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1. Introduction

The branching-time transformatiofiL8, 19] is a recent transformation technigue that applie€hain
Datalog programs. More specifically, the branching-timprapch belongs to the classwdlue-propa-
gating Datalog optimizations in which the input values of the toyelegoal of the source program are
propagated in order to restrict the generation of atomserbtttom-up computation. Such techniques
include thecounting transformatiorj24], the magic set43, 25], thepushdown approackf], and so
on. The branching-time transformation was inspired by alaintechnique that has been proposed for
functional programming languages [30, 29, 21, 22].

In this paper, we extend the branching-time approach soatdt ttan handle a significantly broader
class of well-moded Datalog programs. One of the novel dbariatics of our new approach is that the
target language is Datalgg [5, 4] extended with choice predicates [14], a non-deteistimconstruct
that was originally introduced in intensional logic progwaing [13]. The use of choice predicates allows
the transformation of clauses containing multiple constivapoccurrences of variables. We believe
that the use of non-deterministic constructs opens up aipiagndirection of research in the area of
Datalog optimizations. For the programs that result froettansformation we define a bottom-up proof
procedure and we demonstrate that it always terminatepifdebe fact that the Herbrand base of the
programs of the target language can be infinite). Finallyde#®ne several optimizations on the target
code, which enhance the performance of the bottom-up catipnt The main contributions of the
paper can therefore be summarized as follows:

¢ We propose a new value-propagating transformation teaerfior a large class of moded Datalog
programs and demonstrate its correctness. Actually, thesabf programs that we consider is
broader than those considered by other related transfimmsat

¢ We demonstrate that temporal languages such as Datatogended with non-deterministic con-
structs can prove especially useful for defining new powérfimsformations for Datalog programs
(and possibly for more general logic programs). In paréiculve demonstrate that multiple con-
sumptions of variables in Datalog programs can be treafedtfely using choice predicates.

¢ We define a proof procedure that applies to the target pragdrtne transformation, and demon-
strate that it always terminates. Moreover, we proposerabgptimizations of the target code that
enhance its efficiency.

Some of the results outlined above appeared in prelimiram fis a conference paper [16].

The rest of this paper is organized as follows: Section 2sgare outline of the proposed transfor-
mation technigue. Sections 3 and 4 introduce the sourcehani@ditget languages of the transformation,
while Section 5 introduces the transformation algorithselft Section 6 provides the correctness proof
of the transformation. Section 7 introduces a terminatirmppprocedure for the programs that result
from the transformation and Section 8 presents optimimatiof the target code. Section 9 evaluates
the proposed technique with respect to other related tvemsttions, and Section 10 discusses possible
future extensions.
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2. An Outline of the Technique

In the area of deductive databases, Datalog and bottom-pipiixcomputation are favored. The effec-
tiveness of bottom-up execution for Datalog programs istas optimization techniques, often referred
to asquery optimization techniqug?7]. A query optimization is a transformation of a querydgram
and goal) to a new query, that is semantically equivaleridaritial one, in a form suitable for more effi-
cient bottom-up evaluation. A known family of query optimiions is thevalue-propagating techniques
that treat queries in which goals have some bound arguments.

The branching-time transformation was recently introdubg two of the authors in the area of
value-propagating Datalog optimizations, and appliesitéinnitial form) to the class of Chain Data-
log programs [18, 19]. The name “branching-time” is due t fidact that the recursive predicate calls
in a program form a tree-like structure which can be captwsidg a branching-time language. The
branching-time transformation is applied on all clausethefinitial program, and for each one of them
produces a set of new clauses (each one of which containssttome IDB predicate in its body). Intu-
itively, the resulting clauses reflect in a more direct way flow of the argument values that takes place
when the initial program is executed.

In the branching-time transformation, for every predidatéhe initial program two new predicates
are introduced; each one of them has two arguments, a camieolin the form of a list of natural
numbers) and a data one which encodes the argument beirgdpaBise intuition behind the control
argument is that it “links” the two new predicates and cogatits them so as that the correct answers
will be produced.

To illustrate the branching-time transformation in itdiadiform, consider the following Chain Dat-
alog program (in whiclp is an IDB predicate while an EDB one):

+—p(a,Y).
p(X,Z) + e(X,2).
p(X,2) < p(X,Y), p(Y,2).

In the class of Chain Datalog programs, the first argumentaoch eoredicate is considered as an
input one while the second as an output (this is due to thetliattwe consider goal atoms with their
first argument bound). The new predicat§sandp~ introduced by the transformation for a program
predicatep, correspond to the calls (inputs) and the answers (outpespectively, for the predicatein
the top-down computation.

We demonstrate the transformation by considering in tuoh edause of the initial program. The
transformation of the goal clause results in:

~p ([1,V).
pi ([]1,a).
Notice that the bound argument of the initial goal clauselfg®me an argument of a unit clause in
the transformed program. As a result, the bottom-up evialuatf the resulting program would use this

unit clause in its first step in order to restrict the set ofr@@roduced in subsequent steps.
The transformation of the first clause of the source progesults in:

p (L,Z) « e ([1IL1,2).
el ([1IL],X) + p/ (L,X).
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Notice the labell that appears in bote~ ([1]|L],Z) andef([i |IL],X). The basic idea is that this
label relates the two atoms that have resulted from the satha¢he initial program (namely the call
e(X,2)). Itis important to note thadnylabel can be used instead fyfas long as this label is different
from the ones that are assigned to other calls of the init@g@mm.

The second clause of the initial program is transformed kksafs:

p (L,Z) + p ([3IL],2).
pf ([3IL1,Y) « p ([2IL1,Y).
py ([21L1,X) < p (L,X).

Finally, the branching-time transformation also introelsithe clause:
e (L,Y) + e(X,Y),ef (L,X).

which plays the role of an interface to the database atomsevpredicate is.

Notice that the program obtained by the transformation isridatalog one. In fact, it is a Datalpg
program [5, 4]. We should also note that in the original pagiafining the branching-time transforma-
tion [18, 19], sequences of temporal operators are useshidsf lists of natural numbers, and the result-
ing program is @&ranching Datalogone (Branching Datalog is the function-free subset of tla@bning-
time logic programming languageactus[20]). It is however easy to show that the two approaches are
equivalent. Notice also that the Herbrand base of the pragir@sulting from the transformation is not
finite due to the lists that have been introduced. Howeveweabave demonstrated in [19] (based on
the results in [4]) there exists a terminating bottom-up potation that produces all the answers to the
goal clause. For a more detailed description of the bragetime transformation, the interested reader
should consult [19, 18].

However, the branching-time technigue in the form desdrilgove, does not apply to Datalog pro-
grams in which there exist multiple consumptions of vagablIThe following example demonstrates the
issues that arise in such a case. Consider a Datalog probedrmantains the clause:

p(X,Z) « q(X,W),r(X,W,2).

The problem with the above clause arises from the facttlagipears twice in the body of the clause.
When attempting to apply the branching-time technique ¢cdihove program, the relationship between
the two different occurrences #&fis lost, and the resulting program is no longer semanticailyivalent
to the initial one. More specifically, a naive translatiorited above clause would produce (among others)
the two following clauses:

q; ([111L],X) + p] (L,X).
r{ ([121L],X) + pf (L,X).

wherell and12 are natural numbers. Notice that the two occurrences iofthe body of the initial
clause have been separated from each other as they havelbeed in different clauses in the target
program, and it is therefore possible for them to instamtiatdifferent values (something which was not
the case in the original clause). In this way the resultinggmm may produce answers which are not
included in the set of answers of the initial program.

In this paper, we propose a solution to the above problemdbasehoice predicate$l4], a non-
deterministic construct that has been proposed in the dieteasional logic programminfl3] (similar
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non-deterministic constructs have also been considerethar forms in [7, 8]). Choice predicates are
declarative in nature and have a well-defined and elegararstica [14]. The basic idea behind choice
predicates is that under a given context (represented hiystiein the above example), a predicate can
only be true of a unique value. Therefore, the above two elgan be instead written as:

af ([111L1,X) « #p; (L,X).
ry ([12|L],X) + #p; (L,X).

wheretp] is the choice version of the predicatg, which at any giveil can be true of only one value
This restores the connection between the two occurrencesre$ulting in a target program equivalent
to the source one.

3. The Source Language of the Transformation

In the following, we assume familiarity with the basic netioof logic programming [11]. A finite sdb

of ground facts (or unit clauses) without function symbal®iten referred as aextensional database
or simply adatabase The predicates of the atoms in a database are cEIsl predicates A Datalog
program P consists of a finite set of clauses without function symbdtsedicates that appear in the
heads of clauses d? are calledntensionalor IDB predicates(IDBs). We assume that EDB predicates
do not appear in the head of program clauses; moreover, wmadbat predicates appearing only in the
bodies of the clauses of a Datalog program are EDB predicaté¥atalog programP together with a
database) is denoted byPp.

In the rest of this paper we adopt the following notatioonstantsare denoted by lower case letters
such as, b, ¢ and vectors of constants lay variablesby uppercase letters such &sY, Z and vectors
of variables byv; predicates by, ¢, r, s; also subscripted versions of the above symbols will be.used

The class of programs on which the proposed transformappties is a subclass of Datalog:

Definition 3.1. A clause

po(Vo, Zn) < p1(V1, Z1),p2(V2, Z2), - - - s Pn (U Zn).
with n > 0, is calledconsecutive consumption clau@e cc-clausefor short) if:

1. Eachy;, fori = 0,...,n is a nonempty vector of distinct variables, afid ..., Z,, are distinct
variables.

2. vars(vp) = vars(vy) andvars(v;) = {Z;i_1}Uu;_1,fori =2,...,n, whereu;_; C vars(v;_1).
3. Z; ¢ Uj<ivars(v;), fori=1,...,n.

A programP is said to be a&onsecutive consumption Datalog progré&on cc-Datalog progranm if all
its clauses are cc-clausesghal G is of the form« ¢(¢é, Z), wherec is a nonempty vector of constants,
Z is avariable and is an IDB predicate.

It should be mentioned here that cc-clauses are moded;rthedgof the above definition correspond
to input arguments while eacty corresponds to the single output argument of each atom. éurence
of a variable in an input argument of the head or in the outpyiiraent of an atom in the body will be
calledproductive otherwise it will be calleconsumptive
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Example 3.1. The following program is a cc-Datalog program:

z

e

Y),q(Y, W), g(Y, W, 2).

where thet and— signs above the variables denote the input and output argsmespectively.

The intuition behind the class of cc-Datalog programs i$ daeh value produced by an atom can
only be consumed in a sequence of (one or more) consecutmesammediately following the atom
that produced it. Many natural Datalog programs belong i dlass; for example, the class of Chain
Datalog programs is a proper subset of this class.

Example 3.2. Consider the following generalizgshth predicate which searches for paths of a given
color in a graph whose edges are colored:

path(X,Color,Z) + edge(X,Color,Z).
path(X,Color,Z) < edge(X,Color,W) ,path(W,Color,Z).

The above is clearly a cc-Datalog program. The EDB predieage (X,Color,Z) signifies that the
edge {,Z) has colorColor. The goalk— path(a,red,Z) asks for those vertices of the graph that are
reachable from vertex throughred edges.

Example 3.3. The usual logic programming definitions of the modulo andgieatest common divisor
operations involve cc-Datalog clauses:

mod(X,Y,Z) < mod_base(X,Y,Z).
mod(X,Y,Z) < minus(X,Y,W) ,mod(W,Y,Z).
gcd(X,Y,Z) < gcd base(X,Y,Z).
gcd(X,Y,G) < mod(X,Y,Z),gcd(Y,Z,G).

wheremod base, gcd_base, andminus are EDB predicates defined as followssd _base (X,Y,Z) if
X < YandX = Z; gcd base(X,Y,2) if X = ZandY = 0; andminus(X,Y,2)ifZ = X - Y.

The semantics of cc-Datalog programs can be defined in amooedto the semantics of classical
logic programming. The notions afinimum modelMp,, of Pp, wherePp, is a cc-Datalog progran?
together with a databage, andimmediate consequence operaiy, , transfer directly [11].

We now define a subclass of cc-Datalog programs which hasatine power as the full class of
cc-Datalog programs.

Definition 3.2. A simple cc-Datalog prograris a cc-Datalog program in which every clause has at most
two atoms in its body.

The following proposition (which can be proved using unffiltti transformations [26, 6, 15]) es-
tablishes the equivalence between cc-Datalog programssiamgle cc-Datalog ones. Notice that by
M(p, Pp) we denote the set of atoms in the minimum modePgfwhose predicate symbol is
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Proposition 3.1. Every cc-Datalog progran®? can be transformed into a simple cc-Datalog prog#aim
such that for every predicate symbohppearing inP and for every databage, M (p, Pp) = M (p, Py,).

Proof:
(Outline) For a cc-claus€' of the form:

A(] <—A1,A2,...,An
with n > 2, we introduce a new claugey of the form:
new (v, Z) < Ag,..., Ay

where Z is the output variable ofd,, and ¥ is a vector of distinct variables such thedrs(v) =
(vars(Asg, ..., Ay) Nwars(Ag, A1) — {Z}. Then we foldC usingCy and we get the claugg’:

Ay Ay, new(v, Z)

C is now replaced by Cy,C’}. Then we apply the same processtg which hasn — 1 body atoms
until all clauses have at most two body atoms. It is easy tdy#rat the program obtained by this
process is a cc-Datalog program. O

In the presentation of the proposed transformation we usplsicc-Datalog programs as the source
language. Because of the above proposition this is not aatést of the power of the algorithm. More-
over, the transformation could be easily formulated so apfiy directly to cc-clauses with more than
two body atoms (but this would imply a more complicated pnéstion and correctness proof).

Example 3.4. The cc-Datalog program in Example 3.1 is not a simple ccIbgtane since its second
clause has three atoms in its body. To transform it into a leirop-Datalog program we introduce the
new clause:

p(Y,2) < q(Y,W),g(Y,W,2).

and we use it to fold the second clause of the program. In thjswe get the following simple cc-Datalog
program:

q(X,2) « £(X,2).

q(X,Z2) «+e(X,V),p(Y,2).

p(Y,Z) + q(Y,W),g(Y,W,Z).

4. The Target Language of the Transformation
The target language of the transformation is the languageicErDatalogs which is a version of

Datalog,s [5, 4] extended with choice predicates [14]. Dataleds a powerful temporal deductive
database language and choice predicates are non-detrendainstructs useful for temporal languages.
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4.1. Choice Predicates

Choice predicates [14] were initially introduced in theaaod temporal logic programming as a means
for ensuring that a given predicate is single-valued at &quda@r moment in time (or more generally at
a particular context). Actually, with every predicate syrhb of a given program, a predicagép (called
the choice versiorof p), is associated. Choice predicates can only appear in thedof program
clauses (their axiomatization is implicit, see [14] foralk).

To motivate choice predicates consider writing a prograroselpurpose is to assign a classroom to
persons (teachers) over different moments in time. Thel@noks to find all different such assignments
in such a way that at every different moment only a singlegrerxcupies a classroom. The predicate
requests_class(Time,Person) expresses the fact thRérson requests the particular classroom at
time Time. The predicataises_class(Time,Person) expresses the fact theérson actuallyuses the
classroom at tim&ime.

requests_class(0,tom).
requests_class(0,nick).
requests_class(1,mary) .

uses_class(Time,Person) < #requests_class(Time,Person) .

In the above prograntrequests_class is the choice predicate that corresponds to the (clasgioad)
icaterequests_class. The crucial property of a choice predicate is that it is Englued for any given
time-point. This means that either the aténequests class(0,tom) or #requests_class(0,nick)

but not both, will be considered as true at time-paintTherefore, the above program does not have a
unigue minimum model (as is the case in classical logic @imgning); instead, it has a set of minimal
models, one for every different possible (functional) @ssient of persons over the moments in time.
More specifically, the two minimal models of the program & following:

M, = {#uses_class(0,tom) ,#uses_class(1,mary), uses_class(0,tom),
uses_class(1l,mary), #requests_class(0,tom),#requests_class(l,mary)
requests_class(0,tom) ,requests_class(0,nick),requests_class(1l,mary)}

and

My = {#uses_class(0,nick) ,#uses_class(1l,mary), uses_class(0,nick),
uses_class(1l,mary), #requests_class(0,nick),#requests_class(l,mary)
requests_class(0,tom) ,requests_class(0,nick),requests_class(1l,mary)}

Choice predicates are not necessarily restricted to apminmple temporal logic programming lan-
guages such as the one used in the above example (in whiclistimear); they are also applicable to
more general intensional programming languages [13] ti@dude the language Datalgg which we
have adopted for defining the proposed transformation. Mpeeifically, in [14], Orgun and Wadge
develop a general semantic framework for choice predi¢chtsan apply to a wide class of intensional
logic programming languages.

4.2. Syntax of Choice Datalogs

The target language of the transformation is a temporal ata@udatabase language that supports choice
predicates. We will refer to this target languageCémice Datalogs since it is a variant of the language
Datalog,s [4], augmented with choice predicates [14].
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Datalog, s is a temporal extension of Datalog in which atoms may havegesdistinguishedempo-
ral argument in addition to the usuddta argumentsTime in Datalogs may have a very rich structure
(i.e., it is not necessarily linear). For our purposes wepadovariant of Datalogg in which time has a
branching structure. It can easily be seen that brancliing-tan be modeled if we allow the temporal
argument to range over lists of natural numbeWe extend this variant of Datalgg to support choice
predicates. Before we proceed to a formal introduction efdintax, we give an example of how a
Choice Datalogg clause looks like:

q(L,Z2) + g(X,Y,2) ,#p([3|L],X),r([4,3IL],Y).

In the above exampld,, [31L] and [4,3]|L] are terms that correspond to the distinguished temporal
arguments of the atomg;, Y andZ are usual data variables. The atogq@&.,Z), #p([3|L],X) and
r([4,3|L],Y) are IDB atoms whilgg(X,Y,Z) is an EDB atom. In other words, we assume that only
IDB atoms have a temporal argument (while EDB atoms do ndte atom#p ([3|L] ,X) is an example
of a choice atom.

We now define formally the syntax of the target language. Wearag the existence of a distinguished
variable L which will be the only variable that can appear in temporaite of a program; all other
variables that appear in a program must be different fforA temporal term is defined as follows:

Definition 4.1. A temporal termis recursively defined as follows:
tt=1[]| L| [l|tt]
whereL is a distinguished temporal variable aind w.

An IDB atomis an atom of the formp(¢t, t) or of the form#p(¢t, t), wherett is a temporal term and
tis an ordinary Datalog term (i.e., either a variable or a tamt}; the former atoms are calledn-choice
while the latter are calledhoice atoms Notice that in the variant of Datalgg that we consider, IDB
atoms have only one data argument. BDB atomis of the formp(t, ..., t,_1) wherety, ..., t,_1 are
ordinary Datalog terms. As usual, an atom is said to be groifiitds variable-free. Aclausein Choice
Datalog, s is of the form:

H <+ B{,Bs,...,B,.

whereH is a non-choice IDB atom, anfly, B, ..., B,, are atoms (either IDB or EDB ones) and> 0.

If n = 0, then the clause is said to bdaxt or unit clause A Choice Datalogg program is a finite set
of clauses of the aforementioned form. As usudi, is a Choice Datalogs programP along with a
databasé). A goalin Choice Datalogg is of the form« p([], X).

4.3. Semantics of Choice Datalqg

The Herbrand univers€&p,, of a Choice Datalogs programP along with a databas® includes all
constants that appear In or as data arguments A. The Herbrand basBp,, includes:

e ground EDB atoms constructed using constants ftgsp

LIn the original formulation of the branching-time transfation [19], sequences of temporal operators were useebitisif
lists. It can be easily shown that both formulations are\ejent.
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e ground IDB atoms (either choice or non-choice) whose figtiarent is a list of natural numbers
and their second argument is an element/pf .

A Herbrand interpretatiod of Pp is (as usual) a subset of its Herbrand bése,. The semantics of
Choice Datalogs programs can be defined using the general principles dexeétliop[14]. For reasons
of completeness, we adapt the basic notions from [14] to fijpomposes. For a deeper exposition, the
interested reader should consult the results of [14].

Before defining the notion of model we need to define a set amsiestablishing the relationship
between predicates and choice predicates.

Definition 4.2. (Choice Formulas) LeP be a Choice Datalgg program, anc be a predicate defined
in P. Then thechoice formulasssociated withp are the following:

VIVX (#p(L, X) = p(L, X)).
VLVX (#p(L, X) = VY (#p(L,Y) = X =Y)).

Definition 4.3. Let P be a Choice Datalgg program. Then anodelof P is an interpretation that
satisfies the clauses éftogether with the associated choice formulas for all preges defined iP.

We can define d'p,, operator in the usual way. However, we need something strahgn the usual
Tp,, in order to define the semantics of Choice Datalpgrograms. We therefore define the operator
NTp, that works exactly liké'p,, but does not throw away any choice atoms [14]. More formally:

Definition 4.4. Let P be a Choice Datalgg program,D a database anfla Herbrand interpretation of
Pp. ThenNTp, (1) is defined as follows:

NTp,(I) =Tp,(I) U choices(I)

wherechoices(I) is the set of the choice atoms belonging’to

Furthermore, the semantics of Choice Datglpogrograms require another operator, namely the
Cp,, operator, which returns all possible immediate extensid@sgiven Herbrand interpretation 6%,
determined by arbitrary choices (as will be further expditelow).

Let I be a Herbrand interpretation of a Choice DatglpgrogramPp together with a databade
and letp be a predicate symbol that appeard’in. Define:

Ep(I) ={a|p(L,a) € I}
and also:
E#p,L(I) = {a | #p(L,a) € I}

Also let:
St ={{p,L,a) | E,.(I) #0, Eypr(I) =0 and a € E, ()}

In other words S; is a set such thap, L, a) € Sy, if no choice has been made foat the context.
anda is a possible candidate for this choice. The formal definibbC'p,, is given below:
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Definition 4.5. Let P be a Choice Datalgg program,D a database anfla Herbrand interpretation of
Pp. ThenCp, (I) is defined as follows:

_ I if S;=10
Croh = { (10 {#p(L.a)} | (p.Loa) € 51} it Sy #0

Some observations can be made abouthg operator. The first one is thatp,, preserves the
previously computed atoms (it does not reject anythinge fiéxt thing is thaC'p,, when applied to an
interpretation/, returns a set of interpretations each one correspondiaglifferent choice atom being
added tal.

Our Cp,, operator is slightly different than the one in [14] sincertyintroduces one choice atom
at each new interpretation it creates.

We now define the notion aPp-chain which intuitively describes a bottom-up computataf a
Choice Datalogs programP together with a databade. During the bottom-up computation the oper-
atorsNTp,, T wandCp,, alternate as shown in the following definition:

Definition 4.6. Let P be a Choice Datalgg program andD a database. A’p-chainis a sequence
(Mo, My, M,, - - - ) satisfying the following conditions:

M(]:(Z)a

My = NTp, T w(My;), i >0,

and
Msiyo € Cpy(Maiy1), 1> 0.

Notice that in the above definition byT'p,, 1 w(Ma;) we denote as usual the §gf ., NTp_ (Ma;).
The lemma stated below will be used in the proofs that follow.

Lemma 4.1. Let P be a Choice Datalgg program,D a database and |éM, M, - - - ) be aPp-chain.
Then for alli € w, M; C M.

Proof:
An easy consequence of the definition dPa-chain. O

The least upper bound of Bp-chain (Mo, My, Ma,---) is M = |J;., M;. Then Mg, My,---
will be called approximationsof M and M is called alimit interpretation of Pp. Notice that a limit
interpretation is not necessarily a fixpoint. However atimierpretation is necessarily a model of the
program as the following theorem indicates. Given two elei:18/; and M; of a Pp-chain, we will
say that)M; is anancestorof M; if © < j. Based on the above definitions the following theorem is
straightforward to establish:

Theorem 4.1. Let P be a Choice Datalgg program andD a database. Then every limit interpretation
of Pp is a model ofPp.

Proof:
The proof is similar to that in [14]. O
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Example 4.1. Consider the following Choice Datalgg program:

p(L1IL],X) + #q(L,X).
p([2IL],X) < #q(L,X).
q(ll,a).
aq(ll,v).

Applying the NTp, T w andCp, operators as shown in Definition 4.6 we get two limit intetpre
tions:

M = {+#p([1], 2), #p([2],a),p([1], 2),p([2], a), #a([]. a), a([], a), a([], B) }
M" = {#p([1],b), #p([2], b), p([1], b), p([2], ), #a([], ), a([], 2). a([], b)}

It can be easily verified that these limit interpretations irodels of the program. In the following
we demonstrate the steps required for the constructioneaiibdel)M

My = 0

My = {q([}.a).a([],p)}

My = M;U{#dq([],2)}

Mz = M U{p([1],2),p([2],2)}
My = MzU{#p([1],2)}

Ms = M,

M = Ms;U{#p([2],a)}

The modelM’ is constructed in an entirely symmetric way.

5. The Transformation Algorithm

In this section we provide a formal definition of the transfiation algorithm. The algorithm is subse-
quently illustrated by a representative example.

The algorithm:Let P be a given simple cc-Datalog program ar@ given goal clause. For eath+1)-

ary predicate in P, we introducen + 1 binary IDB predicateg; ,...,p,", p~, wherepi+ corresponds
to thei-th input argument op andp~ to the(n + 1)-th argument ofy (which is the output one). The
choice versions of certain of these predicates may alsodmkinghe target program. The transformation
processes the goal clau§eand each clause iR and gives as output a new goal cladgetogether with

a Choice Datalogg programP*. We assume the existence of a labeling function which asslgferent
labels to the atoms that appear in the bodies of the claus€s dfabels are natural numbers and are
denoted by, s, - - -. The algorithm is defined by a case analysis, depending ofotheof the clause
being processed every time:

Case 1.The transformation of the goal clause:

+— play,...,ap,Y).
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results to a set of new unit clauses, which are addedRb:

pz—i—([]vaZ)
fori =1,...,n. The new goal claus€* is?:
<~ p ([l.Y).

Case 2:Let C be a clause of the form:
p(ﬁﬂa Z) <~ q(ﬁla Y)7 7"(’(_)'2, Z)

and letly, [, be the labels ofy(v1,Y) andr(vs, Z) respectively. TherC is transformed in the
following way:

1. The following clause is added &*:
p_(L, Z) « T‘_([12|L], Z)

2. LetX be avariable that appears in theh position oftly and also in then-th position ofu .
Then the following clause is added £

q;r@([lﬂL]aX) — [#]p:(L,X)

where[#]p; = #p; if X appears twice in the body @ and [#]p; = p; otherwise.
Similarly, let X be a variable that appears in thah position of?,; and also in then-th
position ofv,. Then the following clause is added &5

ri([2]L), X) + #p (L X).

3. If the output variabl&” of ¢ appears in then-th position ofs,, then the following clause is
added toP*:
Tm([2|L],Y) < ¢~ ([1]L] Y).

Case 3.Let C be a clause of the form:
p(t, Z) «+ q(th, Z).
and letl; be the label ofy(v, Z). ThenC is transformed as follows:
1. The following clause is added &*:

p (L, Z) < ¢~ ([Is|L], Z).

2Notice that in a bottom-up execution of the target prograengbal claus&'™ is not actually needed. However, we include it
in order to emphasize that the desired answers correspahi$ toarticular query.
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2. LetX be avariable that appears in theh position ofiy and also in then-th position ofu;.
Then the following clause is added '

Q7J7rz([l3|L]7X) — p:(L,X).

Case 4:For every EDB predicatg of P with n input variables and one output variable, a new clause
of the following form is added td@*:

p_(L,Y) <_p(Xla s 7X’naY)api|—(L7X1)7' .. 7p1—|1—(LaXn)

In the algorithm presented above we use choice predicatgsuien they are absolutely necessary.
In the initial form of this algorithm [16] certain superfluBchoice predicates were used in order to
simplify the correctness proof of the algorithm. Howevemee have realized since then, these redundant
choice predicates cause certain performance problems inattom-up execution of the target code.

Example 5.1. Let P be the following simple cc-Datalog program, obtained in il6pée 3.4, together
with a goal clause, whetg q are IDB predicates angl £, g are EDB predicates:

< q(al1,2).

qX,2) «+— £(X,2).

qX,2) «+— e,V ,pY,2).
p(Y,Z) + q(Y,W),g(Y,W,Z).

The target program (together with a new goal clause) oldadiyeapplying the transformation algo-
rithmto P U {« q(a1,Z)}is:

~—q (10,2).

qf ([1,a1).

q (L,Z) «+ £ ([1IL]1,2).
£7([11L]1,X) + qf (L,X).

q (L,Z) < p ([3IL]1,2).

py ([31L1,Y) < e~ ([2IL],Y).
el ([2IL],X) + qf (L,X).

p (L,Z) + g ([5IL1,2).

ga ([5IL],W) + q ([4]1L]1,W).
g ([5IL1,Y) « #p/ (L,Y).
qf ([41L1,Y) « #p; (L,Y).

e (L,Y) + e(X,Y), e (L,X).
£7(L,Y) + £(X,Y), £/ (L,X).
g (L,2) + g(X,Y,2), g (L,X), gi (L,Y).

Consider now the following databage

e(al,a2). f(a2,a). g(a2,a,b3).
e(al,bl). f(b1,b). g(bl,a,a3).
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Both the initial and the final program have the single ansiver b3. However, if we replace the
choice predicates with the corresponding classical ohes, the resulting program will have an extra
(incorrect) answer, namelyy = a3. The efficient bottom-up execution of programs such as tleeb
will be discussed in Sections 7 and 8.

One might wonder if it would be possible not to separate tipatimrguments of a source program
predicate. This might be possible but then the target lagigyueould be more complicated. Moreover,
by separating the input arguments the flow of the informatioring execution is more explicit.

6. The Correctness of the Transformation

The correctness of the transformation algorithm is dermatest in this section.

Let P be a simple cc-Datalog programy, a database and- p(aq,...,a,,Y) a goal clause. The
correctness proof of the transformation proceeds as fsllaat first we show (see Lemma 6.4 below)
that if a ground instancg(ay, . . . , a,, b) of the goal clause is a logical consequencépfthenp=([], b)
belongs to a limit interpretatiod/ of P},, where P* U {«+- p ([],Y)} is obtained by applying the
transformation algorithm t& U {< p(a1,...,a,,Y)}. In order to prove this result we establish a more
general lemma (Lemma 6.3 below).

The inverse of Lemma 6.4 is given as Lemma 6.6. More spedificale prove that whenever
p~([],b) belongs to a limit interpretation aP}, thenp(a,...,a,,b) is a logical consequence &fp.
Again, we establish this result by proving the more geneeahina 6.5. Combining the above results we
get the correctness proof of the transformation algoritiiheeprem 6.1).

In the following we give some definitions that will be usedtie fproofs of this section.

Definition 6.1. Let P be a Choice Datalgg program andD a database. Let be an approximation to
a limit interpretation ofPp and letA be an atom inl. Then aderivation setof A in I is recursively
defined as follows:

¢ If Aisaunitclause iPp, then{A} is a derivation set ofi in I.

e If Sq,...,S, are corresponding derivation sets Bf,...,B, in I andA « By,...,B, is a
ground instance of a clause Itp, then{A} U S; U--- U S, is a derivation set ofl in I.

e If Ais achoice-atom id that was introduced at an ancestoof I andS is a derivation set of the
non-choice version afl in .J, then{A} U S is a derivation set ofl in I.

The notion of derivation set captures one of the (possiblgyhaays that can lead to the generation
of an atom in an approximation. Therefore, one atom may haueyrdifferent derivation sets under a
given approximation.

The following definitions will also be necessary:

Definition 6.2. An atom A depends oman atomB in [ if there exists a derivation sétof A in I such
thatB € S.

Definition 6.3. Let P be a Choice Datalgg program andD a database. Ldtbe an approximation of
a limit interpretation ofP, and assume that there exi$tand B such thatd depends o3 in I. Let S
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be a derivation set afl in I which containsB. We define thalistance betweed and B in S to be the
minimum number of ground instances of program clauses usexler to establish the dependencetof
from B in S. We define thalistancebetweenA and B in I to be the minimum of the distances between
A andB in every derivation sef of A in I which containsB. When the distance betweehandB in I

is greater tha® we say thatd depends essentially dgin I.

Definition 6.4. Let P be a Choice Datalgg program andD a database. Let be an approximation to
a limit interpretation ofPp and letS C I. ThenI will be calledminimalwith respect toS if the set of
choice atoms of coincides with the set of choice atoms on which the membefsd#pend on in.

In other words, the choice atoms tifatontains are all “relevant” to the production of the atomS'in

Before we proceed to the correctness proof of the algoritiven,need to establish Lemmas 6.1
and 6.2, whose proofs are given in Appendix A and B, respelgtiv

The first lemma that follows states that under a giver/ligtis not possible fop;’(L, b) to depend on
p~(L,a) (i.e. given an approximatiof, there is no derivation sét for the atormp;” (L, b) in I such that
p (L,a) € S). Intuitively, this means that the output argumenpa$ introduced into an approximation
of a limit interpretation later than all the input argumeot® (under a given context).

Lemma 6.1. Let P be a simple cc-Datalog program, a database an&* the Choice Datalags pro-
gram that results from the transformation. For all predisat defined inPp, all L € List(N), all
a,b € Up,, all input positions of p, and all approximations, p;" (L, b) does not depend gn (L, a) in
1.

The lemma that follows states that under a given fist is not possible fop;"(L,b) to depend
onpS(L,a) (wherep (L,b) # p;(L,a)). Intuitively, this means that the productions of the input
arguments op (under a given context) are independent.

Lemma 6.2. Let P be a simple cc-Datalog program afda database. La®* be the Choice Datalgg
program that results from the transformation. For all pratéisp defined inPp, all L € List(N),
all a,b € Up,, and all input positions, j of p, there does not exist any approximatiorio any limit
interpretation ofP;, such thap; (L, b) depends op; (L, a) wherep;" (L,b) # p; (L, a).

The above lemma is important in proving the transformatilgor&éhm correct. If it was possible
for p;j (L, b) to depend om;" (L,a) then we can imagine a scenario in which in all approximations
#p; (L, a) was needed to be produced before the productiop;¢f., b). But then it would never be
possible to produc#pj(L, b) and as a result we might lose certain of the solutions of titialiprogram.

In other words, the fact that the above lemma holds is impoitaestablishing the total correctness of
the transformation algorithm.

The following definition will be used in order to simplify theotation that appears in the proofs.

Definition 6.5. Let C be a simple cc-clause ang ¢ two predicate symbols that appeardh Then
Sp+q+ is the set of positions of input variables pthat are also input variables @f Moreover, f,+,+ :
+q+ — Sqt+p+ IS the function that takes the position where an input végiapbpears in predicajeand

S
p
returns its position in predicate
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Example 6.1. Consider the following cc-clause(X, ¥, W) < q(¥, X, Z), (X, Z, W).

In this clause Sy +q+ = {1,2}, Sqir+ = {2}, Sprqr = {1}, andfg+,+(2) = 1.

We can now proceed to the proof of the main lemmas regardingdtrectness of the algorithm.

Lemma 6.3. Let P be a simple cc-Datalog program ahda database. Ld?* be the Choice Datalog
program that results from the transformation. For all pratiisp defined inPp, all L € List(N), and
all constantsuy, ..., an,b € Up,, if p(ai,...,an,b) € Tp, T w and there exists an approximatiério
a limit interpretation ofP;, that is minimal with respect to the s&t= {p; (L, a1), ...,p;} (L, an)}, then
there exists an approximatioh wherel C J, that is minimal with respect to the sgi (L, b)}.

Proof:
We show the above by induction on the approximation$f 1 w.
Induction Basis:The induction basis trivially holds becauge, 1+ 0 = () and thusp(as, ..., an,b) €
Tp, 1 0is false.
Induction HypothesisWe assume that: for all predicatpsdefined inPp, all L € List(N), and all
constantsyy, ...,an,b € Up,, if p(a1,...,a,,b) € Tp, 1 k and there exists an approximatidrto a
limit interpretation ofP;, that is minimal with respect to the sét= {p; (L, a1), ...,p;} (L, a,)}, then
there exists an approximatioh wherel C J, that is minimal with respect to the sgi (L, b)}.
Induction StepWe demonstrate the desired result for the- 1 iteration of thel'’r,, operator. We will
therefore prove that: if(ai,...,a,,b) € Tp, 1 (k + 1) and there exists an approximatidrio a limit
interpretation ofP;, that is minimal with respect to the sét= {p; (L, a1), ...,p; (L, a,)}, then there
exists an approximatiod, wherel C .J that is minimal with respect to the sgi (L, b)}.

We use a case analysis on the way fiat, . . ., an, b) has been introduced infBp, 1 (k + 1).
Case 1Assume thap(ai,. .., an,b) has been added ®y,, 1 (k+1) because itis a fact ifb. According
to the transformation algorithm, iR* there exists a clause of the form:

pi(LaY) <_p(X1a s 7X’naY)api|—(L7X1)a' . 7p141>(LaXn)

Notice that there is no other clausefi defining the predicatg—. Therefore, sincd is a superset
of S = {p; (L,a1),...,p} (L,a,)} thenI also containg~(L,b). Moreover,I is obviously minimal
with respect to{p (L, b)}.

Case 2:Assume thap(ay, ..., an, b) has been added @y, 1 (k¥ + 1) using a clause of the form:

p(--) =gl )r(--). 1)

and suppose that the aritiesyofq andr aren + 1, n + 1 (because of condition 2 of Definition 3.1) and
m + 1 respectively. Then there exists a constaimstantiating the output variable of- - - ) such that
the corresponding instancesgdf - - ) andr(- - - ) in clause (1) are ii’p, 1 k.

Consider now an input argument gf(say thet-th one) which shares its variable with an input
argument ofp (say thes-th one). Then a clause of the form:

¢ ([1|L], X) « [#lpd (L, X). )

wheres = f,+,+(t), has been added #®* by the transformation algorithm. Moreover, for each input
argument of- which shares its variable with an input argumenp ofve have inP* a clause of the form:

i (1| L], X) + #p (L, X). ®)
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wheres = f,+,+(t). We start from/ and alternat€’'p> andNTp: 1 w until we reach an approximation
I’ which contains the choice versions of those atoms that are needed for the productionggf under
the list[/;|L] from clauses of the form (2). Notice that this can be done lmeao other atoms of the
form pf (L, - --) can have choice versions in(due to the minimality off w.r.t. S, if some#p;" (L, b)
belonged tal, then som@;’(L,aj) would depend on this id, which leads to contradiction because
of Lemma 6.2). Using clauses of the form (2), we see thid{l,|L],as) € I', forallt = 1,...,n
ands = f,+,+(t). Moreover, from clauses of the form (3), we derive that[l»|L],a,;) € I, for all
t € Sptpt ands = foip+(t).

Now, we need to demonstrate thitis minimal with respect to the sét;" ([11|L], afq+p+(1))’
g ([l1]L], afq+p+(n))}. This is indeed the case because all input argumentstaft belong td’ are used
for the production of the input arguments¢génd also all choice atoms regarding input argumenis of
that belong tal’ are used for the production of atoms regarding the inputraegnts ofg. Therefore we
can apply the induction hypothesis gmuinder the lis{l;|L], and on approximatiod’, which gives:

Since the approximatiof’ is minimal with respect to the s& = {q; ([l1|L], afq+p+(1))’

e qﬁ([lﬂL],afﬁﬁ(n))} and since we have thatay , (1), ....az , . (m),¢) € Tp, Tk
then there exists an approximatioll, whereI’ C J' which is minimal with respect to

{a~ ([hlL]; )}

Since for the input argument efwhich shares its variable with the output argumeng tifiere is a
clause inP* of the form:

r([l2| L], X) + ¢~ ([l |L], X). (4)

it follows thatr,! ([l2| L], c) € J'.

Notice also that/’ is minimal with respect to the set of atoms that corresportdeanput arguments
of r under the contexts| L] (because/’ is minimal with respect td¢— ([/1|L], ¢)}). Therefore, we can
apply the induction hypothesis erunder the lis{l;| L] and on approximatiod’, getting:

Sincer;f ([l2|L],c) € J' andr/ ([l2|L],as) € J', forallt € Sy4p+, s = frap+(t), and
r(arys...,ar,,b) € Tp, 1T k wherea,, = ¢, if | = w, otherwisea,, = a,, wheres =
frip+ (1), foralll € S,+,+, then there exists an approximatidrsuch that/’ C .J, and.J is
minimal with respect to the sét-— ([l2| L], ) }.

Finally, using the fact that™ ([l2| L], b) € J together with clause:
p(L,Y) <=7 ([lo| L], Y). ()

we conclude thap~ (L,b) € J. Itis easy to see thaf is minimal with respect to the s¢p (L, b)},
because/ is minimal with respect to the s¢t— ([l2|L], b) }.
Case 3:Assume thap(ay, ... ,an, b) has been added -, 1 (k + 1) using a clause of the form:

p(--) < al--). (6)

The proof for this case is a simplified version of Case 2. O
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Lemma 6.4. Let P be a simple cc-Datalog prograth,a database and-p(aq, ..., a,,Y) a goal clause.
Let P* be the Choice Datalgg program obtained by applying the transformation algoritbr? U {«+
plai,...,an,Y)}. Forallb € Up, the following holds: ifp(ai, ..., an,b) € Tp, T w then there exists
a limit mterpretatlonM of P}y such thap~([],b) € M.

Proof:
Since by transforming the goal clause, the fagt§[], a;), fori = 1,...,n, are added t@*, this lemma
is a special case of Lemma 6.3. O

Lemma 6.5. Let P be a simple cc-Datalog program abda database. Ld®* be the Choice Datalgg
program that results from the transformation. it be a limit interpretation ofP;,. Then for all
predicatey defined inPp, for all L € List(N) and for allb € Up,,, if p~(L,b) € M, then there exist
constantsuy, ..., a, € Up, such thap(ay,...,an,b) € Tp, twandp; (L,a;) € M,fori=1,...,n

Proof:
We show the above by induction on the approximations/of
Induction BasisThe induction basis is: ib~ (L, b) € My, then there exist constants. ..., a, € Up,
such thap(ai, . .., an,b) € Tp, T w andp; (L,a;) € My, fori = 1,...,n. This statement vacuously
holds becaus@/, = () and thugp~ (L, b) € M, is false.
Induction Hypothesisif p~ (L, b) € My, then there existy, ..., a, € Up, such thap(ai,...,an,b) €
Tp, 1 wandp (L,a;) € My, fori=1,...,n
Induction StepWe prove that ifp~ (L, b) € Mj41, then there exist constants, ... ,a, € Up,, such
thatp(ai,...,an,b) € Tp, T wandp; (L,a;) € Myyq,fori=1,...,n

As a first remark, notice that #;., corresponds to &'p: step in the chain leading ®f, then the
induction step holds directly (due to the induction hypstle Therefore we need only examine the case
whereMj1 = NTp; 1 w(My). We distinguish the following cases:
Case 1:Assume thap~ (L, b) has been introduced i}, by a clause of the form:

p (L,Y) « p(X1,..., X, Y),p (L, X1), ..., 0} (L, X,). (1)

Thenp is an EDB predicate i) and there exist constanis, . . . , a,, in Up,, such thap(ay, ..., an,
b) € Tp, 1t 1andp; (L,a;) € Mgy, fori=1,....n
Case 2:Assume now that there exists iha clause of the form:

p(--) = q(---)r(--) )

such that the arities gf, ¢ andr aren + 1, n + 1 (because of condition 2 of Definition 3.1) and—+ 1
respectively, and the labels gf- - - ) andr(- - - ) arel; andis respectively. The translation of the above
clause results in clauses of the form:

p(LY) < r([la|L],Y) ®3)

Ty ([lzlL] Y) < ¢ ([L|L],Y). (4)
ry (2| L], Y) < #p (L, Y). (®)
¢ (W|L].Y) « [#]pd (L, Y) (6)
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in P* (where the range of the indicéesinds can be easily derived from the description of the transfor-
mation algorithm). Assume now that (L, b) € M}, and thatp~ (L, b) has been introduced W
by using clause (3) above.

Recall now thatMy.; = NTp: 1 w(My). We perform an inner induction, i.e., we demonstrate
that: for ally > 0, if p~(L,b) € NT”B(Mk), then there exist constants, ..., a, € Up, such that
p(ai,...,an,b) € Tp, T wandp;(L,a;) € NTV;; (My,), fori = 1,...,n. The basis case far = 0
is trivial since it coincides with the outer induction hypesis (sinceVT%. (M) = My); forv = 1
it also holds because of the form of the clauses derived frarransformation algorithm. Assume the
statement holds far; we demonstrate that it is valid fer+ 1. Sincep™(L,b) € NTIZgl(Mk) we get
thatr— ([l2| L], b) € NT”B(Mk). We can therefore apply the inner induction hypothesis tinget:

Sincer~([l2|L],b) € NT”]\3 (My,), then there exist constants, . .., ¢, € Up, such that
r(c1,. .., ¢m,b) € Tp, Tw andr;'([lg|L], cj) € NT”B(Mk), forj=1,...,m.

Notice now that the only way that ([l2|L], ¢;), for all input argument positions of r, can have
been introduced ierTI’;B(Mk), is by using either a clause of the form (4) or a clause of the f(b)

above (all other clauses defining, have a different head in the list and can not be used). We thave
cases:

Subcase 2.1f ;" ([l2| L], ¢t), with ¢ € S,+,+ has been introduced using clause (5) above e, c;) €
NTIZB(Mk), foralls € Sp+,+.

Subcase 2.2f 7" ([la| L], ¢;), wheret is the input position of which shares its variable with the output
position of ¢ in clause (2), has been introduced using clause (4), we edadhatq™([/1|L],c;) €
NTIZB(Mk). Using the induction hypothesis gnhwe get that:

Sinceq ([l1|L], 1) € NTg. (My), then there exist constands, . .. ,d, € Up, such that
q(dr, ... dn,ct) € Tp, T wandg; ([1|L], d;) € NTg. (M), forj =1,....n.

Using clauses of the form (6) above as before we getﬁgﬁaL,dfp+q+(s)) € NT”B(Mk), for all
S € Sp+q+.

Therefore, we have tha(d,,...,d,,c¢) € Tp, T wandr(ci,...,cm,b) € Tp, T w. In order for
these two ground atoms to be combined using clause (2) tincdmiaatom forp, we have to make sure
that if ad; and ac; correspond to input argument positionsgandr which in clause (2) share the same
variable, theni; = ¢;. But it is easy to see that this is ensured because both vateebtained from the
sameftp (which holds because the choice predicates have a unique uatler a given context).

Thereforeq(dy, ... ,dy, ¢;) andr(cy,...,cn,b) can be combined using clause (2) in order to give
plai,...,an,b) € Tp, T w, Whereay, ..., a, is a permutation ofly, ..., dy.

Case 3:Assume that inP there exists a clause of the form:

p(--+) < q(---). ()
The proof of this case is similar (and actually simpler) tattfor Case 2. O

Lemma 6.6 is a special case of Lemma 6.5.
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Lemma 6.6. Let P be a simple cc-Datalog program,a database ang- p(aq, ..., a,,Y ) agoal clause.
Let P* be the Choice Datalgg program obtained by applying the transformation algoritbr? U {«+
p(ai,...,a,,Y)}. Forallb € Up, the following holds: if there exists a limit interpretatidd of P;,
such thap~([].b) € M thenp(a,...,an,b) € Tp, T w.

Proof:

As p~([],b) € M, from Lemma 6.5 we have that there are constanis..,c, € Up, such that
p(ci,...,cnyb) € Tp, T wandp) ([],¢;) € M, fori=1,...,n. Butas the only instances pf ([], X)
in M, arep; ([], a;), we conclude that; = a;, fori =1,...,n. O

The following theorem demonstrates the correctness ofémsfiormation algorithm.

Theorem 6.1. Let P be a simple cc-Datalog programh, a database and- p(ay, ...,a,,Y) a goal
clause. LetP* be the Choice Datalgg program obtained by applying the transformation algoritbm
PU{+ p(ai,...,an,Y)} and< p~([],Y) the new goal clause. Then for @&lle Up,, the follow-
ing holds: there exists a limit interpretatiaif of P}, such thapp=([],b) € M iff p(ay,...,an,b) €

TPD T w.

Proof:
It is an immediate consequence of Lemmas 6.4 and 6.6. O

7. An Optimized and Terminating Bottom-up Evaluation

In this section we demonstrate a terminating bottom-upuateln procedure for the Choice Datalgg
programs that result from the transformation. The basia toehind this procedure that we propose is
that during the bottom-up computation one need only takedansideration atoms whose lists (temporal
terms) have length bounded by a constant which depends amtibeprogramP and the database. In
other words, according to this modified proof procedure, ¥y, operator reaches a fixpoint as soon
as no new atoms whose list length is less than or equal to tinedoare introduced.

The following definition is necessary:

Definition 7.1. A setS of atoms idist-boundedby k < w if the list of each member &f has length that
is less than or equal te.

We are now in a position to state the main theorem of this @ectintuitively, the theorem states that

if an atomp(ay, ..., a,,b) is an answer to the goal clauéeof Pp and this answer can be obtained in
less than or equal tk iterations of thel'p,, operator, then a corresponding solution can be detected by a
bottom-up computation aP;, that considers only atoms whose lists have length less thaqual tok.

Theorem 7.1. Let P be a simple cc-Datalog programh) a database and- p(aq,...,a,,Y) a goal
clause. LetP* U {+ p~([],Y)} be the Choice Datalgg program and the goal clause that result
from the transformation. Assume thafai,...,an,b) € Tp, T k, wherek < w. Then there exists a
limit interpretation M of P}, such thatp=([],b) € M andp~([],b) has a derivation set in/ that is
list-bounded by.
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The proof of the theorem is a direct consequence of the faligéemma:

Lemma 7.1. Let p be a predicate symbol iffp and assume that(a,, ..., an,b) € Tp, 1 k, k < w.
Moreover, assume that there exists an approximafiém a limit interpretation ofP;, that is minimal
with respect to the se§ = {p; (L,a1), ..., p, (L,a,)} and that each member &f has a derivation
set inI which is list-bounded byL| + k. Then there exists an approximatidnwherel C J, that is
minimal with respect to the s¢p~ (L, b)} andp~ (L, b) has a derivation set if that is list-bounded by
|L| + k.

Proof:

The proof of the lemma is by induction @n Actually, the proof is almost identical to that of Lemma,6.3

the only difference being that at each case of the inductiem it has to be confirmed that the derivation
set forp~ (L, b) in J is list-bounded by L| + k. The details of the proof are straightforward and are
omitted. O

The above theorem suggests that it is possible to find a hatwmsber (that depends on the charac-
teristics of the source prografmand the databas@) such that the proof procedure defined for the target
programP* only considers atoms that are list-bounded by this conshate specifically, it suffices to
derive a constant such that’p,, 1 k is the least fixpoint of p,, .

Proposition 7.1. Let P be a simple cc-Datalog program abda database. Moreover, lebe the number
of constants that appear i, = the number of IDB predicates iR anda the maximum arity of IDB
predicates inP. Letk = « - ¢*. ThenTp, 1 k is the least fixpoint of p,,.

Proof:

In the worst case, all IDB predicates may have the same aryd in the least fixpoint of’p,, all
possible combinations of constants may appear in all IDBlipegdes. Moreover, in the worst case, one
new IDB atom is introduced at each step of the bottom-up caatiom. This gives ar - ¢* worst case
bound for the number of iterations required to reach thet feqwoint of 7p,, . O

The above theorem easily leads to a terminating proof puoreefbr the target programs that result
from the transformation. More specifically, during the boitup computation we can reject all atoms
produced whose lists have length greater than the boundfispday Proposition 7.1. Then obviously,
the proof procedure will terminate since the set of atomshikbong to the Herbrand base of a Choice
Datalog,s program and that are list-bounded by a constant, is finite.

There is one further remark that can be used in order to opgirtiie bottom-up execution of the
target programs. LeP be a program that has resulted from the transformation arfsi-ldve the set of
choice predicates that appear in clause®oflt is easy to see that during the bottom-up computation
of the program one need only consider choice atoms whosécptedsymbols belong t§p. In other
words, the choice predicates that are outsileare irrelevant with respect to the production of the
correct answers to the goal clausel®f This optimization reduces significantly the different iiwhes
that one would have to consider during the bottom-up execulti

The above discussion leads to an optimized and terminatowf procedure described as follows: let
ﬁpD be exactly likeNTp, the only difference being tha¥ T p,, does not introduce any atoms whose
lists have length greater than the constantlated toP;, and specified by Proposition 7.1. Moreover, let
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épD be exactly likeCp, the only difference being thﬁpD returns interpretations whose choice atoms
have predicates that belong$@. Then the notion of &p-chain can be modified as follows:

Definition 7.2. Let P be a Choice Datalgg program andD a database. Aist-boundedPp-chainis a
sequenceéM,, My, M,, . ..) satisfying the following conditions:

M(]:@a

My = ]ﬁPD T w(My;), >0,

and
Msito € Cp,(Mait1), 1> 0.

The following proposition is then straightforward to demtate:

Proposition 7.2. Let P be a Choice Datalgg program that results from the transformation dnch
database. LetM,, M;, M,,...) be a list-bounded’;-chain. Then for every € w there existsn € w

such thatMy; 1 = ]ﬁ?D(MQi). Moreover, there exists € w such thatM,, = M, 1.

The above proposition indicates that we can compute the difia list-boundedPp-chain in a finite
amount of time. This gives a terminating proof procedurettiertarget programs of the transformation.

A question that naturally arises from the above discussidnoiv practical the above proof procedure
is. Obviously, the constant specified in Proposition 7.1 lsamrather large; moreover, the number of
atoms that are produced in the bottom-up computation artdatiealist-bounded by this constant, can
be extremely large. Therefore the bound is of practicalevainly in those cases where the parameters
that are involved in its definition are very small. The foliogy arguments can be given in favor of the
proposed approach:

¢ Many well-known value-propagating Datalog optimizatideed to target programs whose bottom-
up execution suffers from the problem of non-terminatid@8]]. Therefore even the existence of
Proposition 7.1 adds a desirable characteristic to thegsegbtechnique.

e As we have realized in practice, there exist many cases iohathie bottom-up execution of the
target program terminates even without resorting to the@list-bounded proof procedure.

e As it will become obvious in the next section, there exishs$farmations that can reduce the
number of list labels that appear in the target program ofrdnesformation. This means that the
number of list-bounded atoms is also reduced and therelfier@atove proof-procedure becomes
more efficient. Actually, in many interesting cases, theltibels can be completely eliminated,
and therefore the target program is in fact an optimized IDgtane that can be executed very
efficiently ([19]).

In the next section we discuss certain transformationsethiaiince the performance of the target code of
the proposed transformation.
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8. Optimizing the Target Program

In this section we demonstrate that the programs obtainetthéoyransformation of Section 5 can be
significantly simplified by using unfolding and eliminati@i redundant clauses. For this we define
and prove the correctness of the unfolding and eliminatidasr for Choice Datalgg; programs in
Subsection 8.1, and then in Subsections 8.2 and 8.3, we ddraEnhow these rules can be used to
simplify the program obtained by the algorithm presentefiection 5.

8.1. Unfolding and elimination of redundant clauses in Chaie Datalog,s

The unfolding rule and elimination of redundant clauses Wawill describe below are similar to the
ones defined for classical logic programming [26, 6, 15]. iifan difference is the existence of choice
atoms in clauses.

Definition 8.1. Let P be a Choice Datalgg program and”' be a clause it of the form:
A+ Ala"'aAi—laAiaAi—I—la"- aA’n

where each one ofly,..., A,_y andA4,.4,..., A, may be either choice or non-choice atom while
is a non-choice atom. Let;,Cs,...,C,, be all clauses inP?, whose heads are unifiable with; by
most general unifier8y, 6o, . .., 0,, respectively. The result ainfolding C atA; is the set of clauses
{C1,...,C;,} such that, for each, with 1 < j < m, if C; is the clause:

Bj — le,... ,th.
with A > 0 andB;0; = A;0;, thenC’ is the clause:

(A — Al,. . . ,Ai_l,le, B ,th,AH_l,. . . ,An)ej
Then the program obtained by unfolding is the progrBin= (P — {C}) U {C1,...,C],}. The
clauseC' is called theunfolded clauseCi, . .., C,, are called thainfolding clausesind A; is called the
unfolded atom

Notice that the unfolding rule defined above can be applidd tmnon-choice body atoms. The
following lemma demonstrates the correctness of the uimfglidule.

Lemma 8.1. Let P be a Choice Datalgg program, and”’ be the program obtained by unfolding a
clauseC' in P. Then for every databage both Pp and P;, have the same sets of limit interpretations.

Proof:

Let S, andS), be the sets of the approximations to the limit interpretegtiof P, and Py, respectively that
are obtained during thie-th iterations of the bottom-up computation (i.e. the sahefk-th elements of
all Pp-chains obtained as described in Definition 4.6). We williaskiction onk to prove thatS, = S},
forallk € w.

Base CaseThe lemma holds fok = 0 sinceS; = .S;, = {0}.
Induction HypothesisiWe assume that;, = S} for all k < n, withn € w.
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Induction StepWe will prove thatS,,.; = S, ;. We distinguish the following cases:

Case lletn=20+1,1>0. Itis easytoseethat, . =5, ={M|M € Cp,(M'), M' € S,}.
Case 2:Letn = 2] + 2 for somel > 0 and letJ € S,,. Then because of the induction hypothesis;
S, Itis easy to see that the approximations obtained ffamS,, ., and inS],, arel = NTp, 1 w(J)
andl’ = NTp; 1 w(J), respectively. We will prove that = I' by proving that) I C I’,andb) I’ C I.

Proof of (a): We use induction onto prove thatNT]éD(J) cr.

Base Case (of afrori = 0 we have:NTP (J) = Nngb (J) = J. Because of Lemma 4.7, C I, and
thus we derive thal'7p_(J) C I'.

Induction Hypothesis (of aJf A € NT¢ (), thenA € r.

Induction Step (of a)We will prove that if A € NTIQ’]"J“(J), thenA € I'. Suppose thatl has been
introduced inNT;;“(J) by applying a clausé€’ of Pp.

Case 1 (of @) also belongs td@,. Then as the body atoms in the instanc&'afsed to introducet in
NT}%“(J) belong toNTp! (J), they also belong td’, because of the induction hypothesis. Therefore,
Ais also an atom id’ as it can be introduced usir(g.

Case 2 (of a)C does not belong t&' because it has been unfoldeditn Let C' be of the form:

Ag < A1y Aicr, Ay Aipry - An.

whereA; is the unfolded atom. Lef, Cs, ..., C; be all clauses i?, whose heads are unifiable with
A; by most general unifiery, 0,, . . . , 85 respectively. It is easy to see that since (a ground instaf)ce
C has been used to introdugein NT};}J“(J), the corresponding instance 4f is in NT7! (J) and has
been introduced using one of the clauggsCs, ..., C, as these are all the clausesirwhose heads
are unifiable with4;. Suppose that this claused:

Bj — le,... ,th.
with A > 0. As C; is an unfolding clause, a clauél:j‘ of the form:

(A(] — Al,...,Ai_l,le,...,B‘ Ai+1,...,An)0j.

Jh>

has been introduced iR’, wheref; = mgu(Bj, A;) and thusB;6; = A,0;. Itis easy to see that also

belongs tal’ as it can be introduced i by the appropriate ground instance of the cIaﬂ§eThe atoms
in the body of this clause are the instances of the atoms indtes of the instances of the claugséand

C; that have been used in the introduction/bfn NT}}}J“(J). These atoms also belong fbbecause
of the induction hypothesis (as they belong\f IQ’]}J(J)).

Proof of (b): As in the proof of &) we will use induction on to prove thatNT};b (J) CI.
Base Case (of b)As in Base Case ohf) we prove thatV Tob (J)C 1.
Induction Hypothesis (of b)f A € NT7} (J), thenA € 1.
D
Induction Step (of b)We will prove that if A € NT;}“(J), thenA € I. Suppose thatl has been
D
introduced inNT;;“(J) by applying a claus# of P’.
Case 1 (of b):F also belongs td. ThenA has also been introduced Irusing E (the proof is similar
to Case 1 of()).
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Case 2 (of b):E is between the clauses &f obtained by unfolding a clausg in P. It is easy to prove
(in a similar way as in the proof of Case 2 af), that the aton¥ has also been introduced irby using
the clause” and the unfolding clause used to obt#in O

As we will see in Subsection 8.2, when applying the unfoldinig some unfolding clauses become
redundant (since we are interested in retaining equivalenty with respect to specific predicates). We
can thus eliminate these clauses. The elimination rulevisngiormally in the following two definitions.

Definition 8.2. Let P be a Choice Datalgg program. Thepredicate dependency graghp of P is a
directed grapiV, E') whereV is the set of predicate symbols in and E is a set of edges such that
(p,q) € E iffthere is a claus€’ in P whose head predicatejsand there is an atom or a choice version
of an atom in the body of’ whose predicate ig.

Definition 8.3. Let P be a Choice Datalgg program, andS be a set of predicate symbols in A
clauseC' in P is said to beedundant with respect t§ in P iff there is no path in the predicate depen-
dency grapiG p of P leading from a predicate ifi to the head predicate 6f.

The following lemma can then be easily proved.

Lemma 8.2. Let P be a Choice Datalgg program, andS be a set of predicate symbols ih Let P’
be the program obtained by deleting all clause® which are redundant with respect$o Let A be an
atom or a choice version of an atom whose predicate symbiolds Then for every databade, if there
exists a limit interpretatiod/ of Pp such thatd € M, then there exists a limit interpretatidd” of Py,
such thatd € M’.

The transformation rules of this section can be used to dqitine target program as shown below.

8.2. Elimination of IDB predicates obtained from EDB body abms of the source pro-
gram

All IDB predicates that appear in the target progré&h which correspond to EDB atoms that appear
in the bodies of the clauses in the source progfantan be eliminated using unfolding. In particular,
the predicates in the heads of the clauses addda*ton Case 4 of the algorithm (which are output
predicates) appear only in the bodies of (some of) the ctainge*, added in Cases 2-3 of the algorithm.
All clauses containing these atoms in their bodies can belded using the clauses introduced in Case
4. The clauses obtained by these unfolding steps contaimrmeewes of input predicates corresponding
to EDB predicates. These occurrences can be further unfettailting to the complete elimination of
all (input and output) predicates corresponding to EDB jgadds of the source program. It is easy to
see (because of the structure of the progiaiy that none of the unfolded atoms occurs in its choice
version and therefore all these unfolding steps are vatidraling to Definition 8.1. Notice that all labels
corresponding to EDB body atoms in the source program apectitginated through this process.
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Example 8.1. Consider the prograr®?* obtained in Example 5.1.

G) <+q ([1,2).

) qf ([1,a1).

) q (L,Z2) « £ ([1IL],2).

) £7([1IL1,%) + qf (L,X).

) q (L,Z) + p ([3IL],2).

) pf ([3IL],Y) + e~ ([2IL],Y).
) ef (I21L1,X) + qf (L,X).

) p (L,Z) + g ([5IL],2).

) gi ([5IL]1,W) + q~ ([4IL],W).
) g ([51L1,Y) < #p] (L,Y).
qf ([41L1,Y) « #pf (L,Y).

)
C11) e (L,Y) «+ e(X,Y), e/ (L,X).
Ci2) £7(L,Y) « £(X,Y), £ (L,X).
Ci3) g (L,2) + g(X,Y,2), g/ (L,X), g5 (L,Y).

We will eliminate all IDB atoms inP* (and the clauses defining them) corresponding to the EDB
predicates:, f andg, by using the transformation rules defined in Subsection 8.1
Unfolding (Cs) using (C11) we get:

(C14) pj([3IL],Y) « e(X,Y), ef ([2]1L],X).
Now unfolding (14) using Cs) we get:
(Cy5) pf ([3IL1,Y) + e(X,Y), qf (L,X).

Now we can replace({;s) for (Cs) in P*. Clauses(s) and (C11) can be eliminated as they are now
redundant with respect to the set= {q~ } containing the goal predicate.

Applying the same process we can eliminate the predi¢atesd£;” and the clauses defining them.
In particular, we unfold @) using (C12) and then we unfold the clause obtained usifig)( In this way
we get the clause:

(Cis) q~(L,2) + £(X,2), qf (L,X).

which replaces claus€) in P*. Again we eliminate the redundant clauség)(and C12).

Applying the same process we can eliminate the predi@ﬁeg; andg~ that correspond to the
EDB predicateg. For this we unfold ;) using (3), and then we unfold the resulting clause using the
clauses s) and (Cy). In this way we get the clause:

(C17) p(L,2) + g(X,Y,Z), #p} (L,X), q ([4IL],1).

Clause (17) can replace(~) while clausesy), (Cy) and (C13) can be eliminated as they become
redundant with respect to the set= {q~ }. The program obtained by applying the above transformation
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(G) <+ q (11,2).

(C1) qf ([1,al).

(Cy) q (L,2) «p ([3IL1,2).
(Cro) qf ([41L1,Y) « #p] (L,Y).
(

(

(

)
Ci5) pf([3IL1,Y) + e(X,Y), qf (L,X).
Cis) q (L,2) + £(X,2), qf (L,X).
Cir) p (L,2) < g(X,Y,2), #p{ (L,X), q ([4IL],Y).

It is easy to see that we have managed to eliminate IDB atom® {iand the clauses defining them)
that correspond to the EDB predicatest andg. Moreover, the labels 1, 2, and 5, corresponding to the
EDB body atoms of the source program have also been elinginate

8.3. More optimizations using unfolding

In the previous subsection we have seen how we can elimihatéDB predicates that correspond to
EDB body atoms from the program obtained by applying thestiamation algorithm of Section 5.
However, as we will see in Example 8.2, we can apply some maiading steps to further simplify the
program.

Example 8.2. Consider the program obtained in Example 8.1. Observe teatam unfold the clause
(Cyq) atp™ ([31L]1,2) using the clause({;;). In this way we get the clause:

(Cis) q (L,2) «+ g(Y,W,2), #p] ([3IL]1,Y), q ([4,3IL],w).

The clause@:g) can now replace({,) in the program and the clausé4¢) is redundant with respect
to S = {q~ } and can be eliminated. In this way we get the program:

G) «+q ([1,2).
C1)  qf ([1,a1).

(

(

(Cro) qf ([41L1,Y) « #p (L,Y).

(Ci5) pf ([3IL1,Y) < e(X,Y), qf (L,X).

(Cis) q~(L,Z) «+ £(X,2), qf (L,X).

(C18) q (L,2) < g(Y,W,Z), #p; ([3IL],Y), q ([4,3IL],W).

We can also unfold clause€'{s) and () at the atomy;” (L, X). In this way we get the clauses:

(C19) Py ([31,Y) + e(al,Y).

(Ca) Py ([3,41L1,Y) « e(X,Y), #p/ (L,X).
(Co1) q ([1,2) «+ £(a1,2).

(Co2) q~([41L1,2) «+ £(X,2), #p (L,X).
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Clauses (G»), (Cs), (Cs1), and (Gs) can replace clause§’(s) and (1) in the final program and
clauses ;) and (C1¢) can be eliminated as they become redundant with respeue &etS = {q " }. In
this way we obtain the program:

G) <+q (11,2).
) pf ([31,Y) + e(al,Y).
) pf ([3,41L1,Y) « e(X,Y), #pf (L,X).
Co1) q ([1,2) « f(al,2).
) q ([4IL]1,Z) « £(X,2), #p] (L,X).
) q (L,2) « g(¥,W,2), #p; ([3IL],Y), q ([4,3IL]1,W).

It is important to note here that in the case of the elimimatibthe IDB atoms corresponding to the
EDB body atoms of the source program, we have an algorithes@mted in Subsection 8.2), which can
be applied to perform this optimization. On the other haadttHe unfolding steps applied in Example 8.2
we do not have at the moment a concrete algorithm. Howevebeleve that one can be guided by the
structure of the source program so as to perform most of theoppate unfoldings in an algorithmic
way. However, we do not pursue these issues any further here.

8.4. Eliminating Choice Predicates

The bottom-up execution of the target programs could befgigntly enhanced if one could eliminate
certain choice atoms or replace them by their non-choicsises. This is possible if we know that a
given predicate is deterministic:

Definition 8.4. Let P be a Choice Datalgg program andD a database. An IDB predicapeof P will
be calleddeterministicwith respect to the databage, if for every L, whenever two atoms(L, a) and
p(L,b) arise during the bottom-up evaluationBf, thena = b. An EDB predicate is deterministicif
its output argument is uniquely determined by its input axgats.

Detecting determinism in the program obtained by our teqmi(after applying also the optimizations
described above) is very important since one can replacehiee atoms of a deterministic predicate
that appear in the program by their non-choice versionsh 8utansformation results in fewer branches
that have to be followed during the bottom-up evaluatiorhefgirogram. Moreover it makes the program
amenable to other optimizing transformations.

There are many cases of determinism that can be detectedatiavgay. Consider a databage
and a progran® that has resulted after applying the transformation andptienizations that have been
described so far. The following definition and the subsetjleanma provides a means for detecting a
non-trivial class of deterministic predicates.

Definition 8.5. An IDB predicatep will be called potentially deterministidf its definition consists of
clauses of the following forms:
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i) p([],a)

i) p(I,Y) < e(a,...,an,Y).

iii) p(L,Y) ¢ [#q(L1,Y).

) p(L,Y) <+ e(X1,..., X0, Y), [#lg1 (L1, X1), ..., [#]an(Ln, Xn)-
where each;, fori = 1,...,n, is a proper suffix of_.

Lemma 8.3. (Testing determinism) Let S be a set of predicates df and assume that the following
conditions hold for every memberof S:

1.

3.

If p is an EDB predicate then it is deterministic and if it is an Ip&dicate then it is potentially
deterministic.

. The temporal arguments of the head atoms of all clausesirgfi specify disjoint sets of time

The predicate of every atom that appears in the body ofiselthat defines belongs taS.

Then every predicate iff is a deterministic predicate with respect/fo

Proof:

(Sketch) The lemma can be easily proved by induction on thetsire of the temporal argument (list).

O

Example 8.3. Consider the program obtained in Example 8.2. It is easyddts# the test defined above
applies to the sefp,”, e} in all cases that the EDB predicatés deterministic. In these cases we can
replace the choice atoms by their non-choice versionsmhtpthe program:

(G) <« q (11,2).
(C19) pf([31,Y) « e(al,Y).

(Cho) Py ([3,41L1,Y) < e(X,Y), pf (L,X).

(Co1) q ([1,2) «+ £(a1,2).

(Ch) q ([41L1,Z) + £(X,2), pj (L,X).

(Clg) a (L,2) < g(X,Y,Z), pf ([3IL1,X), q~ ([4,3IL],Y).

Notice however that i& was not deterministic, this optimization could not haverbapplied.

8.5.

Reducing the overhead in list manipulation

One aspect of the branching transformation that seemsgasiiht) to impose performance limitations,
is the fact that the transformation is heavily based on tstputations. For example, assume that during
the bottom-up evaluation of a program, an atom is createdirder to verify that this atom has not
already been introduced in a previous step, we have to canipaith the atoms that have already been
produced. However, since an atom can contain an arbitrkmily list, this seems to suggest that the



P. Potikas et al./ A Value-propagating Transformation Teghe 31

operation of comparing two atoms can be very costly. Foteipahere is a simple and elegant solution
out of this problem, one that has been extensively used icdhesponding version of the branching
transformation for functional programming languages [2The idea is that lists can be encoded by
small natural numbers using a technique knowiash-consing The main advantage of hash-consing
is that two lists can be tested for equality with a single afien, rather than with a loop which scans
the lists and compares corresponding elements. The onhofindisadvantage is that with each cons
operation we must consult a hash table to check that the distrer constructing does not already have a
representation.

We store the list representatives in a table each row of wikiaetpair(head, index of tail) The list is
then represented (or encoded) by the index of the appreppéit in the table. The following primitive
functions are used in order to implement hash-consing:

e hashcons(head, tail_code): Uses a hash function to check if the pfiiead, tail_code) already
exists in the hash table. If it does not, then it inserts ihally, it returns the position of the pair in
the table.

e hashhead(list_code): It returns the first element of the pair found in tiet_code position of the
hash table.

e hashtail(list_code): It returns the second element of the pair found inlil3¢_code position of
the hash table.

The above operations can be performed efficiently and theespecupied by the hash table is reasonable.
Using hash-consing and the above primitives, an efficieptementation of the technique can be built,
that avoids expensive list management. For more detaitgdeyy this technique, see for example [21].

8.6. Discussion on the optimizations

As the reader may have realized by now, the target programrafansformation is amenable to a variety
of optimizing transformations. Many of these transformasi may be expressed in an algorithmic way
and may apply to wide classes of target programs.

It is important to note that the elimination of unnecessdigice atoms is of paramount importance
because the presence of non-determinism is a source oftexeowerhead. As we have seen in Sub-
section 8.4 the necessity of using the choice version of am atsually depends on the structure of
the database on which a program applies (and not only on thetwte of the program itself). The
criterion that we propose in Subsection 8.4 is a first ste@tds/reducing the overhead introduced by
non-determinism. The invention of more widely applicalgst$ will be the subject of future work.

Another important source of optimizations concerns thmiekation of list labels that are not actu-
ally necessary. This improvement is essential since itaeslthe execution time of the program. Other
promising optimizations that help reduce the number ofdisels can be obtained by refining tBémi-
nation of redundant next operatorand theElimination of temporal operators concerning left recusi
calls proposed in [19]. However, it is not immediately obvious hibwse optimizations interact with the
existence of choice atoms. We are currently investigatiegé issues.

Concluding, we believe that the issue of optimizing thegapyogram of our transformation can still
produce interesting results. However, even in its presant fthe proposed approach competes with the
existing approaches (which have been developed and undegmprovements for many years).
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9. Related Work

The work presented in this paper contributes to the area efygoptimization in deductive databases.
More specifically, the proposed transformation belongswekiknown class of techniques in which the
input values of the query-goal are propagated in order tocethe generation of irrelevant atoms during
the bottom-up computation of the desired final answers. indction we present a comparison of the
proposed transformation with the most well-known valuepagating techniques. The comparison is
not exhaustive since this would require the availabilitystatble implementations for all the techniques
involved and the experimentation with a large number of mot and underlying databases. However,
in the following we attempt to identify the main advantagesl aisadvantages of our approach with
respect to its main competitors.

Among the existing Datalog optimizations, the ones thatracst closely related to the present
approach are thenagic sets transformatiof8, 25], the counting method24] and thepushdown ap-
proach[9]. In the following, we discuss the relative merits andvdbacks of each one of them with
respect to our technique. In the last subsection we complatieeae techniques with respect to their
performance on specific examples.

9.1. A Comparison with Magic Sets

The most widely known approach in the area of value-propagdatalog optimizations, is the magic
sets transformation. In this approach, for each IDB prdadicd the source program a new predicate,
calledmagic predicateis introduced. The arguments of a magic predicate are thacarguments of
the corresponding IDB predicate of the initial program amel &im is to push selections into clauses.
The magic sets can be applied to general Datalog progran2s[&and therefore it is the most general
among all similar techniques. This generality, howeven, mave a disadvantage in many cases: as we
argue in subsection 9.3, the proposed transformation leasaime advantages over magic sets as the
counting technique does. More specifically, it is well-kmoj@8] that on a variety of databases, counting
outperforms magic sets; in particular, there exist prograrhich (under certain databases) terminate in
O(n) time using counting but requir@(n?) time for magic sets. As we will demonstrate at the end of
this section, this favorable situation appears as wellfergroposed transformation.

9.2. A Comparison with Counting and Pushdown

The counting technique uses integer indices in order todmbeo fixpoint computations: one for the
propagation of the bindings in the top-down phase and ther dtin the generation of the desired result
in the bottom-up computation. In other words, the integdides of counting play the role of the lists in
the present transformation.

In its initial form, counting was applicable only to a rested class of queries [28, 10]. Later, it
was extended tgeneralized countingwhich applies to a broader class of queries having the dedcal
binding-passing property (BPR4]. Intuitively, BPP guarantees that “bindings can bespdsdown to
any level of recursion”. However, the class of BPP prograpesdot include all the Chain Datalog ones
and hence not all the cc-Datalog ones. For an example, aorisid traversal of a graph using double
recursion (the program in Section 2). The generalized cogimhethod can not treat this case, since the
corresponding program does not have the BPP; but this progractually a Chain Datalog one, and
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therefore it can be easily transformed by the branching-timansformation. In other words, counting is
less general than the branching-time transformation.

Another issue that arises when comparing these techniqueims the termination of bottom-up
evaluation of the resulted programs. Consider first the ocswanching transformation. Then as we
have demonstrated, for every program and database thets exbound (that depends on the program
and database characteristics) such that all the answerguerg are obtained in a number of iterations
that does not exceed this bound. On the other hand, in cake obtinting technique alternative methods
have been proposed in order to ensure termination. For dgainp[12] a criterion is proposed that
applies to databases that can be represented as graphetitéi®n, however, is not general enough
to cover all the database cases (i.e. the non-graph repabtemnes). Another method that has been
proposed for the same purpose is thagic counting23] approach. This method provides a way to deal
with cyclic databases provided one knows in advance thetsiel of the database in order to decide
which of the variants of the method is most appropriate.

Recapitulating, the counting and the branching transftong share some common philosophy (the
former uses integer indices while the latter lists of intege control bottom-up evaluation). However,
the branching transformation appears to have a more gdrenghation criterion and applies to a wider
class of programs.

The pushdown method is based on the relationship betweémaineries and context-free languages.
Moreover, the context-free language corresponding to sygs@ssociated to a pushdown automaton; in
this way the initial query is rewritten in a more suitablenfofior efficient bottom-up execution. Tlpeish-
down methodapplies to all chain queries [9], and hence it covers a sabaathe proposed technique,
as it cannot treat the case of multiple consumptions of bketa

9.3. A Comparison through Examples

In the following, we compare the above techniques using éxample programs. The first one is the
well-known same generatioprogram (which is actually a Chain Datalog program); theoadmne is
thepath program of Section 3, which has multiple consumptions oiides. The third one is a doubly
recursive program which computes the odd-length paths dfemgolor in a graph; finally, the fourth
example is the running example that we have been using so far.

9.3.1. The same-generation program

The same-generation program has been used extensivelynipecimg the performance of various Data-
log optimizations:

+— sg(a,Z).

sg(X,Y) < equal(X,Y).

sg(X,Y) < par(X,Xp),sg(Xp,Yp) ,rap(¥p,Y).

Consider a database consisting of the unit clapse<a,b;), par(b;,c), rap(b;,a) andrap(c,
b;), wherel < i < n, andequal is the usual equality predicate (this is a slightly modifiedsion of the
program given in [28], page 831). The proposed transfoomatihen applied to the (simple cc-Datalog
version of the) above program produces as output (afteyagpihe appropriate unfoldings described in
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Subsection 8.2):
«—sg ([1,2).
sgi ([1,a).
sg” (L,Y) < equal(X,Y),sg/ (L,X).
sg (L,Y) < rap(Yp,Y),sg ([5,2|L],Yp).
sgi ([5,21L],Xp) < par(X,Xp),sg/ (L,X).
It can be easily seen that the above program terminates girggltihe desired solutiorZE a) in time
O(n). On the other hand, the corresponding magic sets progreh (Jage 856) requires tim@(n?)

(see also the discussion in [28], page 947). In other wongstransformation appears to give promising
results with respect to magic sets.

9.3.2. The colored-path program

Consider the cc-Datalog program of Example 3.2:

< path(a,red,Z).
path(X,Color,Z) + edge(X,Color,Z).
path(X,Color,Z) + edge(X,Color,W) ,path(W,Color,Z).

together with the databasedge (a,red,b;), edge(b;,red,c), edge(c,red,d;),i=1,...,n.
The target program obtained after applying the proposesfivamation and the appropriate unfold-
ings is as follows:

+— path™([1,2).

path ([],a).

pathl ([1,red).

path™ (L,Z) < edge(X,Color,Z) ,pathi"(L,X) ,path;'(L,Color) .
path™ (L,Z) < path™ ([3|L],2).

path ([3|L],W) + edge(X,Color,W),path (L,X),#path] (L,Color).
path;' ([3IL],Color) + #pathi" (L,Color).

It is easy to see that Lemma 8.3 can be appliefbtechy }, thuspath] is deterministic with respect
to the given/every database (in fact, in every context ita dagument gets the valued). Therefore,
the choice atoms can be replaced by their non-choice versioiaining a program free of choice atoms.
Moreover, it is easy to see that the atoms whose predicateis; can be completely removed, obtaining
in this way the following program:

+ path™([1,2).
pathi" ([1,a).

path™ (L,Z) + edge(X,red,Z) ,path; (L,X).
path™ (L,Z) + path ([3IL],2).

path{ ([3|L],W) < edge(X,red,W),path] (L,X).
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The answers to the goa (= b;, ¢, d;,fori =1,...,n) are produced if0(n) time.
On the other hand, the magic sets program:

m_path(a,red).

m_path(W,Color) < m_path(X,Color),edge(X,Color,W).

path(X,Color,Z) < m_path(X,Color) ,edge(X,Color,Z).

path(X,Color,Z) < m_path(X,Color) ,edge (X,Color,W),path(W,Color,Z).

produces all factpath(b;,red,d;), fori,j = 1,..,n and hence need3(n?) time. Even the more
sophisticated extension of the magic sets, i.e. ghgplementary magic sef8], does not offer any
significant improvement since t&(n?) facts still have to be computed.

The counting method results to the following program:

c_path(0,a,red).

c_path(I+1,W,Color) < c_path(I,X,Color),edge(X,Color,W).
path(I,Z) < c_path(I,X,Color),edge(X,Color,Z).

path(I,Z) < path(I+1,Z).

A bottom-up evaluation of this program computes the answeetie goalk— path(0,Z) in O(n)
time.

9.3.3. The odd-length colored-path program

Consider the cc-Datalog program that finds all the nodesateaccessible from nodethrough odd-
length red paths (double recursion):

+ path(a,red,Y).
path(X,C,Y) < edge(X,C,Y).
path(X,C,Y) < edge(X,C,Z), path(Z,C,R), path(R,C,Y).
together with the databasedge (a,red,b;), edge(b;,red,c), edge(c,red,d;) andedge(d;,red,
e, fori=1,...,n.
The target program after applying the proposed transfoomaind the appropriate unfoldings is:

« path~—([1,Z).

path ([],a).

pathy ([],red).

path™ (L,Y) « edge(X,C,Y), path (L,X), pathj (L,C).
path™ (L,Y) + path™ ([4IL],Y).

pathy ([4]L],C) « #path] (L,C).

pathy ([3|L],C) <« #pathj (L,C).

path{ ([4|L],R) < path™ ([3|L],R).

path; ([3|L],Z) + edge(X,C,Z), path] (L,X), #pathj (L,C).



36 P. Potikas et al./ A Value-propagating Transformation Teghe

or after the replacement of the choice predicate with itsesponding classical predicate and the elimi-
nation ofpath] predicate (in a similar way as in Subsection 9.3.2) we get:

< path ([1,Z).

path; ([1,a).

path™ (L,Y) <+ edge(X,red,Y), path] (L,X).
path™ (L,Y) < path™ ([4|L],Y).

path ([4IL1,R) < path ([3|L],R).

path] ([3|L]1,2) « edge(X,red,Z), path; (L,X).

The answers to the god (= b;, d;, fori = 1,...,n) are produced i (n) time (since onlyO(n)
facts are produced during the computation).
On the other hand, the corresponding magic sets program:

m path(a,red).

m_path(Z,C) + m_path(X,C), edge(X,C,Z).

m_path(R,C) < m_path(X,C), edge(X,C,Z), path(Z,C,R).

path(X,C,Y) < mpath(X,C), edge(X,C,Y).

path(X,C,Y) « m_path(X,C), edge(X,C,Z), path(Z,C,R), path(R,C,Y).

needs2(n?) time to produce the answers, due to the fact that it produtéscts of the formpath(b;,
red,e;), fori,j =1,...,n.

Similarly, the counting method produces the following peog:

cnt_path(0,0,a,red).

cnt_path(I+1,2+H,Z,C) < cnt_path(I,H,X,C), edge(X,C,Z).
cnt_path(I+1,2+H+1,R,C) < cnt_path(I,H,X,C), edge(X,C,Z),
path(I+1,2%H,Z,C,R).

path(I,H/2,X,C,Y) + cnt_path(I,H/2,X,C), edge(X,C,Y).
path(I,H/2,X,C,Y) + cnt_path(I,H/2,X,C), edge(X,C,2),
path(I+1,H,Z,C,R), path(I+1,H+1,R,C,Y).

So, the computation of the resulting program produces edsfaf the formpath(1,0,b;,red, e;)
fori,j = 1,...,n. HenceQ(n?) time is needed. Notice that the counting program requiresitaices
(instead of one that is needed in the case of the branchingftranation).

9.3.4. The running example

Consider again the running example together with the datakdal,bv;), f (b;,c;) andg(b;,c;,d;),

fori = 1,...,n. The answersZ = d;, fori = 1, ..., n) for the target program given in Example 8.3 are
produced inD(n) time, sinceO(n) atoms are produced.
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The corresponding magic sets program is:

m.q(al).

m_q(Y) < mq(X),e(X,Y).

q(X,Z2) < mq(X),f(X,Z).

q(X,Z) + mq(X),e(X,Y),q(Y,W),g(Y,W,Z).

and need®)(n) time.
Finally, the program produced by the counting method is:

cnt_q(0,al).

cnt_q(I+1,Y) < cnt _q(I,X),e(X,Y).

q(1,X,Z) « cnt_q(I,X),£(X,2).

q(I,X,2) < cnt_q(I,X),e(X,Y),q(I+1,Y,W),g(Y,W,2Z).

and needs als@(n) time to produce the answers.

9.3.5. Overall comparison

Recapitulating, the comparison of the three techniquegnssarized in the following table:

Method ‘ Magic Sets ‘ Counting method ‘ Branching ‘
Same generation Q(n?) O(n) O(n)
Colored — path Q(n?) O(n) O(n)
Odd — length colored — path Q(n?) Q(n?) O(n)
Running example O(n) O(n) O(n)

As a closing comment, our transformation appears to havendasibehavior to that of counting
for the programs we have presented (as well as for other amgywe have tried). An advantage of
the proposed technique is that it has a clear terminatioditton which is realistic for many examples.
Finally, both the counting and the branching transfornmesippear to outperform the magic sets in many
examples (but of course the latter is clearly more genesggiplicable).

10. Discussion

In this paper we have presented a significant extension dbrdmeching-time transformation [18, 19].
More specifically, we have demonstrated that if we introdcioeice predicates in the target language,
then the branching-time approach can be extended to harmtieaons that allow multiple consumptive
occurrences of variables in the bodies of clauses. The anogthat result from the transformation have
a number of interesting properties:

e Every clause in the resulting program corresponding to & pBedicate in the source program,
uses only a single data variable.
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e Every IDB predicate in the resulting program is binary, itstfargument actually being a control
argument in the form of a list.

Moreover, in many interesting cases (e.g. for all sourcgnamms where all EDB predicates have arity
2), the target programs have at most one IDB body atom. Swgirgons are usually calldohear [1, 2]
and have many interesting properties.

We believe that the work presented in this paper can be exteimdvarious ways. We have been
investigating possible extensions of the source languaginaps allowing more than one output argu-
ments, as well as more general patterns of consumptionsarticylar, we believe that the restriction
to consecutive consumption of the arguments is not esséntidifting this restriction seems to require
a more involved correctness proof. Another point for furtresearch is the use of non-deterministic
constructs that have been used for deductive databasethdike proposed in [8].

We currently have a working implementation of the initishbching-time transformation [27]. More
specifically, the implementation of [27] takes as input @hAiatalog programs, translates them into
Datalog, s, optimizes them, and finally executes them in a bottom-up Whg implementation is written
in Prolog and has given quite promising results for the cA&#hain Datalog programs. We have recently
undertaken the task of extending the implementation to leacwiDatalog programs. This is obviously
a more demanding goal since the existence of choice predidatthe target code imposes a different
bottom-up execution strategy.

Another possible direction for future work would be to intigate whether the results of this paper
can be applied to more general logic programs (i.e., progiéak use function symbols). Consider for
example the following program that performs multiplicatiof natural numbers:

times(X,Y,Z) < zero product(X,Y,Z).
times(s(X),Y,Z) « times(X,Y,W),plus(W,Y,Z).
plus(X,Y,Z) < zero_sum(X,Y,Z).
plus(X,s(Y),s(Z)) + plus(X,Y,2).
zero_product(0,X,0).

zero_sum(0,X,X).

Moreover, assume that we have a fixed goal, saytimes(s(0),s(s(0)),Z). Then the above
program can be transformed in the usual way. The key ideaatlmats us to do the translation is that
although there exist function symbols, each compound temais only one variable. The application
of the transformation to such more general programs posdmkewew set of interesting questions.

In conclusion, we believe that the technique describedigphper has a significant potential for
further extensions. Moreover, we believe that answersedattestions posed in this section will enable
us to get further insight on the relationships between iakkgic programming and intensional logic
programming languages.
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Appendix A
In this Appendix we give the proof of Lemma 6.1.

Lemma 6.1. Let P be a simple cc-Datalog prograr®, a database, an* the Choice Datalggs pro-
gram that results from the transformation. For all predisatdefined inPp, all L € List(N), all
a,b € Up,, all input positions of p, and all approximations, p; (L, b) does not depend am (L, a)
inI.

Proof:

When the listL is empty it is straightforward to check that the lemma holas there is no clause in
P*, other than the unit clauses obtained from the transfoomaif the goal clause, whose head has as
instance the atom; ([],b)). We therefore need to examine the case where the lengtfisojreater than
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or equal to 1. Assume thdt = [/;|M]. The proof is by induction on the distance between atoms in
1. The cases for distances 0 and 1, hold trivially (the formemrabise of Definitions 6.2 and 6.1 and the
latter because of the form of the clauses produced by theftianation). Assume the lemma holds for
distances up té. We demonstrate the claim for distandes 1.

Assume for the sake of contradiction that there exists amoappation I in which p; ([l1|M], b)
depends orp ™ ([l1|M],a) in I with distancek + 1. This means that there is a derivation $efor
p; ([l1|M],b) in I for which there exists a sequence/of+ 1 ground instances of clauses Bf, that
establishes the dependency between these two atoms; theldinse in this sequence must contain
p~([l1|M],a) as a body atom, while the last clause must hagVgl,|M], b) as its head. We distinguish
the following cases:
Case 1:The first clause in the sequence is of the form:

q (M,a) < p~([|M],a).

This is a ground instance of a clause that has resulted aftesforming a clause of the original
program that is either of the form:

q(--) = 7r()p(--+)

or of the form:
a(--) = pl--)

Now, in order to get frong~ (M, a) to p; (11| M], b), the label; must be restored by an intermediate
clause of the sequence. This can be performed by either adjinstance of a clause of the form:
pi ([ M],0) + [#]a] (M. b).
or by:
p; ([L[M],b) = r=([l2|M], ).

But in the first case this implies thq}*(M, b) depends o~ (M, a) in I and the distance between
q;.f(M, b) andq (M, a) is < k (contradiction from the induction hypothesis). In the setcase, the
only way that label, can have been introduced is by a ground instance of a claube @rm:

r ([12|M], d) < [#]q,, (M. d).
But theng,, (M, d) depends o~ (M, a) in I, and the distance betweefi (M, d) andg~ (M, a) is
< k (contradiction from the induction hypothesis).
Case 2:The first clause in the sequence is of the form:

qj ([2|M], a) < p~([l1|M], a).

This is a ground instance of a clause that has resulted aftesforming a clause of the original
program that is of the form:

r(-o) < p(--)ql-++)
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Now, in order to get fronqj([l2|M],a) to p;” ([11|M],b), the labell; must be restored by an inter-
mediate clause of the sequence. This can only be performeddmgund instance of a clause of the
form:

p; ([ M],d) « [#]r;} (M, d).

But in order to get frorrq;-’([lQ|M], a) to ;" (M, d) the labell; must be removed, and this can only
be performed by a ground instance of a clause of the form:

r(M,c) < q ([lo|M],c).

Thenr," (M, d) depends om~ (M, c) in I and the distance between thenxisk (contradiction by
the induction hypothesis). O

Appendix B

In this Appendix we give the proof of Lemma 6.2.

Lemma 6.2. Let P be a simple cc-Datalog program afda database. La®* be the Choice Datalgg
program that results from the transformation. For all pratéisp defined inPp, all L € List(N),
all a,b € Up,, and all input positions, j of p, there does not exist any approximatiorio any limit
interpretation ofP’;, such thap; (L, b) depends op; (L, a), wherep; (L, b) # p; (L, a).

Proof:

When the listL is empty it is straightforward to check that the lemma holifge therefore need to
examine the case where the length.aé greater than or equal to 1. Assume that [I;|M]. The proof

is by induction on the distance between atoms. The casesstandes 0 and 1, hold trivially (the former
because of Definitions 6.2 and 6.1 and the latter becauseedbtin of the clauses produced by the
transformation). Assume the lemma holds for distances up We demonstrate the claim for distances
kE+1.

Assume for the sake of contradiction that there exists amoappation I such thatp;" ([l1|M], b)
depends orpj*([lﬂM], a) in I with distancek + 1. This means that there exists a sequenck f1
ground instances of clauses Bf, that establishes the dependency between these two atoenBrsth
clause in this sequence must cont@;h([lﬂM],a) as a body atom, while the last clause must have
p; ([l1|M],b) as its head. We distinguish the following cases:

Case 1:The last clause in the sequence is of the form:

pi ([LIM],0) « [#lq)l (M, D).
This is a ground instance of a clause that has resulted aftesforming a clause of the original
program that is either of the form:
a(--) < pl--).
or:

q(-+) = r(),p(--).
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or
q-+-) < pl--)r(--).

Now, in order to get fronpj*([ll |M],a) tog;" (M, b), the label; must be removed by an intermediate
clause of the sequence. One way that this can have beenmedas by using a ground instance of a
clause of the form:

a~ (M, c) < p~([L|M],c).

But theng; (M, b) would depend o~ (M, c) in I (contradiction by Lemma 6.1).
The removal ofi; can have alternatively been performed by using a groundrgstof a clause of
the form:
rm([l2|M], ) < p~([l1|M], 0).

But thenp;" ([I1|M], b) would depend op~ ([I1|M], ¢) in I (contradiction by Lemma 6.1).
Case 2:The last clause in the sequence is of the form:

pi ([11|M],b) < g~ ([l2|M], b).

This is a ground instance of a clause that has resulted aftesforming a clause of the original
program that is of the form:

7o) g ), p(--).

But then there must have existed some intermediate steg iwhiole derivation that removed label
Iy from the initial list[l;|M] of the atompj*([ll|M], a). This can have only been performed by using a
ground instance of a clause of the form:

r~(M,c) « p~([l1|M], ).

In this casep;” ([1;|M], b) would depend om~([I1|M], ¢) in I (contradiction from Lemma 6.1). O



