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Abstract

We consider the problem of extending temporal deductive databases with stratified negation. We
argue that the classical stratification test for deductive databases is too restrictive when one shifts
attention to the temporal case. Moreover, as we demonstrate, the (more general) local stratification
approach is impractical: detecting whether a temporal deductive database is locally stratified is shown
to be co-NP hard (even if one restricts attention to programs that only use one predicate symbol and
two constants). For these reasons we definetemporal stratification, an intermediate notion between
stratification and local stratification. We demonstrate that for the temporal deductive databases we
consider, temporal stratification coincides with local stratification in certain important cases in which
the latter is polynomial-time decidable.We then develop two algorithms for detecting temporal strati-
fication. The first algorithm applies to linear-time temporal deductive databases and it is efficient and
more general than existing approaches; however, the algorithm sacrifices completeness for efficiency
since it does not cover thewhole class of temporally stratified programs. The second algorithm applies
to branching-time temporal deductive databases (which include as a special case the linear-time ones).
This algorithm is more expensive from a computational point of view, but it covers the whole class
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of temporally stratified programs. We discuss the relative merits of the two algorithms and compare
them with other existing approaches.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Temporal deductive databases[35,21,4,3] (and more generally temporal logic program-
ming languages [22,10]) are promising formalisms that appear to have interesting applica-
tions.Although the field of temporal deductive databases is far from new, many notions that
have been widely studied for classical deductive databases have only recently been consid-
ered for the temporal case. Negation is one such concept: although in the classical casemany
elegant semantic approaches have been developed during the last 20 years (see for example
[26,2]), the temporal case has not been extensively studied and there only exist a few sparse
results. The existing approaches focus on deriving a useful notion of stratified negation for
temporal deductive databases [34,19,29,12,15,18]. However, in these techniques the syntax
of the underlying temporal formalisms is rather restricted. Moreover, the notion of time that
is adopted is discrete and linear (although there exist other interesting and useful notions
of time).

1.1. The problem

The problem of adding stratified negation to (even linear-time) temporal formalisms is
not trivial: if one tries to blindly transfer the classical stratification test [1] to a temporal
deductivedatabasesetting, thenmanyprograms that appear tohaveaclear semanticsmust be
rejected. Consider for example the simple Chronolog [33] program simulating the operation
of the traffic lights:1

first light(green).
next light(amber) ← ¬ light(red), ¬ light(amber).
next light(red) ← ¬ light(green), ¬ light(red).
next light(green) ← ¬ light(amber),¬ light(green).

The above program is obviously a meaningful one. However, if one uses the classical
stratification approach, this program has to be rejected since it contains cyclic dependencies
of a predicate name through negation.A stratification test for a temporal deductive database
formalism has to take into careful consideration the (sometimes implicit) time parameter on
which such a formalism is based. One idea is to use local stratification [27] instead of simple
stratification. This would solve the problem of the time parameter but it would create new
problems instead. It is well-known that decidingwhether a logic program is locally stratified
is undecidable [5,24]; moreover, as we demonstrate in this paper (Theorem 18) deciding

1 It should be noted that the syntax of Chronolog does not support negation, but the meaning of the above
program should be clear.
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whether a given Datalog¬ program is locally stratified, is co-NP hard (which easily implies
that the local stratification problem for the temporal formalismswe consider is co-NP hard).
Therefore, we have to choose between a very restrictive form of stratification and a very
broad one which is computationally impractical.
Fortunately, there is a middle road to follow (and this is actually the road implicitly

taken by all of the existing approaches[34,19,29,20,15,18]). The basic idea is to find an
intermediate notion of stratificationwhich is not trivial andwhich canbedetected efficiently.
There still exist, however, two important issues that remain unanswered by all existing
approaches:
(1) The linear-time temporal stratification tests that have been proposed so far are in general

narrow in scope: the syntax of the underlying temporal deductive database formalisms
on which these tests apply is rather restricted. For example, it is often required that
the temporal references of the predicates in a temporal program cannot be arbitrary
but instead they have to obey to some predefined pattern. Therefore, there still remains
the quest for a test that is both efficient and that applies to a very general linear-time
temporal deductive database formalism.

(2) All the existing tests treat languages in which time has a linear (and discrete) flow: the
set of time-points is actually the set of natural numbers. There exist however richer tem-
poral formalisms. For example, the languageCactus[31] (and its function-free subset
calledBranching-time Datalog[30]) is a branching-time logic programming formal-
ism; similarly,DatalognS [6,7] has an extended notion of time built in its design (and
has linear-time as a very special case, calledDatalog1S [4]). It should be noted that
branching-time languages can express certain problems in a natural way [31] and have
recently found interesting applications in the area of Datalog optimizations [30,25].
Therefore, the second issue that arises is the derivation of an efficient temporal stratifi-
cation test for this more general notion of time.

The above two questions are the main issues tackled in this paper.

1.2. Contributions

Themain contributions of thework presented in this paper can be summarized as follows:
(1) We argue that stratification is too restrictive and local stratification is impractical when

one considers temporal deductive databases. In particular, we demonstrate that the
local stratification problem for the temporal languages we adopt is co-NP hard (even
if one restricts attention to programs with one predicate symbol and two constants).
On the positive side, we demonstrate that this problem is actually decidable; this is a
non-trivial fact since for these languages the temporal Herbrand base is infinite due to
the time parameter. It is well-known that for classical logic programs (whose Herbrand
base is also infinite) the local stratification problem is undecidable[5,24].

(2) We define the notion oftemporal stratificationand argue that it is an intermediate
notion between stratification and local stratification. Moreover, we demonstrate that
for the temporal formalisms we consider, temporal stratification coincides with local
stratification in certain important cases inwhich the latter is polynomial-timedecidable.

(3) We propose a temporal stratification test for linear-time temporal deductive databases.
The proposed approach is an extension of the cycle-sum test[29] and actually
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remedies its main shortcoming since it does not reject any positive programs. In fact,
the new test accepts a significant class of programs with negation which is strictly
greater than the classes of programs accepted by the existing temporal stratification
tests[34,19,29,12,15,18]. However, the algorithm sacrifices completeness for effi-
ciency since it does not cover the whole class of temporally stratified programs.

(4) We propose a temporal stratification test for branching-time temporal deductive
databases (which include linear-time ones as a special case). More specifically, the
test can be applied to the language Branching-time Datalog¬ that supports a branching
notionof time (with appropriatemodifications the technique canalsobeapplied to other
similar temporal formalisms). Since existing stratification tests for temporal languages
only apply to linear time, the proposed technique is a generalization and extension of
previous approaches. Another unique characteristic of this algorithm is that it covers
thewhole class of temporally stratified programs.As a trade-off however, the algorithm
is computationally more expensive than the one for the linear-time case (but still has
a polynomial-time complexity). Finally, this is the first (to our knowledge) temporal
stratification test that can successfully cope with programs whose clauses may contain
temporally ground atoms (canonical atoms).

Summarizing, we believe that the results obtained in this paper can be used in order to add
a useful form of negation to temporal deductive databases (of either linear or branching
time). Hopefully, the proposed techniques can be embedded in existing temporal systems
and enhance their capabilities.

1.3. Structure of the paper

The rest of the paper is organized as follows: Section2 gives an introduction to the syn-
tax and semantics of the temporal languages used in the paper, and Section 3 introduces
the notions of stratification and local stratification for these languages. Section 4 motivates
and defines the notion of temporal stratification. Section 5 extends the cycle-sum approach
[29] obtaining an extended temporal stratification test for linear-time temporal deductive
databases. Section 6 introduces a novel stratification test for branching-time temporal de-
ductive databases. Section 7 compares the two proposed approaches and presents their
relative merits. Section 8 gives a comparison with related work and Section 9 discusses
directions for future work.

2. Temporal deductive databases

In this section we define the basic notions that will be used in the rest of the paper. In
the following, we assume a familiarity with the basic concepts behind deductive databases
[28] and logic programming [17].
The languages that will be used throughout the paper are temporal (they have an implicit

parameter which encodes the notion of time). In certain points of the paper we will need
to refer to the (non-temporal) language Datalog¬, which is the extension of Datalog that
allows negative literals in clause bodies (see for example [28]). The two languages that will
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be the main focus of our study, are:
• The languageLinear-time Datalog¬ which is a deductive database language that is

based on a linear notion of time.
• The languageBranching-time Datalog¬ which is a deductive database language that
supports a branching notion of time.

The above two formalisms have their roots in the Chronolog[33,23] and Cactus [31] tem-
poral logic programming languages. Themain difference is that the formalismswe consider
in this paper support negation (which is not the case for Chronolog and Cactus). Moreover,
the two languages we consider here do not have function symbols (without this being an
essential restriction since the tests we describe can be lifted to the more general framework
of temporal logic programming).
As, it will be discussed later in this section, Linear-time Datalog¬ can be seen as a special

instance of Branching-time Datalog¬. For this reason, we start by presenting the syntax and
the semantics of Branching-time Datalog¬ (and then obtain as special cases the syntax and
the semantics of Linear-time Datalog¬).
Every atom in a Branching-time Datalog¬ program is preceded by atemporal reference,

which is a (possibly empty) sequence of the temporal operatorsfirst andnexti , i�0. A
temporal reference of the formfirst nexti1 · · · nextik , wherek�0, is calledcanonical.
A temporal reference of the formnexti1 · · · nextik is said to beopen. A temporal atomis
an atom preceded by either a canonical or an open temporal reference. Acanonical(resp.
open) temporal atom is a temporal atomwhose temporal reference is canonical (resp. open).
Given a temporal atomA, the temporal reference ofA is denoted bytime(A). A temporal
clausein Branching-time Datalog¬ is a formula of the form:

H ← A1, . . . , An,¬B1, . . . ,¬Bm,

whereH,A1, . . . , An, B1, . . . , Bm are temporal atomsandn,m�0.The atomsA1, . . . , An
are said tooccur positivelyin the clausewhile the atomsB1, . . . , Bm negatively. If n = m =
0, the clause is said to be aunit temporal clause. It is very common in deductive databases to
partition the set of predicates/atoms intointensional(or IDBs) andextensional(or EDBs).
However, for the purposes of this paper, this distinction does not play any important role.
Therefore, the terminology we adopt in this paper is more closely related to that of logic
programming[17].
A Branching-time Datalog¬ program is a finite set of temporal clauses.2 A canonical

temporal clauseis a temporal clause in which all atoms that occur in it are canonical. A
canonical temporal instanceof a temporal clauseC is a canonical temporal clause which
is obtained by applying the same canonical temporal reference to all open atoms ofC.
In all the above discussion, the temporal references that are used are either canonical

or open. One might possibly wonder why more general forms of temporal references have
been excluded (e.g.next1 first next2). However, disallowing such temporal references
in program clauses is not a real restriction since, as it can be easily shown [31], the operators
that appear before the rightmostfirst operator are superfluous and can be eliminated.

2 In other words, we assume that a program in Branching-time Datalog¬ consists of both rules and facts.
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Before presenting the semantics of Branching-time Datalog¬, we give two examples that
illustrate the above ideas (the first example does not use negation while the second does).

Example 1. Consider the following program which performs a hypothetical tour of cities:

first city(athens).
next1 city(X) ← by_sea(Y,X),city(Y).
next2 city(X) ← by_air(Y,X),city(Y).

The tour starts fromathens. At each point of the tour one can consider to move to a
next city eitherby_sea or by_air. The temporal operatorsnext1 and next2 reflect
the type of connection between the cities that is followed in each case. Therefore, if
by_sea(athens,lisboa) andby_air(lisboa,london) are two facts that are added
to the above clauses, then the canonical temporal atomfirst next1 next2 city(london)
is a logical consequence of the above program. Notice that the sequence of the indices of
thenext operators when read from left to right reflect the types of connections that have
been used during the trip.

Example 2. The following program simulates the painting of the nodes of a binary tree
with three colors, namely red, green and blue, by following certain simple rules that involve
negation:

first tree(green).
next1 tree(red) ← ¬ tree(red).
next1 tree(green) ← tree(red).
next2 tree(X) ← color(X), ¬ tree(X), ¬ next1 tree(X).
color(green).
color(red).
color(blue).

The above clauses can be read as follows: “the root of the tree is colored green; the left child
of a node of the tree is colored red if the node itself is not red; the left child of a node is
colored green if the node itself is red; finally, the right child of a node can be colored with
a color that is neither used to color the node itself nor its left child”.
In Section4, the notion of temporal stratification for Branching-time Datalog¬ programs

will be defined. The above program is actually a temporally stratified one (intuitively, it does
not contain temporal circularities through negation). This fact is not immediately obvious
but it can be demonstrated through the technique developed in Section 6. Actually, it can
be shown that the intended model of the above program represents a unique and balanced
binary tree of infinite depth (which has been appropriately colored).

Branching-time Datalog¬ is based on a relatively simplebranching-time logic(BTL).
In BTL time has an initial moment and flows towards the future in a tree-like way. The
set of moments in time can be modeled by the setList(�) of lists of natural numbers.
The empty list[ ] corresponds to the beginning of time and the list[i|t] (that is, the list
with headi, wherei ∈ �, and tail t) corresponds to theith alternative successor of the
moment identified by the listt. BTLuses the temporal operatorsfirst andnexti , i ∈ �.
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The operatorfirst is used to identify the first moment in time, whilenexti refers to
the ith alternative successor of the current moment in time. The syntax ofBTLextends the
syntax of first-order logicwith two formation rules: ifA is a formula then so arefirstAand
nexti A. The semantics of temporal formulas ofBTLare givenusing the notion ofbranching
temporal interpretation[31]:

Definition 3. A branching temporal interpretationor simply atemporal interpretation Iof
the temporal logicBTLcomprises a non-empty setD, called the domain of the interpretation,
together with an element ofD for each variable or constant symbol and an element of
[List(�)→ 2D

n ] for eachn-ary predicate symbol.

In the following definition, the satisfaction relation� is defined in terms of temporal
interpretations.�I,t A denotes that a formulaA is true at a momentt in some temporal
interpretationI.

Definition 4. The semantics of the elements of the temporal logicBTLare given recursively
as follows:
(1) For anyn-ary predicate symbolp and termse0, . . . , en−1, �I,tp(e0, . . . , en−1) iff
〈I (e0), . . . , I (en−1)〉 ∈ I (p)(t);

(2) �I,t¬A iff it is not the case that�I,tA;
(3) �I,tA ∧ B iff �I,tA and�I,tB;
(4) �I,t (∀x)A iff �I [d/x],tA for all d ∈ D, where the interpretationI [d/x] is the same as

I except that the variablex is assigned the elementd;
(5) �I,t firstA iff �I,[ ]A;
(6) �I,t nexti A iff �I,[i|t]A.

If a formulaA is true in a temporal interpretationI at all moments in time, it is said to be
true inI (we write�IA) andI is called amodelof A.
When we focus on Branching-time Datalog¬ programs, the interpretations we consider

are Herbrand ones. As usual, theHerbrand universeUP of a programP is the set of all
constant symbols that appear inP. Temporal Herbrand interpretationscan be regarded as
subsets of thetemporal Herbrand baseBP ofP, consisting of allcanonical ground temporal
atomswhose predicate symbols appear inPandwhose arguments are terms in the Herbrand
universeUP of P. In particular, given a subsetH of BP , we can define a temporal Herbrand
interpretationI by the following:

〈c0, . . . , cn−1〉 ∈ I (p)([i1, . . . , ik]) iff
first nextik · · · nexti1 p(c0, . . . , cn−1) ∈ H.

A temporal Herbrand modelis a temporal Herbrand interpretation which is a model of the
program. In the rest of the paper, when we refer to a “model of a program” we always mean
a temporal Herbrand model.
An important subset of Branching-timeDatalog¬ is obtainedwhen one considers a single

nexti operator. In this case, the language obtained is in fact a linear-time one, and it is more
convenient tomodel the underlying set of timemoments by the set� of natural numbers (the
empty list corresponds to 0 and the list[i, . . . , i] containingk consecutivei’s corresponds
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to the natural numberk). The operatorfirst is used to express the first moment in time
(i.e. time 0), whilenext refers to the next moment in time. We will often writenextk

to represent a sequence ofk next operators. The language obtained in this way will be
called Linear-time Datalog¬. Since the underlying set of time moments of this language
is �, a temporal interpretation now assigns to eachn-ary predicate symbol, an element of
[�→ 2D

n ].
The satisfaction relation�of the underlying linear-time logic is definedasbefore, the only

difference being the simpler notion of time. The two semantic equations that are simplified
are:
(5) �I,t first A iff �I,0A
(6) �I,t next A iff �I,t+1A
All theother concepts regardingLinear-timeDatalog¬ are special casesof the corresponding
concepts for Branching-time Datalog¬. An example program in this simpler language is the
“traffic-lights” one given in the introductory section.
We close this section with a brief discussion on the operational semantics (i.e., proof

procedures) that can be defined for branching-time languages. More specifically, if we
restrict attention to Branching-time Datalog (i.e., the subset of Branching-time Datalog¬
that does not use negation), then a bottom-up proof procedure can be easily defined using
an immediate consequence operator (see for example[30]). For the more general case of
branching-time logic programming [31], a resolution-based proof system can be defined
(see [31, Section 5]).Additionally, a more sophisticated proof procedure for such languages
is defined in [11]. However, for Branching-time Datalog¬ there does not exist at present an
appropriate proof procedure. It is obvious that such a proof procedure would rely on the
semantics that one adopts for negation. We believe that the temporal stratification notion
that we define in this paper can form the basis for a proof procedure for Branching-time
Datalog¬.

3. Local stratification in temporal deductive databases

In this section we formally define the notions ofstratificationandlocal stratificationfor
Branching-time Datalog¬ programs (and therefore also for Linear-time Datalog¬ ones).
These notions are actually easy extensions of the corresponding concepts in classical de-
ductive databases [1,27].

Definition 5. LetP be a Branching-time Datalog¬ program. Then,P is calledstratified if
it is possible to partition the set of all predicate symbols in P into disjoint sets (calledstrata)
S0, S1, . . . , Sr , so that for every clause

H ← A1, . . . , An,¬B1, . . . ,¬Bm.

in P such that the predicate symbol ofH belongs toSk with 0�k�r, the following hold:
• The predicate symbol ofAi belongs to

⋃
j�k Sj , for 1� i�n.

• The predicate symbol ofBi belongs to
⋃
j<k Sj , for 1� i�m.
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Local stratification is defined in a similar way, in terms of the temporal Herbrand base
instead of the set of predicate symbols:

Definition 6. LetPbe a Branching-time Datalog¬ program. Then,P is calledlocally strat-
ified if it is possible to partition its temporal Herbrand baseBP into disjoint sets (called
strata) S0, S1, . . . , S�, . . ., where� < � and � is a countable ordinal so that for every
canonical ground instance

H ← A1, . . . , An,¬B1, . . . ,¬Bm.
of a clause inP such thatH ∈ S� with � < �, the following hold:
• Ai belongs to⋃j�� Sj , for 1� i�n.
• Bi belongs to⋃j<� Sj , for 1� i�m.

The following theorem is easy to prove:

Theorem 7. If a Branching-time Datalog¬ program is stratified then it is locally stratified.

In the rest of the paper, we will use alternative, more convenient, definitions of stratifi-
cation and local stratification, given by Theorems9, 12, and 14 that follow. These def-
initions use the graph-theoretic notions [13] ofdirected walkand closed walk. Recall
that a directed walk in a graphG is a (finite or infinite) sequence of vertices and edges,
v0e1v1 · · · vk−1ekvk · · · in which ei is an edge fromvi−1 to vi . A closed walk is a directed
walk that has the same first and last vertices. In the followingwewill also needDefinitions 8,
10, and 11 which are the Branching-time Datalog¬ analogs of the corresponding definitions
that have been proposed [27,26] for classical deductive databases.

Definition 8. Let P be a Branching-time Datalog¬ program. Thepredicate dependency
graph PDGP ofP is a graph whose vertex set is the set of predicate symbols inPand whose
edges are determined as follows: there exists an edge fromp to q iff there exists a clause
C in P such thatp is the predicate symbol in the head ofC andq appears as a predicate
symbol in the body ofC. If there is a clause whose head predicate ispand its body contains
a negated atom whose predicate isq then the edge fromp to q is callednegative.

Theorem 9. A Branching-time Datalog¬ program P is stratified if and only if its predicate
dependency graph does not contain any cycle that passes through negative edges.

Proof. The proof is analogous to the one for the classical case[1]. �

Definition 10. LetPbe a Branching-time Datalog¬ program. Theatom dependency graph
ADGP of P is a graph whose vertex set is the temporal Herbrand baseBP of P and whose
edges are determined as follows: ifA andB are two temporal atoms inBP , there exists a
directed edge fromA to B if and only if there exists a canonical ground temporal instance
of a clause inP whose head isA and whose body contains eitherB or ¬B. If there is a
canonical ground temporal instance of a clause whose head isA and its body contains¬B
then the edge fromA toB is callednegative.
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Definition 11. LetPbeaBranching-timeDatalog¬ program.For any two canonical ground
temporal atomsA andB in BP we writeA < B if there exists a directed walk in the atom-
dependency graphADGP leading fromA to B and passing through at least one negative
edge.We call the relation< thepriority relationbetween canonical ground temporal atoms.

Now, the following two theorems provide alternative definitions for local stratification
in Branching-time Datalog¬ (actually the first one is a temporal analogue of Theorem 3, p.
206, of[27], and its proof is similar):

Theorem 12. A Branching-time Datalog¬ program P is locally stratified if and only if
every increasing sequence of canonical ground temporal atoms under< is finite.

Definition 13. Let P be a Branching-time Datalog¬ program. A walk in the atom depen-
dency graphADGP of P is abad walkif it contains infinitely many occurrences of negative
edges.

Theorem 14. A Branching-time Datalog¬ program P is locally stratified if and only if its
atom dependency graph ADGP does not contain any bad walk.

Proof. Infinite increasing sequences under< correspond to bad walks. �

As in the classical case, every locally stratified Branching-time Datalog¬ program has a
uniqueperfect(temporalHerbrand)model.This notion is precisely definedby the following:

Definition 15. LetM andNbe two distinct temporal Herbrandmodels of a Branching-time
Datalog¬ programP. Then,N is calledpreferabletoM if for every canonical ground atom
A inN−M, there exists a canonical ground atomB inM−N such thatA < B. A temporal
Herbrand modelM of P is calledperfectif there are no temporal Herbrand models ofP that
are preferable toM.

Theorem 16. Every locally stratified Branching-time Datalog¬ program P has a unique
perfect temporal Herbrand model.

Again, the proof of the above theorem is similar to the proof of Theorem 4, p. 208, of
[27].
We conclude this section with a remark that is quite important for practical reasons

because it demonstrates that the unit clauses (facts) of a given program can be ignored when
one tests the program for local stratification. Actually, the following proposition (adapted
from Proposition 3.3 of [24] concerning general logic programs) can be easily established:

Proposition 17. Let P be a Branching-time Datalog¬ program.Then P is locally stratified
if and only if the program consisting of the non-unit clauses of P is locally stratified.

Notice that the above proposition does not simply suggest that the unit clauses are not used
in the construction of the atom dependency graph of a program; it additionally suggests that
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the constant symbols that appear only in the unit clauses do not play any role with respect
to local stratification.

4. Temporal stratification

The notions of stratification and local stratification presented in the last section are two
possible candidates that one can consider when attempting to add negation to a temporal
deductive database. However, (classical) stratification is too restrictive for such formalisms
since it completely ignores their temporal nature. More specifically, applying the classical
stratification test to a Branching-time Datalog¬ program (for example, the program in the
introductory section) would in many cases result to the rejection of the program (although
the program might appear to be meaningful).
Consider on the other hand the addition of locally stratified negation to Branching-time

Datalog¬. It is well known that local stratification is undecidable for logic programs with
function symbols[5]. For Branching-time Datalog¬ the problem of local stratification is
decidable (as we show in Theorem 62). Therefore, at first sight local stratification seems to
be a reasonable choice since it takes into consideration the temporal aspect of the language.
However, as the following theorem demonstrates, local stratification for Datalog¬ is a
co-NP hard problem, and this easily implies (Corollary 20) that local stratification for
Branching-time Datalog¬ is also a co-NP hard problem. This result suggests that adding
local stratification to the languages we consider is impractical: there does not exist a test
that can decideefficientlywhether a given Branching-time Datalog¬ program is locally
stratified.

Theorem 18. The Local Stratification of Datalog¬ programs is a co-NP hard problem.

Proof. It is sufficient to reduce any NP-hard problem to the complement of Local Strati-
fication of Datalog¬. It is well-known that deciding if a given graph contains a Hamilton
cycle (that is a cycle that passes exactly once from every vertex) is an NP-hard problem.
We will reduce this problem to the complement of the Local Stratification of Datalog¬.
More specifically, given a graphG(V,E), we will construct a Datalog¬ programP such
thatG contains a Hamilton cycle if and only ifP is not locally stratified. Notice that for
both problems the size of the input is the length of its representation as a string, which is
the standard measure used in complexity theory.
Assume thatGconsistsofnvertices labeled1,2, . . . , nandmedges.ThenP is constructed

so as to consist ofm+1 clauses, and contains a single predicate symbolpof arity 2n. Ground
atoms of the Herbrand base ofP represent the states while traversing a Hamilton cycle of
G. In any atom that may appear in the ground instantiation of a clause inP exactly one of
the firstnarguments inphas the value 1, indicating the current vertex. The lastnarguments
are used to mark the vertices ofG visited so far.
For every edge(i, j) ∈ E, P contains a corresponding clauseC(i,j):

p(s1, s2, . . . , sn, u1, u2, . . . , un)← p(t1, t2, . . . , tn, v1, v2, . . . , vn),
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where
• si = 1, sk = 0, for 1�k�n, k �= i,
• tj = 1, tk = 0, for 1�k�n, k �= j ,
• uj = 0, vj = 1, uk = vk = Xk for all k such that 1�k�n, k �= j (Xk ’s are distinct
variables).

The intuitivemeaning of clauseC(i,j) is that traversing edge(i, j)while following a Hamil-
ton cycle changes the current vertex fromi to j and also addsj to the set of visited vertices.

Moreover,P contains the following clauseC¬:

p(1,0, . . . ,0,1,1, . . . ,1)← ¬p(1,0, . . . ,0,0,0, . . . ,0).

The head ofC¬ is the state in which the current vertex is 1 and all the vertices are visited
and the body ofC¬ is the state in which the current vertex is 1 and no vertex is visited. In
other words, traversing this edge of the atom dependency graphADGP , has the effect of
resetting the set of all visited vertices when completing a Hamilton cycle.
The size of programP as well as the time required for its construction are polynomial to

the size ofG. We now prove thatG contains a Hamilton cycle if and only ifP is not locally
stratified.
For the one direction assume that the graphG contains a Hamilton cyclex0, x1, x2, . . .,

xn = x0. Without loss of generality, we assume thatx0 = 1. LetAi be the atom represent-
ing the state after followingi edges of the Hamilton cycle, starting from vertex 1 (notice
that vertex 1 will be considered as visited only at the end of the Hamilton cycle). More
specifically,

Ai = p(r1, r2, . . . , rn, w1, w2, . . . , wn),

whererj = 1 if j = xi andrj = 0 otherwise;wj = 1 if j = xk, for somek such that
1�k� i andwj = 0 otherwise.
Then,Ai ← Ai+1, 0� i�n− 1, is a ground instance of the clauseC(xi ,xi+1). Moreover,

An← ¬A0 is exactly clauseC¬.
Consequently,A0, A1, A2 . . . An form a cycle in the atom dependency graph ofP, which

contains a negative edge. A bad walk can be constructed by repeating the above cycle
infinitely many times. This implies thatP is not locally stratified.
Conversely, assume thatP is not locally stratified, that is it contains a bad walk. The

only clause inP that contains negation isC¬. Hence, the only negative edge in the atom
dependency graph ofP is the one from the atomH in the head ofC¬ to the atomB in the
body ofC¬. Since a bad walk passes through this edge infinitely many times, there must
be a walkw = A0A1 · · ·Ak whereA0 = B andAk = H , that passes through edges
corresponding to clauses other thanC¬.
Letxi be the current vertex inAi , and suppose that we traversew fromA0 toAk. InA0 no

vertex is visited and the current vertex isx0 = 1. According to the construction ofP, when
we move fromAi toAi+1, the number of visited vertices increases by one, which implies
that the current vertex ofAi+1 was not visited inAi . When we reachAk the current vertex
is 1 and all vertices have been visited exactly once. Consequentlyk = n, which implies that
the sequence of the current verticesx0, x1, . . . , xn is a Hamilton cycle in G. �
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As the proof of the above theorem uses only one predicate symbol and two constants, the
following is immediate:

Corollary 19. The Local Stratification of Datalog¬ programs is a co-NP hard problem
even for programs that use one predicate symbol and two constants in the non-unit clauses.

Based on the above, the following can be easily derived:

Corollary 20. The Local Stratification of Branching-time Datalog¬ programs is a co-NP
hard problem even for programs that use one predicate symbol and two constants in the
non-unit clauses.

The above result is rather discouraging since it implies that there does not exist an
efficient procedure for detecting whether a given Branching-time Datalog¬ program is
locally stratified. It is therefore natural to wonder whether there exists an alternative notion
of stratification which is intermediate between classical stratification and local stratification
and which can be decided in an efficient way. The following definitions introducetemporal
stratificationwhich possesses the above properties.

Definition 21. LetP be a Branching-time Datalog¬ program. Then, theskeleton Sof P is
the propositional program that results after removing all the arguments of the predicates
in P.

Notice that the skeleton of a given Branching-time Datalog¬ program is itself a (simpler
in structure) Branching-time Datalog¬ program. Therefore, all the notions that we have
defined so far for Branching-time Datalog¬ programs transfer directly to skeletons as well.

Example 22. LetP be the following program:

first next2 p(X,Y) ← ¬ q(Y,X).
next2 p(X,X) ← q(X,X).
q(X,Y) ← next1 next2 p(X,Z), ¬ next1 p(Z,Y).
next3 r(Z) ← ¬ r(Z).

Then, the skeletonSof P is the propositional program:

first next2 p ← ¬ q.
next2 p ← q.
q ← next1 next2 p, ¬ next1 p.
next3 r ← ¬ r.

Definition 23. A Branching-time Datalog¬ programP is said to betemporally stratifiedif
the skeleton ofP is locally stratified.

The theorems that follow establish the fact that for the languages we consider the idea of
temporal stratification is an intermediate notion between stratification and local stratifica-
tion.
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Theorem 24. If a Branching-time Datalog¬ program is stratified then it is temporally
stratified.

Proof. LetP be a given Branching-time Datalog¬ program and assume that it is stratified
but not temporally stratified. Then, the atom dependency graph of the skeleton ofPcontains
a bad walk. Notice now that for every edge of the atom dependency graph of the skeleton
there exists a corresponding edge in the predicate dependency graphPDGP of P (which
has resulted from the same clause inP). This implies that by following the corresponding
edges inPDGP , we can find a walk that has infinitely many negative edges. SincePDGP
has finite size, this walk has to contain a negative cycle. Therefore,P is not stratified
(contradiction). �

However, a temporally stratified program is not necessarily stratified as the following
example illustrates:

Example 25. Consider the Branching-time Datalog¬ program:

first next1 r(a) ← ¬ first r(a).

This program is temporally stratified since its skeleton is locally stratified. However, the
program is not stratified due to the existence of a negative cycle in its predicate dependency
graph.

Theorem 26. If a Branching-time Datalog¬ program is temporally stratified then it is
locally stratified.

Proof. LetPbe a given Branching-time Datalog¬ program and assume that it is temporally
stratified but not locally stratified. This implies that there exists a bad walk in the atom
dependency graphADGP of P. Observe now that for every edge ofADGP there exists a
corresponding edge in the atom dependency graph of the skeleton ofP. This implies that
the latter graph also contains a bad walk. Therefore the skeleton ofP is not locally stratified
and consequentlyP is not temporally stratified (contradiction).�

The converse of the above theorem is not true as the following example illustrates:

Example 27. Consider the Branching-time Datalog¬ program:

first r(a) ← ¬ first r(b).

The atom dependency graph of the above program does not contain any bad walks and
therefore the above program is locally stratified.
On the other hand, the skeleton of the above program is

first r ← ¬ first r .

The atom dependency graph of this program contains a negative cycle and therefore the
skeleton is not locally stratified.
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We close this section with a theorem that together with Corollary20 establish the bor-
derline between tractable and intractable cases of local stratification for Branching-time
Datalog¬ programs (with respect to their number of constants). As Corollary 20 suggests,
local stratification for Branching-time Datalog¬ is co-NP hard even for programs that use
one predicate symbol and two constants in the non-unit clauses. This leads to the question
of what happens in the remaining cases (namely for programs that use at most one con-
stant in the non-unit clauses and an arbitrary number of predicates). The following theorem
demonstrates that in these cases local stratification is equivalent to temporal stratification
which (as it will be later proved) is polynomial-time decidable.

Theorem 28. Let P be a Branching-time Datalog¬ program that contains at most one
constant symbol in the non-unit clauses. Then, P is locally stratified iff it is temporally
stratified.

Proof. The ‘if’ direction is Theorem26. For the ‘only if’ direction, first observe that by
Proposition 17,P is locally stratified if and only if the program (sayP ′) consisting of
the non-unit clauses ofP is locally stratified. Now, since there exists only one constant
symbol (saya) in P ′, from each clause ofP ′ we get only one ground instance. Moreover,
a predicate symbolp in the skeleton ofP ′ always corresponds to the same atom in the
instantiated program (and vice-versa). Therefore, the atom dependency graphs ofP ′ and of
its skeleton are isomorphic.�

5. A temporal stratification test for linear-time deductive databases

In this section we propose a temporal stratification test for Linear-time Datalog¬. The
new test builds on thecycle-sum testthat was proposed in [29]. The test of [29] constructs the
so-calledcycle-sum graph, a weighted directed graph whose nodes are program predicates.
A program passes the test if all the cycles in the graph have positive sums of weights.
However, the construction of this graph does not take into consideration the negated atoms
of the source program. It is therefore possible (as pointed out in [29]) that many programs
will not pass the test although they appear to have a well-definedmeaning. In particular, the
test even rejects certain temporal programs that do not use negation (in case their cycle-sum
graph contains cycles with non-positive sum of weights).
The test that we develop in this section broadens significantly the class of acceptable

programs when compared to that of [29] (and of course it trivially accepts all positive pro-
grams). Moreover, the class of temporal programs accepted by the new test is strictly greater
than the classes of programs accepted by the other existing approaches [34,19,12,15,18].

5.1. The extended cycle-sum test

The basic idea behind the proposed test is that one need not examine the whole cycle-sum
graph but only those strongly connected components that contain at least one negatively
signed edge. For these components, a careful inspection that takes into consideration the
negatively signed edges of each component has to be performed.



C. Nomikos et al. / Theoretical Computer Science 342 (2005) 382–415 397

As discussed in Section4, a Linear-time Datalog¬ program is called temporally stratified
when the skeleton of the program is locally stratified. For this reason, all the definitions that
will be given below for the extended cycle-sum test will be based on the skeleton of the
given program.

Definition 29. LetPbe a Linear-time Datalog¬ program,Sbe the skeleton ofPandCbe a
clause inS. LetH be the head ofC and letA be an atom in the body ofC. Then,dif(H,A),
is defined as follows:

dif(H,A) =




k −m, if time(H) = first nextk andtime(A) = first nextm,
k −m, if time(H) = nextk andtime(A) = nextm,
k −m, if time(H) = nextk andtime(A) = first nextm,
−∞, if time(H) = first nextk andtime(A) = nextm.

The intuition behind the above definition is the following:dif(H,A) is a lower bound for
the temporal difference between the canonical atoms corresponding toH andA in any
canonical instance ofC. In particular, the value−∞ used in the last case of the above
definition, signifies that in this case it is not possible to determine a finite integer value
by which the head leads the atom in the body in the worst case. The following definition
formalizes the notion of theextended cycle-sum graphof the skeleton of a given program.

Definition 30. LetPbeaLinear-timeDatalog¬ programandSbe its skeleton.Theextended
cycle-sum graphof Sis a directed labeled multi-graph with self-loopsCGS = (V ,E). The
setV of vertices ofCGS is the set of predicate symbols appearing inS. The setE of edges
consists of triples(p, q, l), wherep, q ∈ V and l ∈ (Z ∪ {−∞}) × {‘+’,‘−’}. An edge
(p, q, 〈w, s〉) belongs toE if there exists a clause inSwith an atomH as its head and an
atomA occurring in its body such that the predicate symbol ofH is p and the predicate
symbol ofA isq;w = dif(H,A); s = ‘−’ if Aoccurs negatively in the clause body ands =
‘+’ otherwise.

Definition 31. Let P be a Linear-time Datalog¬ program andSbe its skeleton. Then,P
passes the extended cycle-sum test if in any strongly connected component ofCGS that
contains a negatively signed edge the following conditions both hold:
(1) The sum of weights across every cycle is non-negative.
(2) Every cycle which has a zero sum of weights does not contain a negatively signed edge.

Example 32. Consider the following skeletonSof a programPand its associated extended
cycle-sum graph depicted in Fig.1:

first p.
p ← q.
q ← p.
next p ← ¬ r.
next r ← q.

The cycle-sum graphCGS consists of a single strongly connected component which con-
tains a negatively signed edge. The sum of weights across every cycle of the graph is
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Fig. 1. The extended cycle-sum graph of the skeletonS in Example32.

non-negative. The only cycle that has zero sum of weights does not contain any negatively
signed edge. Therefore, programP passes the extended cycle-sum test.
One can easily verify thatS is locally stratified, by taking stratumsi to be equal to:

si = {first nexti p, first nexti q, first nexti r}.

It is worth noting here that the extended cycle-sum test can be implemented efficiently
usingstandardgraphalgorithms.Morespecifically, theexistenceofacyclewithnon-positive
sum of weights in a strongly connected component can be detected using an algorithm for
shortest paths, that operates on graphs with negative weights, such as the Bellman–Ford
algorithm, see[8], or the Gabow–Tarjan algorithm [9] which is the best known algorithm
for the above problem. A technique working along these lines has been used in [16] to
implement the cycle-sum test proposed in [29].

5.2. Properties of the extended cycle-sum test

In the following, we demonstrate that a Linear-time Datalog¬ program that passes the
extended cycle-sum test is temporally stratified. Before stating the main theorem of this
section, we need the following two simple lemmata:

Lemma 33. Let P be a Linear-time Datalog¬ program and S be its skeleton. Assume that
in ADGS there exists an edge from vertexfirst nextk p to vertexfirst nextm q. Then,
there exists an edge inCGS from vertex p to vertex q with weight at mostk −m.

Proof. Straightforward using the definition ofdif and the construction ofCGS . �

Lemma 34. Let W be a closed walk in a directed weighted graph G. Then, there exists
a sequence of(not necessarily distinct) cyclesC1, . . . , Ck of G such that the sum of the
weights of the edges of W is equal to the sum of the weights of the edges ofC1, . . . , Ck.

The proof of the above lemma is easy, and it was initially given in[29].
This leads us to the main theorem of this subsection:
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Theorem 35. If a Linear-timeDatalog¬ programPpasses the extended cycle-sum test then
it is temporally stratified.

Proof. Assume thatP passes the extended cycle-sum test but it is not temporally stratified.
Then, by Definition23 the skeletonSof P is not locally stratified. By Theorem 12, this
means that there exists an infinite increasing sequenceA1 < A2 < · · · of canonical atoms
of the temporal Herbrand base ofS. Since the program contains a finite set of predicate
names, there exists an infinite subsequence of the formfirst nextk1 p < first nextk2

p < · · ·, i.e., a subsequence in which all atoms have the same predicate name. There must
be somei such thatki+1�ki (because otherwise the subsequence would end). It is easy
to check (using Lemma 33) that this implies the existence of a closed walk inCGS which
contains a negatively signed edge and has non-positive sum of weights (less than or equal
to ki−ki+1). Moreover this closed walk is entirely contained in a single strongly connected
component of the cycle-sum graph (because the subgraph that corresponds to the walk is
itself strongly connected). This closed walk can be decomposed into a sequence of simple
cycles that have the same sum of weights as the walk (Lemma 34). There are two cases:
• either there exists a cycle with negative sum of weights, or
• all cycles of the walk have zero sum of weights (and at least one of these cycles contains
a negatively signed edge).

In both cases, the cycle-sum test will fail forP. �

We now examine an interesting class of programs for which the converse of the above
theorem also holds:

Definition 36. The set ofopen Linear-time Datalog¬ programsconsists of those Linear-
time Datalog¬ programs in which all non-unit clauses contain only open temporal
atoms.

The following graph-theoretic lemma will be necessary in the discussion that will
follow:

Lemma 37. Let G be a weighted directed multi-graph with self-loops. Let SC be a strongly
connected component of G that contains a cycle with negative sum of weights across its
edges. Then for every edge e of SC there exists a closed walk in SC that contains e and has
negative sum of weights.

Proof. Let C be a cycle inSCwith negative sum of weights and lete be an edge inSC
from vertexu to vertexv. Then for an arbitrary vertexx in C, there exists a pathw1 from x
to u and a pathw2 from v to x, since these vertices belong to the same strongly connected
component. Then starting fromx, we can construct a closed walkw1ew2 that containse. If
the sum of weights across this walk is positive, we can extend the walk with an appropriate
number of repetitions of the cycleC, until the sum of the weights becomes negative.�

The following two lemmata will be used in the proof of Theorem40.
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Lemma 38. Let P be an open Linear-time Datalog¬ program and let S be its skeleton. Let
e be an edge inCGS from p to q with weight w. Then, there exists a non-negative number
denoted byke, such that for everyk�ke there exists an edge in ADGS fromfirst nextk

p to first nextk−w q. Moreover, if e is negatively signed then the corresponding edges
in ADGS are also negatively signed.

Proof. The existence ofe in CGS implies that there exists a clause inSwith headnextr p
and whose body containsnextr−w q. Takeke = r. The lemma follows directly according
to the definition ofADGS . �

Lemma 39. Let P be an open Linear-time Datalog¬ program and let S be its skeleton. Let
W = p0e1p1 . . . empm be a walk in CGS . Then, there exists ann0 such that for alln�n0,
there exists a walk in ADGS fromfirst nextn p0 to first nextn−d pm, where d is the
sum of the weights across W. Moreover, if W contains a negatively signed edge, then each
corresponding walk inCGS also contains a negatively signed edge.

Proof. For each edgeei , 0� i�m, of the walk, letkei be the number determined for edge
ei by Lemma38. Letk = max{kei | 0� i�m} and letsbe the sum of all positive weights
acrossW. Taken0 = k + s. Letwi be the weight of edgeei and letdi = ∑i

j=1 wi . For
any valuen�n0, consider the sequence of verticesv0, v1, . . . , vm in ADGS , wherevi =
first nextn−di pi , 0� i�m (notice thatn − di�0 and therefore the above canonical
temporal atoms are meaningful). Sincen = k+ s�kei + di , we get thatn− di�kei . Thus,
we can apply Lemma 38 for every edgeei, 1� i�m, to prove that there exists an edge in
ADGS from vi−1 to vi . This means that the sequence of verticesv0, v1, . . . , vm form a walk
in ADGS , from v0 = first nextn p0 to vm = first nextn−d pm (notice thatdm = d).
To complete the proof observe that the number of negatively signed edges in both walks are
equal, due to Lemma 38.�

Theorem 40. LetPbeanopenLinear-timeDatalog¬ program.Then,Ppasses theextended
cycle-sum test if and only if P is temporally stratified.

Proof. The one direction is Theorem35. For the other direction assume thatP is temporally
stratified but it fails to pass the extended cycle-sum test. This means that there exists a
strongly connected componentG of CGS (whereS is the skeleton ofP) containing a
negatively signed edge such that either:
(1) there exists a cycle inGwhose sum of weights is negative, or
(2) there exists a cycle inG, containing a negatively signed edge, that has a zero sum of

weights.
Then, in both cases we can construct a closed walkW = p0e0p1 . . . empm (wherepm =
p0) in CGS , that contains a negatively signed edge and has a non-positive sum of weights
equal tod. In particular, in the first case, if the negatively signed edge is not contained in
a negative cycle we can apply Lemma37 to get the desired closed walk. Then, by Lemma
39, for some sufficiently largek, there exists a walk inADGS from first nextk p0 to
first nextk−d p0, that contains a negatively signed edge. Thus,first nextk p0 <
first nextk−d p0. Applying Lemma 39 repeatedly, we obtain an infinitely increasing
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sequence of canonical temporal atoms (of the formfirst nextk p0< first nextk−d p0
< · · · < first nextk−i·d p0 < · · ·). Therefore,Sis not locally stratified and consequently
P is not temporally stratified (contradiction).�

6. A temporal stratification test for branching-time deductive databases

In this section we develop a test for detecting whether a given Branching-time Datalog¬
program is temporally stratified. The test differs in a number of ways from the extended
cycle-sum test of the previous section. One basic difference is that the test that will be
described in the following covers the whole class of temporally stratified programs (but at
the cost of a higher complexity). Moreover, the philosophy behind the two tests is different
(but this issue will be further discussed in Section7).
We can now explain at an informal level the basic idea behind the test that will follow.

Given a Branching-time Datalog¬ program, we first obtain its skeleton. Then, we apply a
series of transformations on the skeleton in such a way that at each step the information
needed to verify local stratification is preserved. It is important to note that the programs
obtained by applying the transformation steps are not necessarily semantically equivalent
to the skeleton (but they preserve all information needed to decide local stratification).
In general, the programs that result may contain much more clauses than the skeleton,
but each clause is very simple in structure. We then demonstrate that the initial question of
whether a given Branching-time Datalog¬ program is temporally stratified can be answered
by examining the (much simpler) question of whether two programs that result from the
transformation procedure, are stratified.
The three transformations that are applied on the skeleton of the initial program are

program normalization,walk normalizationandsubprogram extraction, and are described
in the next three subsections.

6.1. Program normalization

Let P be a Branching-time Datalog¬ program and letSbe its skeleton. Then, program
normalization consists ofclause normalizationandtemporal reference normalizationof S.
Intuitively, clause normalization transforms each non-unit clause into a set of clauses that
have exactly one atom in their body. Temporal reference normalization transforms each
clause obtained after clause normalization into a set of clauses each one of which has a
restricted number of temporal operators.

Step1: Clause normalization.
The purpose of this step is to eliminate fromS those clauses that contain more than one

atoms in their bodies. We construct a new programS′ fromSby replacing every clause:

H ← A1, . . . Am,¬B1, . . . ,¬Bn.
in S, withm+ n > 1, by the followingm+ n clauses:

H ← A1.

· · ·
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H ← Am.

H ← ¬B1.

· · ·
H ← ¬Bn.

Lemma 41. S is locally stratified iffS′ is locally stratified.

Proof. The atom dependency graphs of the two programs are identical.�

Example 42. Consider the following skeletonSof a given Branching-time Datalog¬ pro-
gram:
(I1) first next2 p←¬ q.
(I2) next2 p← q.
(I3) q← next1 next2 p, ¬ next1 p.
(I4) next3 r←¬ r.
(I5) q←¬ r.
Then, by applying the clause normalization step we get the programS′:
(J1) first next2 p←¬ q.
(J2) next2 p← q.
(J3) q← next1 next2 p.
(J4) q←¬ next1 p.
(J5) next3 r←¬ r.
(J6) q←¬ r.
Notice that the clausesJ3 andJ4 have resulted from the transformation of clauseI3 in S.

Step2: Temporal reference normalization.
The purpose of this step is to decrease the number of temporal operators that appear in

a program clause. We construct a new programS′′ from S′ as follows. Every clause of the
form:

[first] nexti1 · · · nextinp← [¬] [first] nextj1 · · · nextjmq.
in S′, with n+m > 0, is replaced by the followingn+m+ 1 clauses:

nextik pk ← pk−1. for 1�k�n
[first] p0← [¬] [first] q0. (base clause)
qr−1← nextjr qr . for 1�r�m

wherepn = p, qm = q andpk, qr , for 1�k�n− 1 and 1�r�m− 1, are new predicate
symbols, used only for this clause.
If the operatorfirst or the negation symbol appears in the original clause, then it is

placed in the same position of the base clause: if the atom in the head (body) of the clause
in S′ is first nexti1 · · · nextin p (first nextj1 · · · nextjm q), then the head (body)
of the base clause isfirst p0 (first q0). Moreover if the body of the original clause
contains negation then the body of the base clause also contains negation. Notice that we
could omit replacement in the case that the operatorfirst does not appear in the clause
andm+ n = 1.
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Lemma 43. S′ is locally stratified iffS′′ is locally stratified.

Proof. Edges in the atom dependency graph ofS′ correspond to chains of edges in the atom
dependency graph ofS′′. A bad walk in one graph, can be transformed into a bad walk in
the other. �

Example 44(Continued from Example42). Consider the programS′ that has resulted in
Example42. Then, by applying the temporal reference normalization step we get the fol-
lowing programS′′:
(1) next2 p← t.
(2) first t←¬ q.
(3) next2 p← q.
(4) q← u.
(5) u← next1 s.
(6) s← next2 p.
(7) q←¬ next1 p.
(8) next3 r←¬ r.
(9) q←¬ r.
In the above program, clauses 1 and 2 have been obtained by transforming clauseJ1 of S′
while clauses 4, 5 and 6 are obtained from clauseJ3.

Notice now that there are six different types of clauses inS′′, depending on the form of
the temporal references:
• future clauses:p← [¬] nexti q.
• past clauses:nexti p← [¬]q.
• present clauses:p← [¬]q.
• canonical clauses:first p← [¬] first q.
• clauses with canonical head and open body:first p← [¬] q.
• clauses with open head and canonical body:p← [¬] first q.
The above different types of clauseswill be used in the rest of the paper in order to formalize
the proposed test.

6.2. Walk normalization

During walk normalization certain clauses are added toS′′ in order to obtain a new
programS∗. The goal of this transformation is that the endpoints of certain walks that exist
in ADGS′′ will be directly connected by an edge inADGS∗ . As a result, if there exists a bad
walk in ADGS′′ , then there exists a bad walk with a special form (more easily detectable)
in ADGS∗ .
In the following, we define three different types of walks (namelya-walk, b-walkand

c-walk) whose bypassing makes the detection of local stratification much easier. We start
with the definition of a-walk bypassing and continue with b and c-walk bypassing.

Step3: a-walk bypassing.
Consider the atom dependency graphADGS′′ of the normalized programS′′. Recall that

time(A) denotes the temporal reference of the atomA. Let |time(A)| be the length (the
number of temporal operators) oftime(A). Then:
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Definition 45. Awalk (of length�2) inADGS′′ fromA toB is ana-walkif all the following
conditions hold:
• time(A) = time(B).
• For every intermediate nodeC in the walk,|time(C)| > |time(A)|.
• Every edge corresponds to a future, past or present clause.

Now, S′′′ is the least set of clauses that satisfies the following conditions:
• S′′′ contains all clauses inS′′.
• S′′′ is transitive with respect to its present clauses, that is if

p← [¬]r.
r ← [¬]q.

belong toS′′′, then the clause

p← [¬]q.
also belongs toS′′′.
• If a triple of clauses

p← [¬] nexti r.
r ← [¬]s.
nexti s ← [¬]q.

or a pair of clauses
p← [¬] nexti r.
nexti r ← [¬]q.

belongs toS′′′, then the clause

p← [¬]q.
also belongs toS′′′.

In all cases, the atom in the body of the new clause is negated iff at least one of the original
clauses contains negation.
Certain remarks concerning the consequences of the above transformation are in order.

Since all a-walks inADGS′′′ have been bypassed (as this will be demonstrated by the two
lemmata that follow), then for any bad walk inADGS′′′ whose edges correspond to future,
past or present clauses ofS′′′, there also exists a bad walk which is formed from edges that
correspond to only future and present clauses. This is because the effect of past edges is to
take us back to a point of time that we have already encountered, and therefore by doing
a-walk bypassing we cancel entirely the need to consider past edges. Of course, present and
future edges are still essential because their interplay can lead to bad walks. The temporal
stratification test that will be proposed later in the paper will be based on the above remark
(that past edges are inessential and therefore can be removed). The following two lemmata
describe the consequences of a-walk bypassing:

Lemma 46. S′′′ is locally stratified iffS′′ is locally stratified.

Proof. If S′′′ is locally stratified then obviouslyS′′ is locally stratified, since the atom
dependency graph ofS′′′ is obtained by that ofS′′ by adding edges.
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Conversely assume thatS′′′ is not locally stratified, i.e. its atomdependency graphADGS′′′
contains a walkw with infinitely many negative edges. But every edge inw either is
contained inADGS′′ or corresponds to a finite walk inADGS′′ . We can obtain an infinite
walk in ADGS′′ by replacing each edge inw not inADGS′′ with the corresponding walk.
Notice that the number of negative edges is not decreased by this process. ThusS′′ is not
locally stratified. �

Lemma 47. S′′′ is not locally stratified iff its atom dependency graph contains a bad walk
without a-subwalks.

Proof. The ‘if’ direction is straightforward. For the ‘only if’ direction, assume thatS′′′ is
not locally stratified, i.e., it contains a badwalk.We can show by induction on the number of
past edges contained in an a-walk that its end points are also connected directly by an edge
in the atom dependency graph ofS′′′, which is negative iff the a-walk contains a negative
edge. Following the bad walk, we can replace every maximal a-walk by the corresponding
direct edge. The resulting walk also contains an infinite number of negative edges and does
not contain a-subwalks.�

Example 48(Continued from Example44). By applying a-walk bypassing to the program
S′′ of Example44, we get the following new clauses:
(10) s← t. (from clauses 6 and 1)
(11) s← q. (from clauses 6 and 3)
(12) s← u. (from clauses 11 and 4)
(13) s← ¬r. (from clauses 11 and 9)
Clauses 1–13 constitute the programS′′′.

Step4: b- and c-walk bypassing.
The bypassing of a-walks is sufficient for programs that do not contain canonical atoms

in the non-unit clauses. However, if the source program contains such canonical atoms then
the test that we develop requires the bypassing of b-walks and c-walks, which are defined
as follows:

Definition 49. A walk in ADGS′′′ from A to B is ab-walk if the following conditions are
all satisfied:
• The first edge in the walk corresponds to a clause with canonical head and open body.
• The last edge in the walk corresponds to a past clause.
• Every intermediate edge corresponds either to a past clause or to a present clause.

Definition 50. A walk inADGS′′′ fromA toB is ac-walkif the following conditions are all
satisfied:
• The first edge in the walk corresponds to a future clause.
• The last edge in the walk corresponds to a clause with open head and canonical body.
• Every intermediate edge corresponds either to a future clause or to a present clause.

Notice that the definitions of b-walk and c-walk are symmetric.
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Now, S∗ is the least set of clauses that satisfies the following conditions:
• S∗ contains all clauses inS′′′.
• If a triple of clauses

firstp← [¬]r.
r ← [¬]s.
nexti s ← [¬]q.

or a pair of clauses

firstp← [¬]r.
nexti r ← [¬]q.

belongs toS∗, then the clause
firstp← [¬]q.

also belongs toS∗.
• If a triple of clauses

q ← [¬]nexti r
r ← [¬]s.
s ← [¬] first p

or a pair of clauses
q ← [¬]nexti r
r ← [¬] first p

belongs toS∗, then the clause
q ← [¬] first p

also belongs toS∗.
In all cases, the atom in the body of the new clause is negated iff at least one of the original
clauses contains negation.
Notice that although a b-walk or c-walk may contain consecutive present edges, consid-

ering at most triples of clauses is sufficient, sinceS′′′ is transitive with respect to its present
clauses.
Intuitively, b-walk bypassing eliminates the necessity of using past edges after edges that

correspond to clauseswith canonical head and open body. Symmetrically, c-walk bypassing
eliminates the necessity of using future edges before edges that correspond to clauses with
open head and canonical body.
The following lemma is straightforward:

Lemma 51. S′′′ is locally stratified iffS∗ is locally stratified.

Proof. The proof is similar to that of Lemma46. Again additional edges correspond to
walks in the original atom dependency graph.�

Example 52(Continued from Example48). By applying b-walk and c-walk bypassing to
the programS′′′ of Example48, we get an extra clause:
(14) first t←¬ r. (from clauses 2, 9 and 8)
Clauses 1–14 constitute the programS∗.
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We can now define the notion ofnormal walk:

Definition 53. An infinite walk inADGS∗ starting atA is anormal walkif the following
conditions both hold:
• It does not contain any subwalk that is an a-walk, b-walk or c-walk.
• For every vertexC in the walk,|time(C)|� |time(A)|.
Lemma 54. S∗ is not locally stratified iff its atom dependency graph contains a normal
bad walk.

Proof. The ‘if’ direction is straightforward. For the ‘only if’ direction, we first observe
that the endpoints of a b-walk or c-walk in the atom dependency graph ofS∗ are directly
connected by an edge. Moreover, this direct edge is negative iff the corresponding b-walk
or c-walk contains a negative edge. This can be easily proved by induction on the number
of past (present) edges that are contained in the b-walk (c-walk).
Suppose thatS∗ is not locally stratified. Then, by Lemma51, the same holds forS′′′.

From Lemma 47 there exists a bad walk without a-subwalks in the atom dependency graph
of S′′′. SinceS∗ is an extension ofS′′′ the same bad walk also exists in the atom dependency
graph ofS∗.
Following this bad walk, we can replace every maximal b-walk or c-walk by the corre-

sponding direct edge. Notice that this process does not introduce any new a-walks. Thus
the resulting walkw does not contain a-walks, b-walks or c-walks. Moreoverw contains
infinitely many negative edges.
To complete the proof wewill show thatw contains a final part which is normal.We claim

that there exists a unique temporal referencetwithminimum length among all the canonical
ground atoms inw. To prove this claim consider two different temporal referencest1 and
t2 of the same length. Now, any walk that connects two atoms with temporal referencest1
andt2 must pass through an atom whose temporal reference is a common prefix oft1 and
t2; this is because in order to get fromt1 to t2 one must first remove fromt1 the longest
possible suffix that makes it differ fromt2. Consequentlyt1 andt2 cannot have minimum
length and the claim is true.
The final subwalk ofw starting at the first vertex that has temporal referencet is normal

and contains infinitely many negative edges.�

6.3. Subprogram extraction

In the last step of the transformation, two subprogramsS∗1 andS∗2 of S∗ are extracted. As
it will be demonstrated, one can decide if the skeletonS is locally stratified, by deciding if
bothS∗1 andS∗2 are stratified.

Step5: Subprogram extraction.
The Subprogram extraction step consists of the production of the following two subpro-

grams ofS∗:
• S∗1 is the program that contains only the present and future clauses ofS∗.
• S∗2 is the program that results by deleting all future and past clauses ofS∗.
The following lemma demonstrates the importance of the above two subprograms:
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Lemma 55. S∗ is locally stratified iff bothS∗1 andS∗2 are locally stratified.

Proof. The ‘only if’ direction is straightforward. For the other direction, we will show that
if S∗ is not locally stratified then the atom dependency graph of at least one ofS∗1 andS∗2
contains a bad walk.
Assume thatS∗ is not locally stratified. According to Lemma54 the atom dependency

graph ofS∗ contains a normal bad walkw . We consider two cases:
Case1: Walkw passes through finitely many atoms with temporal reference equal to

first. In that case there exists a final subwalkw′ of w , which is normal and bad, that
never passes through an atomwith temporal referencefirst. This implies thatw′ does not
contain any edge that corresponds to a clause inS∗ that contains canonical atoms.Moreover,
we claim thatw′ does not contain any edge corresponding to a past clause. To prove this
fact, consider for the sake of contradiction the first edgee in w′ that corresponds to a past
clause. If all the edges beforee in w′ correspond to present clauses, thenw′ cannot be
normal, since the second property of normality is violated. On the other hand if an edge that
corresponds to a future clause appears beforee in w′ then an a-walk is formed, which also
contradicts the normality ofw′. Thus,w′ contains edges that correspond only to present
or future clauses, which implies that it is also contained in the atom dependency graph
of S∗1.
Case2: Walkw passes through infinitely many atoms with temporal reference equal to

first. We claim thatw does not contain any edge that corresponds to a future or a past
clause. To prove the claim notice that ifw passes through an edge that corresponds to a
future clause, then it must later pass through an edge that corresponds to either a past clause
or a clause with open head and canonical body (because it will pass through an atom with
temporal referencefirst). This is impossible since in the former casew would contain an
a-subwalk and in the latter case a c-subwalk. Consequentlyw does not contain any future
edge. Similarly,w cannot contain an edge corresponding to a past clause since in that case
it would contain an a-subwalk or a b-subwalk. Thus the claim is true. Consequentlyw also
exists in the atom dependency graph ofS∗2.
In any case at least one ofS∗1 andS∗2 is not locally stratified. �

Example 56(Continued from Example52). ProgramS∗1 consists of the clauses 4–7 and
9–13 andS∗2 consists of the clauses 2,4 and 9–14.

The next two lemmata demonstrate that for the programsS∗1 andS∗2 local stratification
coincides with stratification:

Lemma 57. S∗1 is locally stratified iff it is stratified.

Proof. If S∗1 is stratified, then it is also locally stratified from Theorem7. For the other
direction assume thatS∗1 is not stratified and letp0, p1, . . . , pn−1, p0 be a cycle of length
n in its predicate dependency graph that contains a negative edge. We denote byTi the
temporal reference in the body of the clause corresponding to the edge(pi, p(i+1)modn).
Notice thatTi is null for edges corresponding to present clauses.
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Consider the infinite sequence of temporal atomsA0, A1, . . . , Ai, . . . such that the pred-
icate symbol ofAi is pimodn and the temporal referenceRi of Ai is defined recursively as
follows:R0 = first andRi+1 = Ri if Timodn = null, otherwiseRi+1 = RiTimodn.
It is easy to check thatAi andAi+1 are adjacent in the atom dependency graph ofS∗1.

Moreover there exists at least one negative edge in the subwalk with endpointsAk·n and
A(k+1)·n, for everyk�0. ConsequentlyS∗1 is not locally stratified, since theAi ’s form a
bad walk in its atom dependency graph.�

Lemma 58. S∗2 is locally stratified iff it is stratified.

Proof. If S∗2 is stratified, then it is also locally stratified from Theorem7. For the other
direction assume thatS∗2 is not stratified and letp0, p1, . . . , pn−1, p0 be a cycle of length
n in its predicate dependency graph that contains a negative edge. Thenfirstp0, first
p1,…, firstpn−1, firstp0 is a cycle in the atom dependency graph ofS∗2 that contains
a negative edge. By repeating this cycle infinitely many times we construct a bad walk.
ConsequentlyS∗2 is not locally stratified. �

6.4. The temporal stratification test

Based on the results of the previous subsections we can now define the temporal stratifi-
cation test for Branching-time Datalog¬ programs:

Definition 59. LetP be a Branching-time Datalog¬ program andS∗1, S∗2 the programs ob-
tainedbyapplyingSteps1–5 to the skeletonSofP. Then,Ppasses thetemporal stratification
testif S∗1 andS∗2 are stratified.

Theorem 60. A Branching-time Datalog¬ program P passes the temporal stratification
test if and only if it is temporally stratified.

Proof. It is an immediate consequence of Lemmata41, 43, 46, 51, 55, 57, 58.�

Example 61(Continued from Example56). Thepredicatedependencygraphsof programs
S∗1 andS∗2 are shown in Fig.2. Obviously neither graph contains a cycle with negative edge,
thusS is locally stratified.

It is important to note that the temporal stratification test can be significantly simplified
when the source program does not contain canonical temporal references in the non-unit
clauses. In this case Step 4 can be omitted since it does not introduce any new clauses
(because there do not exist any b-walks or c-walks). Moreover, in this case it can be easily
seen thatS∗2 is a subset ofS∗1 and therefore the test need only examineS∗1 for stratification.
The temporal stratification test operates in polynomial time, however its complexity is

higher than that of theextendedcycle-sum test.Themost expensivepart of the test consists of
steps3and4. Inparticular step3 requires tomaintain the transitive closureof present clauses,
while new present clauses are added to the program. This can be efficiently performed using
thealgorithmproposedby Italiano in [14],which isapplied toanappropriateauxiliarygraph.
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Fig. 2. The predicate dependency graphs ofS∗1 andS∗2.

Step 4 can be implemented in a similar way. However, we believe that a detailed description
of the implementation of the test would be rather lengthy and is therefore beyond the scope
of this paper.
We close this section with a theorem concerning the decidability of local stratification

for Branching-time Datalog¬:

Theorem 62. The Local Stratification problem for Branching-time Datalog¬ is decidable.

Proof. LetP a Branching-time Datalog¬ program and letP ′ be the program consisting of
all ground instances of the clauses inP. Then,P ′ is finite (since Branching-time Datalog¬
does not use function symbols). Moreover, the atom dependency graphs ofP andP ′ are
identical and thereforeP is locally stratified if and only ifP ′ is locally stratified. Now,
sinceP ′ does not contain any variables one can replace every atom by a propositional
symbol, getting a programP ′′. Obviously,P ′ is locally stratified if and only ifP ′′ is locally
stratified. But sinceP ′′ is propositional it coincides with its skeleton and thereforeP ′′ is
locally stratified if and only if it is temporally stratified. Consequently, we can decide ifP
is locally stratified by applying the temporal stratification test toP ′′. �

The above theorem is mainly of theoretical importance since the decision procedure
presupposes the construction of the ground instantiation of the source program (whose size
may be exponentially larger than the size of the initial program). However, the main idea
of the theorem is interesting since it demonstrates that local stratification may be decidable
for certain useful logic programming languages (even though their Herbrand universe may
be infinite).

7. A comparison of the two tests

The two temporal stratification tests described in this paper have a different underlying
philosophy and this fact gives to each one of them certain relative merit when compared to
the other one.



C. Nomikos et al. / Theoretical Computer Science 342 (2005) 382–415 411

First of all, the (extended) cycle-sum test is built on the notion of temporal difference
between atoms (namelydif), which is a lower bound quantity. Therefore, there exist cases
in which a program is temporally stratified but this cannot be detected by the extended
cycle-sum test. The following example illustrates this state of affairs.

Example 63. LetP be the following program:

first p(X) ← ¬ first next q(X).
first next next q(X) ← ¬ first next p(X).

The skeletonSof P is

first p ← ¬ first next q.
first next next q ← ¬ first next p.

It is easy to see that althoughP is temporally stratified, it is rejected by the (extended) cycle-
sum test: the cycle-sum graph of its skeleton contains a cycle with zero sum of weights and
a negatively signed edge.
Consider now the application of the branching-time test. One can easily see that the

programS∗ that results is the following:

first p ← ¬ first r.
r ← next q.
next q ← s.
next s ← t.
first t ← ¬ first u.
u ← next p.
r ← s.

The programS∗1 is

r ← s.
r ← next q.
u ← next p.

The programS∗2 is

first p ← ¬ first r.
first t ← ¬ first u.
r ← s.

BothS∗1 andS∗2 are stratified and thereforeS is locally stratified.

Therefore, although the extended cycle-sum test covers a significant subclass of Linear-time
Datalog¬, it does not exhaust the whole class (while the branching-time test does). It is an
open question for us whether there exists a simple test that is based on temporal differences
and which covers the whole class of Linear-time Datalog¬ programs.

On the other hand however, the extended cycle-sum test does not alter in any way the
skeleton of the input program. This is an important advantage because the branching-time
test introduces during the program normalization steps a (possibly large) number of extra
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clauses based on the structure of the input program; additionally the testmay introduce extra
clauses due to the transitive closure procedure that it performsduring thewalk normalization
steps.

8. Related work

To our knowledge, only a few other results exist regarding stratified negation in tem-
poral logic programming. The pioneering work in this area appears to be the idea ofXY-
stratificationproposed in[34] which applies toXY-Datalog, a language proposed for com-
bining active and deductive databases. XY-Datalog clauses use a distinguished argument,
called thestage argument, in the same way that Linear-time Datalog¬ possesses an implicit
time argument. The idea of XY-stratification is applied to programs that have a restricted
syntax when compared to that of Linear-time Datalog¬, and for this reason the extended
cycle-sum test is more general than XY-stratification.
More recently,state stratification[19] was proposed, an approach which applies to the

languageStatelog. However, state stratification only applies to programs that areprogressive
(in Linear-time Datalog¬ terminology this means that the temporal reference of the head
of a clause is greater than or equal to the temporal references of the atoms that appear in
the clause body). This makes state stratification less generally applicable since it disallows
clauses in which body atoms look “further into the future” than the head of the clause (and
which are quite common in temporal logic programming). It should be noted, however,
that the state stratification approach is based on the notion ofleapwhich is similar to the
notion ofdif of the cycle-sum approach (the basic difference being that leaps are always
non-negative).
Similar restrictions to the ones discussed above for Statelog also apply to thetemporal

stratificationapproach proposed for Starlog programs in [18]. More specifically, Starlog
implicitly addscausalityconstraints to program clauses. As mentioned in [18], “causality
means that no truth in the past is defined in terms of truth in the future” or equivalently “the
timestamp of the head is no less than the timestamp of any literal in its body”. Clearly, the
notion of causality is equivalent to the notion of progressiveness in Statelog.
In [15] the classes of ELS and EMS programs are proposed. Again, in these programs

there exists a distinguished argument in predicates (thestrata-level argument) on which
certain conditions must be satisfied. For example, in ELS programs the authors of [15]
impose certain restrictions, one of which is that “if s(N) occurs in a body literal, then the
head atommust have a strata-level argument of s(N)”. EMS programs aremore general than
ELS ones but again the definitions given in [15] imply that even for this class the strata-level
argument of a literal in the body of a clause cannot be greater than the strata-level argument
in the head of the clause.
Last but not least we should mention the work in [24] which investigates sufficient

conditions for local stratification of classical logic programs by taking into account the
complexity of terms. Since the approach in [24] applies to arbitrary logic programs, it is
natural to wonder whether this technique is weaker than our approach when one restricts
attention to temporal programs.As the following example demonstrates, there exist classical
logic programs for which the technique of [24] results to a “Do not know” output and whose
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local stratifiability can be decided by our temporal stratification test (provided that they have
been properly encoded as Branching-time Datalog¬ programs). More specifically, consider
the following program (given as Example 4.33, p. 228 of[24]):

p(X) ← ¬ q(f(f(X))).
q(f(Y)) ← r(g(Y)).
r(g(g(Z))) ← p(Z).

The above program when run through the algorithm in [24] for testing local stratification,
results to a “Do not know” output (which signifies that the algorithm is unable to decide
whether the program is locally stratified or not).
We can however, translate the above program in Branching-time Datalog¬ as follows:

p ← ¬ next1 next1 q.
next1 q ← next2 r.
next2 next2 r ← p.

It is straightforward to show that the above two programs are equivalent from a local
stratification point of view (actually, their atom dependency graphs are isomorphic). Now,
by applying the proposed algorithm one can easily see that the above (second) program is
a locally stratified one. We do not give the full transformation since it results to 13 clauses.
From these clauses one need only examine the subset that corresponds to present and future
clauses.Thepredicate dependency graphof this set is acyclicwhich implies that the program
is locally stratified.

9. Discussion

Temporal deductive databases are promising formalisms whose properties and applica-
tions appear to require further research. We believe that the techniques developed in this
paper contribute along this direction. There are, however, many aspects of this work that
require further investigation. We briefly mention some of them:
• It would be interesting to embed the proposed tests in a practical system for temporal
deductive databases. This would require an efficient implementation of the tests (an
implementation of the linear-time test has already been undertaken[32] based on the
ideas developed in [16]). An embedding of the tests in a temporal deductive database
would give a feeling of how useful negation is in such a framework.
• The extended cycle-sum test developed in this paper covers a broad class of temporally
stratified programs. It would be interesting, however, to investigate whether there exists
a similar (i.e. temporal difference based) test that exhausts the whole class of temporally
stratified Linear-time Datalog¬ programs.
• Linear time temporal logic programming is only an instance of the much more general
paradigmofintensional logic programming[23]. Is it possible to develop a test thatwould
apply to many different intensional languages, which, however, share some common
semantic properties? The work in [23] which creates a language-independent semantic
framework for intensional languages, might be a good starting point here.
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We believe that answers to the above questions would offer a better understanding for the
interplay between temporal deductive databases and negation.
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