples (cont’d)

Let us check whether the concept

(∀child.Male) u (∃child.Male)
is satisfiable. The tableau method will proceed as follows:

((∀child.Male) u (∃child.Male))(a)

(∀child.Male)(a) u-rule

(∃child.Male)(a)
child(a, b) ∃-rule

Male(b)

Male(b) ∀-rule

The above tableau with one branch (ABox) is complete and open, thus
the given formula is satisfiable. Can you find a model?
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Satisfiability of ABoxes

Naturally, we can also check the satisfiability of ABoxes using
tableau techniques.

Example: Consider the ABox consisting of the following formulas:

(Parent u ∀child.Male)(JOHN)

¬Male(MARY)
child(JOHN, MARY)
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Satisfiability of ABoxes (cont’d)

The tableau technique in this case gives us:

(Parent u ∀child.Male)(JOHN)
(¬Male)(MARY)

child(JOHN, MARY)
Parent(JOHN) u-rule

(∀child.Male)(JOHN)
Male(MARY) ∀-rule

Clash!

Thus the ABox is unsatisfiable.
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Soundness of the Tableau Method for ALC

The tableau method does not add unnecessary contradictions.

Deterministic rules always preserve the satisfiability of any
ABox involved in the proof, and nondeterministic rules allow
always a choice of application that preserves satisfiability.
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Termination of the Tableau Method for ALC

Termination can be proved by using the following argument.

All rules but →∀ are never applied twice on the same ABox
assertion.

The →∀ rule is never applied to an individual a more times than
the number of the direct successors of a, which is bounded by
the length of a concept (for a definition of the concept of direct
successors see the formal proof).

Finally, each rule application to a formula C(a) adds formulas D(b)
such that D is a strict subexpression of C.
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Completeness of the Tableau Method for ALC

If A is a complete and open ABox (i.e., a branch) in a tableau
proof of C(a) then A is satisfiable.

The following is a canonical interpretation I of A that can be
obtained from the tableau:

• The domain ∆I of I consists of the individuals occurring in A.

• For each atomic concept P , we define P I to be {x| P (x) ∈ A}.
• For each atomic role R, we define RI to be
{(x, y)| R(x, y) ∈ A}.

Using this interpretation, it is possible to construct an
interpretation for C such that CI is nonempty. In other words, C

is satisfiable.
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Example

Let us revisit the complete and open Abox we used to prove that the
concept

(∀child.Male) u (∃child.Male)
is satisfiable:

((∀child.Male) u (∃child.Male))(a)

(∀child.Male)(a) u-rule

(∃child.Male)(a)
child(a, b) ∃-rule

Male(b)

Male(b) ∀-rule
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Example (cont’d)

A model I of the Abox has domain ∆(I) = {a, b} and

MaleI = {b}, childI = {(a, b)}.

The concept
(∀child.Male) u (∃child.Male)

is satisfiable because

((∀child.Male) u (∃child.Male))I = {a} 6= ∅
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Tableau Techniques for TBoxes

So far we have used tableau techniques to deal with concept
satisfiability and ABox satisfiability.

The literature gives us tableaux techniques for dealing with TBoxes
as well.

The easiest case is when we have acyclic terminologies.
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Acyclic Terminologies

A TBox is called an acyclic terminology if it is a set of concept
definitions that do not contain multiple or cyclic definitions.

Multiple definitions are terminological axioms of the form

A ≡ B1, . . . , A ≡ Bn

for distinct concept expressions B1, . . . , Bn.

Cyclic definitions are terminological axioms of the form

A1 ≡ C1, . . . , An ≡ Cn

where Ai occurs in Ci−1 (1 < i ≤ n) and A1 occurs in Cn.

If the acyclic terminology T contains a concept definition A ≡ C

then A is called its defined name and C its defining concept.
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Acyclic Terminologies (cont’d)

Reasoning with acyclic terminologies can be reduced to reasoning
without TBoxes by unfolding the definitions: this is achieved by
repeatedly replacing defined names by their defining concepts until
no more defined names exist.

Unfolding might lead to an exponential blow-up in the size of
the produced ABox.
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Example

TBox:

MixedTeam ≡ Team u (∃hasMember.Male) u (∃hasMember.Female)

Male ≡ ¬Female

ABox:

MixedTeam(FC)

(∀hasMember.Male)(FC)

The above knowledge base is unsatisfiable.
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Example (cont’d)

After unfolding the definition of MixedTeam, we have:

(Team u (∃hasMember.Male) u (∃hasMember.Female))(FC)

(∀hasMember.Male)(FC)

After unfolding the definition of Male, we have:

(Team u (∃hasMember.(¬Female)) u (∃hasMember.Female))(FC)

(∀hasMember.(¬Female))(FC)
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Example (cont’d)

The closed tableau showing unsatisfiability is as follows:

(Team u (∃hasMember.(¬Female)) u (∃hasMember.Female))(FC)

(∀hasMember.(¬Female))(FC)
(Team u (∃hasMember.(¬Female)))(FC)

((∃hasMember.Female))(FC)
hasMember(FC, a)

Female(a)

¬Female(a)
Clash!
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General TBoxes

For tableau proofs involving general TBoxes, see the paper by
Baader and Sattler (2001) in the readings and references therein.
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Readings

• F. Baader. Description Logics. In Reasoning Web: Semantic
Technologies for Information Systems, 5th International
Summer School 2009, volume 5689 of Lecture Notes in
Computer Science, pages 1-39. Springer-Verlag, 2009.

Available from
http://lat.inf.tu-dresden.de/research/papers.html.

• F. Baader and U. Sattler. An Overview of Tableau Algorithms
for Description Logics. Studia Logica, 69:5-40, 2001.

Available from
http://www.cs.man.ac.uk/~sattler/ulis-ps.html.

• (Optional). Melvin Fitting. First-Order Logic and Automated
Theorem Proving. 2nd edition. Springer, 1996.

This is a good introduction to tableau proofs for PL and FOL.
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