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1. Introduction

The branching-time transformation[18, 19] is a recent transformation technique that applies to Chain
Datalog programs. More specifically, the branching-time approach belongs to the class ofvalue-propa-
gating Datalog optimizations in which the input values of the top level goal of the source program are
propagated in order to restrict the generation of atoms in the bottom-up computation. Such techniques
include thecounting transformation[24], the magic sets[3, 25], thepushdown approach[9], and so
on. The branching-time transformation was inspired by a similar technique that has been proposed for
functional programming languages [30, 29, 21, 22].

In this paper, we extend the branching-time approach so as that it can handle a significantly broader
class of well-moded Datalog programs. One of the novel characteristics of our new approach is that the
target language is Datalog�� [5, 4] extended with choice predicates [14], a non-deterministic construct
that was originally introduced in intensional logic programming [13]. The use of choice predicates allows
the transformation of clauses containing multiple consumptive occurrences of variables. We believe
that the use of non-deterministic constructs opens up a promising direction of research in the area of
Datalog optimizations. For the programs that result from the transformation we define a bottom-up proof
procedure and we demonstrate that it always terminates (despite the fact that the Herbrand base of the
programs of the target language can be infinite). Finally, wedefine several optimizations on the target
code, which enhance the performance of the bottom-up computation. The main contributions of the
paper can therefore be summarized as follows:� We propose a new value-propagating transformation technique for a large class of moded Datalog

programs and demonstrate its correctness. Actually, the class of programs that we consider is
broader than those considered by other related transformations.� We demonstrate that temporal languages such as Datalog�� extended with non-deterministic con-
structs can prove especially useful for defining new powerful transformations for Datalog programs
(and possibly for more general logic programs). In particular, we demonstrate that multiple con-
sumptions of variables in Datalog programs can be treated effectively using choice predicates.� We define a proof procedure that applies to the target programs of the transformation, and demon-
strate that it always terminates. Moreover, we propose several optimizations of the target code that
enhance its efficiency.

Some of the results outlined above appeared in preliminary form as a conference paper [16].
The rest of this paper is organized as follows: Section 2 gives an outline of the proposed transfor-

mation technique. Sections 3 and 4 introduce the source and the target languages of the transformation,
while Section 5 introduces the transformation algorithm itself. Section 6 provides the correctness proof
of the transformation. Section 7 introduces a terminating proof procedure for the programs that result
from the transformation and Section 8 presents optimizations of the target code. Section 9 evaluates
the proposed technique with respect to other related transformations, and Section 10 discusses possible
future extensions.
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2. An Outline of the Technique

In the area of deductive databases, Datalog and bottom-up fixpoint computation are favored. The effec-
tiveness of bottom-up execution for Datalog programs is based on optimization techniques, often referred
to asquery optimization techniques[17]. A query optimization is a transformation of a query (program
and goal) to a new query, that is semantically equivalent to the initial one, in a form suitable for more effi-
cient bottom-up evaluation. A known family of query optimizations is thevalue-propagating techniques,
that treat queries in which goals have some bound arguments.

The branching-time transformation was recently introduced by two of the authors in the area of
value-propagating Datalog optimizations, and applies (inits initial form) to the class of Chain Data-
log programs [18, 19]. The name “branching-time” is due to the fact that the recursive predicate calls
in a program form a tree-like structure which can be capturedusing a branching-time language. The
branching-time transformation is applied on all clauses ofthe initial program, and for each one of them
produces a set of new clauses (each one of which contains at most one IDB predicate in its body). Intu-
itively, the resulting clauses reflect in a more direct way the flow of the argument values that takes place
when the initial program is executed.

In the branching-time transformation, for every predicatein the initial program two new predicates
are introduced; each one of them has two arguments, a controlone (in the form of a list of natural
numbers) and a data one which encodes the argument being passed. The intuition behind the control
argument is that it “links” the two new predicates and coordinates them so as that the correct answers
will be produced.

To illustrate the branching-time transformation in its initial form, consider the following Chain Dat-
alog program (in which� is an IDB predicate while� an EDB one):	�
����� 
����	 �
������ 
����	 �
���� � 
����

In the class of Chain Datalog programs, the first argument of each predicate is considered as an
input one while the second as an output (this is due to the factthat we consider goal atoms with their
first argument bound). The new predicates��� and�� introduced by the transformation for a program
predicate�, correspond to the calls (inputs) and the answers (outputs)respectively, for the predicate� in
the top-down computation.

We demonstrate the transformation by considering in turn each clause of the initial program. The
transformation of the goal clause results in:	��
�������� 
������

Notice that the bound argument of the initial goal clause hasbecome an argument of a unit clause in
the transformed program. As a result, the bottom-up evaluation of the resulting program would use this
unit clause in its first step in order to restrict the set of atoms produced in subsequent steps.

The transformation of the first clause of the source program results in:

��
���� 	 ��
������������ 
��������	 ��� 
�����
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Notice the label
�

that appears in both��
��������and��� 
��������. The basic idea is that this
label relates the two atoms that have resulted from the same call in the initial program (namely the call�
����). It is important to note thatany label can be used instead of

�
, as long as this label is different

from the ones that are assigned to other calls of the initial program.
The second clause of the initial program is transformed as follows:

��
���� 	 ��
�� ���������� 
�� �����	 ��
�� ��������� 
�� ������	 ��� 
�����
Finally, the branching-time transformation also introduces the clause:

��
���	 �
������� 
�����
which plays the role of an interface to the database atoms whose predicate is�.

Notice that the program obtained by the transformation is not a Datalog one. In fact, it is a Datalog��
program [5, 4]. We should also note that in the original papers defining the branching-time transforma-
tion [18, 19], sequences of temporal operators are used instead of lists of natural numbers, and the result-
ing program is aBranching Datalogone (Branching Datalog is the function-free subset of the branching-
time logic programming languageCactus[20]). It is however easy to show that the two approaches are
equivalent. Notice also that the Herbrand base of the programs resulting from the transformation is not
finite due to the lists that have been introduced. However, aswe have demonstrated in [19] (based on
the results in [4]) there exists a terminating bottom-up computation that produces all the answers to the
goal clause. For a more detailed description of the branching-time transformation, the interested reader
should consult [19, 18].

However, the branching-time technique in the form described above, does not apply to Datalog pro-
grams in which there exist multiple consumptions of variables. The following example demonstrates the
issues that arise in such a case. Consider a Datalog program that contains the clause:

� 
���� 	 �
������
��� ����
The problem with the above clause arises from the fact that

�
appears twice in the body of the clause.

When attempting to apply the branching-time technique to the above program, the relationship between
the two different occurrences of

�
is lost, and the resulting program is no longer semanticallyequivalent

to the initial one. More specifically, a naive translation ofthe above clause would produce (among others)
the two following clauses: ��� 
���������	 ��� 
�������� 
��� ������	 ��� 
�����
where

��
and

��
are natural numbers. Notice that the two occurrences of

�
in the body of the initial

clause have been separated from each other as they have been placed in different clauses in the target
program, and it is therefore possible for them to instantiate to different values (something which was not
the case in the original clause). In this way the resulting program may produce answers which are not
included in the set of answers of the initial program.

In this paper, we propose a solution to the above problem based on choice predicates[14], a non-
deterministic construct that has been proposed in the area of intensional logic programming[13] (similar
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non-deterministic constructs have also been considered inother forms in [7, 8]). Choice predicates are
declarative in nature and have a well-defined and elegant semantics [14]. The basic idea behind choice
predicates is that under a given context (represented by thelist

�
in the above example), a predicate can

only be true of a unique value. Therefore, the above two clauses can be instead written as:��� 
���������	  ��� 
�������� 
��� ������	  ��� 
�����
where ��� is the choice version of the predicate��� , which at any given

�
can be true of only one value

�
.

This restores the connection between the two occurrences of
�
, resulting in a target program equivalent

to the source one.

3. The Source Language of the Transformation

In the following, we assume familiarity with the basic notions of logic programming [11]. A finite set!
of ground facts (or unit clauses) without function symbols is often referred as anextensional database
or simply adatabase. The predicates of the atoms in a database are calledEDB predicates. A Datalog
program" consists of a finite set of clauses without function symbols.Predicates that appear in the
heads of clauses of" are calledintensionalor IDB predicates(IDBs). We assume that EDB predicates
do not appear in the head of program clauses; moreover, we assume that predicates appearing only in the
bodies of the clauses of a Datalog program are EDB predicates. A Datalog program" together with a
database! is denoted by"#.

In the rest of this paper we adopt the following notation:constantsare denoted by lower case letters
such as$% &% ' and vectors of constants by(); variablesby uppercase letters such as*%+%, and vectors
of variables by(-; predicates by. %/%0% 1; also subscripted versions of the above symbols will be used.

The class of programs on which the proposed transformation applies is a subclass of Datalog:

Definition 3.1. A clause.23(-2%,�4 	.�3(-�%,�4%.5 3(-5%,54% 6 6 6 %.�3(-�%,�46
with 7 8 9, is calledconsecutive consumption clause(or cc-clausefor short) if:

1. Each(-:, for ; < 9% 6 6 6 %7 is a nonempty vector of distinct variables, and,�% 6 6 6 %,� are distinct
variables.

2. -$013(-24 < -$013(-�4and-$013(-:4 < =,:��>?@:��, for ; < A% 6 6 6 %7, where@:�� B -$013(-:��4.
3. ,: CD EFG: -$013(-F 4, for ; < H% 6 6 6 %7.

A program" is said to be aconsecutive consumption Datalog program(or cc-Datalog program) if all
its clauses are cc-clauses. AgoalI is of the form	 /3()%,4, where() is a nonempty vector of constants,, is a variable and/ is an IDB predicate.

It should be mentioned here that cc-clauses are moded; the terms (-: of the above definition correspond
to input arguments while each,: corresponds to the single output argument of each atom. An occurrence
of a variable in an input argument of the head or in the output argument of an atom in the body will be
calledproductive; otherwise it will be calledconsumptive.
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Example 3.1. The following program is a cc-Datalog program:

�3��% ��4 	 J3��% ��46�3��% ��4 	 �3��% �4%�3�% ��4%K3�%��% ��46
where theL andM signs above the variables denote the input and output arguments respectively.

The intuition behind the class of cc-Datalog programs is that each value produced by an atom can
only be consumed in a sequence of (one or more) consecutive atoms immediately following the atom
that produced it. Many natural Datalog programs belong to this class; for example, the class of Chain
Datalog programs is a proper subset of this class.

Example 3.2. Consider the following generalized��NO predicate which searches for paths of a given
color in a graph whose edges are colored:

��NO 
��PQ�Q����	 �RK�
��PQ�Q�������NO 
��PQ�Q����	 �RK�
��PQ�Q�������NO 
� �PQ�Q�����
The above is clearly a cc-Datalog program. The EDB predicate�RK�
��PQ�Q����signifies that the

edge (
�
,
�
) has color

PQ�Q�. The goal	 ��NO 
����R���asks for those vertices of the graph that are
reachable from vertex� through��R edges.

Example 3.3. The usual logic programming definitions of the modulo and thegreatest common divisor
operations involve cc-Datalog clauses:

SQR
�����	 SQR T�U�
������SQR
�����	 SVWXU
������SQR
� �����KYR
�����	 KYR T�U�
������KYR
���Z�	 SQR
������KYR
���Z��
whereSQR T�U�, KYR T�U�, andSVWXU are EDB predicates defined as follows:SQR T�U�
����� if� [ 

and
� \ �

; KYR T�U�
����� if
� \ �

and
 \ ]

; andSVWXU
����� if
� \ � ^ 

.

The semantics of cc-Datalog programs can be defined in accordance to the semantics of classical
logic programming. The notions ofminimum model_`a of "#, where"# is a cc-Datalog program"
together with a database!, andimmediate consequence operatorb`a, transfer directly [11].

We now define a subclass of cc-Datalog programs which has the same power as the full class of
cc-Datalog programs.

Definition 3.2. A simple cc-Datalog programis a cc-Datalog program in which every clause has at most
two atoms in its body.

The following proposition (which can be proved using unfold/fold transformations [26, 6, 15]) es-
tablishes the equivalence between cc-Datalog programs andsimple cc-Datalog ones. Notice that by_3.%"#4we denote the set of atoms in the minimum model of"# whose predicate symbol is..
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Proposition 3.1. Every cc-Datalog program" can be transformed into a simple cc-Datalog program" c
such that for every predicate symbol. appearing in" and for every database!, _3.%"#4 < _3.%" c#4.
Proof:
(Outline) For a cc-claused of the form:e2 	 e�%e5% 6 6 6 %e�
with 7 8 A, we introduce a new clausedf of the form:

7)g3(-%,4 	 e5% 6 6 6 %e�
where , is the output variable of

e� and (- is a vector of distinct variables such that-$013(-4 <3-$013e5% 6 6 6 %e�4 h -$013e2%e�44 M =,>. Then we foldd usingdf and we get the clausedc:e2 	 e�%7)g3(-%,4
d is now replaced by=df %dc>. Then we apply the same process todf which has7 M H body atoms
until all clauses have at most two body atoms. It is easy to verify that the program obtained by this
process is a cc-Datalog program. ij

In the presentation of the proposed transformation we use simple cc-Datalog programs as the source
language. Because of the above proposition this is not a restriction of the power of the algorithm. More-
over, the transformation could be easily formulated so as toapply directly to cc-clauses with more than
two body atoms (but this would imply a more complicated presentation and correctness proof).

Example 3.4. The cc-Datalog program in Example 3.1 is not a simple cc-Datalog one since its second
clause has three atoms in its body. To transform it into a simple cc-Datalog program we introduce the
new clause: � 
���	 �
����K
�� ����
and we use it to fold the second clause of the program. In this way we get the following simple cc-Datalog
program: �
����	 J
������
����	 �
����� 
����� 
���	 �
����K
�� ����
4. The Target Language of the Transformation

The target language of the transformation is the language Choice Datalog�� which is a version of
Datalog�� [5, 4] extended with choice predicates [14]. Datalog�� is a powerful temporal deductive
database language and choice predicates are non-deterministic constructs useful for temporal languages.
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4.1. Choice Predicates

Choice predicates [14] were initially introduced in the area of temporal logic programming as a means
for ensuring that a given predicate is single-valued at a particular moment in time (or more generally at
a particular context). Actually, with every predicate symbol . of a given program, a predicatek. (called
the choice versionof .), is associated. Choice predicates can only appear in the bodies of program
clauses (their axiomatization is implicit, see [14] for details).

To motivate choice predicates consider writing a program whose purpose is to assign a classroom to
persons (teachers) over different moments in time. The problem is to find all different such assignments
in such a way that at every different moment only a single person occupies a classroom. The predicate���X�UNU Y��UU
lVS��m��UQW� expresses the fact that

m��UQW requests the particular classroom at
time

lVS�. The predicateXU�U Y��UU
lVS��m��UQW�expresses the fact that
m��UQW actuallyuses the

classroom at time
lVS�.���X�UNU Y��UU
]�NQS�����X�UNU Y��UU
]�WVYn�����X�UNU Y��UU
��S��o��XU�U Y��UU
lVS��m��UQW�	  ���X�UNU Y��UU
lVS��m��UQW��

In the above program, ���X�UNU Y��UU is the choice predicate that corresponds to the (classical)pred-
icate���X�UNU Y��UU. The crucial property of a choice predicate is that it is single-valued for any given
time-point. This means that either the atom ���X�UNU Y��UU
]�NQS�or  ���X�UNU Y��UU
]�WVYn�
but not both, will be considered as true at time-point

]
. Therefore, the above program does not have a

unique minimum model (as is the case in classical logic programming); instead, it has a set of minimal
models, one for every different possible (functional) assignment of persons over the moments in time.
More specifically, the two minimal models of the program are the following:_� < = XU�U Y��UU
]�NQS�� XU�U Y��UU
��S��o�� XU�U Y��UU
]�NQS��XU�U Y��UU
��S��o��  ���X�UNU Y��UU
]�NQS�� ���X�UNU Y��UU
��S��o����X�UNU Y��UU
]�NQS�����X�UNU Y��UU
]�WVYn�����X�UNU Y��UU
��S��o�>
and_5 < = XU�U Y��UU
]�WVYn�� XU�U Y��UU
��S��o�� XU�U Y��UU
]�WVYn��XU�U Y��UU
��S��o��  ���X�UNU Y��UU
]�WVYn�� ���X�UNU Y��UU
��S��o����X�UNU Y��UU
]�NQS�����X�UNU Y��UU
]�WVYn�����X�UNU Y��UU
��S��o�>

Choice predicates are not necessarily restricted to apply to simple temporal logic programming lan-
guages such as the one used in the above example (in which timeis linear); they are also applicable to
more general intensional programming languages [13] that include the language Datalog�� which we
have adopted for defining the proposed transformation. Morespecifically, in [14], Orgun and Wadge
develop a general semantic framework for choice predicatesthat can apply to a wide class of intensional
logic programming languages.

4.2. Syntax of Choice Datalog��
The target language of the transformation is a temporal deductive database language that supports choice
predicates. We will refer to this target language asChoice Datalog�� since it is a variant of the language
Datalog�� [4], augmented with choice predicates [14].
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Datalog�� is a temporal extension of Datalog in which atoms may have a single distinguishedtempo-
ral argument in addition to the usualdata arguments. Time in Datalog�� may have a very rich structure
(i.e., it is not necessarily linear). For our purposes we adopt a variant of Datalog�� in which time has a
branching structure. It can easily be seen that branching-time can be modeled if we allow the temporal
argument to range over lists of natural numbers1. We extend this variant of Datalog�� to support choice
predicates. Before we proceed to a formal introduction of the syntax, we give an example of how a
Choice Datalog�� clause looks like:�
���� 	 K
������ � 
�� ��������
�p�� ������
In the above example,

�
, �� ��� and �p�� ��� are terms that correspond to the distinguished temporal

arguments of the atoms;
�
,


and
�

are usual data variables. The atoms�
����,  � 
�� ������ and�
�p�� �����are IDB atoms whileK
����� is an EDB atom. In other words, we assume that only
IDB atoms have a temporal argument (while EDB atoms do not). The atom � 
�� ������ is an example
of a choice atom.

We now define formally the syntax of the target language. We assume the existence of a distinguished
variableq which will be the only variable that can appear in temporal terms of a program; all other
variables that appear in a program must be different fromq. A temporal term is defined as follows:

Definition 4.1. A temporal termis recursively defined as follows:rr ss< t u v q v tw vrru
whereq is a distinguished temporal variable and

w D x.

An IDB atomis an atom of the form. 3rr% r4 or of the formk.3rr% r4, where
rr

is a temporal term andr
is an ordinary Datalog term (i.e., either a variable or a constant); the former atoms are callednon-choice

while the latter are calledchoice atoms. Notice that in the variant of Datalog�� that we consider, IDB
atoms have only one data argument. AnEDB atomis of the form. 3r2% 6 6 6 % r���4where

r2% 6 6 6 % r��� are
ordinary Datalog terms. As usual, an atom is said to be ground, if it is variable-free. Aclausein Choice
Datalog�� is of the form: y 	 z�%z5% 6 6 6 %z�6
where

y
is a non-choice IDB atom, andz�%z5% 6 6 6 %z� are atoms (either IDB or EDB ones) and7 { 9.

If 7 < 9, then the clause is said to be afact or unit clause. A Choice Datalog�� program is a finite set
of clauses of the aforementioned form. As usual,"# is a Choice Datalog�� program" along with a
database!. A goal in Choice Datalog�� is of the form	.3tu%*4.
4.3. Semantics of Choice Datalog��
The Herbrand universe|`a of a Choice Datalog�� program" along with a database! includes all
constants that appear in! or as data arguments in" . The Herbrand basez`a includes:� ground EDB atoms constructed using constants from|`a
1In the original formulation of the branching-time transformation [19], sequences of temporal operators were used instead of
lists. It can be easily shown that both formulations are equivalent.
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� ground IDB atoms (either choice or non-choice) whose first argument is a list of natural numbers
and their second argument is an element of|`a.

A Herbrand interpretation} of "# is (as usual) a subset of its Herbrand basez`a. The semantics of
Choice Datalog�� programs can be defined using the general principles developed in [14]. For reasons
of completeness, we adapt the basic notions from [14] to fit our purposes. For a deeper exposition, the
interested reader should consult the results of [14].

Before defining the notion of model we need to define a set of axioms establishing the relationship
between predicates and choice predicates.

Definition 4.2. (Choice Formulas) Let" be a Choice Datalog�� program, and. be a predicate defined
in " . Then thechoice formulasassociated with. are the following:~q~*3k.3q%*4 �.3q%*446~q~*3k.3q%*4 � ~+ 3k.3q%+ 4 � * < + 446
Definition 4.3. Let " be a Choice Datalog�� program. Then amodelof " is an interpretation that
satisfies the clauses of" together with the associated choice formulas for all predicates defined in" .

We can define ab`a operator in the usual way. However, we need something stronger than the usualb`a in order to define the semantics of Choice Datalog�� programs. We therefore define the operator�b`a that works exactly likeb`a but does not throw away any choice atoms [14]. More formally:

Definition 4.4. Let " be a Choice Datalog�� program,! a database and} a Herbrand interpretation of"#. Then
�b`a 3}4 is defined as follows:�b`a 3}4 < b`a 3}4 ? '��;')13}4

where'��;')13}4 is the set of the choice atoms belonging to}.

Furthermore, the semantics of Choice Datalog�� programs require another operator, namely thed`a operator, which returns all possible immediate extensionsof a given Herbrand interpretation of"#,
determined by arbitrary choices (as will be further explained below).

Let } be a Herbrand interpretation of a Choice Datalog�� program"# together with a database!
and let. be a predicate symbol that appears in"#. Define:����3}4 < =$ v. 3q%$4 D }>
and also: �����3}4 < =$ v k. 3q%$4 D }>

Also let: �� < =�. %q%$� v ����3}4 C< �% �����3}4 < � $7� $ D ����3}4>
In other words,

�� is a set such that�. %q%$� D ��, if no choice has been made for. at the contextq
and$ is a possible candidate for this choice. The formal definition of d`a is given below:
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Definition 4.5. Let " be a Choice Datalog�� program,! a database and} a Herbrand interpretation of"#. Thend`a 3}4 is defined as follows:

d`a 3}4 < � } if
�� < �=} ? =k.3q%$4> v �. %q%$� D ��> if
�� C< �

Some observations can be made about thed`a operator. The first one is thatd`a preserves the
previously computed atoms (it does not reject anything). The next thing is thatd`a when applied to an
interpretation}, returns a set of interpretations each one corresponding toa different choice atom being
added to}.

Our d`a operator is slightly different than the one in [14] since it only introduces one choice atom
at each new interpretation it creates.

We now define the notion of"#-chain which intuitively describes a bottom-up computation of a
Choice Datalog�� program" together with a database!. During the bottom-up computation the oper-
ators

�b`a � x andd`a alternate as shown in the following definition:

Definition 4.6. Let " be a Choice Datalog�� program and! a database. A"#-chain is a sequence�_2%_�%_5% � � � � satisfying the following conditions:

_2 < �%
_5:�� < �b`a � x3_5:4% ; { 9%

and _5:�5 D d`a 3_5:��4% ; { 96
Notice that in the above definition by

�b`a � x3_5:4we denote as usual the set
E��� �b �̀a 3_5:4.

The lemma stated below will be used in the proofs that follow.

Lemma 4.1. Let " be a Choice Datalog�� program,! a database and let�_2%_�% � � � � be a"#-chain.
Then for all; D x%_: B_:��6
Proof:
An easy consequence of the definition of a"#-chain. ij

The least upper bound of a"#-chain �_2%_�%_5% � � � � is _ < E:�� _:. Then_2%_�% � � �
will be calledapproximationsof _ and_ is called alimit interpretation of "#. Notice that a limit
interpretation is not necessarily a fixpoint. However a limit interpretation is necessarily a model of the
program as the following theorem indicates. Given two elements _: and_F of a "#-chain, we will
say that_: is anancestorof _F if ; � �. Based on the above definitions the following theorem is
straightforward to establish:

Theorem 4.1. Let " be a Choice Datalog�� program and! a database. Then every limit interpretation
of "# is a model of"#.

Proof:
The proof is similar to that in [14]. ij
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Example 4.1. Consider the following Choice Datalog�� program:

� 
��������	  �
������ 
�� ������	  �
������
�������
���T��
Applying the

�b`a � x andd`a operators as shown in Definition 4.6 we get two limit interpreta-
tions: _ < =k�3t�u% �4%k�3t�u% �4%�3t�u% �4%�3t�u% �4%k�3tu% �4%�3tu% �4%�3tu%T4>_c < =k�3t�u%T4%k�3t�u%T4%�3t�u%T4%�3t�u%T4%k�3tu%T4%�3tu% �4% �3tu%T4>

It can be easily verified that these limit interpretations are models of the program. In the following
we demonstrate the steps required for the construction of the model_:

_2 < �_� < =�3tu% �4%�3tu%T4>_5 < _� ? =k�3tu% �4>_� < _5 ? =�3t�u% �4%�3t�u% �4>_� < _� ? =k�3t�u% �4>_� < _�
_ < _� ? =k�3t�u% �4>

The model_c is constructed in an entirely symmetric way.

5. The Transformation Algorithm

In this section we provide a formal definition of the transformation algorithm. The algorithm is subse-
quently illustrated by a representative example.

The algorithm:Let " be a given simple cc-Datalog program andIa given goal clause. For each37LH4-
ary predicate. in " , we introduce7 L H binary IDB predicates.�� % 6 6 6 %.�� , .�, where.�: corresponds
to the ;-th input argument of. and.� to the 37 L H4-th argument of. (which is the output one). The
choice versions of certain of these predicates may also be used in the target program. The transformation
processes the goal clauseIand each clause in" and gives as output a new goal clauseI� together with
a Choice Datalog�� program" �. We assume the existence of a labeling function which assigns different
labels to the atoms that appear in the bodies of the clauses of" . Labels are natural numbers and are
denoted by

w�% w5 % � � � . The algorithm is defined by a case analysis, depending on theform of the clause
being processed every time:

Case 1:The transformation of the goal clause:	.3$�% 6 6 6 %$�%+ 46
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results to a set of7 new unit clauses, which are added to" �
:

.�: 3tu%$:46
for ; < H% 6 6 6 %7. The new goal clauseI� is2:

	 .�3tu%+ 46
Case 2:Let d be a clause of the form:

. 3(-2%,4 	 /3(-�%+ 4%03(-5%,46
and let

w�% w5 be the labels of/3(-�%+ 4 and 03(-5%,4 respectively. Thend is transformed in the
following way:

1. The following clause is added to" �:
.�3q%,4 	 0�3tw5 vqu%,46

2. Let* be a variable that appears in the�-th position of(-2 and also in the�-th position of(-�.
Then the following clause is added to" �

:

/��3tw� vqu%*4 	 tku.�� 3q%*46
where tku.�� < k.�� if * appears twice in the body ofd and tku.�� < .�� otherwise.
Similarly, let * be a variable that appears in the�-th position of (-2 and also in the�-th
position of (-5. Then the following clause is added to" �

:

0��3tw5 vqu%*4 	 k.�� 3q%*46
3. If the output variable+ of / appears in the�-th position of(-5, then the following clause is

added to" �
: 0��3tw5 vqu%+ 4 	 /�3tw� vqu%+ 46

Case 3:Let d be a clause of the form:

. 3(-2%,4 	 /3(-�%,46
and let

w� be the label of/3(-�%,4. Thend is transformed as follows:

1. The following clause is added to" �:
.�3q%,4 	 /�3tw� vqu%,46

2Notice that in a bottom-up execution of the target program the goal clause�� is not actually needed. However, we include it
in order to emphasize that the desired answers correspond tothis particular query.
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2. Let* be a variable that appears in the�-th position of(-2 and also in the�-th position of(-�.
Then the following clause is added to" �

:

/��3tw� vqu%*4 	 .�� 3q%*46
Case 4:For every EDB predicate. of " with 7 input variables and one output variable, a new clause

of the following form is added to" �
:

.�3q%+ 4 	.3*�% 6 6 6 %*�%+ 4%.�� 3q%*�4% 6 6 6 %.�� 3q%*�46
In the algorithm presented above we use choice predicates only when they are absolutely necessary.

In the initial form of this algorithm [16] certain superfluous choice predicates were used in order to
simplify the correctness proof of the algorithm. However, as we have realized since then, these redundant
choice predicates cause certain performance problems in the bottom-up execution of the target code.

Example 5.1. Let " be the following simple cc-Datalog program, obtained in Example 3.4, together
with a goal clause, where�, � are IDB predicates and�, J, K are EDB predicates:	 �
�������
���� 	 J
������
���� 	 �
����� 
����� 
��� 	 �
����K
�� ����

The target program (together with a new goal clause) obtained by applying the transformation algo-
rithm to" ? =	 �
�����> is:	 ��
��������� 
���������
���� 	 J�
���������J�� 
��������	 ��� 
�������
���� 	 ��
�� ���������� 
�� �����	 ��
�� ��������� 
�� ������	 ��� 
�������
���� 	 K�
�� �������K�5 
�� ������	 ��
�p �������K�� 
�� �����	  ��� 
������� 
�p �����	  ��� 
������
��� 	 �
���� ��� 
�����J�
��� 	 J
���� J�� 
�����K�
���� 	 K
������ K�� 
����� K�5 
����

Consider now the following database!:

�
������� J
������ K
�����T����
���T��� J
T��T�� K
T��������
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Both the initial and the final program have the single answer
� < T�

. However, if we replace the
choice predicates with the corresponding classical ones, then the resulting program will have an extra
(incorrect) answer, namely

� < ��. The efficient bottom-up execution of programs such as the above
will be discussed in Sections 7 and 8.

One might wonder if it would be possible not to separate the input arguments of a source program
predicate. This might be possible but then the target language would be more complicated. Moreover,
by separating the input arguments the flow of the informationduring execution is more explicit.

6. The Correctness of the Transformation

The correctness of the transformation algorithm is demonstrated in this section.
Let " be a simple cc-Datalog program,! a database and	 .3$�% 6 6 6 %$�%+ 4 a goal clause. The

correctness proof of the transformation proceeds as follows: at first we show (see Lemma 6.4 below)
that if a ground instance. 3$�% 6 6 6 %$� % &4 of the goal clause is a logical consequence of"# then.�3tu% &4
belongs to a limit interpretation_ of " �#, where" � ? =	 .�3tu%+ 4> is obtained by applying the
transformation algorithm to" ? =	.3$�% 6 6 6 %$� %+ 4>. In order to prove this result we establish a more
general lemma (Lemma 6.3 below).

The inverse of Lemma 6.4 is given as Lemma 6.6. More specifically, we prove that whenever.�3tu% &4 belongs to a limit interpretation of" �# then. 3$�% 6 6 6 %$� % &4 is a logical consequence of"#.
Again, we establish this result by proving the more general Lemma 6.5. Combining the above results we
get the correctness proof of the transformation algorithm (Theorem 6.1).

In the following we give some definitions that will be used in the proofs of this section.

Definition 6.1. Let " be a Choice Datalog�� program and! a database. Let} be an approximation to
a limit interpretation of"# and let

e
be an atom in}. Then aderivation setof

e
in } is recursively

defined as follows:� If
e

is a unit clause in"#, then=e> is a derivation set of
e

in }.� If
��% 6 6 6 % �� are corresponding derivation sets ofz�% 6 6 6 %z� in } and

e 	 z�% 6 6 6 %z� is a
ground instance of a clause in"#, then=e> ? �� ? � � � ? �� is a derivation set of

e
in }.� If

e
is a choice-atom in} that was introduced at an ancestor� of } and

�
is a derivation set of the

non-choice version of
e

in �, then=e> ? �
is a derivation set of

e
in }.

The notion of derivation set captures one of the (possibly many) ways that can lead to the generation
of an atom in an approximation. Therefore, one atom may have many different derivation sets under a
given approximation.

The following definitions will also be necessary:

Definition 6.2. An atom
e

depends onan atomz in } if there exists a derivation set
�

of
e

in } such
thatz D �

.

Definition 6.3. Let " be a Choice Datalog�� program and! a database. Let} be an approximation of
a limit interpretation of"# and assume that there exist

e
andz such that

e
depends onz in }. Let

�
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be a derivation set of
e

in } which containsz. We define thedistance between
e

andz in
�

to be the
minimum number of ground instances of program clauses used in order to establish the dependence of

e
from z in

�
. We define thedistancebetween

e
andz in } to be the minimum of the distances betweene

andz in every derivation set
�

of
e

in } which containsz. When the distance between
e

andz in }
is greater than9 we say that

e
depends essentially onz in }.

Definition 6.4. Let " be a Choice Datalog�� program and! a database. Let} be an approximation to
a limit interpretation of"# and let

� B }. Then} will be calledminimalwith respect to
�

if the set of
choice atoms of} coincides with the set of choice atoms on which the members of

�
depend on in}.

In other words, the choice atoms that} contains are all “relevant” to the production of the atoms in
�

.
Before we proceed to the correctness proof of the algorithm,we need to establish Lemmas 6.1

and 6.2, whose proofs are given in Appendix A and B, respectively.
The first lemma that follows states that under a given listq it is not possible for.�: 3q% &4 to depend on.�3q%$4 (i.e. given an approximation}, there is no derivation set

�
for the atom.�: 3q% &4 in } such that.�3q%$4 D �

). Intuitively, this means that the output argument of. is introduced into an approximation
of a limit interpretation later than all the input argumentsof . (under a given context).

Lemma 6.1. Let " be a simple cc-Datalog program,! a database and" �
the Choice Datalog�� pro-

gram that results from the transformation. For all predicates. defined in"#, all q D q;1r3  4, all$% & D |`a, all input positions; of ., and all approximations}, .�: 3q% &4 does not depend on.�3q%$4 in}.

The lemma that follows states that under a given listq it is not possible for.�: 3q% &4 to depend
on .�F 3q%$4 (where.�: 3q% &4 C< .�F 3q%$44. Intuitively, this means that the productions of the input
arguments of. (under a given context) are independent.

Lemma 6.2. Let " be a simple cc-Datalog program and! a database. Let" � be the Choice Datalog��
program that results from the transformation. For all predicates. defined in"#, all q D q;1r3  4,
all $% & D |`a, and all input positions;%� of ., there does not exist any approximation} to any limit
interpretation of" �# such that.�: 3q% &4 depends on.�F 3q%$4 where.�: 3q% &4 C< .�F 3q%$4.

The above lemma is important in proving the transformation algorithm correct. If it was possible
for .�: 3q% &4 to depend on.�: 3q%$4 then we can imagine a scenario in which in all approximationsk.�: 3q%$4 was needed to be produced before the production of.�: 3q% &4. But then it would never be
possible to producek.�: 3q% &4and as a result we might lose certain of the solutions of the initial program.
In other words, the fact that the above lemma holds is important in establishing the total correctness of
the transformation algorithm.

The following definition will be used in order to simplify thenotation that appears in the proofs.

Definition 6.5. Let d be a simple cc-clause and., / two predicate symbols that appear ind. Then��¡¢¡ is the set of positions of input variables of. that are also input variables of/. Moreover,£�¡¢¡ s��¡¢¡ � �¢¡�¡ is the function that takes the position where an input variable appears in predicate. and
returns its position in predicate/.
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Example 6.1. Consider the following cc-clause:�3��%�% ��4 	 �3�%��% ��4%�3��%��% ��46
In this clause,

�¤¡¥¡ < =H%A>, �¥¡¦¡ < =A>, �¦¡¥¡ < =H>, and£¥¡¦¡ 3A4 < H.
We can now proceed to the proof of the main lemmas regarding the correctness of the algorithm.

Lemma 6.3. Let " be a simple cc-Datalog program and! a database. Let" �
be the Choice Datalog��

program that results from the transformation. For all predicates. defined in"#, all q D q;1r3  4, and
all constants$�% 6 6 6 %$�% & D |`a, if . 3$�% 6 6 6 %$�% &4 D b`a � x and there exists an approximation} to
a limit interpretation of" �# that is minimal with respect to the set

� < =.�� 3q%$�4, . . . ,.�� 3q%$�4>, then
there exists an approximation�, where} B �, that is minimal with respect to the set=.�3q% &4>.
Proof:
We show the above by induction on the approximations ofb`a � x.
Induction Basis:The induction basis trivially holds becauseb`a � 9 < � and thus. 3$�% 6 6 6 %$� % &4 Db`a � 9 is false.
Induction Hypothesis:We assume that: for all predicates. defined in"#, all q D q;1r3  4, and all
constants$�% 6 6 6 %$�% & D |`a, if . 3$�% 6 6 6 %$�% &4 D b`a � � and there exists an approximation} to a
limit interpretation of" �# that is minimal with respect to the set

� < =.�� 3q%$�4, . . . ,.�� 3q%$�4>, then
there exists an approximation�, where} B �, that is minimal with respect to the set=.�3q% &4>.
Induction Step:We demonstrate the desired result for the� L H iteration of theb`a operator. We will
therefore prove that: if. 3$�% 6 6 6 %$�% &4 D b`a � 3� L H4 and there exists an approximation} to a limit
interpretation of" �# that is minimal with respect to the set

� < =.�� 3q%$�4, . . . ,.�� 3q%$�4>, then there
exists an approximation�, where} B � that is minimal with respect to the set=.�3q% &4>.

We use a case analysis on the way that. 3$�% 6 6 6 %$� % &4 has been introduced intob`a � 3� L H4.
Case 1:Assume that. 3$�% 6 6 6 %$�% &4has been added tob`a � 3�LH4because it is a fact in!. According
to the transformation algorithm, in" �

there exists a clause of the form:

.�3q%+ 4 	.3*�% 6 6 6 %*�%+ 4%.�� 3q%*�4% 6 6 6 %.�� 3q%*�46
Notice that there is no other clause in" � defining the predicate.�. Therefore, since} is a superset

of
� < =.�� 3q%$�4% 6 6 6 %.�� 3q%$�4> then } also contains.�3q% &4. Moreover,} is obviously minimal

with respect to=.�3q% &4>.
Case 2:Assume that. 3$�% 6 6 6 %$�% &4 has been added tob`a � 3� L H4 using a clause of the form:

. 3� � � 4 	 /3� � � 4%03� � � 46 (1)

and suppose that the arities of., / and0 are7 L H, 7 L H (because of condition 2 of Definition 3.1) and� L H respectively. Then there exists a constant' instantiating the output variable of/3� � � 4 such that
the corresponding instances of/3� � � 4 and03� � � 4 in clause (1) are inb`a � �.

Consider now an input argument of/ (say the
r
-th one) which shares its variable with an input

argument of. (say the1-th one). Then a clause of the form:

/�§ 3tw� vqu%*4 	 tku.�̈3q%*46 (2)

where1 < £¢¡�¡ 3r4, has been added to" � by the transformation algorithm. Moreover, for each input
argument of0 which shares its variable with an input argument of., we have in" � a clause of the form:

0�§ 3tw5 vqu%*4 	 k.�̈3q%*46 (3)
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where1 < £©¡�¡ 3r4. We start from} and alternated`�a and
�b`�a � x until we reach an approximation}c which contains the choice versions of those atoms in

�
that are needed for the production of/�§ under

the list tw� vqu from clauses of the form (2). Notice that this can be done because no other atoms of the
form .�̈3q% � � � 4 can have choice versions in} (due to the minimality of} w.r.t.

�
, if somek.�: 3q% &4

belonged to}, then some.�F 3q%$F 4 would depend on this in}, which leads to contradiction because

of Lemma 6.2). Using clauses of the form (2), we see that/�§ 3tw� vqu%$¨4 D }c, for all
r < H% 6 6 6 %7

and 1 < £¢¡�¡ 3r4. Moreover, from clauses of the form (3), we derive that0�§ 3tw5 vqu%$¨4 D }c, for allr D �©¡�¡ and1 < £©¡�¡ 3r4.
Now, we need to demonstrate that}c is minimal with respect to the set=/�� 3tw� vq], $ª«¡¬¡�®4, 6 6 6,/�� 3tw� vqu%$ª«¡¬¡�®4>. This is indeed the case because all input arguments of. that belong to}c are used

for the production of the input arguments of/ and also all choice atoms regarding input arguments of.
that belong to}c are used for the production of atoms regarding the input arguments of/. Therefore we
can apply the induction hypothesis on/ under the listtw� vqu, and on approximation}c, which gives:

Since the approximation}c is minimal with respect to the set
�c < =/�� 3tw� vqu%$ª«¡¬¡�®4,6 6 6, /�� 3tw� vqu%$ª«¡¬¡�®4> and since we have that/3$ª«¡¬¡�®, . . . ,$ª«¡¬¡�®% '4 D b`a � �

then there exists an approximation�c, where}c B �c which is minimal with respect to=/�3tw� vqu% '4>.
Since for the input argument of0 which shares its variable with the output argument of/ there is a

clause in" � of the form:

0�̄3tw5 vqu%*4 	 /�3tw� vqu%*46 (4)

it follows that0�̄3tw5 vqu% '4 D �c.
Notice also that�c is minimal with respect to the set of atoms that correspond tothe input arguments

of 0 under the contexttw5 vqu (because�c is minimal with respect to=/�3tw� vqu% '4>). Therefore, we can
apply the induction hypothesis on0 under the listtw5 vqu and on approximation�c, getting:

Since0�̄3tw5 vqu% '4 D �c and 0�§ 3tw5 vqu%$¨4 D �c, for all
r D �©¡�¡, 1 < £©¡�¡ 3r4, and03$©° % 6 6 6 % $©± % &4 D b`a � � where$©² < ', if

w < g, otherwise$©² < $¨, where1 <£©¡�¡ 3w4, for all
w D �©¡�¡, then there exists an approximation� such that�c B �, and� is

minimal with respect to the set=0�3tw5 vqu% &4>.
Finally, using the fact that0�3tw5 vqu% &4 D � together with clause:

.�3q%+ 4 	 0�3tw5 vqu%+ 46 (5)

we conclude that.�3q% &4 D �. It is easy to see that� is minimal with respect to the set=.�3q% &4>,
because� is minimal with respect to the set=0�3tw5 vqu% &4>.
Case 3:Assume that. 3$�% 6 6 6 %$�% &4 has been added tob`a � 3� L H4 using a clause of the form:

. 3� � � 4 	 /3� � � 46 (6)

The proof for this case is a simplified version of Case 2. ij
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Lemma 6.4. Let" be a simple cc-Datalog program,! a database and	p3$�% 6 6 6 %$�%+ 4a goal clause.
Let " � be the Choice Datalog�� program obtained by applying the transformation algorithmto " ? =	.3$�% 6 6 6 %$�%+ 4>. For all & D |`a the following holds: if. 3$�% 6 6 6 % $�% &4 D b`a � x then there exists
a limit interpretation_ of " �# such that.�3tu% &4 D _.

Proof:
Since by transforming the goal clause, the facts.�: 3tu%$:4, for ; < H% 6 6 6 %7, are added to" �

, this lemma
is a special case of Lemma 6.3. ij
Lemma 6.5. Let " be a simple cc-Datalog program and! a database. Let" �

be the Choice Datalog��
program that results from the transformation. Let_ be a limit interpretation of" �#. Then for all
predicates. defined in"#, for all q D q;1r3  4 and for all& D |`a, if .�3q% &4 D _, then there exist
constants$�% 6 6 6 %$� D |`a such that. 3$�% 6 6 6 %$�% &4 D b`a � x and.�: 3q%$:4 D _, for ; < H% 6 6 6 %7.

Proof:
We show the above by induction on the approximations of_.
Induction Basis:The induction basis is: if.�3q% &4 D _2, then there exist constants$�% 6 6 6 %$� D |`a
such that. 3$�% 6 6 6 %$�% &4 D b`a � x and.�: 3q%$:4 D _2, for ; < H% 6 6 6 %7. This statement vacuously
holds because_2 < � and thus.�3q% &4 D _2 is false.
Induction Hypothesis:If .�3q% &4 D _�, then there exist$�% 6 6 6 %$� D |`a such that. 3$�% 6 6 6 %$� % &4 Db`a � x and.�: 3q%$:4 D _�, for ; < H% 6 6 6 %7.
Induction Step:We prove that if.�3q% &4 D _���, then there exist constants$�% 6 6 6 %$� D |`a such
that. 3$�% 6 6 6 %$�% &4 D b`a � x and.�: 3q%$:4 D_���, for ; < H% 6 6 6 %7.

As a first remark, notice that if_��� corresponds to ad`�a step in the chain leading to_, then the
induction step holds directly (due to the induction hypothesis). Therefore we need only examine the case
where_��� < �b`�a � x3_�4. We distinguish the following cases:
Case 1:Assume that.�3q% &4 has been introduced in_��� by a clause of the form:

.�3q%+ 4 	.3*�% 6 6 6 %*�%+ 4%.�� 3q%*�4% 6 6 6 %.�� 3q%*�46 (1)

Then. is an EDB predicate in! and there exist constants$�% 6 6 6 %$� in |`a such that. 3$�% 6 6 6 %$�,&4 D b`a � Hand.�: 3q%$:4 D _���, for ; < H% 6 6 6 %7.
Case 2:Assume now that there exists in" a clause of the form:

. 3� � � 4 	 /3� � � 4%03� � � 46 (2)

such that the arities of., / and0 are7 L H, 7 L H (because of condition 2 of Definition 3.1) and� L H
respectively, and the labels of/3� � � 4 and03� � � 4 are

w� and
w5 respectively. The translation of the above

clause results in clauses of the form:

.�3q%+ 4 	 0�3tw5 vqu%+ 46 (3)0�§ 3tw5 vqu%+ 4 	 /�3tw� vqu%+ 46 (4)0�§ 3tw5 vqu%+ 4 	 k.�̈3q%+ 46 (5)/�§ 3tw� vqu%+ 4 	 tku.�̈3q%+ 46 (6)
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in " �
(where the range of the indices

r
and1 can be easily derived from the description of the transfor-

mation algorithm). Assume now that.�3q% &4 D _��� and that.�3q% &4 has been introduced in_���
by using clause (3) above.

Recall now that_��� < �b`�a � x3_�4. We perform an inner induction, i.e., we demonstrate
that: for all ³ { 9, if .�3q% &4 D �b ´̀�a 3_�4, then there exist constants$�% 6 6 6 %$� D |`a such that. 3$�% 6 6 6 %$� % &4 D b`a � x and.�: 3q%$:4 D �b ´̀�a 3_�4, for ; < H% 6 6 6 %7. The basis case for³ < 9
is trivial since it coincides with the outer induction hypothesis (since

�b 2̀�a 3_�4 < _�); for ³ < H
it also holds because of the form of the clauses derived from the transformation algorithm. Assume the
statement holds for³; we demonstrate that it is valid for³ L H. Since.�3q% &4 D �b ´��` �a 3_�4 we get

that0�3tw5 vqu% &4 D �b ´̀�a 3_�4. We can therefore apply the inner induction hypothesis on0 to get:

Since0�3tw5 vqu% &4 D �b ´̀�a 3_�4, then there exist constants'�% 6 6 6 % '� D |`a such that03'�% 6 6 6 % '�% &4 D b`a � x and0�F 3tw5 vqu% 'F 4 D �b ´̀�a 3_�4, for � < H% 6 6 6 %�.

Notice now that the only way that0�§ 3tw5 vqu% '§4, for all input argument positions
r

of 0, can have
been introduced in

�b ´̀�a 3_�4, is by using either a clause of the form (4) or a clause of the form (5)

above (all other clauses defining0�§ , have a different head in the list and can not be used). We havetwo
cases:
Subcase 2.1:If 0�§ 3tw5 vqu% '§4, with

r D �©¡�¡ has been introduced using clause (5) above then.�̈3q%'§4D�b ´̀�a 3_�4, for all 1 D ��¡©¡.

Subcase 2.2:If 0�§ 3tw5 vqu% '§4, where
r

is the input position of0 which shares its variable with the output
position of / in clause (2), has been introduced using clause (4), we conclude that/�3tw� vqu% '§4 D�b ´̀�a 3_�4. Using the induction hypothesis on/, we get that:

Since/�3tw� vqu% '§4 D �b ´̀�a 3_�4, then there exist constants��% 6 6 6 % �� D |`a such that/3��% 6 6 6 % �� % '§4 D b`a � x and/�F 3tw� vqu%�F 4 D �b ´̀�a 3_�4, for � < H% 6 6 6 %7.

Using clauses of the form (6) above as before we get that.�̈3q%�ª¬¡«¡¨®4 D �b ´̀�a 3_�4, for all1 D ��¡¢¡.
Therefore, we have that/3��% 6 6 6 % �� % '§4 D b`a � x and03'�% 6 6 6 % '� % &4 D b`a � x. In order for

these two ground atoms to be combined using clause (2) to obtain an atom for., we have to make sure
that if a�: and a'F correspond to input argument positions of/ and0 which in clause (2) share the same
variable, then�: < 'F . But it is easy to see that this is ensured because both valuesare obtained from the
samek.�̈ (which holds because the choice predicates have a unique value under a given context).

Therefore,/3��% 6 6 6 % �� % '§4 and03'�% 6 6 6 % '�% &4 can be combined using clause (2) in order to give. 3$�% 6 6 6 %$� % &4 D b`a � x, where$�% 6 6 6 %$� is a permutation of��% 6 6 6 % ��.
Case 3:Assume that in" there exists a clause of the form:

. 3� � � 4 	 /3� � � 46 (7)

The proof of this case is similar (and actually simpler) to that for Case 2. ij
Lemma 6.6 is a special case of Lemma 6.5.
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Lemma 6.6. Let" be a simple cc-Datalog program,! a database and	.3$�% 6 6 6 %$�%+ 4a goal clause.
Let " � be the Choice Datalog�� program obtained by applying the transformation algorithmto " ? =	.3$�% 6 6 6 %$�%+ 4>. For all & D |`a the following holds: if there exists a limit interpretation_ of " �#
such that.�3tu% &4 D _ then. 3$�% 6 6 6 %$�% &4 D b`a � x.

Proof:
As .�3tu% &4 D _, from Lemma 6.5 we have that there are constants'�% 6 6 6 % '� D |`a such that. 3'�% 6 6 6 % '� % &4 D b`a � x and.�: 3tu% ':4 D _, for ; < H% 6 6 6 %7. But as the only instances of.�: 3tu%*4
in _, are.�: 3tu%$:4, we conclude that': < $:, for ; < H% 6 6 6 %7. ij

The following theorem demonstrates the correctness of the transformation algorithm.

Theorem 6.1. Let " be a simple cc-Datalog program,! a database and	 .3$�% 6 6 6 %$� %+ 4 a goal
clause. Let" �

be the Choice Datalog�� program obtained by applying the transformation algorithmto" ? =	 .3$�% 6 6 6 %$� %+ 4> and	 .�3tu%+ 4 the new goal clause. Then for all& D |`a the follow-
ing holds: there exists a limit interpretation_ of " �# such that.�3tu% &4 D _ iff . 3$�% 6 6 6 %$�% &4 Db`a � x.

Proof:
It is an immediate consequence of Lemmas 6.4 and 6.6. ij
7. An Optimized and Terminating Bottom-up Evaluation

In this section we demonstrate a terminating bottom-up evaluation procedure for the Choice Datalog��
programs that result from the transformation. The basic idea behind this procedure that we propose is
that during the bottom-up computation one need only take into consideration atoms whose lists (temporal
terms) have length bounded by a constant which depends on theinitial program" and the database!. In
other words, according to this modified proof procedure, the

�b`a operator reaches a fixpoint as soon
as no new atoms whose list length is less than or equal to the bound are introduced.

The following definition is necessary:

Definition 7.1. A set
�

of atoms islist-boundedby � � x if the list of each member of
�

has length that
is less than or equal to�.

We are now in a position to state the main theorem of this section. Intuitively, the theorem states that
if an atom. 3$�% 6 6 6 %$� % &4 is an answer to the goal clauseI of "# and this answer can be obtained in
less than or equal to� iterations of theb`a operator, then a corresponding solution can be detected by a
bottom-up computation of" �# that considers only atoms whose lists have length less than or equal to�.

Theorem 7.1. Let " be a simple cc-Datalog program,! a database and	 .3$�% 6 6 6 %$� %+ 4 a goal
clause. Let" � ? =	 .�3tu%+ 4> be the Choice Datalog�� program and the goal clause that result
from the transformation. Assume that. 3$�% 6 6 6 %$�% &4 D b`a � �, where� � x. Then there exists a
limit interpretation_ of " �# such that.�3tu% &4 D _ and.�3tu% &4 has a derivation set in_ that is
list-bounded by�.
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The proof of the theorem is a direct consequence of the following lemma:

Lemma 7.1. Let . be a predicate symbol in"# and assume that. 3$�% 6 6 6 %$�% &4 D b`a � �, � � x.
Moreover, assume that there exists an approximation} to a limit interpretation of" �# that is minimal
with respect to the set

� < =.�� 3q%$�4, . . . ,.�� 3q%$�4> and that each member of
�

has a derivation
set in} which is list-bounded byvqv L �. Then there exists an approximation�, where} B �, that is
minimal with respect to the set=.�3q% &4> and.�3q% &4 has a derivation set in� that is list-bounded byvqv L �.

Proof:
The proof of the lemma is by induction on�. Actually, the proof is almost identical to that of Lemma 6.3,
the only difference being that at each case of the induction step it has to be confirmed that the derivation
set for.�3q% &4 in � is list-bounded byvqv L �. The details of the proof are straightforward and are
omitted. ij

The above theorem suggests that it is possible to find a natural number (that depends on the charac-
teristics of the source program" and the database!) such that the proof procedure defined for the target
program" � only considers atoms that are list-bounded by this constant. More specifically, it suffices to
derive a constant� such thatb`a � � is the least fixpoint ofb`a.

Proposition 7.1. Let" be a simple cc-Datalog program and! a database. Moreover, let'be the number
of constants that appear in!, µ the number of IDB predicates in" and¶ the maximum arity of IDB
predicates in" . Let � < µ � '·. Thenb`a � � is the least fixpoint ofb`a.

Proof:
In the worst case, all IDB predicates may have the same arity¶ and in the least fixpoint ofb`a all
possible combinations of constants may appear in all IDB predicates. Moreover, in the worst case, one
new IDB atom is introduced at each step of the bottom-up computation. This gives aµ � '· worst case
bound for the number of iterations required to reach the least fixpoint of b`a. ij

The above theorem easily leads to a terminating proof procedure for the target programs that result
from the transformation. More specifically, during the bottom-up computation we can reject all atoms
produced whose lists have length greater than the bound specified by Proposition 7.1. Then obviously,
the proof procedure will terminate since the set of atoms that belong to the Herbrand base of a Choice
Datalog�� program and that are list-bounded by a constant, is finite.

There is one further remark that can be used in order to optimize the bottom-up execution of the
target programs. Let" be a program that has resulted from the transformation and let

�` be the set of
choice predicates that appear in clauses of" . It is easy to see that during the bottom-up computation
of the program one need only consider choice atoms whose predicate symbols belong to

�` . In other
words, the choice predicates that are outside

�` are irrelevant with respect to the production of the
correct answers to the goal clause of" . This optimization reduces significantly the different branches
that one would have to consider during the bottom-up execution.

The above discussion leads to an optimized and terminating proof procedure described as follows: let�̧b `a be exactly like
�b`a the only difference being thaţ

�b`a does not introduce any atoms whose
lists have length greater than the constant� related to"# and specified by Proposition 7.1. Moreover, let
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¹d`a be exactly liked`a the only difference being that
¹d`a returns interpretations whose choice atoms

have predicates that belong to
�` . Then the notion of a"#-chain can be modified as follows:

Definition 7.2. Let " be a Choice Datalog�� program and! a database. Alist-bounded"#-chain is a
sequence�_2%_�%_5% 6 6 6� satisfying the following conditions:

_2 < �%
_5:�� < �̧b`a � x3_5:4% ; { 9%

and _5:�5 D ¹d`a 3_5:��4% ; { 96
The following proposition is then straightforward to demonstrate:

Proposition 7.2. Let " be a Choice Datalog�� program that results from the transformation and! a
database. Let�_2%_�%_5% 6 6 6� be a list-bounded"#-chain. Then for every; D x there exists� D x
such that_5:�� < �̧b �̀a 3_5:4. Moreover, there exists7 D x such that_� <_���.

The above proposition indicates that we can compute the limit of a list-bounded"#-chain in a finite
amount of time. This gives a terminating proof procedure forthe target programs of the transformation.

A question that naturally arises from the above discussion is how practical the above proof procedure
is. Obviously, the constant specified in Proposition 7.1 canbe rather large; moreover, the number of
atoms that are produced in the bottom-up computation and that are list-bounded by this constant, can
be extremely large. Therefore the bound is of practical value only in those cases where the parameters
that are involved in its definition are very small. The following arguments can be given in favor of the
proposed approach:

� Many well-known value-propagating Datalog optimizationslead to target programs whose bottom-
up execution suffers from the problem of non-termination ([28]). Therefore even the existence of
Proposition 7.1 adds a desirable characteristic to the proposed technique.

� As we have realized in practice, there exist many cases in which the bottom-up execution of the
target program terminates even without resorting to the above list-bounded proof procedure.

� As it will become obvious in the next section, there exist transformations that can reduce the
number of list labels that appear in the target program of thetransformation. This means that the
number of list-bounded atoms is also reduced and therefore the above proof-procedure becomes
more efficient. Actually, in many interesting cases, the list labels can be completely eliminated,
and therefore the target program is in fact an optimized Datalog one that can be executed very
efficiently ([19]).

In the next section we discuss certain transformations thatenhance the performance of the target code of
the proposed transformation.
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8. Optimizing the Target Program

In this section we demonstrate that the programs obtained bythe transformation of Section 5 can be
significantly simplified by using unfolding and eliminationof redundant clauses. For this we define
and prove the correctness of the unfolding and elimination rules for Choice Datalog�� programs in
Subsection 8.1, and then in Subsections 8.2 and 8.3, we demonstrate how these rules can be used to
simplify the program obtained by the algorithm presented inSection 5.

8.1. Unfolding and elimination of redundant clauses in Choice Datalog��
The unfolding rule and elimination of redundant clauses that we will describe below are similar to the
ones defined for classical logic programming [26, 6, 15]. Themain difference is the existence of choice
atoms in clauses.

Definition 8.1. Let " be a Choice Datalog�� program andd be a clause in" of the form:e 	 e�% 6 6 6 %e:��%e: %e:��% 6 6 6 %e�
where each one of

e�% 6 6 6 %e:�� and
e:��% 6 6 6 %e� may be either choice or non-choice atom while

e:
is a non-choice atom. Letd�%d5% 6 6 6 %d� be all clauses in" , whose heads are unifiable with

e: by
most general unifiersº�%º5% 6 6 6 % º� respectively. The result ofunfolding C at

e: is the set of clauses=dc�% 6 6 6 %dc�> such that, for each�, with H » � »�, if dF is the clause:zF 	 zF° % 6 6 6 %zF¼ 6
with � { 9 andzFºF < e:ºF % thendcF is the clause:

3e 	 e�% 6 6 6 %e:��%zF° % 6 6 6 %zF¼ %e:��% 6 6 6 %e�4ºF
Then the program obtained by unfolding is the program" c < 3" M =d>4 ? =dc�% 6 6 6 %dc�>. The

claused is called theunfolded clause, d�% 6 6 6 %d� are called theunfolding clausesand
e: is called the

unfolded atom.

Notice that the unfolding rule defined above can be applied only to non-choice body atoms. The
following lemma demonstrates the correctness of the unfolding rule.

Lemma 8.1. Let " be a Choice Datalog�� program, and" c be the program obtained by unfolding a
claused in " . Then for every database! both"# and" c# have the same sets of limit interpretations.

Proof:
Let

�� and
�c� be the sets of the approximations to the limit interpretations of"# and" c# respectively that

are obtained during the�-th iterations of the bottom-up computation (i.e. the set ofthe�-th elements of
all "#-chains obtained as described in Definition 4.6). We will useinduction on� to prove that

�� < �c�
for all � D x.

Base Case:The lemma holds for� < 9 since
�2 =

�c2 = =�>.
Induction Hypothesis:We assume that

�� =
�c� for all � » 7, with 7 D x.
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Induction Step:We will prove that
���� =

�c���. We distinguish the following cases:
Case 1:Let 7 < Aw L H, w { 9. It is easy to see that

���� =
�c��� = =_ v_ D d`a 3_c4% _c D ��>.

Case 2:Let 7 < Aw L A for some
w { 9 and let� D ��. Then because of the induction hypothesis,� D�c�. It is easy to see that the approximations obtained from� in

���� and in
�c��� are} < �b`a � x3�4

and}c < �b`½a � x3�4, respectively. We will prove that} < }c by proving thata) } B }c, andb) }c B }.

Proof of (a):We use induction on; to prove that
�b :̀a 3�4 B }c.

Base Case (of a):For ; < 9 we have:
�b 2̀a 3�4 =

�b 2̀½a 3�4 = �. Because of Lemma 4.1,� B }c, and

thus we derive that
�b 2̀a 3�4 B }c.

Induction Hypothesis (of a):If
e D�b �̀a 3�4, then

e D }c.
Induction Step (of a):We will prove that if

e D �b���`a 3�4, then
e D }c. Suppose that

e
has been

introduced in
�b���`a 3�4 by applying a claused of "#.

Case 1 (of a):d also belongs to" c#. Then as the body atoms in the instance ofd used to introduce
e

in�b���`a 3�4 belong to
�b�̀a 3�4, they also belong to}c, because of the induction hypothesis. Therefore,e

is also an atom in}c as it can be introduced usingd.
Case 2 (of a):d does not belong to" c because it has been unfolded in" . Let d be of the form:e2 	 e�% 6 6 6 %e:��%e: %e:��% 6 6 6 %e�6
where

e: is the unfolded atom. Letd�%d5% 6 6 6 %d¨ be all clauses in" , whose heads are unifiable withe: by most general unifiersº�%º5% 6 6 6 % º¨ respectively. It is easy to see that since (a ground instanceof)d has been used to introduce
e

in
�b���`a 3�4, the corresponding instance of

e: is in
�b�̀a 3�4 and has

been introduced using one of the clausesd�%d5% 6 6 6 %d¨ as these are all the clauses in" whose heads
are unifiable with

e:. Suppose that this clause isdF :zF 	 zF°% 6 6 6 %zF¼ 6
with � { 9. As dF is an unfolding clause, a clausedcF of the form:

3e2 	 e�% 6 6 6 %e:��%zF° % 6 6 6 %zF¼ %e:��% 6 6 6 %e�4ºF 6
has been introduced in" c, whereºF < �¾@3zF %e:4 and thuszFºF < e:ºF 6 It is easy to see that

e
also

belongs to}c as it can be introduced in}c by the appropriate ground instance of the clausedcF . The atoms
in the body of this clause are the instances of the atoms in thebodies of the instances of the clausesd anddF that have been used in the introduction of

e
in

�b���`a 3�4. These atoms also belong to}c because
of the induction hypothesis (as they belong to

�b�̀½a 3�4).
Proof of (b):As in the proof of ($) we will use induction on; to prove that

�b :̀ ½a 3�4 B }.

Base Case (of b):As in Base Case of ($) we prove that
�b 2̀½a 3�4 B }.

Induction Hypothesis (of b):If
e D�b �̀½a 3�4, then

e D }.

Induction Step (of b):We will prove that if
e D �b���`½a 3�4, then

e D }. Suppose that
e

has been

introduced in
�b���`a 3�4 by applying a clause

�
of " c.

Case 1 (of b):
�

also belongs to" . Then
e

has also been introduced in} using
�

(the proof is similar
to Case 1 of ($)).
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Case 2 (of b):
�

is between the clauses of" c obtained by unfolding a claused in " . It is easy to prove
(in a similar way as in the proof of Case 2 of ($)), that the atom

e
has also been introduced in} by using

the claused and the unfolding clause used to obtain
�

. ij
As we will see in Subsection 8.2, when applying the unfoldingrule some unfolding clauses become

redundant (since we are interested in retaining equivalence only with respect to specific predicates). We
can thus eliminate these clauses. The elimination rule is given formally in the following two definitions.

Definition 8.2. Let " be a Choice Datalog�� program. Thepredicate dependency graphI` of " is a
directed graph3¿%�4 where

¿
is the set of predicate symbols in" and

�
is a set of edges such that3. %/4 D �

iff there is a claused in " whose head predicate is., and there is an atom or a choice version
of an atom in the body ofd whose predicate is/.
Definition 8.3. Let " be a Choice Datalog�� program, and

�
be a set of predicate symbols in" . A

claused in " is said to beredundant with respect to
�

in " iff there is no path in the predicate depen-
dency graphI` of " leading from a predicate in

�
to the head predicate ofd.

The following lemma can then be easily proved.

Lemma 8.2. Let " be a Choice Datalog�� program, and
�

be a set of predicate symbols in" . Let " c
be the program obtained by deleting all clauses in" which are redundant with respect to

�
. Let

e
be an

atom or a choice version of an atom whose predicate symbol is in
�

. Then for every database!, if there
exists a limit interpretation_ of "# such that

e D_, then there exists a limit interpretation_c of " c#
such that

e D_c.
The transformation rules of this section can be used to optimize the target program as shown below.

8.2. Elimination of IDB predicates obtained from EDB body atoms of the source pro-
gram

All IDB predicates that appear in the target program" �
which correspond to EDB atoms that appear

in the bodies of the clauses in the source program" , can be eliminated using unfolding. In particular,
the predicates in the heads of the clauses added to" � in Case 4 of the algorithm (which are output
predicates) appear only in the bodies of (some of) the clauses in" �, added in Cases 2-3 of the algorithm.
All clauses containing these atoms in their bodies can be unfolded using the clauses introduced in Case
4. The clauses obtained by these unfolding steps contain occurrences of input predicates corresponding
to EDB predicates. These occurrences can be further unfolded resulting to the complete elimination of
all (input and output) predicates corresponding to EDB predicates of the source program. It is easy to
see (because of the structure of the program" �

) that none of the unfolded atoms occurs in its choice
version and therefore all these unfolding steps are valid according to Definition 8.1. Notice that all labels
corresponding to EDB body atoms in the source program are also eliminated through this process.
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Example 8.1. Consider the program" �
obtained in Example 5.1.

3I4 	 ��
������3d�4 ��� 
�������3d54 ��
���� 	 J�
���������3d�4 J�� 
��������	 ��� 
�����3d�4 ��
���� 	 ��
�� �������3d�4 ��� 
�� �����	 ��
�� ������3dÀ4 ��� 
�� ������	 ��� 
�����3dÁ4 ��
���� 	 K�
�� �������3dÂ4 K�5 
�� ������	 ��
�p �������3dÃ4 K�� 
�� �����	  ��� 
����3d�24 ��� 
�p �����	  ��� 
����3d��4 ��
��� 	 �
���� ��� 
�����3d�54 J�
��� 	 J
���� J�� 
�����3d��4 K�
���� 	 K
������ K�� 
����� K�5 
����
We will eliminate all IDB atoms in" � (and the clauses defining them) corresponding to the EDB

predicates�, J andK, by using the transformation rules defined in Subsection 8.1.
Unfolding (d�) using (d��) we get:

3d��4 ��� 
�� �����	 �
���� ��� 
�� �������
Now unfolding (d��) using (dÀ) we get:

3d��4 ��� 
�� �����	 �
���� ��� 
�����
Now we can replace (d��) for (d�) in " �. Clauses (dÀ) and (d��) can be eliminated as they are now

redundant with respect to the set
� < =��> containing the goal predicate.

Applying the same process we can eliminate the predicatesJ� andJ�� and the clauses defining them.
In particular, we unfold (d5) using (d�5) and then we unfold the clause obtained using (d�). In this way
we get the clause: 3d�À4 ��
���� 	 J
����� ��� 
�����
which replaces clause (d5) in " �

. Again we eliminate the redundant clauses (d�) and (d�5).
Applying the same process we can eliminate the predicatesK�� , K�5 andK� that correspond to the

EDB predicateK. For this we unfold (dÁ) using (d��), and then we unfold the resulting clause using the
clauses (dÂ) and (dÃ). In this way we get the clause:

3d�Á4 ��
����	 K
������  ��� 
����� ��
�p ������
Clause (d�Á) can replace (dÁ) while clauses (dÂ), (dÃ) and (d��) can be eliminated as they become

redundant with respect to the set
� < =��>. The program obtained by applying the above transformation
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is: 3I4 	 ��
������3d�4 ��� 
�������3d�4 ��
���� 	 ��
�� �������3d�24 ��� 
�p �����	  ��� 
����3d��4 ��� 
�� �����	 �
���� ��� 
�����3d�À4 ��
���� 	 J
����� ��� 
�����3d�Á4 ��
���� 	 K
������  ��� 
����� ��
�p ������
It is easy to see that we have managed to eliminate IDB atoms in" �

(and the clauses defining them)
that correspond to the EDB predicates�, J andK. Moreover, the labels 1, 2, and 5, corresponding to the
EDB body atoms of the source program have also been eliminated.

8.3. More optimizations using unfolding

In the previous subsection we have seen how we can eliminate the IDB predicates that correspond to
EDB body atoms from the program obtained by applying the transformation algorithm of Section 5.
However, as we will see in Example 8.2, we can apply some more unfolding steps to further simplify the
program.

Example 8.2. Consider the program obtained in Example 8.1. Observe that we can unfold the clause
(d�) at��
�� ������using the clause (d�Á). In this way we get the clause:

3d�Â4 ��
���� 	 K
�� ����  ��� 
�� ������ ��
�p�� �������
The clause (d�Â) can now replace (d�) in the program and the clause (d�Á) is redundant with respect

to
� < =��> and can be eliminated. In this way we get the program:

3I4 	 ��
������3d�4 ��� 
�������3d�24 ��� 
�p �����	  ��� 
����3d��4 ��� 
�� �����	 �
���� ��� 
�����3d�À4 ��
���� 	 J
����� ��� 
�����3d�Â4 ��
���� 	 K
�� ����  ��� 
�� ������ ��
�p�� �������
We can also unfold clauses (d��) and (d�À) at the atom��� 
����. In this way we get the clauses:

3d�Ã4 ��� 
����� 	 �
�����3d524 ��� 
���p �����	 �
����  ��� 
�����3d5�4 ��
����� 	 J
������3d554 ��
�p ������	 J
�����  ��� 
�����
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Clauses (C�Ã), (C52), (C5�), and (C55) can replace clauses (d��) and (d�À) in the final program and
clauses (d�) and (d�2) can be eliminated as they become redundant with respect to the set

� < =��>. In
this way we obtain the program:

3I4 	 ��
������3d�Ã4 ��� 
����� 	 �
�����3d524 ��� 
���p �����	 �
����  ��� 
�����3d5�4 ��
����� 	 J
������3d554 ��
�p ������	 J
�����  ��� 
�����3d�Â4 ��
���� 	 K
�� ����  ��� 
�� ������ ��
�p�� �������
It is important to note here that in the case of the elimination of the IDB atoms corresponding to the

EDB body atoms of the source program, we have an algorithm (presented in Subsection 8.2), which can
be applied to perform this optimization. On the other hand, for the unfolding steps applied in Example 8.2
we do not have at the moment a concrete algorithm. However, webelieve that one can be guided by the
structure of the source program so as to perform most of the appropriate unfoldings in an algorithmic
way. However, we do not pursue these issues any further here.

8.4. Eliminating Choice Predicates

The bottom-up execution of the target programs could be significantly enhanced if one could eliminate
certain choice atoms or replace them by their non-choice versions. This is possible if we know that a
given predicate is deterministic:

Definition 8.4. Let " be a Choice Datalog�� program and! a database. An IDB predicate. of " will
be calleddeterministicwith respect to the database!, if for everyq, whenever two atoms. 3q%$4 and. 3q% &4 arise during the bottom-up evaluation of"#, then$ < &. An EDB predicate. is deterministicif
its output argument is uniquely determined by its input arguments.

Detecting determinism in the program obtained by our technique (after applying also the optimizations
described above) is very important since one can replace thechoice atoms of a deterministic predicate
that appear in the program by their non-choice versions. Such a transformation results in fewer branches
that have to be followed during the bottom-up evaluation of the program. Moreover it makes the program
amenable to other optimizing transformations.

There are many cases of determinism that can be detected in a static way. Consider a database!
and a program" that has resulted after applying the transformation and theoptimizations that have been
described so far. The following definition and the subsequent lemma provides a means for detecting a
non-trivial class of deterministic predicates.

Definition 8.5. An IDB predicate. will be calledpotentially deterministicif its definition consists of
clauses of the following forms:
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;4 . 3t u%$46;;4 . 3twu%+ 4 	 )3$�% 6 6 6 %$� %+ 46;;;4 . 3q%+ 4 	 tku/3q�%+ 46;-4 . 3q%+ 4 	 )3*�% 6 6 6 %*�%+ 4% tku/�3q�%*�4% 6 6 6 % tku/�3q�%*�46
where eachq:, for ; < H% 6 6 6 %7, is a proper suffix ofq.

Lemma 8.3. (Testing determinism) Let
�

be a set of predicates of" and assume that the following
conditions hold for every member. of

�
:

1. If . is an EDB predicate then it is deterministic and if it is an IDBpredicate then it is potentially
deterministic.

2. The temporal arguments of the head atoms of all clauses defining . specify disjoint sets of time
points.

3. The predicate of every atom that appears in the body of a clause that defines. belongs to
�

.

Then every predicate in
�

is a deterministic predicate with respect to!.

Proof:
(Sketch) The lemma can be easily proved by induction on the structure of the temporal argument (list).ij
Example 8.3. Consider the program obtained in Example 8.2. It is easy to see that the test defined above
applies to the set=��� � �> in all cases that the EDB predicate� is deterministic. In these cases we can
replace the choice atoms by their non-choice versions obtaining the program:

3I4 	 ��
������3d�Ã4 ��� 
�����	 �
�����3dc524 ��� 
���p �����	 �
���� ��� 
�����3d5�4 ��
�����	 J
������3dc554 ��
�p ������	 J
����� ��� 
�����3dc�Â4 ��
����	 K
������ ��� 
�� ������� ��
�p�� ������
Notice however that if� was not deterministic, this optimization could not have been applied.

8.5. Reducing the overhead in list manipulation

One aspect of the branching transformation that seems (at first sight) to impose performance limitations,
is the fact that the transformation is heavily based on list computations. For example, assume that during
the bottom-up evaluation of a program, an atom is created; inorder to verify that this atom has not
already been introduced in a previous step, we have to compare it with the atoms that have already been
produced. However, since an atom can contain an arbitrarilylong list, this seems to suggest that the
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operation of comparing two atoms can be very costly. Fortunately, there is a simple and elegant solution
out of this problem, one that has been extensively used in thecorresponding version of the branching
transformation for functional programming languages [21]. The idea is that lists can be encoded by
small natural numbers using a technique known ashash-consing. The main advantage of hash-consing
is that two lists can be tested for equality with a single operation, rather than with a loop which scans
the lists and compares corresponding elements. The only (minor) disadvantage is that with each cons
operation we must consult a hash table to check that the list we are constructing does not already have a
representation.

We store the list representatives in a table each row of whichis a pair(head, index of tail). The list is
then represented (or encoded) by the index of the appropriate pair in the table. The following primitive
functions are used in order to implement hash-consing:� �$1�'�713�)$�%r$;w '��)4: Uses a hash function to check if the pair3�)$�%r$;w '��)4 already

exists in the hash table. If it does not, then it inserts it. Finally, it returns the position of the pair in
the table.� �$1��)$�3w;1r '��)4: It returns the first element of the pair found in the

w;1r '��) position of the
hash table.� �$1�r$;w3w;1r '��)4: It returns the second element of the pair found in the

w;1r '��) position of
the hash table.

The above operations can be performed efficiently and the space occupied by the hash table is reasonable.
Using hash-consing and the above primitives, an efficient implementation of the technique can be built,
that avoids expensive list management. For more details regarding this technique, see for example [21].

8.6. Discussion on the optimizations

As the reader may have realized by now, the target program of our transformation is amenable to a variety
of optimizing transformations. Many of these transformations may be expressed in an algorithmic way
and may apply to wide classes of target programs.

It is important to note that the elimination of unnecessary choice atoms is of paramount importance
because the presence of non-determinism is a source of execution overhead. As we have seen in Sub-
section 8.4 the necessity of using the choice version of an atom usually depends on the structure of
the database on which a program applies (and not only on the structure of the program itself). The
criterion that we propose in Subsection 8.4 is a first step towards reducing the overhead introduced by
non-determinism. The invention of more widely applicable tests will be the subject of future work.

Another important source of optimizations concerns the elimination of list labels that are not actu-
ally necessary. This improvement is essential since it reduces the execution time of the program. Other
promising optimizations that help reduce the number of listlabels can be obtained by refining theElimi-
nation of redundant next operators, and theElimination of temporal operators concerning left recursive
callsproposed in [19]. However, it is not immediately obvious howthese optimizations interact with the
existence of choice atoms. We are currently investigating these issues.

Concluding, we believe that the issue of optimizing the target program of our transformation can still
produce interesting results. However, even in its present form, the proposed approach competes with the
existing approaches (which have been developed and undergone improvements for many years).
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9. Related Work

The work presented in this paper contributes to the area of query optimization in deductive databases.
More specifically, the proposed transformation belongs to awell-known class of techniques in which the
input values of the query-goal are propagated in order to restrict the generation of irrelevant atoms during
the bottom-up computation of the desired final answers. In this section we present a comparison of the
proposed transformation with the most well-known value-propagating techniques. The comparison is
not exhaustive since this would require the availability ofstable implementations for all the techniques
involved and the experimentation with a large number of programs and underlying databases. However,
in the following we attempt to identify the main advantages and disadvantages of our approach with
respect to its main competitors.

Among the existing Datalog optimizations, the ones that aremost closely related to the present
approach are themagic sets transformation[3, 25], thecounting method[24] and thepushdown ap-
proach [9]. In the following, we discuss the relative merits and drawbacks of each one of them with
respect to our technique. In the last subsection we compare all these techniques with respect to their
performance on specific examples.

9.1. A Comparison with Magic Sets

The most widely known approach in the area of value-propagating Datalog optimizations, is the magic
sets transformation. In this approach, for each IDB predicate of the source program a new predicate,
calledmagic predicate, is introduced. The arguments of a magic predicate are the bound arguments of
the corresponding IDB predicate of the initial program and the aim is to push selections into clauses.
The magic sets can be applied to general Datalog programs [3,25] and therefore it is the most general
among all similar techniques. This generality, however, can prove a disadvantage in many cases: as we
argue in subsection 9.3, the proposed transformation has the same advantages over magic sets as the
counting technique does. More specifically, it is well-known [28] that on a variety of databases, counting
outperforms magic sets; in particular, there exist programs which (under certain databases) terminate inÄ374 time using counting but requireÅ3754 time for magic sets. As we will demonstrate at the end of
this section, this favorable situation appears as well for the proposed transformation.

9.2. A Comparison with Counting and Pushdown

The counting technique uses integer indices in order to encode two fixpoint computations: one for the
propagation of the bindings in the top-down phase and the other for the generation of the desired result
in the bottom-up computation. In other words, the integer indices of counting play the role of the lists in
the present transformation.

In its initial form, counting was applicable only to a restricted class of queries [28, 10]. Later, it
was extended togeneralized counting, which applies to a broader class of queries having the so called
binding-passing property (BPP)[24]. Intuitively, BPP guarantees that “bindings can be passed down to
any level of recursion”. However, the class of BPP programs does not include all the Chain Datalog ones
and hence not all the cc-Datalog ones. For an example, consider the traversal of a graph using double
recursion (the program in Section 2). The generalized counting method can not treat this case, since the
corresponding program does not have the BPP; but this program is actually a Chain Datalog one, and
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therefore it can be easily transformed by the branching-time transformation. In other words, counting is
less general than the branching-time transformation.

Another issue that arises when comparing these techniques concerns the termination of bottom-up
evaluation of the resulted programs. Consider first the caseof branching transformation. Then as we
have demonstrated, for every program and database there exists a bound (that depends on the program
and database characteristics) such that all the answers to aquery are obtained in a number of iterations
that does not exceed this bound. On the other hand, in case of the counting technique alternative methods
have been proposed in order to ensure termination. For example, in [12] a criterion is proposed that
applies to databases that can be represented as graphs; thiscriterion, however, is not general enough
to cover all the database cases (i.e. the non-graph representable ones). Another method that has been
proposed for the same purpose is themagic counting[23] approach. This method provides a way to deal
with cyclic databases provided one knows in advance the structure of the database in order to decide
which of the variants of the method is most appropriate.

Recapitulating, the counting and the branching transformations share some common philosophy (the
former uses integer indices while the latter lists of integers to control bottom-up evaluation). However,
the branching transformation appears to have a more generaltermination criterion and applies to a wider
class of programs.

The pushdown method is based on the relationship between chain queries and context-free languages.
Moreover, the context-free language corresponding to a query is associated to a pushdown automaton; in
this way the initial query is rewritten in a more suitable form for efficient bottom-up execution. Thepush-
down methodapplies to all chain queries [9], and hence it covers a subclass of the proposed technique,
as it cannot treat the case of multiple consumptions of variables.

9.3. A Comparison through Examples

In the following, we compare the above techniques using fourexample programs. The first one is the
well-known same generationprogram (which is actually a Chain Datalog program); the second one is
the��NO program of Section 3, which has multiple consumptions of variables. The third one is a doubly
recursive program which computes the odd-length paths of a given color in a graph; finally, the fourth
example is the running example that we have been using so far.

9.3.1. The same-generation program

The same-generation program has been used extensively in comparing the performance of various Data-
log optimizations: 	 UK
�����UK
���	 ��X��
����UK
���	 ���
������UK
�� ������� 
� ���

Consider a database consisting of the unit clauses���
��T:�, ���
T: �Y�, ��� 
T: ��� and��� 
Y�T:�, whereH » ; » 7, and��X�� is the usual equality predicate (this is a slightly modified version of the
program given in [28], page 831). The proposed transformation when applied to the (simple cc-Datalog
version of the) above program produces as output (after applying the appropriate unfoldings described in
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Subsection 8.2): 	 UK�
������UK�� 
������UK�
��� 	 ��X��
����UK�� 
�����UK�
��� 	 ��� 
� ���UK�
���� �������UK�� 
���� �������	 ���
������UK�� 
�����
It can be easily seen that the above program terminates producing the desired solution (

�
= �) in timeÄ374. On the other hand, the corresponding magic sets program ([28], page 856) requires timeÅ3754

(see also the discussion in [28], page 947). In other words, our transformation appears to give promising
results with respect to magic sets.

9.3.2. The colored-path program

Consider the cc-Datalog program of Example 3.2:	 ��NO 
����R������NO 
��PQ�Q����	 �RK�
��PQ�Q�������NO 
��PQ�Q����	 �RK�
��PQ�Q�������NO 
� �PQ�Q�����
together with the database:�RK�
����R�T:�� �RK�
T: ���R�Y�� �RK�
Y���R�R:�, ; < H% 666%7.

The target program obtained after applying the proposed transformation and the appropriate unfold-
ings is as follows:	��NO�
��������NO�� 
��������NO�5 
�����R����NO�
���� 	 �RK�
��PQ�Q�������NO�� 
�������NO�5 
��PQ�Q�����NO�
���� 	 ��NO�
�� ���������NO�� 
�� ������	 �RK�
��PQ�Q�������NO�� 
����� ��NO�5 
��PQ�Q�����NO�5 
�� ����PQ�Q��	  ��NO�5 
��PQ�Q���

It is easy to see that Lemma 8.3 can be applied to=��NO�5 >, thus��NO�5 is deterministic with respect
to the given/every database (in fact, in every context its data argument gets the value��R). Therefore,
the choice atoms can be replaced by their non-choice versions obtaining a program free of choice atoms.
Moreover, it is easy to see that the atoms whose predicate is��NO�5 can be completely removed, obtaining
in this way the following program:	��NO�
��������NO�� 
��������NO�
���� 	 �RK�
����R������NO�� 
�������NO�
���� 	 ��NO�
�� ���������NO�� 
�� ������	 �RK�
����R������NO�� 
�����
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The answers to the goal (
� \ T: � Y� R:, for ; < H% 666%7) are produced in

Ä374 time.
On the other hand, the magic sets program:S ��NO 
����R��S ��NO 
� �PQ�Q��	 S ��NO 
��PQ�Q����RK�
��PQ�Q�������NO 
��PQ�Q����	 S ��NO 
��PQ�Q����RK�
��PQ�Q�������NO 
��PQ�Q����	 S ��NO 
��PQ�Q����RK�
��PQ�Q�������NO 
� �PQ�Q�����

produces all facts��NO 
T: ���R�RF �, for ;%� < H% 66%7 and hence needsÅ3754 time. Even the more
sophisticated extension of the magic sets, i.e. thesupplementary magic sets[3], does not offer any
significant improvement since theÅ3754 facts still have to be computed.

The counting method results to the following program:

Y ��NO 
]�����R��Y ��NO 
ÆÇ��� �PQ�Q��	 Y ��NO 
Æ���PQ�Q����RK�
��PQ�Q�������NO 
Æ���	 Y ��NO 
Æ���PQ�Q����RK�
��PQ�Q�������NO 
Æ���	 ��NO 
ÆÇ�����
A bottom-up evaluation of this program computes the answersto the goal	 ��NO 
]��� in

Ä374
time.

9.3.3. The odd-length colored-path program

Consider the cc-Datalog program that finds all the nodes thatare accessible from node� through odd-
length red paths (double recursion):	 ��NO 
����R�����NO 
��P��	 �RK�
��P�����NO 
��P��	 �RK�
��P���� ��NO 
��P�È�� ��NO 
È �P���
together with the database:�RK�
����R�T:�, �RK�
T: ���R�Y�, �RK�
Y���R�R:�and�RK�
R: ���R��:�, for ; < H% 666%7.

The target program after applying the proposed transformation and the appropriate unfoldings is:	��NO�
��������NO�� 
��������NO�5 
�����R����NO�
��� 	 �RK�
��P��� ��NO�� 
����� ��NO�5 
��P����NO�
��� 	 ��NO�
�p ��������NO�5 
�p ����P�	  ��NO�5 
��P����NO�5 
�� ����P�	  ��NO�5 
��P����NO�� 
�p ����È�	 ��NO�
�� ����È����NO�� 
�� ������	 �RK�
��P���� ��NO�� 
�����  ��NO�5 
��P��
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or after the replacement of the choice predicate with its corresponding classical predicate and the elimi-
nation of��NO�5 predicate (in a similar way as in Subsection 9.3.2) we get:

	��NO�
��������NO�� 
��������NO�
��� 	 �RK�
����R��� ��NO�� 
�������NO�
��� 	 ��NO�
�p ��������NO�� 
�p ����È�	 ��NO�
�� ����È����NO�� 
�� ������	 �RK�
����R���� ��NO�� 
�����
The answers to the goal (

� \ T: � R:, for ; < H% 666%7) are produced in
Ä374 time (since only

Ä374
facts are produced during the computation).

On the other hand, the corresponding magic sets program:

S ��NO 
����R��S ��NO 
��P�	 S ��NO 
��P�� �RK�
��P����S ��NO 
È �P�	 S ��NO 
��P�� �RK�
��P���� ��NO 
��P�È����NO 
��P��	 S ��NO 
��P�� �RK�
��P�����NO 
��P��	 S ��NO 
��P�� �RK�
��P���� ��NO 
��P�È�� ��NO 
È �P���
needsÅ3754 time to produce the answers, due to the fact that it produces all facts of the form��NO3TÉ,��R%�Ê4, for ;%� < H% 666%7.

Similarly, the counting method produces the following program:

YWN ��NO 
]�]�����R��YWN ��NO 
ÆÇ���ËÌ ���P�	 YWN ��NO 
Æ�Ì ���P�� �RK�
��P����YWN ��NO 
ÆÇ���ËÌÇ��È �P�	 YWN ��NO 
Æ�Ì ���P�� �RK�
��P������NO 
ÆÇ���ËÌ ���P�È����NO 
Æ�ÌÍ����P��	 YWN ��NO 
Æ�ÌÍ����P�� �RK�
��P�����NO 
Æ�ÌÍ����P��	 YWN ��NO 
Æ�ÌÍ����P�� �RK�
��P������NO 
ÆÇ��Ì ���P�È�� ��NO 
ÆÇ��ÌÇ��È �P���
So, the computation of the resulting program produces all facts of the form��NO3�%]%TÉ%��R%�Ê4

for ;%� < H% 666%7. Hence,Å3754 time is needed. Notice that the counting program requires two indices
(instead of one that is needed in the case of the branching transformation).

9.3.4. The running example

Consider again the running example together with the database: �
���T:�, J
T: �Y:� andK
T: �Y: �R:�,
for ; < H% 666%7. The answers (

� < RÉ
, for ; < H% 666%7) for the target program given in Example 8.3 are

produced in
Ä374 time, since

Ä374 atoms are produced.
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The corresponding magic sets program is:

S �
����S �
� 	 S �
����
�����
���� 	 S �
���J
������
���� 	 S �
����
�����
����K
�� ����
and needs

Ä374 time.
Finally, the program produced by the counting method is:

YWN �
]�����YWN �
ÆÇ���	 YWN �
Æ�����
�����
Æ�����	 YWN �
Æ����J
������
Æ�����	 YWN �
Æ�����
�����
ÆÇ������K
�� ����
and needs also

Ä374 time to produce the answers.

9.3.5. Overall comparison

Recapitulating, the comparison of the three techniques is summarized in the following table:

_)r��� _$¾;' �)r1 d�@7r;7¾ �)r��� z0$7'�;7¾�$�)¾)7)0$r;�7 Å3754 Ä374 Ä374d�w�0)� M.$r� Å3754 Ä374 Ä374Ä�� M w)7¾r� '�w�0)� M.$r� Å3754 Å3754 Ä374Î@77;7¾ )Ï$�.w) Ä374 Ä374 Ä374
As a closing comment, our transformation appears to have a similar behavior to that of counting

for the programs we have presented (as well as for other programs we have tried). An advantage of
the proposed technique is that it has a clear termination condition which is realistic for many examples.
Finally, both the counting and the branching transformation appear to outperform the magic sets in many
examples (but of course the latter is clearly more generallyapplicable).

10. Discussion

In this paper we have presented a significant extension of thebranching-time transformation [18, 19].
More specifically, we have demonstrated that if we introducechoice predicates in the target language,
then the branching-time approach can be extended to handle programs that allow multiple consumptive
occurrences of variables in the bodies of clauses. The programs that result from the transformation have
a number of interesting properties:� Every clause in the resulting program corresponding to an IDB predicate in the source program,

uses only a single data variable.
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� Every IDB predicate in the resulting program is binary, its first argument actually being a control
argument in the form of a list.

Moreover, in many interesting cases (e.g. for all source programs where all EDB predicates have arity
2), the target programs have at most one IDB body atom. Such programs are usually calledlinear [1, 2]
and have many interesting properties.

We believe that the work presented in this paper can be extended in various ways. We have been
investigating possible extensions of the source language,perhaps allowing more than one output argu-
ments, as well as more general patterns of consumptions. In particular, we believe that the restriction
to consecutive consumption of the arguments is not essential but lifting this restriction seems to require
a more involved correctness proof. Another point for further research is the use of non-deterministic
constructs that have been used for deductive databases, like those proposed in [8].

We currently have a working implementation of the initial branching-time transformation [27]. More
specifically, the implementation of [27] takes as input Chain Datalog programs, translates them into
Datalog��, optimizes them, and finally executes them in a bottom-up way. The implementation is written
in Prolog and has given quite promising results for the case of Chain Datalog programs. We have recently
undertaken the task of extending the implementation to handle cc-Datalog programs. This is obviously
a more demanding goal since the existence of choice predicates in the target code imposes a different
bottom-up execution strategy.

Another possible direction for future work would be to investigate whether the results of this paper
can be applied to more general logic programs (i.e., programs that use function symbols). Consider for
example the following program that performs multiplication of natural numbers:

NVS�U
�����	 Ð��Q ��QRXYN
������NVS�U
U
������	 NVS�U
��������XU
� �������XU
�����	 Ð��Q UXS 
��������XU
��U
��U
���	 ��XU
������Ð��Q ��QRXYN
]���]��Ð��Q UXS 
]������
Moreover, assume that we have a fixed goal, say	 NVS�U
U
]��U
U
]�����. Then the above

program can be transformed in the usual way. The key idea thatallows us to do the translation is that
although there exist function symbols, each compound term contains only one variable. The application
of the transformation to such more general programs poses a whole new set of interesting questions.

In conclusion, we believe that the technique described in this paper has a significant potential for
further extensions. Moreover, we believe that answers to the questions posed in this section will enable
us to get further insight on the relationships between classical logic programming and intensional logic
programming languages.
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Appendix A

In this Appendix we give the proof of Lemma 6.1.

Lemma 6.1. Let " be a simple cc-Datalog program,! a database, and" � the Choice Datalog�� pro-
gram that results from the transformation. For all predicates. defined in"#, all q D q;1r3  4, all$% & D |`a, all input positions; of ., and all approximations}, .�: 3q% &4 does not depend on.�3q%$4
in }.

Proof:
When the listq is empty it is straightforward to check that the lemma holds (as there is no clause in" �

, other than the unit clauses obtained from the transformation of the goal clause, whose head has as
instance the atom.�: 3tu% &4). We therefore need to examine the case where the length ofq is greater than
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or equal to 1. Assume thatq < tw�v_u. The proof is by induction on the distance between atoms in}. The cases for distances 0 and 1, hold trivially (the former because of Definitions 6.2 and 6.1 and the
latter because of the form of the clauses produced by the transformation). Assume the lemma holds for
distances up to�. We demonstrate the claim for distances� L H.

Assume for the sake of contradiction that there exists an approximation } in which .�: 3tw� v_u% &4
depends on.�3tw� v_u%$4 in } with distance� L H. This means that there is a derivation set

�
for.�: 3tw� v_u% &4 in } for which there exists a sequence of� L H ground instances of clauses of" �# that

establishes the dependency between these two atoms; the first clause in this sequence must contain.�3tw� v_u%$4 as a body atom, while the last clause must have.�: 3tw� v_u% &4 as its head. We distinguish
the following cases:
Case 1:The first clause in the sequence is of the form:

/�3_%$4 	 .�3tw� v_u%$46
This is a ground instance of a clause that has resulted after transforming a clause of the original

program that is either of the form:

/3� � � 4 	 03� � � 4%. 3� � � 4
or of the form: /3� � � 4 	.3� � � 4

Now, in order to get from/�3_%$4 to.�: 3tw� v_u% &4, the label
w� must be restored by an intermediate

clause of the sequence. This can be performed by either a ground instance of a clause of the form:

.�: 3tw� v_u% &4 	 tku/�F 3_%&46
or by: .�: 3tw� v_u% &4 	 0�3tw5 v_u% &46

But in the first case this implies that/�F 3_%&4 depends on/�3_%$4 in } and the distance between/�F 3_%&4 and/�3_%$4 is » � (contradiction from the induction hypothesis). In the second case, the
only way that label

w5 can have been introduced is by a ground instance of a clause ofthe form:

0�� 3tw5 v_u%�4 	 tku/��3_%�46
But then/��3_%�4 depends on/�3_%$4 in }, and the distance between/��3_%�4 and/�3_%$4 is» � (contradiction from the induction hypothesis).

Case 2:The first clause in the sequence is of the form:

/�F 3tw5 v_u%$4 	 .�3tw� v_u%$46
This is a ground instance of a clause that has resulted after transforming a clause of the original

program that is of the form: 03� � � 4 	.3� � � 4% /3� � � 4
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Now, in order to get from/�F 3tw5 v_u%$4 to .�: 3tw� v_u% &4, the label
w� must be restored by an inter-

mediate clause of the sequence. This can only be performed bya ground instance of a clause of the
form: .�: 3tw� v_u%�4 	 tku0�� 3_%�46

But in order to get from/�F 3tw5 v_u%$4 to 0�� 3_%�4 the label
w5 must be removed, and this can only

be performed by a ground instance of a clause of the form:

0�3_%'4 	 /�3tw5 v_u% '46
Then0�� 3_%�4 depends on0�3_%'4 in } and the distance between them is» � (contradiction by

the induction hypothesis). ij
Appendix B

In this Appendix we give the proof of Lemma 6.2.

Lemma 6.2. Let " be a simple cc-Datalog program and! a database. Let" � be the Choice Datalog��
program that results from the transformation. For all predicates. defined in"#, all q D q;1r3  4,
all $% & D |`a, and all input positions;%� of ., there does not exist any approximation} to any limit
interpretation of" �# such that.�: 3q% &4 depends on.�F 3q%$4, where.�: 3q% &4 C< .�F 3q%$4.
Proof:
When the listq is empty it is straightforward to check that the lemma holds.We therefore need to
examine the case where the length ofq is greater than or equal to 1. Assume thatq < tw�v_u. The proof
is by induction on the distance between atoms. The cases for distances 0 and 1, hold trivially (the former
because of Definitions 6.2 and 6.1 and the latter because of the form of the clauses produced by the
transformation). Assume the lemma holds for distances up to�. We demonstrate the claim for distances� L H.

Assume for the sake of contradiction that there exists an approximation } such that.�: 3tw� v_u% &4
depends on.�F 3tw� v_u%$4 in } with distance� L H. This means that there exists a sequence of� L H
ground instances of clauses of" �# that establishes the dependency between these two atoms; the first
clause in this sequence must contain.�F 3tw� v_u%$4 as a body atom, while the last clause must have.�: 3tw� v_u% &4 as its head. We distinguish the following cases:
Case 1:The last clause in the sequence is of the form:

.�: 3tw� v_u% &4 	 tku/�� 3_%&46
This is a ground instance of a clause that has resulted after transforming a clause of the original

program that is either of the form: /3� � � 4 	.3� � � 46
or: /3� � � 4 	 03� � � 4%. 3� � � 46
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or /3� � � 4 	 .3� � � 4%03� � � 46
Now, in order to get from.�F 3tw� v_u%$4 to /�� 3_%&4, the label

w�must be removed by an intermediate
clause of the sequence. One way that this can have been performed is by using a ground instance of a
clause of the form: /�3_%'4 	 .�3tw� v_u% '46

But then/�� 3_%&4 would depend on/�3_%'4 in } (contradiction by Lemma 6.1).
The removal of

w� can have alternatively been performed by using a ground instance of a clause of
the form: 0��3tw5 v_u% '4 	 .�3tw� v_u% '46

But then.�: 3tw� v_u% &4 would depend on.�3tw� v_u% '4 in } (contradiction by Lemma 6.1).
Case 2:The last clause in the sequence is of the form:

.�: 3tw� v_u% &4 	 /�3tw5 v_u% &46
This is a ground instance of a clause that has resulted after transforming a clause of the original

program that is of the form: 03� � � 4 	 /3� � � 4%. 3� � � 46
But then there must have existed some intermediate step in the whole derivation that removed labelw� from the initial list tw�v_u of the atom.�F 3tw� v_u%$4. This can have only been performed by using a

ground instance of a clause of the form:

0�3_%'4 	 .�3tw� v_u% '46
In this case.�: 3tw� v_u% &4 would depend on.�3tw� v_u% '4 in } (contradiction from Lemma 6.1). ij


