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a b s t r a c t

We obtain a simple, purely game-theoretic characterization of Boolean grammars
[A. Okhotin, Boolean grammars, Information and Computation, 194(1) (2004) 19–48].
In particular, we propose a two-player infinite game of perfect information for Boolean
grammars, which is equivalent to their well-founded semantics. The game is directly
applicable to the simpler classes of conjunctive and context-free grammars, and offers a
promising new connection between game theory and formal languages.
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1. Introduction

Boolean grammars were recently proposed by Okhotin [10] as a generalization of context-free grammars. The main
characteristic of Boolean grammars is that they allow conjunction and negation to appear in the right hand sides of rules.
The resulting formalism has proven to be a very expressive one (see for example [12]), while retaining to a large extent the
efficient parsing properties of context-free grammars.

The theory of Boolean grammars is presently under rapid development. However, there exist many fundamental
questions that still remain unanswered (see [11] for an exposition of the basic open problems of the field). The area appears
to be quite an intriguing one, since many of the problems remain unanswered even for the negation-free class (namely, for
the class of conjunctive grammars [9]).

In this paper we contribute to this area of research by providing a simple, purely game-theoretic characterization of the
semantics of these type of grammars. More specifically, we propose a two-player infinite game of perfect information for
Boolean grammars, which is equivalent to their well-founded semantics [3].

The game characterization we propose has the advantage of being very simple to understand and present, due to its
anthropomorphic flavor. In this respect, it appears to be easier to use than the corresponding well-founded approach of [3].
We believe that the new approach will offer more benefits when used in order to prove the correctness of transformations
on Boolean grammars, while the well-founded approach will be more appropriate for computing the meaning of specific
grammars. Finally, it should be mentioned that the game is also applicable to the simpler classes of conjunctive [9] and
context-free grammars, and therefore it also provides an alternative equivalent way to define the semantics for these type
of grammars.
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The game we present has been inspired from a recent game-theoretic characterization of logic programs with
negation [1]. Actually, the present game is more complicated than the one in [1] since it involves string manipulation by
the two-players. A contribution of our work is that it gives an alternative proof technique than the one derived in [1]. More
specifically, the proof in [1] proceeds in two steps: it first establishes the determinacy of the logic programming game by
using certain deep notions from infinite-game theory (namely, the theory of Borel sets [6] and Martin’s Borel Determinacy
Theorem [5]); subsequently, based on the determinacy result, it establishes the equivalence of the game-semantics to the
well-founded semantics of logic programs. The proof in [1] also uses an intermediate game (called the refined-game) as-well-
as a refined version of the well-founded semantics [13]. Our present proof establishes at the same time both the determinacy
of the game and its equivalence to the well-founded semantics (avoiding completely the use of Borel sets, Martin’s theorem,
the refined game and the refined well-founded semantics used in [1]).

The key idea of the new proof can be outlined as follows. The well-founded model is first used as a ‘‘guide’’ in order to
define a strategy for Player I and a corresponding one for Player II of the infinite game we propose. It is then demonstrated
that these two strategies are optimal, i.e., they ensure the best possible outcome for the two players. Based on this fact, it is
shown that the game has the same value as that computed by the well-founded construction.

The rest of the paper is organized as follows: Section 2 presents preliminary material; in particular, it gives a self-
contained presentation of the well-founded semantics for Boolean grammars. Section 3 gives an informal explanation of
the game and illustrates it by examples. Section 4 gives a precise formalization of the new game. Section 5 proves the
equivalence of the game to the well-founded semantics of Boolean grammars. Section 6 contains pointers to future work.

2. Preliminaries

In [9,10] Okhotin introduced the classes of conjunctive and Boolean grammars respectively.1 Formally:

Definition 1. A Boolean grammar is a quadruple G = (Σ,N, P, S), where Σ and N are disjoint finite nonempty sets of
terminal and nonterminal symbols respectively, P is a finite set of rules, each of the form

C → α1& · · ·&αm&¬β1& · · ·&¬βn (m + n ≥ 1, C ∈ N, αi, βj ∈ (Σ ∪ N)∗)

and S ∈ N is the start symbol of the grammar. We will call the αi’s positive conjuncts and the ¬βj’s negative. A Boolean
grammar is called conjunctive if all its rules contain only positive conjuncts.

The semantics of Boolean grammars is not straightforward due to the fact that the nonterminals of the grammar may
depend on each other in a circularway that involves negation. To circumvent this problem, it has been proposed [3,4] that the
correct mathematical formulation of the meaning of Boolean grammars should be based on three-valued formal languages.
Intuitively, given a three-valued language L and a string w over the alphabet of L, there are three cases: either w ∈ L (i.e.,
L(w) = 1), or w ∉ L (i.e., L(w) = 0), or finally, the membership of w in L is unclear (i.e., L(w) =

1
2 ). Given this extended

notion of language, it is now possible to interpret Boolean grammars with circularities that involve negation. For example,
the meaning of the grammar S → ¬S is the language which assigns to every string the value 1

2 . These ideas are formalized
in the rest of this section (our presentation follows [8,4]).

Definition 2. Let Σ be a finite non-empty set of symbols. Then, a (three-valued) language over Σ is a function from Σ∗ to
the set


0, 1

2 , 1

.

Based on the above definition, we can generalize the usual set-theoretic notion of subset as well as that of the empty
language:

Definition 3. Let L, L′ be three-valued languages overΣ . Then,wewrite L ⊆ L′ if and only if for everyw ∈ Σ∗, L(w) ≤ L′(w).
The empty three-valued language is the language L such that for every w ∈ Σ∗, L(w) = 0.

We will also need a second subset relation (the Fitting subset relation) which compares the degree of information of two
languages:

Definition 4. Let L, L′ be three-valued languages overΣ . Then, we write L ⊆F L′ if and only if for everyw ∈ Σ∗, if L(w) ≠
1
2

then L(w) = L′(w). The Fitting-empty three-valued language is the language L such that for every w ∈ Σ∗, L(w) =
1
2 .

The following definition, which generalizes the familiar notion of concatenation of languages, is also needed:

1 As one of the reviewers remarked, from a technical point of view, every conjunctive grammar and every boolean grammar is still a context-free
grammar (the left side of every rule is a single variable, so replacement is independent of context). Therefore, a more accurate naming of these three types
of grammars would be ‘‘classical context-free grammars’’, ‘‘conjunctive context-free grammars’’, and ‘‘boolean context-free grammars’’. However, wewill retain
the usual naming ‘‘context-free’’, ‘‘conjunctive’’ and ‘‘boolean’’ since it is widely used in the literature.
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Definition 5. Let Σ be a finite non-empty set of symbols and let L1, . . . , Ln be (three-valued) languages over Σ . We define
the three-valued concatenation of the languages L1, . . . , Ln to be the language L such that:

L(w) = max
(w1,...,wn):
w=w1 ···wn


min
1≤i≤n

Li(wi)


.

The concatenation of L1, . . . , Ln will be denoted by L1 ◦ · · · ◦ Ln.

The above definition can be explained as follows:

• A stringw belongs to L1 ◦· · ·◦Ln (truth value 1) if it can be partitioned into n parts so that for every i, the i-th part belongs
to Li.

• A string w is excluded from the concatenation (truth value 0) if in every partition of w, there exists some i such that the
i-th part is excluded from the language Li.

• Themembership of a stringw is undefined in the concatenation (truth value 1
2 ) if there exists a partition ofw such that no

part is excluded from the corresponding language, and there does not exist a partition of w such that every part belongs
to the corresponding language.

We can now define the notion of interpretation of a given Boolean grammar:

Definition 6. An interpretation I of a Boolean grammar G = (Σ,N, P, S) is a function I : N →

Σ∗

→

0, 1

2 , 1


.

An interpretation I can be recursively extended to apply to expressions that appear as the right-hand sides of Boolean
grammar rules:

Definition 7. Let G = (Σ,N, P, S) be a Boolean grammar and I be an interpretation of G. Then I can be extended to apply
to expressions that appear as the right-hand sides of Boolean grammar rules as follows:

• For the empty sequence ϵ and for all w ∈ Σ∗, it is I(ϵ)(w) = 1 if w = ϵ and I(ϵ)(w) = 0 otherwise.
• Let a ∈ Σ be a terminal symbol. Then, for every w ∈ Σ∗, I(a)(w) = 1 if w = a and I(a)(w) = 0 otherwise.
• Let α = α1 · · · αn, n ≥ 2, be a sequence in (Σ ∪ N)∗. Then, for every w ∈ Σ∗, it is I(α)(w) = (I(α1) ◦ · · · ◦ I(αn))(w).
• Let α ∈ (Σ ∪ N)∗. Then, for every w ∈ Σ∗, I(¬α)(w) = 1 − I(α)(w).
• Let l1, . . . , ln be conjuncts. Then, for every w ∈ Σ∗, I(l1& · · ·&ln)(w) = min{I(l1)(w), . . . , I(ln)(w)}.

We are particularly interested in interpretations that satisfy all the rules of a given grammar:

Definition 8. Let G = (Σ,N, P, S) be a Boolean grammar and I be an interpretation of G. Then, I is amodel of G if for every
rule A → l1& · · ·&ln in P , it is I(A) ⊇ I(l1& · · ·&ln).

In the definition of the well-founded model, two orderings on interpretations play a crucial role. Given two
interpretations, the first ordering (usually called the standard ordering) compares their degree of truth:

Definition 9. Let G = (Σ,N, P, S) be a Boolean grammar and I, J be two interpretations of G. Then, we say that I ≼ J if for
all A ∈ N , I(A) ⊆ J(A).

Among the interpretations of a given Boolean grammar, there is one which is the least with respect to the ≼ ordering,
denoted by ⊥, and which assigns the empty language to all nonterminals of the grammar.

The second ordering (usually called the Fitting ordering) compares the degree of information of two interpretations:

Definition 10. Let G = (Σ,N, P, S) be a Boolean grammar and I, J be two interpretations of G. Then, we say that I ≼F J if
for all A ∈ N , I(A) ⊆F J(A).

Among the interpretations of a given Boolean grammar, there is one which is the least with respect to the ≼F ordering,
denoted by ⊥F , and which assigns the Fitting-empty language to all nonterminals of the grammar.

Given a set U of interpretations, we will write lub≼U (respectively lub≼FU) for the least upper bound of the members of
U under the standard ordering (respectively, the Fitting ordering).

Consider a Boolean grammar G. Then, for any interpretation J of G we define the operator ΘJ : I → I on the set I of
all 3-valued interpretations of G. Intuitively, J represents information that we have already derived and is considered stable
(and therefore it can be safely used to compute the value of negative conjuncts). More specifically, given I ∈ I, A ∈ N and
w ∈ Σ∗, ΘJ(I)(A)(w) is the value that w gets (using the rules of the grammar) in one stepwhen using J in order to evaluate
the negative conjuncts in rules defining A in G and I to evaluate the positive ones. More formally:

Definition 11. Let G = (Σ,N, P, S) be a Boolean grammar, let I be the set of all three-valued interpretations of G and let
J ∈ I. The operator ΘJ : I → I is defined as follows. For every I ∈ I, for all A ∈ N and for all w ∈ Σ∗:

1. ΘJ(I)(A)(w) = 1 if there is a rule A → l1& · · ·&ln in P such that, for every positive li it is I(li)(w) = 1 and for every
negative li it is J(li)(w) = 1;
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2. ΘJ(I)(A)(w) = 0 if for every rule A → l1& · · ·&ln in P , either there exists a positive li such that I(li)(w) = 0 or there
exists a negative li such that J(li)(w) = 0;

3. ΘJ(I)(A)(w) =
1
2 , otherwise.

An important fact regarding the operator ΘJ is that it is monotonic with respect to the ≼ ordering of interpretations:

Theorem 12. Let G = (Σ,N, P, S) be a Boolean grammar and let J be an interpretation of G. Then, the operator ΘJ is monotonic
with respect to the ≼ ordering of interpretations. Moreover, ΘJ has a unique least (with respect to ≼) fixed point Θ

↑ω

J which can
be constructed as follows:

Θ
↑0
J = ⊥

Θ
↑n+1
J = ΘJ(Θ

↑n
J )

Θ
↑ω

J = lub≼{Θ
↑n
J | n < ω}.

We will denote by Ω(J) the least fixed point Θ
↑ω

J of ΘJ . Given a grammar G, we can use the Ω operator to construct a
sequence of interpretations whose least upper bound MG (with respect to the Fitting ordering) is a distinguished model of
G:

Theorem 13. Let G = (Σ,N, P, S) be a Boolean grammar. Then, the operatorΩ , whereΩ(J) = Θ
↑ω

J , is monotonic with respect
to the≼F ordering of interpretations. Moreover,Ω has a unique least (with respect to≼F ) fixed pointMG which can be constructed
as follows:

M0 =⊥F

Mn+1 = Ω(Mn)

MG = lub≼F {Mn | n < ω}.

Theorem 14. Let G = (Σ,N, P, S) be a Boolean grammar. Then, MG is a model of G (which will be called the well-founded
model of G).

The significance of the above result lies in the fact that it specifies for every Boolean grammar G a three-valued formal
language MG that can be taken as the meaning of G. It can be seen that the well-founded semantics of Boolean grammars
generalizes both the semantics of context-free as well as the semantics of conjunctive grammars.

At this point, it is useful to give some further explanations concerning the construction ofMG. This information will help
in understanding the functions that will be introduced in Definition 15, and which will be heavily used in establishing the
equivalence of the proposed game to the well-founded semantics.

Consider A ∈ N and w ∈ Σ∗. The monotonicity of the operator Ω with respect to the ≼F ordering of interpretations, has
different consequences depending on the value ofMG(A)(w). More specifically:

• MG(A)(w) = 1. Then, there exists some i > 0, such that2 for every n < i, Mn(A)(w) =
1
2 and for every n ≥ i,

Mn(A)(w) = 1. The former implies (by the definition of Ω and the monotonicity of the Θ operator with respect to
≼) that for every n, 1 ≤ n < i, there exists a jn ≥ 1 such that for every k < jn, Θ

↑k
Mn−1

(A)(w) = 0 and for every

k ≥ jn, Θ
↑k
Mn−1

(A)(w) =
1
2 . The latter implies that for every n ≥ i there exists a jn ≥ 1, such that3 for every k < jn,

Θ
↑k
Mn−1

(A)(w) ≤
1
2 and for every k ≥ jn, Θ

↑k
Mn−1

(A)(w) = 1.
• MG(A)(w) = 0. Then, there exists some i > 0, such that for everyn < i,Mn(A)(w) =

1
2 and for everyn ≥ i,Mn(A)(w) = 0.

The former implies that for every n, 1 ≤ n < i, there exists a jn ≥ 1, such that for every k < jn, Θ
↑k
Mn−1

(A)(w) = 0 and for

every k ≥ jn, Θ
↑k
Mn−1

(A)(w) =
1
2 . The latter implies that for every n ≥ i and for every k ≥ 0, Θ↑k

Mn−1
(A)(w) = 0.

• MG(A)(w) =
1
2 . Then, for every n ≥ 0, Mn(A)(w) =

1
2 . This implies that for every n ≥ 1 there exists a jn ≥ 1, such that

for every k < jn, Θ
↑k
Mn−1

(A)(w) = 0 and for every k ≥ jn, Θ
↑k
Mn−1

(A)(w) =
1
2 . Moreover, since MG is a fixed point of Ω ,

there exists a j ≥ 1, such that for every k < j, Θ↑k
MG

(A)(w) = 0 and for every k ≥ j, Θ↑k
MG

(A)(w) =
1
2 .

Similar situations occur if, more generally, a sequence of symbols α ∈ (Σ ∪ N)∗ instead of a single nonterminal A ∈ N is
considered.

In the following definition, we denote by E the set (Σ ∪N)∗−(Σ∗
∪N) (that is, E consists of all sequences of terminal and

nonterminal symbols of length at least 2, that contain at least one nonterminal symbol). Thus, Σ∗, N , and E form a partition
of (Σ ∪ N)∗.

2 Notice that in Definition 15, i will be denoted by odp(A, w) (intuitively, the outer determination point of the value of MG(A)(w)).
3 In Definition 15, ji will be denoted by idp(A, w) (intuitively, the inner determination point of the value ofMG(A)(w)).
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Definition 15. Let G = (Σ,N, P, S) be a Boolean grammar, α ∈ (Σ ∪ N)∗ and w ∈ Σ∗. We define the functions odp and
idp (standing for outer determination point and inner determination point respectively) as follows:

odp(α, w) =


min{i | Mi(α)(w) ∈ {0, 1}}, ifMG(α)(w) ∈ {0, 1}
undefined, ifMG(α)(w) =

1
2

odp(¬α, w) = odp(α, w)

idp(α, w) =



0, ifMG(α)(w) = 1
and odp(α, w) = 0

min{j | Θ
↑j
Modp(α,w)−1

(α)(w) = 1}, ifMG(α)(w) = 1
and odp(α, w) > 0

min{j | Θ
↑j
MG

(α)(w) =
1
2 }, ifMG(α)(w) =

1
2

undefined, ifMG(α)(w) = 0.

Notice that the definitions of the functions odp and idp can be justified based on the discussion given just before
Definition 15. The following lemma will prove useful in a later section of the paper:
Lemma 16. If MG(α)(w) = 1 and odp(α, w) > 0 then idp(α, w) > 0.
Proof. Suppose, for the sake of contradiction, that odp(α, w) = i > 0 and idp(α, w) = 0. Then from the definition of idp
we have Θ

↑0
Mi−1

(α)(w) = 1, which implies that ⊥ (α)(w) = 1. Therefore, it must be α = w, from which we obtain that also
⊥F (α)(w) = 1. Thus, M0(α)(w) = 1. From Definition 15 it follows that odp(α, w) = 0, which is a contradiction. �

3. The game for Boolean grammars

Consider a Boolean grammar G = (Σ,N, P, S) and let A ∈ N and w ∈ Σ∗. We describe at an intuitive level a two-
player game ΓG(A, w) which has the property thatMG(A)(w) = 0 if and only if Player I has a winning strategy in ΓG(A, w);
similarly,MG(A)(w) = 1 if and only if Player II has a winning strategy in ΓG(A, w). Finally,MG(A)(w) =

1
2 if and only if both

Players have strategies that ensure for them at least a tie in ΓG(A, w).
The following definition will be needed:

Definition 17. Let u ∈ Σ∗. Then, a partition π of u of length n, is a tuple ⟨u1, . . . , un⟩ ∈ (Σ∗)n such that u1 · · · un = u.
We will refer to the i-th element of a partition π as π(i). Similarly, given α ∈ (Σ ∪ N)+, we will write α(i) for the i’th

symbol of α.
When a play of the game ΓG(A, w) starts, Player I initially has the role of the Doubter and Player II the role of the Believer.

It is possible that during a play the two players swap roles (in the extreme case this may happen infinitely many times). If a
move is played by the Believer (respectively, Doubter), then this is indicated by a superscript ‘‘+’’ (respectively, a superscript
‘‘−’’).

In the beginning of a play of the game ΓG(A, w) Player I does not believe that the string w can be produced by the
nonterminal A of the Boolean grammar G. For this reason, he plays themove (A, w)−. The intuitive explanation for thismove
is ‘‘I doubt that w can be produced from A’’. On the other hand, Player II believes that the string w can be produced by the
nonterminalA of the Boolean grammarG. For this reason, he replies to themove of Player Iwith a pair (A → l1& · · ·&lm, w)+,
where A → l1& · · ·&lm is a rule in G. The intuitive explanation for this move is ‘‘I believe that w can be produced from A and I
can prove this by using this specific rule of the grammar’’. Now the reply of Player I to the move of Player II is a pair of the form
(li, w)−, where li is one of the conjuncts in the body of the rule that Player I has just played. The intuition in this case is ‘‘I
doubt that w can be produced from the rule you have just played and more specifically I doubt that w can be produced from li’’.
We nowhave to specify the reaction of a player to amove of the form (l, u)−, for some conjunct l and u ∈ Σ∗. We distinguish
the following cases:
Case 1: l is positive.
Subcase 1.1: l contains nonterminals. The next move depends on the length of l:

• |l| = 1, i.e., l = Bwhere B is a nonterminal. Then, the Believer plays a pair (B → l1& · · ·&lm, u)+, where B → l1& · · ·&lm
is a rule in G. The explanation for this move as well as the reaction of the Doubter, are identical to those specified in the
beginning of the previous paragraph for the first move in the game.

• |l| > 1, i.e., l = α where α contains at least one nonterminal and |α| ≥ 2. Then, the Believer partitions u into |α| parts
(possibly equal to ϵ and not necessarily of the same size), and plays (α, π)+ where π is the partition just mentioned.
The intuition behind this rule is as follows: ‘‘I believe that u can be produced from α and I can demonstrate this to you by
partitioning u into |α| substrings such that each symbol from α can produce the corresponding substring from u’’. The Doubter
will then have to choose one of the symbols of the sequence α, say α(i), together with the corresponding string from the
partition π , namely π(i), and play the move (α(i), π(i))−. The intuition now is: ‘‘I doubt that α(i) can produce π(i), and
therefore I was right to believe that α cannot produce u’’.
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Subcase 1.2: l does not contain any nonterminals. Then, the next move depends on whether l is equal to u or not:

• l = u, i.e., the last move was of the form (u, u)−. Then, the Believer plays the move (I’ve won). The intuition here is ‘‘You
have just doubted that u can be produced from u, which is completely unreasonable and I have just won’’.

• l = v, where v ≠ u. Then, the Believer plays the move (I’ve lost). The intuition is: ‘‘You have just doubted that u can be
produced from v, where v ≠ u; you are right, I have just lost’’.

Case 2: l is negative, i.e., l = ¬α, where α ∈ (Σ ∪ N)∗. Then, the player who was previously the Believer must now become
the Doubter and play the pair (α, u)− as the next move. The intuitive reading here is: ‘‘I doubt that u can be produced from
α (and therefore I was right in my previous belief that u can be produced by the rule that contains the conjunct ¬α in its body)’’.
Therefore, a consequence of this rule of the game is that when negation is encountered, the players swap roles: the Believer
now becomes a Doubter and vice-versa.

The above concludes the description of the reaction of a player to a move of the form (l, u)−. It now only remains to
provide responses regarding the (I’ve lost) and the (I’ve won) moves in order to ensure that the game is infinite in all cases.
So, if a move of a player is (I’ve won) then the reply of the other player is (I’ve lost), and vice-versa.

By following the above rules, we can form a play of the game (i.e., an infinite legal sequence of moves). Assume that we
are given such a play of the game.We can now state the criteria for winning, losing and obtaining a tie. First of all, any player
who first plays the (I’ve won) move, wins. Furthermore, if the game play does not contain any (I’ve won) moves, and after a
certain point one of the players remains a Doubter, this player wins (the Doubter is considered a winner in this case since the
Believer fails to establish his belief in a finite number of steps). Finally, if during a play the two players swap roles infinitely
often, the result is a tie: intuitively, none of the players has managed to win the game in a finite number of moves; moreover,
none of the two players has managed to remain a Doubter indefinitely (since the roles of the two players are interchanged
infinitely many times).

We can now illustrate the game with a few simple examples.
Example 18. Consider the Boolean grammar Gwith the following rules:

S → bbS & ¬bSb
S → a.

Moreover, consider the string w = bba. The following is a possible play of the game ΓG(S, bba):

Player I Player II

(S, bba)− (S → bbS & ¬bSb, bba)+
(¬bSb, bba)− (bSb, bba)−
(bSb, ⟨b, b, a⟩)+ (b, a)−
(I’ve lost) (I’ve won)
· · · · · ·

Obviously, Player I loses since he is the first who plays the (I’ve lost) move. Actually, one can easily see that Player II has a
strategy in the game ΓG(S, bba) that always ‘‘corners’’ Player I. As we are going to see shortly, this means that the string bba
belongs to the language of the grammar.

Consider on the other hand the string w = abb and the corresponding game ΓG(S, abb). The following is a possible play:

Player I Player II

(S, abb)− (S → bbS & ¬bSb, abb)+
(bbS, abb)− (bbS, ⟨a, ϵ, bb⟩)+
(b, a)− (I’ve lost)
(I’ve won) (I’ve lost)
· · · · · ·

In this case, Player I is the winner of the play. Actually, it is easy to see that Player I has a strategy that always ‘‘corners’’
Player II. As we are going to see shortly, this means that the string abb does not belong to the language of the grammar. �

Example 19. Consider the context-free grammar G with only the rule S → SS (which does not produce any string). The
following is a possible play of the game ΓG(S, ϵ):

Player I Player II

(S, ϵ)− (S → SS, ϵ)+

(SS, ϵ)− (SS, ⟨ϵ, ϵ⟩)+

(S, ϵ)− (S → SS, ϵ)+

· · · · · ·
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The above play goes on for ever in the same manner. Observe that this is actually the only possible play of this game, as
both players always have only one legal response. Therefore, Player I does not have a strategy to enforce Player II to play
the move (I’ve lost). However, even in this case, the winner of the play is Player I: if one of the players manages to remain a
Doubter for ever, then this player wins. �

Example 20. Consider the Boolean grammar G with only the rule S → ¬S. The following is a possible play of the game
ΓG(S, aa):

Player I Player II

(S, aa)− (S → ¬S, aa)+
(¬S, aa)− (S, aa)−
(S → ¬S, aa)+ (¬S, aa)−
(S, aa)− (S → ¬S, aa)+
· · · · · ·

In this case the play goes on for ever with none of the players being in a position to announce a victory. Moreover, in this
play the two players swap roles (the Believer becomes a Doubter and vice versa) infinitely many times. The result of this
play is a tie. �

4. A formalization of the game

In this section we formalize the game we have just described. At first, we present some basic background on infinite
games of perfect information, which we then use in order to define the proposed game for Boolean grammars in a formal
way.

4.1. Infinite games of perfect information

Infinite games of perfect information [2] are games that take place between two players that we will call Player I and
Player II. In such games there does not exist any ‘‘hidden information’’: both players know all the moves that have been
played so far, and there are no simultaneous moves. The games are infinite in the sense that they do not terminate at a finite
stage and therefore in order to derive the outcome of a play it may be necessary to examine an infinite sequence of moves.

Before defining perfect information games in a formal way, we need to introduce some notation. Sequences (finite or
infinite in length) will usually be denoted by s or x. A finite sequence of length k will be denoted by ⟨s0, s1, . . . , sk−1⟩ and
the empty sequence by ⟨⟩. Given a set X , an infinite tree on X is a set R ⊆ Xω of infinite sequences4 of members of X .

During a perfect information game, the two players exchange moves from a non-empty set X , called the set of moves.
Initially, Player I chooses some x0 ∈ X , then Player II chooses x1 ∈ X , and so on. There also exists a set of rules specifying the
possible moves of the two players. The rules will usually be defined by putting down restrictions on the choice of xn that
depend on the preceding moves x0, . . . , xn−1. The rules (see for example [6]) implicitly define an infinite tree R on X:

⟨x0, x1, . . .⟩ ∈ R ⇔ for each i ≥ 0, xi is allowed by the restrictions.

Additionally, we assume the existence of a set D, called the set of payoffs, which consists of all possible outcomes of the
game. Finally, we consider a function Φ , called the payoff function, which calculates the outcome of a play of the game. The
above notions are formalized as follows:

Definition 21. An infinite game of perfect information is a quadruple Γ = (X, R,D, Φ), where:

• X is a nonempty set, called the set of moves for Players I and II.
• R is an infinite tree on X (i.e., R ⊆ Xω), usually implicitly specified by a set of rules.
• D is a linearly ordered set called the set of rewards, with the property that for all S ⊆ D, lub(S) and glb(S) belong to D.
• Φ : R → D, is the payoff function of the game.

Based on the set of moves X of a game, we define two sets StratI(Γ ) and StratII(Γ ) which correspond to the set of
strategies for Player I and Player II respectively. A strategy σ ∈ StratI(Γ ) assigns a move to each even length legal sequence
of moves; similarly for τ ∈ StratII(Γ ) and odd length legal sequences of moves.

Definition 22. Let Γ = (X, R,D, Φ) be a game. Let Rn be the set of initial segments of elements of R that have length n.
Then, a strategy for Player I is a function σ : (


n<ω R2n) → X such that for every n < ω and for every ⟨x0, . . . , x2n−1⟩ ∈ R2n,

4 The definition of an infinite tree as a set of infinite sequences can be intuitively justified as follows: the nodes of the tree are all the initial segments of
the infinite sequences and the root of the tree is the empty sequence ⟨⟩. A consequence of this definition is that an infinite tree is not allowed to contain
terminal nodes (leaves), i.e., it is purely infinite.
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⟨x0, . . . , x2n−1, σ (⟨x0, . . . , x2n−1⟩)⟩ ∈ R2n+1. Similarly, a strategy for Player II is a function τ : (


n<ω R2n+1) → X such that
for every n < ω and for every ⟨x0, . . . , x2n⟩ ∈ R2n+1, ⟨x0, . . . , x2n, τ (⟨x0, . . . , x2n⟩)⟩ ∈ R2n+2. We denote by StratI(Γ ) and by
StratII(Γ ) the sets of strategies of Players I and II respectively.

Two strategies, when played one against the other, define a play of the game:

Definition 23. Let Γ be a game and let σ ∈ StratI(Γ ) and τ ∈ StratII(Γ ). We define the following sequence:

s0 = σ(⟨⟩)

s2i = σ(⟨s0, s1, . . . , s2i−1⟩), for all i ≥ 1
s2i+1 = τ(⟨s0, s1, . . . , s2i⟩), for all i ≥ 0.

The play of the game determined by the strategies σ and τ , which is denoted by σ ⋆τ , is the infinite sequence ⟨s0, s1, s2, . . .⟩.
The si’s will be called the moves of the play.

Until nowwe have focused on particular plays of a game.Wewould like to have a notion that gives us the outcome of the
whole game provided that Player I tries his best tominimize the result while Player II tries his best tomaximize it. Moreover,
we would like that during this process, each player can decide for his best strategy, independently of the corresponding
choice of the other player. This idea is captured by determinacy:

Definition 24 (Determinacy). Let Γ = (X, R,D, Φ) be a game and let S = StratI(Γ ) and T = StratII(Γ ). Then Γ is
determinedwith value v if:

lubτ∈T glbσ∈S Φ(σ ⋆ τ) = glbσ∈S lubτ∈T Φ(σ ⋆ τ) = v.

The following lemma can be established (see for example [7]):

Lemma 25. Let Γ = (X, R,D, Φ) be a game and let S = StratI(Γ ) and T = StratII(Γ ). Then:

lubτ∈T glbσ∈S Φ(σ ⋆ τ) ≤ glbσ∈S lubτ∈T Φ(σ ⋆ τ).

Determinacy is a very important notionwhich is in general not straightforward to establish. In fact, one can define infinite
games that are not determined (see for example [2]). For the gamewe are considering here, we demonstrate its determinacy
in Section 5.

Actually, for our game, one can intuitively understand what determinacy means and be convinced that it indeed holds.
Given a string w ∈ MG(S), Player II can design a strategy for proving this fact which succeeds against any strategy of
Player I (i.e., Player II does not have to worry about how Player I is going to try to reject the membership of w in MG(S)).
Symmetrically, given a string w ∉ MG(S), Player I can design a strategy for proving this fact which succeeds against any
strategy of Player II.

4.2. A formal definition of the game

Let G = (Σ,N, P, S) be a Boolean grammar, α ∈ (Σ ∪ N)∗ and w ∈ Σ∗. We will define the perfect information game
ΓG(α, w) = (X, R(α,w),D, Φ(α,w)). This game generalizes the one introduced informally in the previous section, as α is now
allowed to be any sequence of terminal and nonterminal symbols rather than a single nonterminal.

Without loss of generality, wemay assume that for every nonterminal there exists at least one rule that defines it: if there
is a nonterminal B that is not defined inG (i.e., there does not exist in P any rulewith left hand side equal to B), we can always
construct an equivalent grammar by adding the rule B → ϵ&¬ϵ. Recall that we denote by E the set (Σ ∪ N)∗ − (Σ∗

∪ N).
The game ΓG(α, w) can now be formally defined. We first define the set of moves, which is independent of α and w and

depends only on G:

X = {(β, u)− | β ∈ (Σ ∪ N)∗, u ∈ Σ∗
} ∪ {(¬β, u)− | β ∈ (Σ ∪ N)∗, u ∈ Σ∗

} ∪ {(Z, u)+ | Z ∈ P, u ∈ Σ∗
}

∪ {(β, π)+ | β ∈ (Σ ∪ N)∗, π ∈ (Σ∗)|β|
} ∪ {(I’ve won), (I’ve lost)}.

We next define the infinite tree R(α,w) of the game ΓG(α, w): R(α,w) consists of all sequences ⟨x0, x1, . . . , xk, . . .⟩, which
satisfy the following restrictions for each k ≥ 0:

R0. x0 = (α, w)−.
R1. If xk = (B, u)−, where B ∈ N , then xk+1 = (B → l1& · · ·&lm, u)+, where B → l1& · · ·&lm is a rule of G.
R2. If xk = (B → l1& · · ·&lm, u)+, then xk+1 = (li, u)−, for some i, where 1 ≤ i ≤ m.
R3. If xk = (β, u)−, where β ∈ E, then xk+1 = (β, π)+, where π is a partition of u of length |β|.
R4. If xk = (β, π)+, where β ∈ E and π ∈ (Σ∗)|β|, then xk+1 = (β(i), π(i))−, for some i, where 1 ≤ i ≤ |β|.
R5. If xk = (¬β, u)−, then xk+1 = (β, u)−. A transition of this form from xk to xk+1 will be called a role-switch.
R6. If xk = (u, u)−, where u ∈ Σ∗, or xk = (I’ve lost), then xk+1 = (I’ve won).
R7. If xk = (v, u)−, where v, u ∈ Σ∗ and v ≠ u, or xk = (I’ve won), then xk+1 = (I’ve lost).
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We should repeat at this point that since we are dealing with infinite games, a play continues even if at some point the
play of the game has essentially ended in favor of one of the two players; this is achieved using the twomoves (I’ve won) and
(I’ve lost). The player who has won the play keeps on playing the move (I’ve won), while the other player keeps on playing
themove (I’ve lost). This way every play is infinite. A play that does not contain (I’ve won) and (I’ve lost)moveswill be called
a genuinely infinite play.

Consider now the set of rewards. We define D = {0, 1
2 , 1}. In other words, a play of the game can be assigned the value

0 (this means that Player I has won the play), the value 1 (Player II has won), or the value 1
2 (the result is a tie). It remains to

formally define the payoff function. The following definitions are needed:

Definition 26 (True-Play, False-Play). Let G = (Σ,N, P, S) be a Boolean grammar, w ∈ Σ∗ and α ∈ (Σ ∪ N)∗, and let s be
a play of the corresponding game ΓG(α, w). Then, s is called a true-play if either Player II plays the (I’ve won) move in s or s
is a genuinely infinite play that contains an odd number of role-switches. Similarly, s is called a false-play if either Player I
plays the (I’ve won) move in s or s is a genuinely infinite play that contains an even number of role-switches.

The payoff function is defined as follows:

Φ(α,w)(s) =

1, if s is a true-play
0, if s is a false-play
1
2 , otherwise.

This completes the formal presentation of the game. It should be noted at this point that since conjunctive and context-
free grammars are subcases of Boolean grammars, the game (actually in a simpler form) is also applicable to them. More
specifically, in the case of conjunctive grammars, rule R5 is not needed; in the case of context-free grammars, rule R5 is also
not needed; moreover, in rules R1 and R2, the form of the grammar rule is much simpler (i.e., just one conjunct). Notice also
that since rule R5 is not used in both of these cases, Player I remains always the Doubter and Player II is always the Believer.
Finally, also notice that in the simplified games for conjunctive and context-free grammars, the set of rewards is equal to
{0, 1} and the payoff function can be defined in a simpler way.

5. Equivalence to the well-founded semantics

There still remain two crucial issues that need to be clarified in order for the game to be ‘‘well-defined’’ and appropriate
for capturing the meaning of Boolean grammars. First, we still have not argued regarding the determinacy of the game, and
second, we have not investigated the relationship of the game to thewell-founded semantics of Boolean grammars [3,4]. For
infinite games that are win–lose (i.e., no ties), there exists a well-known result, namely Martin’s theorem [5], which can be
used to establish determinacy in most practical cases. In [1], based on Martin’s theorem, a criterion is defined that ensures
that certain three-valued games are determined. This criterion presupposes the use of the theory of Borel sets (see [1] for
details).

In the following, we circumvent the use of Martin’s theorem by demonstrating at the same time both the determinacy of
the game and its equivalence to the well-founded semantics. Our new proof can also be adapted to work for the case of logic
programs.

In the next subsections, we are going to establish the equivalence of the game to the well-founded semantics (see
Theorem 32 at the end of the current section). The proof of this theorem is based on defining optimal strategies for the
two players of the game. The strategies are defined using the well-foundedmodel as a guide. The detailed proof is presented
in the following subsections.

5.1. Defining two optimal strategies

In this subsection we define a strategy σ̂(α,w) for Player I and a strategy τ̂(α,w) for Player II for the game ΓG(α, w), which
will help us establish the equivalence of the game to the well-founded semantics. As it will become clear later on, these two
strategies are optimal for the two players.5 The strategies are defined using an auxiliary mapping next : X → X , which
specifies a legal reply to each move (i.e., x and next(x) are allowed to be consecutive moves in some play of the game).

The definition of next(x) consists of four cases depending on the form of themove x. In order tomake this definition clear,
we first give an intuitive explanation of the various cases.

We first seek for the optimal response of the Believer to a move of the form (B, u)−, B ∈ N , u ∈ Σ∗ (Case 1 in the
definition of next). If MG(B)(u) = 1, then the Believer, in order to win the play, follows the steps in the construction of
the well-founded model of G in ‘‘reverse’’, starting from the point in which the value 1 for the membership of w in the
language produced by B is obtained for the first time during this construction. This point is indicated by the pair of values

5 In the following, we will use σ̂(α,w) and τ̂(α,w) to denote these two fixed optimal strategies while σ(α,w) and τ(α,w) will be used to refer to arbitrary
strategies.
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i = odp(B, u), r = idp(B, u), i.e., it is Θ
↑r
Mi−1

(B)(u) = 1. Then, by the definition of ΘMi−1 there exists at least one rule that

causes Θ
↑r
Mi−1

(B)(u) to take the value 1, and the Believer selects a rule with this property.
On the other hand, if MG(B)(u) = 0, no strategy of the Believer can guarantee a win or even a tie: if the Doubter follows

an appropriate strategy, he can always win against any strategy of the Believer, and the Believer knows that. Therefore, his
choice can be any rule with head B.

Finally, if MG(B)(u) =
1
2 , then the Believer knows that he cannot definitely win the game and therefore he tries to lead

the play to a tie. The first step towards achieving this goal is to lead the play to a role-switch. For this reason, the Believer
considers the computation ofΩ(MG). SinceMG is a fixed point ofΩ , it holds thatΩ(MG)(B)(u) = MG(B)(u). Therefore, there
exists a rule that causes the membership value of u in the language MG(B) to become 1

2 . The selected rule has the property
that for every positive conjunct αi, the membership of u in the language produced by αi has taken a value of at least 1

2 earlier
in the construction of Ω(MG). This guarantees that in the worst case after finitely many moves, a rule with only negative
conjuncts will be selected, resulting to a role-switch after two additional moves.

The optimal response of the Believer to a move of the form x = (β, u)−, where β ∈ E and u ∈ Σ∗ can be chosen in an
analogous way as above (Case 2 in the definition of next).

We now seek for the optimal response of the Doubter to a move of the form (B → l1& · · ·&lm, u)+ (Case 3 in the
definition of next). IfMG(l1& · · ·&lm)(u) = 0, then the Doubter, in order to win the play, should obviously play amove of the
form (lj, u)− withMG(lj)(u) = 0. However, if he chooses an arbitrary lj with this property it is possible that the Believer will
achieve to lead the play to an infinite number of role switches. Thus, the Doubter has to choose lj using additional conditions,
to guarantee that a finite number of role switches occur in the worst case. The intuition behind the additional conditions
can be better understood in the case that MG(B)(u) = 0. Suppose that odp(B, u) = i; then, there exists some lj in the body
of rule B → l1& · · ·&lm that causes the membership of u to the language produced by the body of the rule to be 0 underMi,
i.e.,Mi(lj)(u) = 0, and thus odp(lj, u) ≤ i. Then, the Doubter selects a conjunct that has the above property.

On the other hand, if MG(l1& · · ·&lm)(u) = 1, then also MG(B)(u) = 1 and the Doubter knows that he has no winning
strategy. Thus, he simply chooses the first conjunct in the body of the rule.

Similarly, if MG(l1& · · ·&lm)(u) =
1
2 , the Doubter knows that he can achieve at least a tie, by selecting a conjunct l with

MG(l)(u) =
1
2 .

Finally, the optimal response of the Doubter to a move of the form x = (β, π)+, where β ∈ E, and π ∈ (Σ∗)|β| can be
chosen similarly (Case 4 in the definition of next).

We can now proceed to a precise definition of next. In order to make this definition functional, we assume that the set of
rules P of the given grammar G = (Σ,N, P, S), has a predetermined ordering. Similarly, we assume that the conjuncts that
appear in the body of every rule in P also have a predetermined ordering. Therefore, we will freely use expressions like ‘‘the
first rule in P that has the property...’’, or ‘‘the first conjunct in the body of the rule that has the property...’’. Finally, given a
string w, we will assume that the set of partitions of w into n parts, is also ordered. Again, we will use expressions like ‘‘the
first partition of w that satisfies...’’.

We will define next(x), for every move x ∈ X , for which there exist more than one legal choices; in the remaining cases
next(x) is the unique legal move that may follow x. The definition distinguishes four cases, as already mentioned in the
intuitive explanation:

Case 1: x = (B, u)−, with B ∈ N and u ∈ Σ∗. Then, next(x) = (Z, u)+, where Z is a rule in P selected as follows:

• Suppose thatMG(B)(u) = 1. Let i = odp(B, u) and r = idp(B, u). Then, Z is the first rule of G of the form B → l1& · · ·&lm
which has the property that for every positive lj, Θ

↑r−1
Mi−1

(lj)(u) = 1, and for every negative lj,Mi−1(lj)(u) = 1.
• Suppose thatMG(B)(u) = 0. Then, Z is the first rule of Gwith head B.
• Suppose that MG(B)(u) =

1
2 . Let r = idp(B, u). Then, Z is the first rule of G of the form B → l1& · · ·&lm which has the

property that for every positive lj, Θ
↑r−1
MG

(lj)(u) ≥
1
2 , and for every negative lj, MG(lj)(u) ≥

1
2 .

Case 2: x = (β, u)−, where β ∈ E and u ∈ Σ∗. Then, next(x) = (β, π)+, where π a partition of u of length |β|, selected
as follows:

• Suppose thatMG(β)(u) = 1. Let i = odp(β, u) and let r = idp(β, u). Then, π is the first partition of u of length |β|which
has the property that for every j, 1 ≤ j ≤ |β|, Θ↑r

Mi−1
(β(j))(π(j)) = 1.

• Suppose thatMG(β)(u) = 0. Then, π is the first partition of u of length |β|.
• Suppose that MG(β)(u) =

1
2 . Let r = idp(β, u). Then, π is the first partition of u of length |β| which has the property

that for every j, 1 ≤ j ≤ |β|, Θ↑r
MG

(β(j))(π(j)) ≥
1
2 .

Case 3: x = (B → l1& · · ·&lm, u)+. Then, next(x) = (lj, u)−, where j is selected as follows:

• Suppose thatMG(l1& · · ·&lm)(u) = 0. Let i = min{odp(lk, u) | 1 ≤ k ≤ m,MG(lk)(u) = 0}. Then, j is the minimum index
such that lj is positive, MG(lj)(u) = 0 and odp(lj, u) = i, if such an index exists; otherwise j is the minimum index such
that lj is negative, MG(lj)(u) = 0 and odp(lj, u) = i.
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• Suppose thatMG(l1& · · ·&lm)(u) = 1. Then, j = 1.
• Suppose thatMG(l1& · · ·&lm)(u) =

1
2 . Then, j is the minimum index such thatMG(lj)(u) =

1
2 .

Case 4: x = (β, π)+, where β ∈ E, and π ∈ (Σ∗)|β|. Then, next(x) = (β(j), π(j))−, where j is selected as follows:

• Suppose that min|β|

k=1MG(β(k))(π(k)) = 0. Let i = min{odp(β(k), π(k)) | 1 ≤ k ≤ |β|,MG(β(k))(π(k)) = 0}. Then, j is
the minimum index such thatMG(β(j))(π(j)) = 0 and odp(β(j), π(j)) = i.

• Suppose that min|β|

k=1MG(β(k))(π(k)) = 1. Then, j = 1.
• Suppose that min|β|

k=1MG(β(k))(π(k)) =
1
2 . Then, j is the minimum index such thatMG(β(j))(π(j)) =

1
2 .

The fact that the above functions are well-defined, follows easily from the definition of odp and idp. We can now define
the strategies σ̂(α,w) and τ̂(α,w):

Definition 27. Let G = (Σ,N, P, S) be a Boolean grammar, α ∈ (Σ ∪ N)∗ and w ∈ Σ∗. Consider the game ΓG(α, w). Then,
the strategies σ̂(α,w) of Player I and τ̂(α,w) of Player II are defined as follows:

σ̂(α,w)(⟨⟩) = (α, w)−

σ̂(α,w)(⟨x0, x1, . . . , x2i−1⟩) = next(x2i−1), for all i ≥ 1
τ̂(α,w)(⟨x0, x1, . . . , x2i⟩) = next(x2i), for all i ≥ 0.

The properties of the above strategies will be proved in the remainder of this section (Lemmata 28–31). Notice that,
although we have defined an infinite family of strategies (indexed by (α, w)), all of them are very similar in nature: they
are all based on the same response to the previous move, specified by the function next. This property will allow us to relate
plays of different games. To demonstrate this, suppose that Player II follows the strategy τ̂(α,w) in some play of the game
ΓG(α, w) and that a move (β, u)− is played by Player I (or Player II) during this play. Then, from the Player II’s point of view,
the sub-play starting with this move is equivalent to a whole play of the game ΓG(β, u), in which he is initially the Believer
(resp. Doubter) and follows the strategy τ̂(β,u) (resp. σ̂(β,u)). Similar considerations can be made for Player I.

The consequences of the above facts are formalized in the following two lemmata, which will be very useful in the proof
of the main result of this section.

Lemma 28. Let G = (Σ,N, P, S) be a Boolean grammar, α ∈ (Σ ∪ N)∗ and w ∈ Σ∗. Let σ(α,w) be a strategy of Player I for the
game ΓG(α, w) and let σ(α,w) ⋆ τ̂(α,w) = ⟨x0, x1, x2, . . .⟩. Assume there exists i > 0 such that xi = (β, u)−, where β ∈ (Σ ∪N)∗

and u ∈ Σ∗. Then the following statements hold for all v ∈ {0, 1
2 , 1}:

(a) If i is an even number and for every strategy σ of Player I for the game ΓG(β, u) it is Φ(β,u)(σ ⋆ τ̂(β,u)) ≥ v, then
Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) ≥ v.

(b) If i is an odd number and for every strategy τ of Player II for the game ΓG(β, u) it is Φ(β,u)(σ̂(β,u) ⋆ τ) ≤ v, then
Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) ≥ 1 − v.

Proof. We give the proof of statement (b). Statement (a) can be proved along the same lines.
Define a strategy τ(β,u) of Player II for the game ΓG(β, u) as follows:

τ(β,u)(⟨s0, s1, . . . , s2j⟩) = σ(α,w)(⟨x0, x1, . . . , xi−1, s0, s1, . . . , s2j⟩).

It is easy to verify that τ(β,u) is actually a valid strategy (that is, it respects the rules R0–R7). Let σ̂(β,u)⋆τ(β,u) = ⟨y0, y1, y2, . . .⟩.
We will prove by induction on j that yj = xi+j. For the basis case (j = 0) we have:

y0 = σ̂(β,u)(⟨⟩) = (β, u)− = xi.

Suppose that yk = xi+k holds for all k ≤ j. We will show that yj+1 = xi+j+1. If j is an even number then

yj+1 = τ(β,u)(⟨y0, y1, . . . , yj⟩)
= σ(α,w)(⟨x0, x1, . . . , xi−1, y0, y1, . . . , yj⟩)
= σ(α,w)(⟨x0, x1, . . . , xi−1, xi, xi+1, . . . , xi+j⟩) (by ind. hyp.)
= xi+j+1.

If j is an odd number then

yj+1 = σ̂(β,u)(⟨y0, y1, . . . , yj⟩)
= next(yj)
= next(xi+j) (by ind. hyp.)
= τ̂(α,w)(⟨x0, x1, . . . , xi+j⟩)

= xi+j+1.

We now show that Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) = 1 − Φ(β,u)(σ̂(β,u) ⋆ τ(β,u)).



12 V. Kountouriotis et al. / Theoretical Computer Science ( ) –

Suppose first that Φ(β,u)(σ̂(β,u) ⋆ τ(β,u)) = 0. We distinguish two cases:

• If Player I plays the move (I’ve won) in σ̂(β,u) ⋆ τ(β,u), then it is yk = (I’ve won) for some even number k. Then it is also
xi+k = (I’ve won), where i + k is an odd number (since by assumption i is odd). This implies that Player II plays an
(I’ve won) move in σ(α,w) ⋆ τ̂(α,w). Therefore, Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) = 1.

• Otherwise, ⟨y0, y1, y2, . . .⟩ contains an even number of role switches. Now since move xi is of the form (β, u)−, where
β ∈ (Σ ∪ N)∗ and u ∈ Σ∗, and i is an odd number, Player II is the Doubter when xi is played, which implies that the
number of role switches in ⟨x0, x1, . . . , xi⟩ is odd. Since σ(α,w) ⋆ τ̂(α,w) = ⟨x0, x1, . . . , xi−1, y0, y1, y2, . . .⟩, it follows that
this play contains an odd number of role switches (recall that y0 = xi). Therefore, Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) = 1.

Suppose now that Φ(β,u)(σ̂(β,u) ⋆ τ(β,u)) = 1. In a similar way we obtain that Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) = 0.
Finally suppose that Φ(β,u)(σ̂(β,u) ⋆ τ(β,u)) =

1
2 . Then ⟨y0, y1, y2, . . .⟩ contains an infinite number of role switches.

Therefore, the same holds for the sequence ⟨x0, x1, . . . , xi, y0, y1, y2, . . .⟩, which implies Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) =
1
2 .

We have proved thatΦ(α,w)(σ(α,w)⋆τ̂(α,w)) = 1−Φ(β,u)(σ̂(β,u)⋆τ(β,u)), fromwhich statement (b) follows immediately. �

The following Lemma is dual to the previous one and can be proved in the same way.

Lemma 29. Let G = (Σ,N, P, S) be a Boolean grammar, α ∈ (Σ ∪ N)∗ and w ∈ Σ∗. Let τ(α,w) be a strategy of Player II for the
game ΓG(α, w) and let σ̂(α,w) ⋆ τ(α,w) = ⟨x0, x1, x2, . . .⟩. Assume there exists i > 0 such that xi = (β, u)−, where β ∈ (Σ ∪N)∗

and u ∈ Σ∗. Then the following statements hold for all v ∈ {0, 1
2 , 1}:

(a) If i is an even number and for every strategy τ of Player II for the game ΓG(β, u) it is Φ(β,u)(σ̂(β,u) ⋆ τ) ≤ v, then
Φ(α,w)(σ̂(α,w) ⋆ τ(α,w)) ≤ v.

(b) If i is an odd number and for every strategy σ of Player I for the game ΓG(β, u) it is Φ(β,u)(σ ⋆ τ̂(β,u)) ≥ v, then
Φ(α,w)(σ̂(α,w) ⋆ τ(α,w)) ≤ 1 − v.

5.2. The proof of equivalence to the well-founded semantics

Let G = (Σ,N, P, S) be a Boolean grammar andMG be its well-foundedmodel. Moreover, let α ∈ (Σ ∪N)∗ andw ∈ Σ∗.
Consider now the game ΓG(α, w). We would like to demonstrate that MG(α)(w) is always equal to the value of the game
ΓG(α, w). In this subsection, we establish this equality in two steps. First, we demonstrate that if MG(α)(w) ∈ {0, 1}, then
the value of the game ΓG(α, w) is equal to MG(α)(w) (Lemma 30). Then, we demonstrate that if MG(α)(w) =

1
2 then the

value of the game ΓG(α, w) is equal to 1
2 (Lemma 31). Actually, the proof of Lemma 31 uses Lemma 30.

Lemma 30. Let G = (Σ,N, P, S) be a Boolean grammar and let MG be the well-founded model of G. Moreover, let α ∈ (Σ ∪N)∗

andw ∈ Σ∗, such that MG(α)(w) ∈ {0, 1}. Then the strategies σ̂(α,w) and τ̂(α,w) for the game ΓG(α, w) = (X, R(α,w),D, Φ(α,w))
satisfy the following statements:

(a) For every strategy τ(α,w) of Player II for the game ΓG(α, w), it holds that Φ(α,w)(σ̂(α,w) ⋆ τ(α,w)) ≤ MG(α)(w).
(b) For every strategy σ(α,w) of Player I for the game ΓG(α, w), it holds that Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) ≥ MG(α)(w).

Proof. Wewill prove statements (a) and (b) by induction on odp(α, w). The basis of the induction is for odp(α, w) = 0. We
consider two cases, based on the value ofMG(α)(w).
Case 1: MG(α)(w) = 1. In this case, it is M0(α)(w) = 1, which implies α = w. Therefore, Player II’s first move is (I’ve won)
(which is his only legal move) and obviously statement (b) holds. Moreover, statement (a) is trivial in this case.
Case 2:MG(α)(w) = 0. In this case, it isM0(α)(w) = 0, which implies that α ∉ N (sinceM0(A)(w) =

1
2 for every A ∈ N). If

α ∈ Σ∗, then it holds α ≠ w and Player II’s first move is (I’ve lost). If α ∈ E then Player II’s first move is (α, π)+, where π is
a partition of w into |α| parts. Since, M0(α)(w) = 0, it must be min|α|

k=1M0(α(k))(π(k)) = 0. By the definition of σ̂(α,w), the
reply of Player I is a move (α(j), π(j))− for some j, 1 ≤ j ≤ |α|, such that M0(α(j))(π(j)) = 0. This implies that α(j) ∉ N .
Therefore, α(j) ∈ Σ and α(j) ≠ π(j). Then, the next move of Player II is (I’ve lost). Since Player II plays (I’ve lost) in any case,
statement (a) holds. Moreover, statement (b) is trivial in this case.

For the induction step, assume that if odp(α, w) = i then statements (a) and (b) hold. We show that they also hold in
the case that odp(α, w) = i + 1. Similarly to the basis of the induction, we distinguish two cases.
Case 1:MG(α)(w) = 1. In this case, statement (a) is trivial. Wewill show by an inner induction on r that statement (b) holds
for all α ∈ (Σ ∪ N)∗ and w ∈ Σ∗ such that odp(α, w) = i + 1 and idp(α, w) = r .

The basis of the inner induction is for r = 0, which holds vacuously from Lemma 16.
Suppose that the statement holds for r and consider α ∈ (Σ ∪ N)∗ and w ∈ Σ∗ such that MG(α)(w) = 1,

odp(α, w) = i + 1 and idp(α, w) = r + 1. Moreover, assume that Player II follows the strategy τ̂(α,w) and consider an
arbitrary strategy σ(α,w) of Player I for ΓG(α, w). Let σ(α,w) ⋆ τ̂(α,w) = ⟨x0, x1, x2, . . .⟩. We distinguish two subcases:
Subcase 1.1: α = A ∈ N . By the definition of τ̂(α,w), Player II plays a move of the form x1 = (A → l1& · · ·&lm, w)+, such
that for every positive lj, Θ

↑r
Mi

(lj)(w) = 1 and for every negative lj, Mi(lj)(w) = 1. Then, Player I plays a move of the form
x2 = (lk, w)−.
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If lk is a positive conjunct, then Θ
↑r
Mi

(lk)(w) = 1 implies that MG(lk)(w) = 1 and odp(lk, w) ≤ i + 1; moreover, if

odp(lk, w) = i + 1, then Θ
↑r
Modp(lk,w)−1

(lk)(w) = 1, which implies (by the Definition 15) that idp(lk, w) ≤ r . Using the outer
induction hypothesis (if odp(lk, w) < i+1) or the inner induction hypothesis (if odp(lk, w) = i+1) we obtain that for every
strategy σ(lk,w) of Player I forΓG(lk, w),Φ(lk,w)(σ(lk,w)⋆τ̂(lk,w)) ≥ 1. Then Lemma 28(a) implies thatΦ(α,w)(σ(α,w)⋆τ̂(α,w)) ≥ 1.

Otherwise, it is lk = ¬β , for some β ∈ (Σ ∪ N)∗. Then, the next move of Player II is x3 = (β, w)−. Since Mi(lk)(w) = 1,
it is Mi(β)(w) = 0, which implies that MG(β)(w) = 0 and odp(β, w) < i + 1. Using the outer induction hypothesis we
obtain that for every strategy τ(β,w) of Player II for ΓG(β, w), Φ(β,w)(σ̂(β,w) ⋆ τ(β,w)) ≤ 0. Then Lemma 28(b) implies that
Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) ≥ 1.

Subcase 1.2:α ∉ N . Sinceodp(α, w) = i+1 > 0, it isα ∉ Σ∗. Therefore,α ∈ E, which implies (by the definition of τ̂(α,w)) that
Player II will play amove of the form x1 = (α, π)+, where π is a partition ofw, such thatΘ

↑r+1
Mi

(α(j))(π(j)) = 1, for every j,
1 ≤ j ≤ |α|. This implies that odp(α(j), π(j)) ≤ i+1. Moreover, if odp(α(j), π(j)) = i+1, it must be idp(α(j), π(j)) ≤ r+1
and α(j) ∈ N (since it is odp(α(j), π(j)) > 0). Now Player I plays a move of the form x2 = (α(k), π(k))−. Using the outer
induction hypothesis (if odp(α(k), π(k)) < i + 1) or the inner induction hypothesis (if odp(α(k), π(k)) = i + 1 and
idp(α(k), π(k)) < r + 1) or Subcase 1.1 (if odp(α(k), π(k)) = i + 1 and idp(α(k), π(k)) = r + 1) we obtain that for every
strategy σ(α(k),π(k)) of Player I for ΓG(α(k), π(k)), Φ(α(k),π(k))(σ(α(k),π(k)) ⋆ τ̂(α(k),π(k))) ≥ 1. Then Lemma 28(a) implies that
Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) ≥ 1.

Case 2:MG(α)(w) = 0. In this case, statement (b) is trivial. We will prove statement (a).
Consider α ∈ (Σ ∪ N)∗ and w ∈ Σ∗ such that MG(α)(w) = 0 and odp(α, w) = i + 1. Moreover, assume that

Player I follows the strategy σ̂(α,w) and consider an arbitrary strategy τ(α,w) of Player II for ΓG(α, w). Let σ̂(α,w) ⋆ τ(α,w) =

⟨x0, x1, x2, . . .⟩.
Let Q denote the following set of moves:

Q = {(γ , u)− | γ ∈ (Σ ∪ N)∗, u ∈ Σ∗, MG(γ )(u) = 0, odp(γ , u) = i + 1}.

Notice that, if γ ∈ Σ∗, then M0(γ )(u) ∈ {0, 1}, for every u ∈ Σ∗, which implies that odp(γ , u) = 0. Therefore, if
(γ , u)− ∈ Q then γ ∈ (N ∪ E).

We distinguish two subcases:

Subcase 2.1: for every δ ≥ 0 it is x2δ ∈ Q . Then, σ̂(α,w) ⋆τ(α,w) is a genuinely infinite play without role switches, and therefore
Φ(α,w)(σ̂(α,w) ⋆ τ(α,w)) = 0.

Subcase 2.2: there exists δ ≥ 0 such that x2δ ∉ Q . Consider the minimum index p such that x2p ∉ Q . Notice that,
since x0 = (α, w)− ∈ Q , it must be p ≥ 1. Moreover, from the minimality of p it follows that x2p−2 ∈ Q . Therefore,
x2p−2 = (γ , u)−, for some γ ∈ (N ∪ E) and u ∈ Σ∗. We consider the two possible forms of γ :

• γ = A ∈ N . Then, x2p−1 = (A → l1& · · ·&lm, u)+. Since x2p−2 = (A, u)− ∈ Q , it is MG(A)(u) = 0 and odp(A, u) = i + 1,
which implies Mi+1(A)(u) = 0. Therefore, either there exists some positive lj such that Mi+1(lj)(u) = 0 (which implies
odp(lj, u) ≤ i + 1) or there exists some negative lj such thatMi(lj)(u) = 0 (which implies odp(lj, u) < i + 1). Moreover,
x2p = (lk, u)− for some conjunct lk. By the definition of strategy σ̂(α,w),MG(lk)(u) = 0 and either lk is a positive conjunct
and odp(lk, u) ≤ i + 1 or lk is a negative conjunct and odp(lk, u) < i + 1.

• γ ∈ E. Then x2p−1 = (γ , π)+, where π is a partition of u. Since x2p−2 = (γ , u)− ∈ Q , it is Mi+1(γ )(u) = 0. Therefore,
there exists some j, 1 ≤ j ≤ |γ |, such that Mi+1(γ (j))(π(j)) = 0, which implies that odp(γ (j), π(j)) ≤ i + 1. By the
definition of strategy σ̂(α,w) it follows that x2p = (γ (k), π(k))−, withMG(γ (k))(π(k)) = 0 and odp(γ (k), π(k)) ≤ i+ 1.

Therefore, for any possible form of γ , we reach one of the following situations:

(a) x2p = (β, z)− for some β ∈ (Σ ∪ N)∗ and z ∈ Σ∗, such that MG(β)(z) = 0, and odp(β, z) ≤ i + 1. Now the fact that
x2p ∉ Q implies that odp(β, z) < i + 1. Thus, using the induction hypothesis we obtain that for every strategy τ(β,z) of
Player II for ΓG(β, z), Φ(β,z)(σ̂(β,z) ⋆ τ(β,z)) ≤ 0. Then Lemma 29(a) implies that Φ(α,w)(σ̂(α,w) ⋆ τ(α,w)) ≤ 0.

(b) x2p = (¬β, u)− for some β ∈ (Σ ∪ N)∗, such that MG(β)(u) = 1 and odp(β, u) = odp(¬β, u) < i + 1. Then,
x2p+1 = (β, u)−. Using the induction hypothesis we obtain that for every strategy σ(β,u) of Player I for ΓG(β, u),
Φ(β,u)(σ(β,u) ⋆ τ̂(β,u)) ≥ 1. Then Lemma 29(b) implies that Φ(α,w)(σ̂(α,w) ⋆ τ(α,w)) ≤ 0.

This completes the proof of the lemma. �

Lemma 31. Let G = (Σ,N, P, S) be a Boolean grammar and let MG be the well-founded model of G. Moreover, let α ∈ (Σ ∪N)∗

and w ∈ Σ∗, such that MG(α)(w) =
1
2 . Then the strategies σ̂(α,w) and τ̂(α,w) for the game ΓG(α, w) = (X, R(α,w),D, Φ(α,w))

satisfy the following statements:

(a) For every strategy τ(α,w) of Player II for the game ΓG(α, w), it holds that Φ(α,w)(σ̂(α,w) ⋆ τ(α,w)) ≤
1
2 .

(b) For every strategy σ(α,w) of Player I for the game ΓG(α, w), it holds that Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) ≥
1
2 .



14 V. Kountouriotis et al. / Theoretical Computer Science ( ) –

Proof. We demonstrate the proof of (b); the proof of (a) is symmetrical.
Define Q = {(γ , u)− | γ ∈ (Σ ∪ N)∗, u ∈ Σ∗, MG(γ )(u) =

1
2 }. Observe that, if γ ∈ Σ∗, then MG(γ )(u) ∈ {0, 1}, for

every u ∈ Σ∗. Therefore, if (γ , u)− ∈ Q then γ ∈ (N ∪ E).
Assume that Player II follows the strategy τ̂(α,w) and consider an arbitrary strategy σ(α,w) of Player I for ΓG(α, w). Let

σ(α,w) ⋆ τ̂(α,w) = ⟨x0, x1, x2, . . .⟩. We distinguish two cases:
Case 1: all the moves in the play ⟨x0, x1, x2, . . .⟩ of the form (γ , u)−, where γ ∈ (Σ ∪ N)∗ and u ∈ Σ∗, are in Q . Then,
this play cannot contain moves of the form (γ , u)− where γ ∈ Σ∗, which implies that it does not contain any move in
{(I’ve won),(I’ve lost)}, i.e., it is a genuinely infinite play. If σ(α,w) ⋆ τ̂(α,w) contains an infinite number of role switches then
Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) =

1
2 . Otherwise there exists some δ ≥ 0 such that in all moves after xδ one of the two players remains

the Doubter and plays moves of the form (γ , u)− (since any move of the form (¬γ , u)− would imply a role switch). By our
assumption, these moves of the Doubter must be in Q . Consequently, either xi ∈ Q for every odd index i ≥ δ, or xi ∈ Q for
every even index i ≥ δ. We claim that only the former of these two conditions can be true.

In order to prove this claim suppose, for the sake of contradiction, that for every even index i ≥ δ, xi is a move of the
form (βi, ui)

−
∈ Q and let ri = idp(βi, ui). We distinguish two subcases, depending on the form of βi:

Subcase 1.1: βi = A ∈ N . By the definition of τ̂(α,w), Player II plays a move of the form xi+1 = (A → l1& · · ·&lm, ui)
+,

such that for every positive conjunct lj, Θ
↑ri−1
MG

(lj)(ui) ≥
1
2 , and for every negative conjunct lj, MG(lj)(ui) ≥

1
2 . Since i + 2 is

also an even number, the move xi+2 = (βi+2, ui+2)
− is in Q . Therefore, βi+2 = lk, for some positive conjunct lk such that

MG(łk)(u) =
1
2 ; moreover, ui = u. This implies that ri+2 = idp(βi+2, ui+2) = idp(lk, u) < ri.

Subcase 1.2: βi ∈ E. By the definition of τ̂(α,w), Player II plays a move of the form xi+1 = (βi, π)+, where π is a partition of ui,
such that Θ

↑ri
MG

(βi(j))(π(j)) ≥
1
2 , for every j, 1 ≤ j ≤ |βi|. Now Player I plays a move xi+2 = (βi+2, ui+2)

−
∈ Q . This implies

that βi+2 = βi(k) for some k, 1 ≤ k ≤ |βi|, such that βi(k) ∈ N and MG(βi(k))(π(k)) =
1
2 ; moreover, ui+2 = π(k). Thus,

ri+2 = idp(βi+2, ui+2) = idp(βi(k), π(k)) ≤ ri and βi+2 ∈ N .
Notice that if Subcase 1.1 applies to the move xi, then either subcase may apply to xi+2. However, if Subcase 1.2 applies

to xi then only Subcase 1.1 may apply to xi+2. We conclude that for every even index i ≥ δ, it is ri+4 < ri. This implies that
there exists some even index ℓ > δ such that rℓ < 0, which is a contradiction, since idp has non-negative values.

Therefore xi ∈ Q for every odd index i ≥ δ, which means that Player II remains a Doubter in all moves after xδ . This
implies that Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) = 1.
Case 2: there exists a move xp in the play ⟨x0, x1, x2, . . .⟩ of the form (γ , u)−, where γ ∈ (Σ ∪ N)∗ and u ∈ Σ∗, such
that (γ , u)− ∉ Q . Consider the minimum index p ≥ 0 such that xp = (γ , u)− and (γ , u)− ∉ Q . Notice that, since
x0 = (α, w)− ∈ Q and x1 is not of the form (γ , u)−, it must be p ≥ 2.
Subcase 2.1: p is an even number, i.e., themove xp = (γ , u)− is played by Player I. We consider all the possible forms of xp−1:

• xp−1 = (A → l1& · · ·&lm, u)+. Then γ = lk for some positive conjunct lk and xp−2 = (A, u)− ∈ Q (by the minimality of
p). This implies thatMG(A)(u) =

1
2 . By the definition of τ̂(α,w) it follows that for all j,MG(lj)(u) ≥

1
2 . Thus,MG(γ )(u) ≥

1
2 .

• xp−1 = (β, π)+, where π is a partition of some z ∈ Σ∗. Then γ = β(k) and u = π(k), for some k, 1 ≤ k ≤ |β|, and
xp−2 = (β, z)− ∈ Q (by the minimality of p). This implies that MG(β)(z) =

1
2 , and by the definition of τ̂(α,w) it follows

that for all j, 1 ≤ j ≤ |β|, MG(β(j))(π(j)) ≥
1
2 . Thus, MG(γ )(u) ≥

1
2 .

• xp−1 = (¬γ , u)−. Then, xp−2 exists and must be of the form (A → ł1& · · ·&lm, u)+ and ¬γ = lk for some negative
conjunct lk. Moreover, xp−3 = (A, u)− (the form of the move xp−2, implies that p − 2 > 0 and thus xp−3 exists). Since
(A, u)− ∈ Q (by the minimality of p) it isMG(A)(u) =

1
2 , which implies (using the fact thatMG is a model of G) that there

exists some j, 1 ≤ j ≤ m, such thatMG(lj)(u) ≤
1
2 . By the definition of τ̂(α,w) it follows thatMG(lk)(u) ≤

1
2 , which implies

MG(γ )(u) ≥
1
2 .

Thus, for every possible form of xp−1 it holds MG(γ )(u) ≥
1
2 . This implies, since (γ , u)− ∉ Q , that MG(γ )(u) = 1. Using

Lemmata 30(b) and 28(a) we obtain that Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) = 1.
Subcase 2.2: p is an odd number, i.e., the move xp = (γ , u)− is played by Player II. Similarly to the previous case, we consider
all the possible forms of xp−1:

• xp−1 = (A → l1& · · ·&lm, u)+. Then γ = lk for some positive conjunct lk. Moreover, xp−2 = (A, u)− ∈ Q (by the
minimality of p), which impliesMG(A)(u) =

1
2 . SinceMG is a model of G, there exists some j, such thatMG(lj)(u) ≤

1
2 . By

the definition of τ̂(α,w) it follows thatMG(γ )(u) ≤
1
2 .

• xp−1 = (β, π)+, where π is a partition of some z ∈ Σ∗. Then γ = β(k) and u = π(k), for some k, 1 ≤ k ≤ |β|.
Moreover, xp−2 = (β, z)− ∈ Q (by the minimality of p), which implies MG(β)(z) =

1
2 . By the definition of three-valued

concatenation, it follows that there exists some j, 1 ≤ j ≤ |β|, MG(β(j))(π(j)) ≤
1
2 . By the definition of τ̂(α,w) it follows

thatMG(γ )(u) ≤
1
2 .
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• xp−1 = (¬γ , u)−. Then, xp−2 must be of the form (A → l1& · · ·&lm, u)+ and ¬γ = lk for some negative conjunct lk.
Moreover, xp−3 = (A, u)− ∈ Q (by the minimality of p), which implies that MG(A)(u) =

1
2 . By the definition of τ̂(α,w) it

follows that for all j,MG(lj)(u) ≥
1
2 . In particular,MG(lk)(u) ≥

1
2 , which implies MG(γ )(u) ≤

1
2 .

Thus, for every possible form of xp−1 it holds MG(γ )(u) ≤
1
2 . This implies, since (γ , u)− ∉ Q , that MG(γ )(u) = 0. Using

Lemmata 30(a) and 28(b) we obtain that Φ(α,w)(σ(α,w) ⋆ τ̂(α,w)) = 1.
This completes the proof of statement (b) of the lemma. �

Using the above lemmata, it is easy to prove the following theoremwhich establishes the equivalence between the game
and the well-founded semantics:

Theorem 32. Let G = (Σ,N, P, S) be a Boolean grammar and MG be its well-founded model. For every α ∈ (Σ ∪ N)∗ and
w ∈ Σ∗, the game ΓG(α, w) is determined with value MG(α)(w).

Proof. Let S = StratI(ΓG(α, w)) and T = StratII(ΓG(α, w)). Then:

MG(α)(w) ≤ glbσ∈S Φ(α,w)(σ ⋆ τ̂(α,w)) (by Lemmata 30(b) and 31(b))
≤ lubτ∈T glbσ∈S Φ(α,w)(σ ⋆ τ) (definition of lub)
≤ glbσ∈S lubτ∈T Φ(α,w)(σ ⋆ τ) (by Lemma 25)
≤ lubτ∈T Φ(α,w)(σ̂(α,w) ⋆ τ) (definition of glb)
≤ MG(α)(w) (by Lemmata 30(a) and 31(a))

Therefore, lubτ∈T glbσ∈S Φ(α,w)(σ ⋆τ) = glbσ∈S lubτ∈T Φ(α,w)(σ ⋆τ) = MG(α)(w), that is, the gameΓG(α, w) is determined
with valueMG(α)(w). �

6. Conclusions

We have presented an infinite game semantics for Boolean grammars and have demonstrated that it is equivalent
to the well-founded semantics of this type of grammars. The simplicity of the new semantics stems mainly from its
anthropomorphic flavor. In this respect, it differs from the well-founded semantics whose construction requires a more
heavy mathematical machinery. We believe that these two semantical approaches can be used in a complementary way in
the study of Boolean grammars. In our opinion, the game-theoretic approachwill prove useful in establishing the correctness
ofmeaning-preserving transformations for Boolean grammars. The reasoning in such a case can proceed as follows. Consider
a Boolean grammar G and its transformed version G′. We can verify that the meaning of a nonterminal A in G coincides with
the meaning of A in G′ if for every string w, Player i has a winning strategy in the game ΓG(A, w) iff Player i has a winning
strategy in game ΓG′(A, w). On the other hand, the well-founded semantics appears to be more useful in computing the
meaning of specific grammars. This is due to the iterative-inductive flavor of the well-founded approach (see [8] for an
example of an iterative computation of the meaning of a Boolean grammar using a procedure that was inspired by the
well-founded construction).
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