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Abstract

Gradient-based methods are often used for optimization. They
form the basis of several neural network training algorithms, includ-
ing backpropagation. They are known to be slow, however. Several
techniques exist for the acceleration of gradient-based optimization,
but very few of them are applicable to stochastic (or real-time) opti-
mization. This paper proposes a new step size adaptation technique,
designed speci�cally for accelerating stochastic gradient optimization
(and therefore also the real-time training of neural networks). The
theoretical basis of the technique is discussed, and an experimental
evaluation of the technique's performance is reported.

1 Introduction

Gradient descent/ascent is often used for optimization. In the neural net-
works area, it forms the basis of the widely used backpropagation algorithm
[9]. Plain gradient based optimization is known to be slow, however. Sev-
eral acceleration techniques have appeared over the years: momentum [9],
adaptive step sizes [10], second order methods [3][6][2], conjugate gradients
[8] etc. Most of these techniques (with the notable exception of momentum)
were developed only for deterministic optimization (which corresponds to
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batch-mode training in neural networks). However, both in the training of
neural networks and in other optimization problems it is often convenient
to use stochastic (on-line) optimization. In the training of neural networks,
this usually happens when the training set is very large. In other applica-
tions of optimization, one sometimes has access only to a noisy estimate of
the gradient, making the use of deterministic gradient impossible.

Some proposals of stochastic step size adaptation procedures have ap-
peared in the literature [4][5], [7]. However, none of them seems to be simple
and general enough for widespread use. In this paper we propose a new,
simple step size adaptation technique for stochastic gradient optimization,
similar in spirit to the deterministic adaptive step sizes technique of [10] (see
also [11]).

This paper is organized as follows. Section 2 brie
y reviews the determin-
istic adaptation technique. Section 3 presents the new stochastic technique.
Section 4 presents experimental results, and Section 5 concludes.

In this paper we will use the neural networks nomenclature. The param-
eters to be optimized are called weights, each on-line optimization step is
said to correspond to the presentation of a pattern and each deterministic
optimization step in referred to as an epoch.

2 Deterministic adaptive step sizes

The deterministic adaptive step sizes technique uses one step size parameter
per weight. Each step size parameter is increased if the sign of the corre-
sponding gradient component stays the same for two consecutive epochs,
and is decreased otherwise:
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and the superscript (n) denotes the n-th epoch. The weights are updated
according to
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Momentum and error control can be combined with this technique, yield-
ing a very e�cient and robust batch-mode training method [1]. This tech-
nique is not readily adaptable to stochastic-mode training, because of the
need to know the exact value of the gradient. Use of the gradient estimates
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available in stochastic mode (which we shall designate as sign-based stochas-

tic adaptation) can easily lead to erroneous behavior. For example, if the
distribution of the noise present in the estimates of the partial derivatives of
the objective function becomes skewed, the probability of making step size
increases will become higher, because the probability of having two succes-
sive errors with the same sign will increase. This may lead to the use of step
sizes that are larger than desirable for the situation at hand, and even to
divergence.

3 Stochastic adaptive step sizes

Like many other fast optimization algorithms, the stochastic step size adap-
tation algorithm that we propose is based on the assumption that the func-
tion to be minimized can be approximated by a quadratic function. We
wish to keep the weight update equation (2) but with a new update rule
for the �ij . Since we want to perform step size adaptation for each weight
independently of the other weights, we will further assume that the Hessian
of the quadratic is diagonal. This diagonality assumption may seem rather
strong, but is frequently made with good results. It is, for example, the basis
of the second order method of [3][6] and is also implicit in the deterministic
adaptation procedure described in Section 2. Given this assumption we can
then treat the weights independently of one another, and therefore we only
need to examine the case of a function of a single variable. Assume we wish
to minimize the quadratic function

E(w) =
a

2
(w �m)2 + b

where a, b and m are unknown parameters. The value of m, the location
of the minimum, is what we wish to �nd. We will assume that, at the n-th
iteration, we are at the known (i.e. non-random) point w(n), and that we
have access to a noisy estimate of the derivative of E at that point,

dn = E0

h
w(n)

i
+ �n

where �n is a random variable with zero mean and with variance �2n. We
will obtain the next value of w according to

w(n+1) = w(n) � �(n)dn

and we would like to use the \best possible" value for the step size parameter
�(n). One possible de�nition for this \best possible" value would be the one
that minimizes

h[w(n+1) �m]2i
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where h:i denotes expectation. It is therefore natural to try to set the deriva-
tive of this quantity relative to �(n) equal to zero. This derivative is

@h[w(n+1) �m]2i

@�(n)
= �2h[w(n+1) �m]dni

Consider, however, that

hdndn+1i = hdnfa[w
(n+1) �m] + �n+1gi

= ahdn[w
(n+1) �m]i

where, in the last equation, we have assumed that �n and �n+1 are uncorre-
lated. Therefore,

@h[w(n+1) �m]2i

@�(n)
= �

2

a
hdndn+1i (3)

The uncorrelatedness that we have mentioned above is a reasonable as-
sumption in many situations. Speci�cally in the on-line training of neural
networks, we assume that successive input patterns are selected at random,
independently from one another. Since the pattern selected at iteration n
is what determines the value of �n, the uncorrelatedness assumption seems
natural in this case.

Since we cannot compute the expected value involved in the right hand
side of (2) (and we also cannot obtain dn+1 without �rst choosing �

(n)), we
cannot directly set the right hand side of (2) to zero, to obtain the best value
for �(n). This is not hopeless, however. In many situations the best value
for �(n) changes slowly as a function of n1. In such cases we can optimize
�(n) by stochastic gradient descent

�(n+1) = �(n) + �dndn+1

or by any alternative method that tends to drive hdndn+1i to zero. Since
our experience with the batch-mode adaptive step sizes technique shows that
there are advantages in a geometric adaptation of the step size parameters,
we will use

�(n+1) = �(n)e�dndn+1 (4)

which we shall call the unnormalized step sizes adaptation procedure.
Although this procedure does work, it is clear that the values of dn and

dn+1 (and therefore also the values of the exponential) will vary widely from
one problem to another, or even within the same problem as we progress in
the optimization. This can be compensated by adjusting the value of �, but

1We won't discuss in detail, here, which are these situations. We will mention, however,
that the optimization of a quadratic function, like the one we are considering here, is one
such situation if �2m changes slowly with n (or is constant), and n is su�ciently large.
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we would like to obtain a procedure in which parameter tuning is reduced
to a minimum. We therefore propose the normalized adaptation procedure

�n+1 = �(n)e�
dndn+1

vn (5)

where the normalization divisor vn is an exponential average of the past
squared derivative estimates, obtained through the recursion

vn = 
vn�1 + (1� 
)(dn+1)
2;

the parameter 
 controlling the e�ective length of the exponential average.

4 Experimental tests

Two types of experiments were performed to test the validity of the proposed
stochastic step size adaptation procedure. The �rst consisted of �nding the
minimum of an analytically de�ned function; the second consisted of actually
performing the on-line training of a neural network. For the �rst set of
experiments we chose the well known Rosenbrock function as the function
to be minimized. This is a function of two variables, de�ned as

F (x; y) = 100(y � x2) + (x� 1)2

which has a narrow, gently sloping valley along the parabola y = x2, with a
single absolute minimum at the point (1,1). To create a stochastic gradient
descent situation, i.i.d. random values were added to the partial derivatives
of F before using them in the gradient descent procedure. These random
values had a Laplacian distribution with a standard deviation of 1.44. Min-
imization was started at the point (-1,1), and was stopped when we reached
a point where F < 0:1, a maximum of 10,000 tests were allowed.

Figure 1 shows the number of steps needed to reach the stopping crite-
rion, as a function of the initial value of the step size parameter, for three
stochastic gradient methods: (1) �xed step sizes, (2) the sign-based stochas-
tic adaptation procedure described in Section 2, and (3) the normalized
adaptation procedure given by equation (4). Due to time limitations, only
one test was performed for each situation. We used u = 1:2 and d = 1=u, in
the sign-based method (it is very important to have d = 1=u, for this method,
otherwise it will diverge very often). For the new adaptation method we used
� = 0:01 and 
 = 0:9.

It is apparent that the new procedure shows a very low sensitivity to
the initial value of the step size parameter, for a wide range of values of
this parameter. Fixed step sizes show a great sensitivity to the step size
parameter, as expected, and sign-based adaptation has somewhat an erratic
behavior, with some situations in which it diverges. In other tests, where we
used a skewed distribution for the noise added to the derivative, the number
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Figure 1: Rosenbrock function: Number of training patterns necessary to

reach F < 0:1 as a function of the initial step value.

of cases of divergence of the sign-based procedure was higher, con�rming
the reasoning made at the end of Section 2.

The second experiment consisted of training a multilayer perceptron to
implement the mapping

z = f(x; y) =
sin

�
20
p
x2 + y2

�

20
p
x2 + y2

+
1

5
cos

�
10
q
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�
+

y

2
� 0:3

The perceptron had a single hidden layer with 20 units, and was fully con-
nected between successive layers, with no direct connections from input to
output. The nonlinearities of all units were tanh functions. The training
data were uniformly distributed in the interval [-1 1] on both axis. Training
was stopped when the MSE error in the training set became less than 0.05.
The training phase was stopped after 32,000 training patterns. The weights
were initialized between -1 and 1 with a uniform distribution. The u and d
parameters of the sign-based stochastic adaptation procedure were 1.1 and
0.909 respectively. The parameters used for the new stochastic adaptation
method were: � = 0:01 and 
 = 0:95.

Figure 2 shows the results of this experiment. We can see, once again,
the low sensitivity of the new stochastic adaptation procedure, as well as
the large sensitivity of the �xed step size one. In this �gure, sign-based
adaptation seems to perform quite well. However, it still had an erratic
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Figure 2: MLP training: Number of training patterns necessary to obtain

a MSE below 0.05 as a function of the initial step value (�0). Three train-

ings were performed for each value of �0. The curves show the medians of

numbers of training patterns, and the vertical bars show the minimum and

maximum for each case.

7



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5000 10000 15000 20000 25000 30000 35000

M
S

E

training patterns

sign-based stochastic adaptation
proposed stochastic adaptation

Figure 3: Two typical learning curves obtained on the training set for sign-

based adaptation and for the new stochastic adaptation procedure.

performance that we illustrate in Figure 3. Here we show two learning
curves, one for sign-based adaptation and another for the new adaptation
procedure. Both curves are quite typical. The sign-based procedure diverged
after an initial convergence phase, in 13 out of 15 cases. The new procedure
never diverged.

5 Conclusions

We have proposed a new method for step size adaptation in stochastic gra-
dient optimization. This method uses independent step sizes for all pa-
rameters, and adapts them using the derivative estimates available in the
gradient optimization procedure. Experimental tests with the optimization
of the Rosenbrock function and with the on-line training of a multilayer
perceptron substantiate the e�ectiveness of the proposed procedure. While
more extensive testing still needs to be done, the new procedure seems to
be a good candidate for the acceleration of the on-line training of neural
networks.
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