
An Infinite-Game Semantics for Well-Founded

Negation in Logic Programming ?

Chrysida Galanaki a, Panos Rondogiannis a and
William W. Wadge b

aDepartment of Informatics & Telecommunications, University of Athens,
Panepistimiopolis, 157 84 Athens, Greece

bDepartment of Computer Science, University of Victoria
PO Box 3055, STN CSC, Victoria, BC, Canada V8W 3P6

Abstract

We present an infinite-game characterization of the well-founded semantics for
function-free logic programs with negation. Our game is a simple generalization
of the standard game for negation-less logic programs introduced by M.H. van Em-
den (1986, Journal of Logic Programming, 3(1), 37-53) in which two players, the
Believer and the Doubter, compete by trying to prove (respectively disprove) a
query. The standard game is equivalent to the minimum Herbrand model semantics
of logic programming in the sense that a query succeeds in the minimum model
semantics iff the Believer has a winning strategy for the game which begins with
the Doubter doubting this query. The game for programs with negation that we
propose follows the same rules as the standard one, except that the players swap
roles every time the play “passes through” negation. We start our investigation by
establishing the determinacy of the new game by using some classical tools from the
theory of infinite-games. Our determinacy result immediately provides a novel and
purely game-theoretic characterization of the semantics of negation in logic pro-
gramming. We proceed to establish the connections of the game semantics to the
existing semantic approaches for logic programming with negation. For this pur-
pose, we first define a refined version of the game that uses degrees of winning and
losing for the two players. We then demonstrate that this refined game corresponds
exactly to the infinite-valued minimum model semantics of negation (Rondogiannis
& Wadge, 2005, ACM TOCL, 6(2), 441-467). This immediately implies that the un-
refined game is equivalent to the well-founded semantics (since the infinite-valued
semantics is a refinement of the well-founded semantics).

? The present research is supported by a project that is co-funded by the European
Social Fund & National Resources - EPEAEK II - PYTHAGORAS.

Email addresses: chrysida@di.uoa.gr (Chrysida Galanaki),
prondo@di.uoa.gr (Panos Rondogiannis), wwadge@csr.uvic.ca (William W.
Wadge).

Preprint submitted to Elsevier Science

1 Introduction

In this paper we give an infinite-game semantics for function-free logic pro-
grams with negation. The game we propose is very simple to describe and
is radically different from the technical tools that are currently used for the
investigation of the semantics of negation. In particular, the game leads to a
novel proof of the fact that every logic program with negation has a “distin-
guished” model (ie., a model that reflects the intuitive reading of a program
and which for this reason has a special status among the minimal models of the
program). This fact is a consequence of the determinacy of the game, which
can be established using purely game-theoretic arguments and in particular
some of the most important results in the theory of infinite-games.

We prove that our game characterization coincides with the well-founded se-
mantics [17], which is the most widely acceptable semantics for negation when
one seeks a unique model of the program. In order to establish this equivalence,
we use a refined version of the game which allows different degrees of winning
and losing for the two players. We demonstrate that this refined game is equiv-
alent to the infinite-valued minimum model semantics for logic programming
with negation that was recently introduced by two of the authors [13,14]. The
fact that the infinite-valued semantics is itself a refinement of the well-founded
one, leads immediately to the conclusion that the unrefined game coincides
with the well-founded semantics.

In order to make the paper entirely self-contained we have included all the
necessary background for both negation in logic programming and infinite
games (hoping also in this way to make the paper accessible to people from
both areas). The rest of the paper is organized as follows: Section 2 introduces
in an intuitive way the game for logic programs with negation. Section 3
presents the well-founded semantics of logic programming with negation; our
presentation is based on our recent infinite-valued characterization of the well-
founded model. Section 4 introduces the basic concepts and results regarding
infinite games of perfect information. Section 5 defines in a formal way the
game for programs with negation. In Section 6 we demonstrate that the game
is actually determined. Section 7 presents a refined game that uses an infinite
number of potential payoffs; this new game is also shown to be determined.
Section 8 finally establishes the equivalence of our game semantics to the
well-founded semantics of logic programming. The paper concludes with a
discussion of related work and of possible future extensions of the game.

2

2 Game Semantics for Logic Programming

The starting point of our investigation is a simple game semantics for ordinary
negation-less logic programming which has been known for many years [16].
Suppose we have a program P and a goal clause G; for simplicity, assume
that the atoms that appear in P or G are all ground. We describe how the
question, “does G succeed as a query to P” can be reduced to the question,
“does Player I have a winning strategy in the game ΓPG

”.

The game ΓPG
is a two-person infinite game of perfect information. Player I,

who we will also call the Believer, believes that G will succeed and his first
move is to play G, thus asserting his belief. Player II, who we will also call
the Doubter, thinks G will fail. His first move is to choose one of the atoms in
G which he thinks will fail on its own, and plays it, thus asserting his doubts.
From then on play proceeds as follows: the Believer (who thinks the atom just
played by the Doubter will in fact succeed) must play a clause in the program
whose head is the atom just played; and the Doubter must, on his turn, play
one of the atoms in the body of this clause.

Either player can win by making a move for which his opponent has no legal
response. For the Believer, this means playing a clause with an empty body;
this happens when the Doubter chose to doubt an atom for which there is a
fact in the program. For the Doubter, this means choosing an atom for which
there is no rule; in this case the Believer has chosen a rule with an atom in
its body for which there is no evidence. Finally, we must give the Doubter an
important advantage: he wins if the play goes on forever with both players
always giving legal responses (for example, consider a play of the game that
has goal ← p and whose program consists of the single rule p ← p). The
Doubter is considered a winner in this case since he indefinitely avoids being
cornered by the Believer.

It is not hard to argue informally about the correctness of the game semantics
for negation-less programs. If G actually fails, the Doubter’s winning strategy
is to repeatedly choose atoms which themselves fail. If G succeeds, the Be-
liever’s winning strategy is to repeatedly choose rules that are applicable, ie.,
for which all the atoms in the body succeed. The only subtle point is that the
Believer, in choosing applicable rules, must avoid ones (like q ← q) which do
not actually advance the game.

Once the standard game is understood in terms of the informal anthropomor-
phic description given above, it is not hard to see how to extend it to programs
with negation. There is one new rule: when one of the players plays a literal
of the form ∼p, his opponent must, on the next move, play p. And this move
must then be answered by playing a clause whose head is p, and so on.

3

The significance of the new rule is that when a negation is encountered, the
players swap roles - the Believer becomes the Doubter and vice-versa. For
example, suppose that Player II, who doubts q, has just played it. Player I,
who believes q, plays the clause q ← r,∼ p. Then Player II, who doubted q,
thinks the weak link is ∼p, and plays it. Player I, who believes q, must believe
∼p, which means doubting p, and playing it. Thus I, who was a believer and
believed in q, has now become a doubter, who doubts p. His opponent, who
was a doubter, is now a believer (in p) and must find a rule for p to play.

The rules for winning or losing require modification. As before, any player
who has no legal move loses immediately. Thus either I or II can lose if they
find themselves, in the doubter’s role, doubting a fact or, in the believer’s role,
believing without evidence. Furthermore, if the game play is infinite and after
a certain point one of the players remains a doubter, he wins (this situation is
similar to the corresponding one for negation-less programs). Finally, if during
a play the two players swap roles infinitely often, the result is a tie; intuitively,
none of the players has managed to get an advantage during this play, since
they both engaged in circularities through negation.

As we will demonstrate in the coming sections, the game we have just described
is equivalent to the well-founded semantics of negation. The well-founded se-
mantics is based on a three-valued logic, namely a logic that uses the truth
values False, 0 and True. Intuitively, we need to demonstrate that an atom
has value True (respectively False) in the well-founded model iff Player I
(respectively Player II) has a winning strategy in the corresponding game.
Additionally, we have to show that the value 0 corresponds to the case where
the best choice for both players is to lead the game to a tie. Establishing the
equivalence that we just described is not straightforward. The reason is that
(as we are going to see) the well-founded model is constructed in stages, and
the truth values that are introduced in different stages can be thought of as
having different “strengths”. On the other hand, the game we have described
does not have any notion of different levels of winning or losing. Therefore, in
order to establish the equivalence it would be convenient if we had on the one
hand a refinement of the well-founded model in which the strengths of truth
values are as explicit as possible and on the other hand a refinement of the
game that uses different degrees of winning and losing.

We have recently introduced a characterization of the well-founded model
that captures in a logical way this notion of different strengths of truth val-
ues [13,14]. More specifically, the infinite-valued semantics introduced in [13,14]
is a refinement of the well-founded semantics and it uses instead an infinite
number of truth values ordered as follows:

F0 < F1 < F2 < · · · < 0 < · · · < T2 < T1 < T0

Inspired by this semantics, we define a refined game which supports different

4

degrees of winning and losing. We then demonstrate that this new game is
equivalent to the infinite-valued semantics. As it is demonstrated in [13,14],
if we collapse the Fi and the Ti values of the minimum infinite-valued model
to classical False and True respectively, we get the well-founded model. This
immediately implies that the initial (unrefined) game is equivalent to the well-
founded semantics.

3 The Well-Founded Semantics of Logic Programs

The problem of extending logic programming with negation, is probably the
most broadly studied topic in the area of logic programming. The generally
accepted computational interpretation of negated atoms is negation-as-failure.
Intuitively, a goal ∼ A succeeds iff the subcomputation which attempts to
establish A terminates and fails. For example, given the program

p ←
r ← ∼p

s ← ∼q

the query ← r fails because p succeeds, while the query ← s succeeds because
q fails. There have been many proposals for assigning a formal semantics to
the above intuitive operational notion (for example the references [1,3,11,5]
provide nice surveys for this area). After many years of research, it appears
that the most widely acceptable approaches to the semantics of negation-as-
failure are the well-founded semantics [17] and the stable model semantics [6].
The former approach provides a unique “distinguished” model of the program
while the latter allows for the possibility of zero, one or many models. In this
paper we will focus on the well-founded semantics.

The basic idea in the construction of the well-founded model is to rank the
atoms of a program according to the maximum “depth” of negation used in
their defining clauses (this idea is actually a generalization of the notion of
stratification). The atoms of rank 0 (like p and q above) are defined (possibly
in terms of each other) without use of negation. The atoms of rank 1 (like r and
s) are defined in terms of each other and those of rank 0, with negation applied
only to atoms of rank 0. Those of rank 2 are defined with negations applied
only to atoms of rank 1 or 0; and so on. The model can then be constructed in
stages. The clauses for the rank 0 atoms form a standard logic program, and its
minimum model is used to assign values for the rank 0 atoms. These are then
treated as constants, so that the clauses for the rank 1 atoms no longer have
negations. The minimum model is used to assign values to the rank 1 atoms,

5

which are in turn converted to constants; and so on. There exist however
programs in which some atoms are defined (directly or indirectly) in terms of
their own negations. In the case of such circularities it is possible that some of
the atoms can not be ranked. For such atoms we need an extra intermediate
neutral truth value denoted by 0. For example, the program that consists of
the unique clause p ←∼ p has as its well-founded model the interpretation
{(p, 0)}.

We now proceed to formalize the above notions. We start by defining the
syntax of the logic programming language that we consider.

A general logic program (or simply a logic program) is a finite set of rules of
the form:

p ← q0, . . . , qn−1,∼r0, . . . ,∼rm−1

where the qi’s, the ri’s and p are propositional atoms.

A remark is in order. It is a common practice in the area of negation in logic
programming to study propositional programs instead of first-order ones. This
is because every first-order logic program can be instantiated into a (possibly
infinite) propositional program [5]. It is also a common practice in many cases
to deal with finite propositional programs in order to avoid unnecessary com-
plications in the proofs. The results that are obtained for finite programs can
usually be lifted to the infinite case with some notational overhead. For these
reasons we assume that the programs that we are considering are propositional
and finite. In the concluding section we outline how our results could be ex-
tended to the infinite case. Nevertheless, it should be noted that our results
apply directly to Datalog [15], the function-free subset of logic programming
that has significant applications in the area of deductive databases.

Rules of the above form are called clauses. The symbol p is called the head of
the clause, the qi’s are called positive literals and the ∼ ri’s negative literals.
In the above clause, the part on the right of the ← constitutes the body of
the clause. A clause with empty body is usually termed a unit clause or fact.
Finally, a goal clause is a formula of the form ← p. Given a logic program P
and a goal G, we write PG for P ∪ {G}. We write literals(PG) for the set of
all literals that appear in the bodies of clauses of P and in the goal clause
G; similarly, we write negvars(P) for the set of all propositional atoms, that
appear in negative literals in the bodies of clauses of P .

As we have already mentioned, the well-founded semantics is a three-valued
approach: certain atoms in the well-founded model will be assigned the value
True, others the value False, and the remaining the value 0. In other words,
the well-founded semantics is based on a three-valued logic whose truth values
are ordered as: False < 0 < True (see for example [12]).

6

In the following we will give a description of the well-founded model based on
a recent characterization that we have derived [14] (and which will prove very
convenient for our purposes). The basic idea behind this characterization is
that in order to obtain a purely model-theoretic description of the well-founded
semantics, it is necessary to consider a much more refined multiple-valued logic
which is based on an infinite set of truth values, ordered as follows:

F0 < F1 < F2 < · · · < 0 < · · · < T2 < T1 < T0

Intuitively, F0 and T0 correspond to the classical False and True values respec-
tively. The values below 0 are ordered like the natural numbers. The values
above 0 have exactly the reverse order. The intuition behind the new values
is that they express different levels of truthfulness and falsity that correspond
to the different levels in the construction of the well-founded model. In the
following we denote by V the set consisting of the above truth values. It should
be noted that if we were dealing with infinite propositional programs then we
would need to extend the truth domain to contain a Tα and a Fα for every
countable ordinal α (see [14] for details). A notion that will prove useful in
the sequel is that of the order of a given truth value:

Definition 1 The order of a truth value is defined as follows: order(Tn) = n,
order(Fn) = n and order(0) = +∞.

Notice that in the above definition the order of 0 is taken to be +∞ simply
because 0 is approximated from below and from above by values of all possible
finite orders.

The Herbrand Base BP of a logic program P consists of the set of all propo-
sitional symbols that appear in the program. The notion of “interpretation of
a program” can now be defined:

Definition 2 An (infinite-valued) interpretation I of a program P is a func-
tion from BP to V .

As a special case of interpretation, we will use ∅ to denote the interpretation
that assigns the F0 value to all propositional atoms of a program. In order to
define the notion of model of a given program, we need to extend the notion
of interpretation to apply to literals and to conjunctions of literals:

Definition 3 Let I be an interpretation of a given program P . Then, I can

7

be extended as follows:

• For every negative atom ∼p appearing in P :

I(∼p) =





Tk+1, if I(p) = Fk

Fk+1, if I(p) = Tk

0, if I(p) = 0

• For every conjunction of literals l1, . . . , ln appearing as the body of a clause
in P :

I(l1, . . . , ln) = min{I(l1), . . . , I(ln)}

Notice that in the part of the definition concerning the conjunction of literals,
we assume that when the conjunction is empty, then the value is by default
equal to T0.

The above definition provides a purely logical characterization of negation-as-
failure; additionally, it clarifies the difference between classical negation (which
is simply reflection about 0) and negation-as-failure (which is reflection about
0 followed by a step towards 0). The operational intuition behind the above
definition is that the more times a value is iterated through negation, the
closer to zero it gets.

The notion of satisfiability of a clause can now be defined:

Definition 4 Let P be a program and I an interpretation. Then, I satisfies
a clause p ← l1, . . . , ln of P if I(p) ≥ I(l1, . . . , ln). Moreover, I is a model of
P if I satisfies all clauses of P .

The following two definitions will be needed:

Definition 5 Let P be a program, I an interpretation of P , v ∈ V and n < ω.
Then I ‖ v = {p ∈ BP | I(p) = v} and I]n = {(p, v) ∈ I | order(v) = n}.

Definition 6 Let I and J be interpretations of a given program P and let
k ∈ ω. We write I =k J , if for all n ≤ k, I ‖ Tn = J ‖ Tn and I ‖ Fn = J ‖ Fn.
We write I @k J , if for all n < k, I =n J and either I ‖ Tk ⊂ J ‖ Tk and
I ‖ Fk ⊇ J ‖ Fk, or I ‖ Tk ⊆ J ‖ Tk and I ‖ Fk ⊃ J ‖ Fk. We write I vk J if
I =k J or I @k J .

The infinite-valued semantics of logic programs with negation is defined with
the use of an appropriate operator:

Definition 7 Let P be a program and let I be an interpretation of P . The

8

operator TP is defined as follows:

TP (I)(p) = max{I(l1, . . . , ln) | p ← l1, . . . , ln ∈ P}

TP is called the immediate consequence operator for P .

The construction of the minimum model MP of a given program P can infor-
mally be described as follows. As a first approximation to MP , we start with
∅, ie., with the interpretation that assigns to every atom the value F0. We
start iterating TP on ∅ until both the set of atoms that have a F0 value and
the set of atoms having a T0 value, stabilize. We keep all these atoms whose
values have stabilized and reset the values of all remaining atoms to the next
false value (namely F1). The procedure is repeated until the F1 and T1 values
stabilize, and we reset the remaining atoms to a value equal to F2, and so on.
The atoms that will not get a value through this procedure, get the value 0
at the end. The above process is illustrated by the following example:

Example 8 Consider the program:

p ← ∼q

q ← ∼r

s ← p

s ← ∼s

We start from the interpretation I = {(p, F0), (q, F0), (r, F0), (s, F0)}. Iterating
TP twice, we get the interpretation {(p, F2), (q, T1), (r, F0), (s, T1)} in which
the order 0 values have stabilized. We reset the values of all other atoms to
F1 getting the interpretation {(p, F1), (q, F1), (r, F0), (s, F1)}. We iterate TP

two more times and we get the interpretation {(p, F2), (q, T1), (r, F0), (s, T2)}
in which the order 1 values have converged. We reset all remaining values to
F2 getting the interpretation {(p, F2), (q, T1), (r, F0), (s, F2)}. After two more
iterations of TP we get {(p, F2), (q, T1), (r, F0), (s, F4)} in which the order 2
values have stabilized. We reset s to F3 getting {(p, F2), (q, T1), (r, F0), (s, F3)}.
We iterate TP once getting {(p, F2), (q, T1), (r, F0), (s, T4)}. We see that there
is no value of order 3 in this interpretation. This means that s can not get a
value of order 3 (nor of any other finite order); therefore, we can reset it to
0. Therefore, the final model is MP = {(p, F2), (q, T1), (r, F0), (s, 0)}.

We can now formalize the above notions:

Definition 9 Let P be a program, let I be an interpretation of P and k ∈ ω.
Moreover, assume that I vk TP (I) vk T 2

P (I) vk · · · vk T n
P (I) vk · · ·. Then,

the sequence {T n
P (I)}n<ω is called a k-chain.

9

Definition 10 Let P be a program, let I be an interpretation of P and assume
that {T n

P (I)}n<ω is a k-chain. Then, we define the interpretation T ω
P,k(I) as

follows:

T ω
P,k(I)(p) =





I(p), if order(I(p)) < k

Tk, if p ∈ ⋃
n<ω(T n

P (I) ‖ Tk)

Fk, if p ∈ ⋂
n<ω(T n

P (I) ‖ Fk)

Fk+1, otherwise

We now define a sequence of interpretations (that can be thought of as better
and better approximations to the minimum model of a given program P):

Definition 11 Let P be a program and let:

M0 = T ω
P,0(∅)

Mk = T ω
P,k(Mk−1) for k > 0

Finally, define:

MP (p) =





(
⋃

k<ω(Mk]k))(p), if this is defined

0, otherwise

The M0,M1, . . . , Mk, . . . are called the approximations of MP .

In [14] it is demonstrated that the Mk in the above definition are well-defined
(one needs to demonstrate that there is a k-chain involved when we use the
T ω

P,k operator). Moreover, in the same reference it is demonstrated that the
following theorems hold for MP :

Theorem 12 For every program P , the interpretation MP is its unique min-
imum infinite-valued model under an ordering relation that is independent of
the syntax of the program.

Theorem 13 Let P be a program and let NP be the interpretation that results
from MP by collapsing all the Tk values to True and all the Fk values to False.
Then, NP is the well-founded model of P .

The first theorem establishes a syntax-independent characterization of the
semantics of logic programs with negation. The second theorem provides a
direct connection of the infinite-valued model to the well-founded one. As an

10

example, the well-founded model of the program in Example 8 is equal to
{(p, F), (q, T), (r, F), (s, 0)}.

4 Infinite Games of Perfect Information

The semantics that we develop in this paper is based on the so-called infinite
games of perfect information (or PI-games for short) [7]. The games will take
place between two players that we will call Player I and Player II. A PI
game is one in which there is no hidden information: both players know all
the moves that have been played so far, and there are no simultaneous moves.
The games are infinite in the sense that they do not terminate at a finite stage
and therefore in order to derive the outcome of a play it may be necessary to
examine its entire history.

Before defining PI-games in a formal way, we need to introduce some notation.
Sequences (finite or infinite in length) will usually be denoted by s or x. A
finite sequence of length k will be denoted by 〈s0, s1, . . . , sk−1〉 and the empty
sequence by 〈〉. Given k < ω and a sequence s of length at least k, s|k is the
prefix of s of length k. Given a non-empty set X, the set of all finite sequences
of elements of X is denoted by Seq(X) and the set of all infinite sequences of
elements of X by Xω. A tree on X is a set R of finite sequences of members
of X such that if u ∈ R and v is a prefix of u, then v ∈ R.

A PI-game is based on a non-empty set X, called the set of moves that are
available to the two players. Intuitively, Player I initially chooses x0 ∈ X, then
Player II chooses x1 ∈ X, and so on. As it usually happens with everyday
games, we would not like the moves made by the two players to be arbitrary.
This means that we need a set of rules that will impose restrictions on the
moves of the two players. The rules are usually (see for example [9]) modeled
by a tree R on X: the game must proceed along some branch of R, otherwise
the first player who gets outside R looses. The rules of the game will usually
be defined by putting down restrictions on the choice of xn that depend on
the preceding moves x0, . . . , xn−1. The tree R is then obtained in the obvious
way:

〈x0, . . . , xn−1〉 is a path in R ⇔ for each i < n, xi is allowed by the restrictions

Based on the set X, we define two sets A and B such that A is the set of
strategies for Player I and B the set of strategies for Player II. A strategy
a ∈ A assigns a move to each even length partial play of the game; similarly
for b ∈ B and odd length partial plays. Additionally, we assume the existence
of a set D, called the set of rewards, which models the potential profit that

11

a player will have after winning the game. Finally, we consider a function Φ,
called the payoff function, which calculates the reward that the winner of a
play of the game will get. Usually, the definition of Φ depends on the set of
rules R in the sense that if during a play one of the players first breaks the
rules, then this should be reflected by the value that Φ returns for that play.
The above notions are formalized as follows:

Definition 14 An infinite game of perfect information (or a PI-game for
short) is a sextuple Γ = (X, R, A, B, D, Φ) such that:

• X is a non-empty set, called the set of moves for Players I and II.
• R is a tree on X (usually implicitly specified by a set of rules) which imposes

restrictions on the moves of the two players.
• A is the set of strategies for Player I, which consists of all functions a :⋃

n<ω X2n → X, with X0 = {〈〉}.
• B is the set of strategies for Player II, which consists of all functions b :⋃

n<ω X2n+1 → X.
• D is a linearly ordered set called the set of rewards, with the property that

for all S ⊆ D, lub(S) and glb(S) belong to D.
• Φ : Xω → D is the payoff-function of the game.

Games of the above form will often be referred as games with payoff.

We now define the notion of a play of the game:

Definition 15 Let Γ = (X, R, A, B, D, Φ) be a game and let a ∈ A and b ∈ B
be two strategies. We define the following sequence:

s0 = a(〈〉)
s2i = a(〈s0, . . . , s2i−1〉)
s2i+1 = b(〈s0, . . . , s2i〉)

A (complete) play of the game determined by the strategies a and b is the
infinite sequence 〈s0, s1, s2, . . .〉. The si’s will be called the moves of the play.
A prefix of a play is called a partial play.

Given two strategies a ∈ A and b ∈ B, we will often write a ? b for the play
determined by these two strategies. Given a play s, we will say that a player
first breaks the rules in s if the first move in s that does not conform to the
rules of the game is played by that particular player. A play s will be called
legal if all its moves conform to the rules of the game.

A special case of games which has a great deal of interest for descriptive set

12

theory [9], is that of the so-called win-lose games:

Definition 16 Let Γ = (X,R,A, B, {0, 1}, Φ) be a game and let S ⊆ Xω be
a set. Assume that the payoff function Φ of Γ is defined as follows:

Φ(s) =





1, (if Player II first breaks the rules R in s) or (s ∈ S)

0, otherwise

Then, Γ will be called a win-lose game on S.

A special case of the above definition arises when R = Seq(X), ie., when there
are no restrictions on the moves of the two players.

A notion that plays a very important role in the theory of infinite games is
that of determinacy (which is often used in conjunction with the notion of the
value of a game):

Definition 17 A game Γ = (X, R, A,B,D, Φ) is determined with value v if

glbb∈B luba∈A Φ(a ? b) = luba∈A glbb∈B Φ(a ? b) = v

The following inequality (see for example [10]) holds for all games, determined
or not:

Proposition 18 Let Γ = (X, R,A, B,D, Φ) be a game (determined or not).
Then:

glbb∈B luba∈A Φ(a ? b) ≥ luba∈A glbb∈B Φ(a ? b)

The notion of optimal strategies is closely connected to determinacy:

Definition 19 Let Γ = (X, R, A,B,D, Φ) be a game with value v. The set
of optimal strategies for Player I (respectively Player II), is denoted by OptIΓ
(respectively OptII

Γ) and defined as:

OptIΓ = {a ∈ A | ∀b ∈ B, Φ(a ? b) ≥ v}
OptII

Γ = {b ∈ B | ∀a ∈ A, Φ(a ? b) ≤ v}

We will often simply write OptI (respectively OptII) when the corresponding
game is obvious from context.

Notice that it is possible for a game to be determined but no optimal strategies
need to exist (see for example [10]). However, as we will later discuss, for the
games we consider optimal strategies do exist.

13

The determinacy of win-lose games has been widely studied and many impor-
tant results have been obtained. In particular, if Γ is a win-lose game on a set
S, then the properties of S play a very important role on the determinacy of
Γ. The following two definitions present the classes of open and Borel sets for
which determinacy is guaranteed.

Definition 20 Let X be a non-empty set and let S ⊆ Xω. Then, S is called
open if for all s ∈ Xω it is:

s ∈ S ⇒ ∃t ∈ ω(∀s′ ∈ Xω[(s|t = s′|t) ⇒ s′ ∈ S])

In other words, a set S is called open if for any s in S the fact that s is a
member of S can be deduced from some finite amount of knowledge about
s. For example, take as X the set of natural numbers; then, the set of all
sequences with some occurrence of 0 is open, whereas the set of increasing
sequences is not.

The finite Borel hierarchy is generated by closing out the class of open sets
under the operations of union and complementation (relative to Xω). More
formally:

Definition 21 Let X be a non-empty set. Given S ⊆ Xω, let S denote the
complement of S relative to Xω. Then, the finite Borel hierarchy with respect
to X is defined as follows:

• Σ0
1 is the collection of all open sets of elements of Xω

• For all n ≥ 1, Π0
n = {S | S ∈ Σ0

n}
• For all n ≥ 1, Σ0

n+1 = {⋃i∈ω Si | Si ∈ Π0
n}.

We then have the following important theorem due to D. Martin [8]:

Theorem 22 (Borel Determinacy Theorem) Let X be a non-empty count-
able set and let S ⊆ Xω. Let Γ be a win-lose game on S. If S is Borel then Γ
is determined.

Despite the fact that the games we will consider in this paper are not strictly
win-lose, the above theorem will play an important role in establishing their
determinacy.

5 A Formal Definition of the Negation Game

In this section we give a precise definition of the game for logic programs with
negation. Let P be a logic program and G a goal clause. We define a PI-game

14

ΓPG
= (X, R, A,B,D, Φ), which we will often call a negation game, as follows:

5.1 The set of moves

The set of moves X of ΓPG
is equal to:

X = {G} ∪ P ∪ literals(PG) ∪ negvars(P)

In other words, a player can choose one of the following moves: a) he can play
the goal clause, or b) play a clause of the program, or c) a literal that appears
in G or in the body of a clause of P , or finally, d) an atom that appears in a
negative literal in the body of some clause of p.

5.2 The rules of the game

We can now specify the rules that the two players must obey:

• (R1) The first move of Player I is the goal clause G.
• (R2) If the previous move is a clause, the next move is one of the literals in

the body of the clause.
• (R3) If the previous move is a positive literal p, the next move is a clause

in P whose head is p.
• (R4) If the previous rule is a negative literal ∼p, the next move must be p

itself (this last move is called a role-switch).

Notice that if in rule (R2) the body of the clause is empty, then we will say
that the player is forced to break rule (R2). Similarly, the player is forced to
break rule (R3) if he can not can find a clause in P whose head is p. If one of
the players breaks the rules without being forced to, we will say that he breaks
the rules without reason. This last case refers to moves that are completely
unreasonable (such as for example if Player I does not play the goal clause
as his first move, or if a player does not choose a literal from the non-empty
body of the clause that the other player has just played, etc). We should note
here that since our game is infinite, a play continues even after one of the two
players has broken the rules; however, the moves beyond this point will be
irrelevant to the outcome of the play.

5.3 The sets of strategies

The sets of strategies for the game are specified as in Definition 14 (page 12).

15

5.4 The set of rewards

The set D of rewards is the set {F, 0, T}. Intuitively, F corresponds to the
False truth value, T to the True truth value and 0 to an intermediate truth
value that is above False and below True. From the game point of view, F
corresponds to a win of Player II, T to a win of Player I, and 0 to a tie of the
two Players.

5.5 The payoff function

Let a ∈ A and b ∈ B be two strategies, and let s = a ? b be the unique play
determined by a and b. Before defining the payoff function, we need to specify
when a play can be characterized as a win for Player I (respectively, Player
II), ie., when it is a true-play (respectively, false-play). The conditions used by
the two following definitions, will be explained just after the definitions.

Definition 23 Let P be a program, G a goal, and let s be a play of the corre-
sponding game ΓPG

. Then, s is called a true-play if either Player II first breaks
the rules in s or if s is a legal play that contains an odd number of negative
literals.

Definition 24 Let P be a program, G a goal, and let s be a play of the corre-
sponding game ΓPG

. Then, s is called a false-play if either Player I first breaks
the rules in s or if s is a legal play that contains an even number of negative
literals.

Intuitively, a true-play (respectively, false-play) is a play that is won by Player
I (respectively, Player II). More specifically, a play s can be characterized as
a true-play (respectively, false-play) if Player II (respectively, Player I) first
breaks the rules in s. On the other hand, if s is legal (ie., it has no rule
violations) and it contains a finite number of role-switches, then one of the
two players remains a doubter after the last role-switch; we would like this
particular player to be the winner of the play. So, we keep track of which
player remains the doubter, by counting the number of negative literals (or
role-switches) in the play. In the beginning of the play, it is Player II who is the
doubter, and therefore an even number of role-switches means that Player I
will be the doubter after the role-switches end. Similarly, when an even number
of role-switches takes place, it will be Player I who will remain a doubter at
the end.

16

We are now in a position to give a formal definition of the payoff function Φ:

Φ(s) =





T, if s is a true-play

F, if s is a false-play

0, otherwise

Notice that in the above definition of the payoff function, the value 0 corre-
sponds to the case where there is an infinite number of role switches in the
play.

5.6 Certain Examples

We now illustrate the above definitions with certain examples:

Example 25 Consider the program P :

p ← ∼q, r

q ← ∼s

r ← r

s ←

and the goal G =← p. Consider a play of the following form:

Player I Player II

← p p

p ←∼q, r ∼q

q q ←∼s

∼s s

s ← · · ·
· · · · · ·

In a play of this form, it is Player II who first breaks the rules, and therefore
it is a true-play. Therefore, the payoff is equal to T . Another play of this game

17

is the following:

Player I Player II

← p p

p ←∼q, r r

r ← r r

· · · · · ·

This is obviously a legal play (ie., no player ever breaks the rules) and it
is a false-play since it contains an even number of negative literals (zero).
Consequently, the payoff in this case is equal to F .

Example 26 Consider the program P :

p ← ∼p

and the goal G =← p. Then, there is a unique legal play of the game, namely:

Player I Player II

← p p

p ←∼p ∼p

p p ←∼p

∼p p
...

...

It is easy to see that this play is neither a true-play nor a false-play and
therefore the payoff in this case is equal to 0.

6 Determinacy of the Negation Game

In this section we demonstrate that given a program P and a goal ← p, the
game ΓP∪{←p} is determined, ie., it has a value. In other words, there exists
a value (either F , 0 or T) that is associated with this game (and therefore
with p). Since for every atom of P there exists a corresponding game that
has a value, this implies that to every atom of the program there corresponds
a distinguished value. All these atom-value pairs constitute a three-valued
interpretation of P which as we will demonstrate is actually a model of P

18

(and which as we are going to see later-on coincides with the well-founded
model of P).

A basic difference between the negation game and the games that are cus-
tomarily used in descriptive set theory is that the former is a three-valued
one (and not just win-lose), and therefore it is not immediately obvious that
it is determined. However, as we are going to demonstrate, we can adapt the
powerful results that hold for win-lose games in order to apply to our case.
The following lemma provides a sufficient condition for a three-valued game
to be determined. Notice that the result holds for any three-valued game that
satisfies the requirements of the lemma (and not just for the negation game).
This result (which we have not seen explicitly stated elsewhere) was inspired
by Corollary 3.3 of [10] that applies to games that have real-valued payoff
functions.

Lemma 27 Let Γ = (X,R,A, B, {F, 0, T}, Φ) be a negation game. Assume
that Φ has the property that for every v ∈ {F, 0, T} the set S(v) = {s ∈ Xω |
Φ(s) ≥ v} is Borel. Then, Γ is determined.

PROOF. The basic idea of the proof is to use the Borel determinacy result
for win-lose games in order to derive the determinacy of this more complicated
game. More specifically, for every v ∈ {F, 0, T}, we define the win-lose game
Γv = (X, R′, A, B, {0, 1}, Φv) on the set S(v), where R′ = Seq(X) (ie., there
are no restrictions for the players of the game). By the Borel Determinacy
Theorem, every Γv is determined. Let v∗ = max{v ∈ {F, 0, T} | OptIΓv

6= ∅}
ie., v∗ is the maximum of all v such that the corresponding win-lose game Γv

is a win for Player I. Notice that v∗ is well-defined because there exists at least
one of the Γv’s that is a win for Player I: the game ΓF (for which S(F) = Xω

and therefore Player I wins in every case). We distinguish three cases:

Case 1: v∗ = T . Then, by the definition of v∗, OptIΓv∗ is not empty. Choose

a0 ∈ OptIΓv∗ . Then, for any b ∈ B, we have that a0 ? b ∈ S(v∗), since a0 is
a winning strategy for Player I in game Γv∗ . But then, by the definition of
S(v∗), we have that Φ(a0 ? b) ≥ v∗. Therefore, we have:

luba∈A glbb∈B Φ(a ? b) ≥ glbb∈B Φ(a0 ? b) ≥ v∗ = T

The above together with Proposition 18 immediately imply that in this case
the game ΓPG

is determined with value v∗ = T .

Case 2: v∗ = 0. Using exactly the same reasoning as in Case 1 we get that:

luba∈A glbb∈B Φ(a ? b) ≥ 0

19

Take now v = T . Then, OptII
Γv

is not empty because v∗ = max{v ∈ {F, 0, T} |
OptIΓv

6= ∅} and because the game Γv is determined. Then, there exists b0 ∈
OptII

Γv
such that for any a ∈ A, a ? b0 6∈ S(v). By the definition of S(v), we

have that Φ(a ? b0) < v = T . Therefore:

glbb∈B luba∈A Φ(a ? b) ≤ luba∈A Φ(a ? b0) < T

Using the above two facts together with Proposition 18, we get that in this
case the game ΓPG

is determined with value v∗ = 0.

Case 3: v∗ = F . Take v = 0. As in Case 2, we get that there exists b0 ∈ OptII
Γv

such that for any a ∈ A, Φ(a ? b0) < v. This gives:

glbb∈B luba∈A Φ(a ? b) ≤ luba∈A Φ(a ? b0) < v = 0

This immediately implies that:

glbb∈B luba∈A Φ(a ? b) = F

Using this fact together with Proposition 18, we get that in this case the
game ΓPG

is determined with value v∗ = F . This completes the proof of the
proposition. 2

The above proposition suggests that in order to demonstrate that the negation
game is determined, it suffices to establish that the sets S(F), S(0) and S(T)
are Borel. The definition and the two propositions that follow (see for exam-
ple [9] for the corresponding proofs) provide a convenient tool for establishing
that a given set is Borel:

Definition 28 Let X be a non-empty set and let G ⊆ Xω×ωk, k ∈ ω. Then,
G will be called open if for all s ∈ Xω and for all n1, . . . , nk ∈ ω it is:

(s, n1, . . . , nk) ∈ G ⇒ ∃t ∈ ω(∀s′ ∈ Xω[(s|t = s′|t) ⇒ (s′, n1, . . . , nk) ∈ G])

The complement of an open set is a closed set.

Proposition 29 Let X be a set and S be a subset of Xω. Then, if n is odd,
S is Σ0

n if and only if there exists an open set G ⊆ Xω × ωn−1, such that:

s ∈ S ⇔ ∃t1∀t2∃t3 · · · ∀tn−1G(s, t1, . . . , tn−1)

Similarly, if n is even, then S is Σ0
n if and only if there is a closed F such that

s ∈ S ⇔ ∃t1∀t2∃t3 · · · ∃tn−1F (s, t1, . . . , tn−1)

20

Proposition 30 Let X be a set and S be a subset of Xω. Then, if n is odd,
S is Π0

n if and only if there exists a closed set F ⊆ Xω × ωn−1, such that:

s ∈ S ⇔ ∀t1∃t2∀t3 · · · ∃tn−1F (s, t1, . . . , tn−1)

Similarly, if n is even, then S is Π0
n if and only if there is an open set G such

that
s ∈ S ⇔ ∀t1∃t2∀t3 · · · ∀tn−1G(s, t1, . . . , tn−1)

Since an open (respectively closed) set defines a relation in the obvious way,
we will often use the term open relation (respectively closed relation).

It therefore now remains to show that the sets S(F), S(0) and S(T) of
Lemma 27 are Borel. This is demonstrated by the following lemma:

Lemma 31 The sets S(F), S(0) and S(T) are Borel.

PROOF. The set S(F) = {s ∈ Xω | Φ(s) ≥ F} is trivially Borel since it
coincides with Xω. Consider now the case S(T) = {s ∈ Xω | Φ(s) = T}.
Recall now (Definition 23) that Φ(s) = T iff s is a true-play, ie., iff either
Player II first breaks the rules in s or s is a legal sequence that contains an
odd number of negative literals. It suffices to express this condition in the
notation of one of the above propositions. We express S(T) as:

S(T) = {s | ∀t1∃t2∀t3∃t4∀t5G(s, t1, t2, t3, t4, t5)}
The relation G is defined as:

G(s, t1, t2, t3, t4, t5) = G1(s, t1, t2, t3) ∨G2(s, t4)

where G1 expresses the condition “is a legal sequence that contains an odd
number of negative literals” and G2 the condition “Player II first breaks the
rules”. Notice that in the definition of G, t5 is vacuously quantified (it does
not appear in the right hand side of the definition). The definitions of G1 and
G2 have as follows:

G1(s, t1, t2, t3) = [(〈s0, . . . , st1−1〉 is a legal partial play)

∧ (〈s0, . . . , st2−1〉 has an odd number of negative literals)

∧ ((t3 > t2) ⇒ (st3 is not a negative literal))]

and:

G2(s, t4) = [(〈s0, . . . , s2t4〉 is a legal partial play)

∧ (〈s0, . . . , s2t4+1〉 is not a legal partial play)]

21

It is easy to see that G is open: take t = max{t1 − 1, t2 − 1, t3, 2t4 + 1} in the
definition of open set (Definition 28).

The case for S(0) is similar: it suffices to express the condition “s is a legal
play that has an infinite number of negative literals or s is a true-play”. We
omit the details. 2

We therefore have the following corollary that results directly from the two
lemmas of this section:

Corollary 32 Let P be a program, G a goal clause and let ΓPG
be the corre-

sponding game. Then, ΓPG
is determined.

Since the negation game is determined, we have the following definition:

Definition 33 Let P be a program. We define the game interpretation NP

of P as the interpretation such that for every p ∈ BP , NP (p) is equal to the
value of the game ΓP∪{←p}.

The following theorem states that the game interpretation of a program is
actually a model of the program:

Theorem 34 Let P be a program. Then, NP is a model of P .

PROOF. Assume NP is not a model of P . Then, there must exist a clause
p ← l1, . . . , ln such that NP (p) < NP (l1, . . . , ln), ie., NP (p) < NP (li), for all
i ≤ n. Consider now a strategy a for Player I which chooses as his second
move the above clause. Now, if Player II chooses a positive literal li from this
clause, then the strategy a proceeds in the same way as an optimal strategy
of Player I for the game ΓP∪{←li}. If on the other hand Player II chooses a
negative literal li =∼qi, then the strategy a proceeds according to an optimal
strategy of Player II for the game ΓP∪{←qi}. Now, since NP (p) < NP (li) for all
i ≤ n, the strategy a when played against any strategy b of Player II, gives a
payoff which is greater than NP (p). Therefore, the value of the game ΓP∪{←p}
is greater than NP (p) (contradiction). Consequently, NP is a model of P . 2

The above theorem provides a novel, purely game-theoretic characterization
of the semantics of negation in logic programming. In the next sections we
investigate how this approach relates to the existing semantic approaches for
negation.

22

7 The Refined Negation Game

In the next section we will demonstrate the equivalence of the game seman-
tics to the well-founded model of negation in logic programming. As we have
already mentioned, the well-founded model is usually constructed in stages.
For this reason, in this paper we have adopted the infinite-valued characteri-
zation of the well-founded model which makes these stages more explicit. On
the other hand, the three-valued negation game that we have defined does not
have any notion of “stages”. This difference between the well-founded model
(or the infinite-valued model) and the three-valued game makes it difficult at
first sight to establish their equivalence. The solution we have adopted is to
refine the negation game getting a new game in which the two players can have
degrees of winning and losing. These degrees correspond to the stages of the
well-founded model (and correspondingly to the different levels of truth values
of the infinite-valued model). The existence of “stages” in our formalisms al-
lows us to prove results by induction. Therefore, in this section we will define
the refined negation game and we will demonstrate that it is determined.

The basic idea behind the refined game is that the payoff of a given play will
depend on the number of role-switches that have taken place. More specifically,
assume that we have a legal play or a play in which the rules are first broken
because one of the players is forced to break them. Then, if the play is a
true-play (respectively false-play), the payoff is going to be Tk (respectively
Fk), where k is the number of role switches that have taken place. If on the
other hand we have a play in which the rules are first broken without reason
by Player I (respectively Player II) then the other player gets the maximum
possible payoff, namely F0 (respectively T0).

More formally now, we define ŝ to be the maximum initial segment of s in
which the rules have not been broken; in particular, ŝ = s if s is a legal play.
Moreover, we define ‖ s ‖ as follows: if s is not a legal play and the first
violation of the rules in s is without reason, then ‖ s ‖= 0; otherwise, ‖ s ‖ is
equal to the number of negative literals in ŝ.

We can now give the formal definition of the refined game. We need to refine
the definition of the set of rewards and of the payoff function, as follows:

The set of rewards: The set D of rewards is the set {F0, F1, . . . , 0, . . . , T1, T0}
of truth values which are ordered as: F0 < F1 < · · · < 0 < · · · < T1 < T0.

23

The payoff function: The refined payoff function Φ is defined as follows:

Φ(s) =





T‖s‖, if s is a true-play

F‖s‖, if s is a false-play

0, otherwise

We now argue about the determinacy of this refined game. The proof is similar
in spirit but more complicated than that of Lemma 27:

Lemma 35 Let Γ = (X, R,A, B, V, Φ) be a refined negation game. Assume
now that Φ has the property that for every v ∈ V the set S(v) = {s ∈ Xω |
Φ(s) ≥ v} is Borel. Then, Γ is determined.

PROOF. The basic idea is to use the Borel determinacy of simple-win lose
games in order to establish the determinacy of the refined game. More specifi-
cally, for every v ∈ V , we define the win-lose game Γv = (X,R′, A,B, {0, 1}, Φv)
on the set S(v), where R′ = Seq(X). By the Borel Determinacy Theorem, ev-
ery Γv is determined. Let v∗ = lub{v ∈ V | OptIΓv

6= ∅} ie., v∗ is the least
upper bound of all v such that the corresponding win-lose game Γv is a win
for Player I. Notice that v∗ is well-defined because there exists at least one of
the Γv’s that is a win for Player I: the game ΓF0 (for which S(F0) = Xω and
therefore Player I wins in every case).

Case 1: v∗ = Fk, k ≥ 0. By the definition of v∗, OptIΓv∗ is not empty. Choose

a0 ∈ OptIΓv∗ . Then, for any b ∈ B, we have that a0 ? b ∈ S(v∗), since a0 is
a winning strategy for Player I in game Γv∗ . But then, by the definition of
S(v∗), we have that Φ(a0 ? b) ≥ v∗. Therefore:

luba∈A glbb∈B Φ(a ? b) ≥ glbb∈B Φ(a0 ? b) ≥ v∗ = Fk

Let now v = Fk+1. Then, OptII
Γv

is not empty because v∗ = lub{v ∈ V | OptIΓv
6=

∅} and because the game Γv is determined. Then, there exists b0 ∈ OptII
Γv

such
that for any a ∈ A, a ? b0 6∈ S(v). By the definition of S(v), we have that
Φ(a ? b0) < v. Therefore:

glbb∈B luba∈A Φ(a ? b) ≤ luba∈A Φ(a ? b0) < v = Fk+1

Combining the two inequalities that we have obtained together with Proposi-
tion 18, we get the desired result for the case v∗ = Fk.

Case 2: v∗ = 0. Then, exactly as in Case 1, it can be shown that:

luba∈A glbb∈B Φ(a ? b) ≥ v∗

24

Consider now on the other hand any v such that v > v∗. Then, OptII
Γv

is
not empty because v∗ = lub{v ∈ V | OptIΓv

6= ∅} and because the game
Γv is determined. Then, there exists b0 ∈ OptII

Γv
such that for any a ∈ A,

a ? b0 6∈ S(v). By the definition of S(v), we have that Φ(a ? b0) < v. Therefore:

glbb∈B luba∈A Φ(a ? b) ≤ luba∈A Φ(a ? b0) < v

Now, since the above holds for all v > v∗, we get:

glbb∈B luba∈A Φ(a ? b) ≤ v∗

Combining the two inequalities that we have obtained together with Proposi-
tion 18, we get the desired result for the case v∗ = 0.

Case 3: v∗ = Tk, k ≥ 0. For the case v∗ = T0, it is immediately obvious that:

glbb∈B luba∈A Φ(a ? b) ≤ v∗

For the case v∗ = Tk, k > 0, take v = Tk−1. The proof then follows in the
same way as in Case 1. 2

It now remains to demonstrate that each of the sets S(v) of the above propo-
sition, is Borel:

Lemma 36 The sets S(v), v ∈ V , are Borel.

PROOF. Similar to the proof of Lemma 31. 2

We therefore have the following corollary that follows directly from the two
lemmas of this section:

Corollary 37 Let P be a program, G a goal clause and let ΓPG
be the corre-

sponding refined negation game. Then, ΓPG
is determined.

8 Equivalence of the Game to the Well-Founded Model

Consider a given logic program P . What we would like to demonstrate is that
the value that the infinite-valued model assigns to an atom p, coincides with

25

the value of the game ΓP∪{←p}. This can be demonstrated by simultaneously
showing (by induction on k) the following two statements:

• If the value of the game ΓP∪{←p} is Tk (or Fk), then the value assigned to p
by the minimum infinite-valued model is Tk (respectively Fk).

• If the value assigned to p by the minimum infinite-valued model is Tk (or
Fk) then the value of the game ΓP∪{←p} is Tk (respectively Fk).

The first of the above two statements is easier to establish: we define a quantity
called the depth of the game and then show the desired statement by an inner
induction on the depth (actually, the depth is only needed for the Tk case).

The second statement is trickier to demonstrate. We give an intuitive descrip-
tion of the approach we use. Assume that the minimum infinite-valued model
assigns to p the value Tk (similar arguments apply for Fk). Then, we must
show that there exists a strategy for Player I such that for all strategies of
Player II, the payoff is greater than or equal to Tk. In other words, the desired
strategy for Player I must not be arbitrary: it must make careful selections in
order to corner Player II to a value greater than or equal to Tk. Now, since the
value that the model assigns to p is equal to Tk, there must exist a clause in P
whose body evaluates (under the infinite-valued model) to Tk. This is a good
choice for Player I because no-matter which literal Player II will choose from
the body of the clause, Player I can ensure a payoff of at least Tk. But then,
using the induction hypothesis and the determinacy of the refined game, it
can be shown that the best possible situation for the two players occurs when
the payoff is exactly Tk. This intuitively establishes the desired result.

We can now proceed with the formal details of the proof. We start with the
following simple lemma:

Lemma 38 Let ΓPG
be a refined negation game with value v 6= 0. Then, the

two players have optimal strategies (ie., the sets OptI and OptII are non-
empty).

PROOF. Since the value of the game is either Tk or Fk for some k ∈ ω, and
since there are no arbitrarily close approximations to Tk and Fk other than
themselves, the result follows immediately. 2

We now define a quantity that will be used in the definition of depth:

Definition 39 Let ΓPG
= (X,R, A, B, V, Φ) be a refined negation game with

value v > 0 and let s be the play determined by two strategies a ∈ OptIΓPG
and

b ∈ OptII
ΓPG

. Then, by ¿ sÀ we denote the number of moves that Player II

has played in s before either a fact or a negative literal is encountered.

26

We can now define the “depth” of a given game. Assume we consider a game
ΓPG

that has value v > 0. Then, by Lemma 38, the sets OptIΓPG
and OptII

ΓPG

of optimal strategies of the game are non-empty. We have:

Definition 40 Let ΓPG
= (X,R, A, B, V, Φ) be a refined negation game with

value v > 0. Define:

d = min
a∈OptI max

b∈OptII ¿a ? bÀ

The quantity d is called the depth of the game ΓPG
.

Intuitively, the depth expresses the maximum number of moves that Player
II can play before a negative literal or a fact is encountered, in the case that
Player I plays in the best possible way. It is not hard to see that the notion
of depth is well-defined, ie., that it is always finite. If Player II could (against
any strategy of Player I) make the game last arbitrarily long before a negative
literal or a fact is encountered, then (by König’s Lemma) he would be able
to make it last for ever. But in this case the value of the game would be F0,
which contradicts our assumption in Definition 40 that the value of the game
is greater than 0.

We can now establish the equivalence of the refined game with the infinite-
valued semantics:

Theorem 41 Let P be a program and let p be an atom that appears in P .
Consider the goal G =← p and let ΓPG

= (X, R, A, B, V, Φ) be the correspond-
ing refined game. Moreover, let MP be the minimum infinite-valued model of
P . Then, ΓPG

has value Tk (respectively Fk) if and only if MP (p) = Tk (re-
spectively MP (p) = Fk).

PROOF. The proof is by induction on k.

Basis Case: We demonstrate the case k = 0.

(⇒) Assume that the game has value T0 (the proof for F0 is actually eas-
ier since it does not use the notion of depth, and therefore omitted). We
demonstrate the desired result by induction on the depth of the game. In par-
ticular we show that for all p in P , if ΓP∪{←p} has value T0 and depth d, then
MP (p) = T0. The basis case is for d = 1. This can only happen if Player I plays
a fact p ← as his second move (his first move is the goal clause), in which case
the desired result is immediate. Assume the result holds for depths ≤ d. We
demonstrate the case d + 1. Consider strategies a ∈ OptI and b ∈ OptII such
that ¿a?bÀ= d+1. Let p ← l1, . . . , lr be the second move of Player I, in the

27

play a ? b. Now, since a ∈ OptI , every play determined by a and any strategy
of Player II, always has payoff T0. But then this easily implies that all the
li are positive literals and that the games ΓP∪{←li} have value T0; moreover,
their depth is at most d. Therefore, by the induction hypothesis, MP (li) = T0

for all 1 ≤ i ≤ r, which implies that MP (p) = T0 (since MP is a model of P).

(⇐) MP (p) = T0 (the case MP (p) = F0 is similar and omitted). We demon-
strate the following statement using induction: for all p in P and for all m ∈ ω,
if Tm

P (∅)(p) = T0, then ΓP∪{←p} has value T0. The basis case is for m = 0 and
it vacuously holds. Assume the statement holds for m. We demonstrate the
case m + 1, ie., we show that for all p in P , if Tm+1

P (∅)(p) = T0, then ΓP∪{←p}
has value T0. Obviously, there must exist in P either a fact of the form p ← or
a clause p ← l1, . . . , lr such that Tm

P (∅)(l1, . . . , lr) = T0. In the latter case, all
the li must be positive literals and Tm

P (∅)(li) = T0 for all i. By the induction
hypothesis, the games ΓP∪{←li} all have value T0. Consider now a strategy
a ∈ A which proceeds as follows: if there exists a fact p ← in P , then a
specifies this fact as the first move of Player I; otherwise, it specifies a clause
p ← l1, . . . , lr as discussed above. Moreover, the subsequent moves of Player
I dictated by a ensure a payoff T0 (we know this is possible because, by the
induction hypothesis, the games ΓP∪{←li} all have value T0). Therefore, the
strategy a gives a payoff T0 against all strategies of Player II; this implies that
the game ΓP∪{←p} has value T0.

This concludes the proof of ⇐ and of the basis case.

Induction Hypothesis: We assume the statement holds for all natural numbers
less than or equal to k.

Induction Step: We demonstrate the desired result for k + 1.

(⇒) We show that if ΓPG
has value Tk+1 then MP (p) = Tk+1 (the case Fk+1

is similar and omitted). We demonstrate by an inner induction on the depth
of the game that for all p in P , if ΓP∪{←p} has value Tk+1 and depth d, then
MP (p) = Tk+1. The basis case is for d = 1. The fact that d = 1 implies that
there exists an optimal strategy of Player I that chooses as the second move
of Player I the clause p ← E such that all literals in E that can be chosen by
optimal strategies of Player II, are negative. Let ∼ q be one of these literals.
Then, by applying the outer induction hypothesis to the game ΓP∪{←q}, one
can easily see that MP (q) = Fk and therefore MP (∼ q) = Tk+1. For every
other literal l that appears in E it can easily be shown that MP (l) ≥ Tk+1.
Therefore, MP (p) ≥ Tk+1 (since MP is a model of P), which (by the outer
induction hypothesis) means that MP (p) = Tk+1.

28

Assume now that the result holds for all depths less than or equal to d. We
demonstrate the case d + 1. Consider strategies a ∈ OptI and b ∈ OptII such
that ¿a? bÀ= d+1. Let p ← l1, . . . , lr be the second move of Player I under
the strategy a and let p1, . . . , pr be the atoms that correspond to the literals
l1, . . . , lr. Then, it is easy to see that for every one of the li one of the following
holds:

• li = pi and the game ΓP∪{←pi} has value Tk+1 and depth at most d, or
• li = pi and the game ΓP∪{←pi} has value ≥ Tk, or
• li =∼pi and the game ΓP∪{←pi} has value ≤ Fk.

In all the above cases, using either the inner or the outer induction hypothesis,
it is MP (li) ≥ Tk+1 for all 1 ≤ i ≤ r. This implies that MP (p) ≥ Tk+1 (since
MP is a model of P), which (by the outer induction hypothesis) means that
MP (p) = Tk+1.

(⇐) Assume MP (p) = Tk+1 (a similar proof applies in the case where MP (p) =
Fk+1). Then, there exists m such that Tm

P (Mk)(p) = Tk+1. We perform an inner
induction on m, ie., we demonstrate that if Tm

P (Mk)(p) = Tk+1 then ΓPG
has

value Tk+1. The case m = 0 vacuously holds because Mk does not assign the
value Tk+1 to any atom. Assume the statement holds for m. We demonstrate
the case m+1. Assume therefore that Tm+1

P (Mk)(p) = Tk+1. This implies that
there exists a clause p ← E in P such that Tm

P (Mk)(E) = Tk+1. Assume now
that Player I chooses as his second move a clause p ← E of the above form.
Then, no matter how Player II plays, Player I can ensure a payoff of at least
Tk+1:

• If Player II chooses a positive literal l such that Tm
P (Mk)(l) ≥ Tk+1, then the

game ΓP∪{←l} has (by the outer induction hypothesis or the inner induction
hypothesis) value MP (l) = Tm

P (Mk)(l) ≥ Tk+1.
• If Player II chooses a negative literal ∼r, and Tm

P (Mk)(∼r) ≥ Tk+1, then the
game ΓP∪{←r} has (again by the outer induction hypothesis) value MP (r) =
Tm

P (Mk)(r) ≤ Fk.

The above discussion suggests that Player I has a winning strategy that en-
sures a payoff of at least Tk+1. Now, since the game is determined (Corol-
lary 37) and the values above Tk+1 are (by the outer induction hypothesis)
reserved for the atoms of P that under MP have value greater than Tk+1,
we get that the value of ΓPG

is exactly Tk+1. This concludes the proof of the
theorem. 2

Notice that the above theorem does not state anything about the case where
either the game or the minimum infinite-valued model assigns to an atom
the value 0. But since the refined game is determined and since the game

29

and the infinite-valued model agree on all other cases, the following result is
immediate:

Theorem 42 Let P be a program and let p be an atom that appears in P .
Consider the goal G =← p and let ΓPG

= (X, R, A, B, V, Φ) be the correspond-
ing refined game. Moreover, let MP be the minimum infinite-valued model of
P . Then, ΓPG

has value v ∈ V if and only if MP (p) = v.

Therefore, the refined game is equivalent to the minimum infinite-valued model.
Now, since the refined game collapses to the unrefined one and the infinite-
valued model collapses to the well-founded one, we have:

Theorem 43 Let P be a program and let p be an atom that appears in P .
Consider the goal G =← p and let ΓPG

= (X, R, A, B, {F, 0, T}, Φ) be the
corresponding (unrefined) game. Moreover, let M be the well-founded model
of P . Then, ΓPG

has value v ∈ {F, 0, T} if and only if M(p) = v.

This concludes the proof of the equivalence between the well-founded seman-
tics and the simple unrefined negation game that we have introduced.

9 Related and Future Work

We have presented a game semantics for well-founded negation in logic pro-
gramming. Despite the fact that game semantics are well-established for more
mainstream programming languages [2], their application to logic program-
ming has been very restricted. To our knowledge, there exist only two other
works that deal with the problem of giving a game semantics to logic pro-
gramming. However, both of them deal with the negation-free case which is
actually simpler. The first of them, appears in [16] in which M. H. van Em-
den develops a probabilistic version of logic programming whose proof theory
is described using a two-person game. This work, although ground-breaking,
does not treat negation apart from a short discussion in the concluding section
regarding Clark’s negation-as-failure (at the time that [16] was published, well-
founded negation had not been formalized yet). More recently, the game for
the negation-free case was also studied in [4], and interesting connections with
the classical semantics of logic programming have been established; however,
well-founded negation is still not considered (apart from a short paragraph
in the concluding section regarding the possibility of extending the game to
programs with negative goals). Less directly connected to our work but very in-
dicative of the rich connections between game theory and logic programming,
is the work of M. De Vos (see for example [18], [19], etc). More specifically,
in [19] certain new logic programming formalisms are introduced in order to
model decision-making. It is demonstrated that strategic games and extensive

30

games of perfect information can be represented in these new formalisms in
such a way that the equilibria of the games can be retrieved as the stable
models or answer-sets of the programs.

There are many aspects of this work that we feel that should be further in-
vestigated. First of all, we believe that the (unrefined) negation game applies
as it is to infinite propositional programs. However, the proof of correctness
has to be more involved. This is mainly due to the fact that the construction
of the well-founded model of an infinite propositional program may require a
transfinite number of iterations. This is also reflected in the construction of
the minimum infinite-valued model of such programs: in this case the set V of
truth values contains a Fα and a Tα for each countable ordinal α (see [14] for
details). Therefore, in the correctness proof for the case of infinite programs,
one has to appropriately redefine the refined game so as that the payoff func-
tion ranges over this new extended set of truth values. In the theory of infinite
games such a situation is usually treated by introducing an auxiliary ordinal
in the game that can be considered as a type of clock which imposes a “time
limit” to the moves of the players (see for example [20][page 47]). We are
currently investigating this issue.

The use of any new semantic approach for a programming language, can only
be tested by its applications. We are therefore interested in applying the pro-
posed approach in order to establish properties of logic programs that use
well-founded negation. We conjecture that the game semantics can be used to
demonstrate the correctness of program transformations as-well-as to define
new ones. Since games are intuitive and natural, it is interesting to investigate
whether they can offer certain benefits when compared against the classical
semantics approaches. Moreover, we would like to extend the game semantics
to apply to other logic programming languages. One possible such candidate
is disjunctive logic programming (with or without negation in clause bodies).

Acknowledgments: We wish to thank M.H. van Emden for pointing out to
us that the game for negation-free programs already existed in his [16]. Spe-
cial thanks go to the reviewers of the paper for their constructive comments.
Finally, the second author would like to thank J. Mycielski for clarifications
regarding Corollary 3.3 of [10] and Y. Moschovakis for numerous explanations
regarding the theory of infinite games.

References

[1] K. Apt and R. Bol. Logic Programming and Negation: A Survey. Journal of
Logic Programming, 19,20:9–71, 1994.

31

[2] S. Abramsky and G. McCusker. Game Semantics. In H. Schwichtenberg and
U. Berger, editor, Computational Logic: Proceedings of the 1997 Marktoberdorf
Summer School, pages 1–56. Springer-Verlag, 1999.

[3] C. Baral and M. Gelfond. Logic Programming and Knowledge Representation.
Journal of Logic Programming, 19(20):73–148, 1994.

[4] R. Di Cosmo, J.V. Loddo, and S. Nicolet. A Game Semantics Foundation
for Logic Programming. In C. Palamidessi, H. Glaser, and K. Meinke, editor,
Proceedings of PLILP, volume LNCS 1490, pages 355–373. Springer-Verlag,
1998.

[5] M. Fitting. Fixpoint Semantics for Logic Programming: A Survey. Theoretical
Computer Science, 278(1–2):25–51, 2002.

[6] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic
Programming. In Proceedings of the Fifth Logic Programming Symposium, pages
1070–1080. MIT Press, 1988.

[7] D. Gale and F.M. Stewart. Infinite Games with Perfect Information. In Annals
of Mathematical Studies, volume 28, pages 245–266. Princeton University Press,
1953.

[8] D.A. Martin. Borel Determinacy. Annals of Mathematics, 102:363–371, 1975.

[9] Y. N. Moschovakis. Descriptive Set Theory. Amsterdam: North-Holland, 1980.

[10] J. Mycielski. Games with Perfect Information. In R.J. Aumann and S. Hart,
editor, Handbook of Game Theory, pages 41–70. Elsevier Science Publishers,
1992.

[11] H. Przymusinska and T. Przymusinski. Semantic Issues in Deductive Databases
and Logic Programs. In R. Banerji, editor, Formal Techniques in Artificial
Intelligence: a Source-Book, pages 321–367. North Holland, 1990.

[12] T.C. Przymusinski. Every Logic Program has a Natural Stratification and an
Iterated Fixed Point Model. In Proceedings of the 8th Symposium on Principles
of Database Systems, pages 11–21. ACM SIGACT-SIGMOD, 1989.

[13] P. Rondogiannis and W.W. Wadge. An Infinite-Valued Semantics for Logic
Programs with Negation. In Proceedings of the 8th European Conference on
Logics in Artificial Intelligence (JELIA’02), pages 456–467. Springer-Verlag,
2002.

[14] P. Rondogiannis and W.W. Wadge. Minimum Model Semantics for Logic
Programs with Negation-as-Failure. ACM Transactions on Computational
Logic, 6(2):441–467, 2005.

[15] J. Ullman. Database and Knowledge-Base Systems. Computer Science Press,
1989.

[16] M.H. van Emden. Quantitative Deduction and its Fixpoint Theory. Journal of
Logic Programming, 3(1):37–53, 1986.

32

[17] A. van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

[18] M. De Vos. and D. Vermeir. Choice Logic Programs and Nash Equilibria
in Strategic Games. In Proceedings of the 13th International Workshop on
Computer Science Logic (CSL), pages 266–276. Springer-Verlag, 1999.

[19] M. De Vos. Logic Programming, Decisions and Games. PhD thesis, Vrije
Universiteit Brussel, 2001.

[20] W.W. Wadge. Reducibility and Determinateness on the Baire Space. PhD
Dissertation, University of California, Berkeley, 1984.

33

