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Abstract 

Gate matrix layout is a well-known JlrY-complete problem that arises at the heart of 
a number of VLSI layout styles. Despite its apparent general intractability, it has recently been 
shown that it can be solved in O(n*) time whenever the number of tracks is fixed. Curiously, the 
proof of this is nonconstructive, based on finite but unknown obstruction sets. What then are 
such sets, and what is their underlying structure? The main result we report in this paper is 
a proof that the obstruction set for three tracks contains exactly 110 elements. We also describe 
a number of methods for obstruction identification that extend to any number of tracks. 
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1. Introduction 

Traditionally, decision problems3 have been classified as either “easy” or “hard”, 
dependent on whether low-degree polynomial-time decision algorithms exist to solve 
them. Until recently, one could expect any proof of easiness to be constructive. That is, 
the proof itself should provide “positive evidence” in the form of the promised 
polynomial-time decision algorithm. Surprising advances, however, dramatically alter 
this appealing picture. See, for example, [S-S] for applications of tools from [14-171 
that nonconstructively establish the existence of low-degree polynomial-time decision 
algorithms for a number of challenging combinatorial problems. 

*Corresponding author. 
‘This author’s research has been supported in part by the University of Kansas under genera1 research 
allocation 3800-20-0038 and by the National Science Foundation under grant CCR-9008725. 
‘This author’s research has been supported in part by the National Science Foundation under grant 
MIP-8919312 and by the Office of Naval Research under contract NOO014-90-J-1855. 
3With its roots in set theory, computational complexity poses questions in terms of decision problems, 
rather than more natural search or optimization problems. Fortunately, the process of self-reduction often 
suffices to transform decision algorithms into search or optimization algorithms [3, 9, lo]. 
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In general, problems amenable to this approach are modeled as graphs. The 
algorithm can decide whether a given encoding of a problem is a “yes” instance 
or a “no” instance by determining if it contains an element of a finite basis of for- 
bidden graphs (the obstruction set). Strikingly, the underlying theory does not 
tell how to identify all members of such a set, the cardinality of the set, or even 
the order of the largest member of the set. The only fact we are given is that the set 
is finite. 

Perhaps the best-known example of an algorithm based on such “negative evid- 
ence” is the celebrated finite-basis characterization of planar graphs [13]: a graph is 
planar if and only if it contains no member of a two-element obstruction set in the 
topological order. The main result we present in this paper is a similar finite-basis 
characterization for the three-track gate matrix layout problem: a graph represents 
a circuit with a three-track layout if and only if it contains no member of a llO-ele- 
ment obstruction set in the minor order. 

Interestingly, it has recently been recognized [lo] that gate matrix layout with 
parameter k is identical to the path-width problem with parameter k - 1. (That is, 
a graph G represents a circuit with a k-track layout if and only if G has a path 
decomposition [14] of width at most k - 1.) Because the work we report here was 
originally derived in terms of circuit layout, and because gate matrix layout has 
received considerable attention in the literature, we shall neither state nor prove our 
results in terms of path-width. Instead, we only note that it is fortuitous that our 
efforts contribute to the understanding of this important width metric. 

Our proofs are of two general types. Some describe characteristics of obstructions, 
and thereby help to delimit the search space. Others show how a number of obstruc- 
tions can be constructively obtained. Since these techniques alone are sufficient to 
bound but insufficient to isolate all obstructions, many obstructions were identified 
with the aid of exhaustive case-checking. To assist in this heroic undertaking, massive 
computational power4 was used to verify that each obstruction represents a circuit 
that has no three-track layout, and to check that each proper minor of each obstruc- 
tion represents a circuit that does have a three-track layout. 

In the next two sections, we discuss relevant background information. In Section 4, 
we present the notation and terminology used throughout the remainder of this 
paper. In Sections 5 and 6, we prove several general results and constructions that 
hold for any number of tracks. In Section 7, we determine some specific properties 
required of three-track layouts and isolate all nonouterplanar obstructions. In Section 
8, we enumerate the entire three-track obstruction set and prove that this set is 
complete. In the final two sections, we summarize our work and pose a few related 
open problems. 

4We employed the dynamic programming formulation as given in [4] and as streamlined in [12]. The 
algorithm’s consumption of both time and space was enormous; its use was generally restricted to instances 
of moderate size (graphs with no more that about twenty edges) on an IBM 3090-300E. 
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2. The minor order 

A graph H is less than or equal to a graph G in the minor order, written H,<, G, if 
and only if a graph isomorphic to H can be obtained from G by a series of these two 
operations: taking a subgraph and contracting an arbitrary edge. A family F of graphs 
is said to be closed under the minor order if the facts that G is in F and that H 6, G 
together imply that H must be in F. The obstruction set for a family F of graphs is the 
set of graphs in the complement of F that are minimal in the minor order. Therefore, if 
F is closed under the minor order, it has the following characterization: G is in F if and 
only if H &, G for every H in the obstruction set for F. 

Theorem 2.1 [17]. Any set of jnite graphs contains only a Jinite number of minor- 
minimal elements. 

Theorem 2.2 [16]. For every$xed graph H, the problem that takes as input a graph 
G and determines whether H <,,, G is solvable in polynomial time. 

Theorems 2.1 and 2.2 guarantee only the existence of a polynomial-time decision 
algorithm for any minor-closed family of graphs. In particular, no proof of Theorem 
2.1 can be entirely constructive [lo]. 

Letting n denote the number of vertices in G, the time bound for algorithms ensured 
by these theorems is 0(n3). If F excludes a planar graph, then the bound reduces to 
O(n’). In general, these algorithms possess enormous constants of proportionality 
[lS], although new techniques greatly mitigate them [lS], and methods specific to 
layout problems such as the one we address here lower them even more [lo]. 

3. The gate matrix layout problem 

Gate matrix layout is a combinatorial problem that arises in several VLSI layout 
styles, including gate matrix, PLAs under multiple folding, Weinberger arrays and 
others. It was originally posed in terms of operations on Boolean matrices. Formally, 
we are given an n x m Boolean matrix M and an integer k, and are asked whether we 
can permute the columns of M so that, if in each row we change to * every 0 lying 
between the row’s leftmost and rightmost 1, then no column contains more than k 1s 
and *s. Such a * is termed aJill-in. We refer the interested reader to [4] for sample 
instances, figures and additional background on this challenging problem. 

Although the general problem is .N9-complete, it has been shown that, for any 
fixed value of k, an arbitrary instance can be mapped to an equivalent instance with 
only two 1s per column, then modeled as a graph on n vertices such that the family of 
“yes” instances is closed under the minor order and excludes a planar graph. 

Theorem 3.1 [6]. For any jixed k, gate matrix layout can be decided in O(n’) time. 
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Fig. 1. Obstruction set for 2-GML. 

Thanks to this mapping defined on arbitrary Boolean matrices, it suffices to restrict 
our attention to connected, simple graphs. 

In the sequel, we shall use the term k-GML to denote the k-track variant of gate 
matrix layout. Thus, an obstruction for k-GML is a graph that represents a “no” 
instance for parameter k (it has no k-track layout) and that is minimal for parameter 
k (each of its proper minors does have a k-track layout). For l-GML, it is trivial to see 
that the obstruction set contains only KZ. For 2-GML, the only obstructions are 
K, and S(K1,3)5 [2] (see Fig. 1). (The connected graphs that are “yes” instances for 
2-GML are known as caterpillars.) 

4. Definitions and notation 

Let G denote a graph, with vertex set V and edge set E, and let M denote an 
incidence matrix for G, augmented as necessary with fill-ins. For convenience, we 
assume a labeling for V and some appropriate bijection between these labels and the 
rows of M. Thus we shall, for example, refer merely to “row u” rather than to the more 
precise but cumbersome “row that corresponds to vertex u”. 

We term the matrix M a permutation for G, since the ordering of its columns 
determines an ordering for E. The cost ofa column is the total number of 1s and fill-ins 
it contains. The cost ofa permutation is the maximum cost of any of its columns. The 
cost ofa graph is the minimum cost of any of its permutations. These costs represent 
the number of tracks required in a layout of the associated circuit. 

A vertex of degree one is a pendant vertex. A (simple) path is a sequence of distinct 
vertices vi, v2, . . . , II~ such that edge ViUi + 1 E E for 1 < i < h. Vertices that form such 
a sequence are consecutive. A pendant path is a path in which vi has degree three or 
more, v,, has degree one, and each vi, 1 < i < h, has degree two. The length of such 
a path is h - 1, the number of edges it contains. 

A planar graph along with a planar embedding is called a plane graph. Similarly, an 
outerplanar graph [l l] along with an outerplanar embedding is called an outerplane 
graph. The regions of the plane bounded by the embedding are called faces. (The 
unbounded region is known as the “exterior” face. Unless otherwise noted, a face is 
understood to mean an interior face.) Two faces in a plane graph are edge adjacent if 

5S(K1,3) is the graph obtained by subdividing each edge of K,,, 
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their intersection contains one or more edges. Two faces are vertex adjacent if their 
intersection contains one or more vertices but no edges. 

Given a permutation for a graph, the spanfor a vertex is the collection of columns 
that contain either a 1 or a fill-in in its row. If the graph is plane, then the span for 
a face is the collection of columns that lie between the leftmost and rightmost columns 
that represent edges of the face, inclusive. 

Finally, we assume the reader is familiar with standard graph operations, in 
particular subtraction (\), union ( u ) and intersection ( n ) [l]. 

5. Obstruction characterization tools 

In this section and the next, we shall derive6 a number of results that help to 
characterize or construct obstructions. These results hold for arbitrary k. 

Lemma 5.1. No obstruction for k-GML contains two or more pendant paths of length 
one incident on a common vertex. 

Proof. Assume otherwise, and let G denote an obstruction for k-GML with pendant 
vertices v and w, both adjacent to vertex u. Let G’ = G\(w). Since G is minimal for 
parameter k, G’ possesses a permutation M’ with cost at most k. (Recall that 
permutations are augmented only as necessary with fill-ins, and so M’ has no fill-ins 
whatsoever in row v.) Consider the matrix M obtained from M’ by adding row w and 
placing column uw adjacent to column uu. The cost of column uw is identical to that of 
column uv, because still no fill-ins are needed in row v. Moreover, the costs of all other 
columns remain unchanged, because no fill-ins are required anywhere in row w. 
Therefore, M is a permutation for G with cost at most k, contradicting our assumption 
that G has no k-track layout. 0 

Lemma 5.2. No obstruction for k-GML contains a pendant path of length greater than 
two. 

Proof. Assume otherwise, and let G denote an obstruction for k-GML with pendant 
path x, . . . , u, v, w of length three or more. Let G’ = G\(w). Because G is minimal and 
because G’ cm G, there is an optimal permutation M’ for G’ with cost at most k. Since 
u has degree two, we may assume by symmetry that column MU contains the rightmost 
1 in row u. Consider the matrix M obtained from M’ by adding row w and inserting 
column VW to the immediate right of column uu. Since column VW does not need 

6As a matter of style, we shall omit proofs when they follow immediately from previous results, and shall 
merely point the reader to an earlier proof when analogous arguments suffice. We realize that the 
responsibility for deciding when to suppress details in this presentation is ours alone, and remark that full 
proofs, even of the corollaries, can be found in [12]. 
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a fill-in in row u, its cost is the same as that of column uu. The costs of all other 
columns remain unchanged, because no fill-ins are required in row v or in row w. 
Therefore, M is a permutation for G with cost at most k, contradicting the assumption 
that G has no k-track layout. 0 

Thus, a pendant vertex is an endpoint of either a pendant path of length one (which 
we shall henceforth call a pendant edge) or a pendant path of length two (which we 
shall without ambiguity henceforth term simply a pendant path, omitting reference to 
its length). 

Lemma 5.3. Zf a graph has a pendant path, then there is an optimal permutation for that 
graph in which the edges of the path are represented by adjacent columns. 

Proof. Let G denote a graph with pendant path u, v, w, and let M denote an optimal 
permutation for G. Suppose that columns uu and VW are not adjacent, and that column 
uv is to the left of column VW. The rightmost 1 in row u must be either (1) in column uv, 
(2) in a column between columns uv and DW, or (3) in a column to the right of column 
VW. 

Suppose (1) holds. We construct a new matrix M’ from M by moving column uw to 
the left until it is to the immediate right of column uv. Since column VW does not 
require a fill-in in row u, its cost is no more than that of column uv. Moreover, no 
column now requires a fill-in in row v, and the cost of M’ is no more than that of M. 

Suppose (2) holds. For the sake of discussion, assume that the rightmost 1 in in row 
u is in column UX. We construct matrix M’ from M by first moving column uu to the 
right until it is to the immediate right of column ux. Since column ux had a fill-in in row 
u, the cost of column uu is no more than the original cost of column UX. To complete 
the construction of M’, move column uw to the left until it is to the immediate right of 
column uv. Since column VW does not require a fill-in in row U, its cost is no more than 
that of column uv. Therefore, the cost of M’ is no greater than that of M. 

Suppose (3) holds. We construct matrix M’ from M by moving column uv to the 
right until it is to the immediate left of column uw. Since column VW has a fill-in in row 
u, the cost of column uv is no more than the cost of column uw. Thus, the cost of M’ 
cannot exceed that of M. 0 

Lemma 5.4. No obstruction for k-GML contains more than three pendant paths 
incident on a common vertex. 

Proof. Assume otherwise, and let G denote an obstruction for k-GML with four or 
more pendant paths incident on vertex u. Let u, v, w be one such pendant path, and let 
G’ = G\{uv, uw}. Because G is minimal and because G’ 6, G, G’ possesses a permuta- 
tion M’ with cost at most k in which (due to Lemma 5.3) each pendant path incident 
on u is represented by a pair of adjacent columns. Let the second such pair of columns 
represent pendant path u,x,y. (We choose the second pair of columns since this 
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guarantees that column xy has a fill-in in row u.) We construct matrix M from M’ by 
adding rows v and w, and by placing columns uv and VW to the immediate right of 
columns ux and xy. Since no fill-ins are required in rows x and y, the costs of columns 
uv and VW are the same as the costs of columns ux and xy, respectively. Therefore, M is 
a permutation for G with cost at most k, contradicting our assumption that G has no 
k-track layout. 0 

Lemma 5.5. For k > 2, no obstruction for k-GML contains more than two consecutive 
vertices of degree two. 

Proof. Assume otherwise, and let G denote an obstruction for k-GML, k > 2, with 
consecutive vertices u, v and w, each of degree two. Let G’ be the graph obtained from 
G by contracting the edge uv to U. (Observe that u and w each retain degree two in G’: 
no increase in degree is possible; a decrease would imply either that G is K3 and hence 
not an obstruction for k > 2, or that G is not connected and hence not an obstruction 
for any k.) Because G is minimal and because G’ <,,, G, G’ must possess an optimal 
permutation M’ with cost at most k. From the facts that M’ has no unnecessary fill-ins 
in rows u and w and that both u and w have degree two, it follows that either (1) the 
spans for these two rows overlap only in column uw or (2) the span for one properly 
contains the span for the other. 

Suppose (1) holds. For the sake of discussion, assume the single column of overlap 
(column uw) contains the rightmost 1 in row u and thus the leftmost 1 in row w. We 
construct at no extra cost a new matrix M from M’, by replacing column uw with 
columns uv and VW. 

Suppose (2) holds. For the sake of discussion, assume the span for u properly 
contains the span for w, with column uw the rightmost in both spans. Let c denote the 
column that contains the leftmost 1 in row w. We construct at no extra cost a new 
matrix M from M’, by replacing column uw with column VW, and by inserting column 
uv to the immediate left of column c. 

In either case, M is a permutation for G with cost at most k, contradicting the 
assumption that G has no k-track layout. 0 

Lemma 5.6. Suppose G contains a pair of adjacent vertices, u and v, each of degree two. 
If G’ is obtained from G by contracting the edge uv to u, adding a new vertex w, and 
adding the edge uw, then the cost of G equals that of G’. 

Proof. Let G, G’, u, v and w be as defined in the statement of the lemma. Let t (x) denote 
the other vertex adjacent to u (u) in G. Let M denote an optimal permutation for G. 

We construct a new matrix M’ from M by replacing column vx with column ux and 
changing the label on row v to w. Row w contains a single 1 and requires no fill-ins. 
Any column that now needs a new fill-in in row u originally had a fill-in in row v. Thus, 
the cost of M’ is no more than that of M. Because M’ is a permutation for G’, the cost 
of G’ cannot exceed that of G. 
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Let M’ denote an optimal permutation for G’. Note that, in G’, vertex u has degree 
three and is adjacent to vertices t, w, and x. It suffices to consider two cases for M’, in 
that either (1) column uw lies between columns tu and ux or (2) column uw contains the 
leftmost 1 in row u. 

Suppose (1) holds. We construct a new matrix M from M’ by replacing column ux 
with column wx and changing the label on row w to u. Any fill-ins required in row u lie 
in columns that no longer require fill-ins in row u. Thus, the cost of M is no more than 
that of M’. 

Suppose (2) holds. If column uw has a fill-in in row t (or row x) then, at no extra cost, 
we move column tu (column ux) to the immediate left of column uw. M can now be 
constructed as in (1). If column uw has OS in both row t and row x, then we may assume 
that columns tu and ux contain the leftmost 1s in rows t and x, respectively. (To see 
this, note that if another column c holds the leftmost 1 in row t (row x), then c has 
a fill-in in row u and column tu (column ux) can be placed to the left of c with no 
increase in cost). If column ux is to the right of column ru then, at no extra cost, we 
move column uw to the immediate left of column UX. Otherwise, at no extra cost, 
we move column uw to the immediate left of column tu. M can now be constructed 
as in (1). 

Because M is a permutation for G, the cost of G cannot exceed that of G’. 0 

Corollary 5.7. Zf G and G’ denote graphs as defined in Lemma 5.6, then G is an 
obstruction for k-GML if and only tf G’ is. 

Corollary 5.8. No obstructionfor k-GML contains two adjacent vertices of degree three 
each adjacent to a pendant vertex as well. 

Corollary 5.9. No obstruction for k-GML contains a vertex of degree three adjacent to 
both a pendant vertex and a vertex of degree two. 

Lemma 5.10. Let G denote an arbitrary graph with cost k, and let v denote any vertex of 
G. G possesses an optimal permutation in which every column with cost k has a nonzero 
entry in row v if and only ifG\{u> d oes not contain an obstruction for (k - l)-GML. 

Proof. Let G denote a graph with cost k and let u denote any vertex of G. If G\(v} 
contains an obstruction for (k - l)-GML, then every optimal permutation for G\(v) 
has cost k. Therefore, every optimal permutation for G contains a column with cost 
k that has a 0 in row v. 

If G\{v} does not contain an obstruction for (k - l)-GML, then G\(u) possesses an 
optimal permutation M’ with cost at most k - 1. Consider the matrix M obtained 
from M’ by adding row v and, for each vertex w adjacent to v in G, inserting column VW 
adjacent to any column with a 1 in row w. In every case, the cost of column uw is at most 
k. Since v is the only row that may need additional fill-ins, M is an optimal permutation 
for G of cost k in which every column with cost k has a nonzero entry in row v. q 
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Corollary 5.11. Let G denote an obstruction for k-GML and let v denote a vertex of G. 
G has cost exactly k + 1, and possesses an optimal permutation in which every column of 
cost k + 1 has a 1 or a$ll-in in row v. 

Lemma 5.12. Adding an edge to a graph increases its cost by at most one. 

Proof. Straightforward. 0 

Lemma 5.13. If G contains Kk as a subgraph, then G has cost at least k and possesses 
an optimal permutation in which the edges of Kk are represented in adjacent 
columns. 

Proof. Follows immediately from Lemma 4.1 of [6]. 0 

Corollary 5.14. If G contains Kk as a minor, then G has cost at least k. 

Corollary 5.15. Kk is an obstruction for (k - l)-GML. 

Lemma 5.16. Let G denote an arbitrary graph and let HI and Hz denote obstructions 
for k-GML. Zf G n HI = G n H2 = { } f v or some vertex v, then the cost of G v HI equals 
that of Gu Hz. 

Proof. Let G, HI, Hz and v be as defined in the statement of the lemma. Let M denote 
an optimal permutation for G u HI. 

Since H, is an obstruction for k-GML, some column c of HI in M has cost k + 1 in 
the rows of HI. Either c is contained in the span for v (in which case c contains a 1 or 
a fill-in in row v), or else the connectedness of HI ensures that every column of G lying 
between c and the span for v has a fill-in in some other row of HI. 

Due to Corollary 5.11, Hz possesses a cost k + 1 permutation M, in which every 
column with cost k + 1 has a 1 or a fill-in in row v. We use M2 to construct a new 
matrix M’ from M as follows. We first eliminate the rows of HI \(v], then all resultant 
columns with at most one 1 (one of which is c). We next insert M2 into the position 
formerly occupied by c (which requires a new row for each vertex of H,\(v)). No 
inserted column can require more fill-ins than did c. Due to the way c was chosen and 
its relation to the span for v, no column originally in M can incur an increase in its 
number of fill-ins. Thus, the cost of M’ is no more than that of M. 

Because M’ is a permutation for G u H,, the cost of G u H2 cannot exceed that of 
G u HI. The inequality is established in the reverse direction analogously. 0 

Corollary 5.17. Zf G, HI and H2 denote graphs as defined in Lemma 5.16, and ifG u HI 
is an obstruction for k’-GML but G u H, is not, then any obstruction for k’-GML 
contained as a minor in G u Hz has the form G u Hi for some Hi c,,, Hz. 

Lemma 5.18. Let G be a plane graph with face F. In any permutation for G, every 
column in the face span for F has a cost of at least two in the collection of rows that 
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Fig. 2. Constructions used in Lemmas 6.1, 6.2 and 6.4 

correspond to the vertices of F, and every interior column of that span has a total cost of 
at least three. 

Proof. Straightforward. 0 

6. Obstruction construction tools 

The constructions studied in this section are depicted informally in Fig. 2. 

Lemma 6.1. Let G,, Gz and G3 denote disjoint (but not necessarily distinct) obstructions 
for k-GML, let vi denote an arbitrary vertex of Gi for 1 f i < 3, and let v denote an 
isolated vertex not in G1 uGzvG,. The graph G = G,u GzuG3u {v}u {UUi: 
1 < i d 3) is an obstruction for (k + l)-GML. 

Proof. Let Gi, vi, v and G be as defined in the statement of the lemma. It follows from 
Lemma 4.3 of [6] that G has cost k + 2. 

We now establish the minimality of G. Due to Corollary 5.11, each Gi, 1 < i < 3 
possesses a cost k + 1 permutation Mi in which every column with cost k + 1 has 
a 1 or a fill-in in row Vi. Since G is connected, the removal of a vertex necessarily means 
the removal of an edge and, therefore, we only need consider the effect of removing or 
contracting a single edge, e. Because of G’s symmetry, we may assume that either (1) 
e is in G1, or (2) e = vvI. 

Suppose (1) holds. Let G; and G’ denote the minors of G1 and G, respectively, that 
are obtained by the removal or contraction of e (for notational simplicity in the case of 
a contraction, we insist that e be contracted to v1 if v1 me). Because G1 is minimal for 
parameter k, G; possesses a permutation M; with cost at most k. Let A4 denote the 
permutation M2, vvz, M;, vv3, MJ. A column in M2 or M3 has cost at most k + 1. 
Columns vvz and vu3 each have cost two. Any column in Ml incurs one additional 
fill-in (in row v), bringing its cost to at most k + 1. Thus, M has cost k + 1. We form 
M’ from M at no extra cost by placing vu, adjacent to an arbitrary column in M with 
a 1 in row vl. 
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Suppose (2) holds. If G’ = G\(e), let M’ denote the permutation M2, vv2, vv3, M3, 
M 1. Since v now has degree two, no fill-ins are required in its row. Because of the way 
M2 and M3 were chosen, any column that requires a new fill-in in row v2 or row vj has 
cost at most k + 1, and so M’ has cost k + 1. If G’ is obtained from G by contracting 
e to vr, let M’ denote the permutation MZ, v1v2, M,, v,v3, M3. Only the vi rows may 
require additional fill-ins. Again, because of the way each Mi was chosen, any new 
fill-in must lie in a column that has cost at most k + 1, and so M’ has cost k + 1. 

In any case, M’ is a permutation for G’, and thus the cost of G’ is strictly less than 
that of G. 0 

Lemma 6.2. Let G1, G,, and G3 denote disjoint (but not necessarily distinct) graphs 
of cost k, and let Ui and Vi denote arbitrary (but not necessarily distinct) vertices of 
Gi for 1 < i ,< 3. The graph G = G1 u G2 u G3 u (v1v2, uIv3, u2u3} has cost at 
least k + 1. 

Proof. Let Gi, Ui, Vi and G be as defined in the statement of the lemma. Let M denote 
an optimal permutation for G and, in M, let ci denote a column of Gi with cost at least 
k in the rows of Gi. Without loss of generality, assume ci lies to the left of c2 which lies 
to the left of c3. Ifu1v3 lies to the left of c2, then c2 has a fill-in in some row of Gj. 
Otherwise, it has a fill-in in some row of Gi . Thus the cost of G is at least k + 1. 0 

The graph G just defined may not, however, have cost exactly k + 1, even if Ui = vi, 
1 < i ,< 3. An example is illustrated in Fig. 3. 

Corollary 6.3. Let G1, GZ, and G3 denote obstructions for (k - I)-GML, and let vi 
denote an arbitrary vertex of Gi for 1 < i < 3. The graph G = G1 u G2 

u G3 u (~1~2, v1v3, v2v3} has cost exactly k + 1. 

The graph G just defined may not, however, be an obstruction for k-GML. For 
example, obstruction 12.3.1 listed in the appendix is properly contained in the graph 
constructed by setting Gi = G2 = K3 and setting G3 = S(K,,,), with v3 a vertex of 
degree one. 

Fig. 3. A graph of cost 5 built from three graphs of cost 3. 
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Lemma 6.4. Let G1, G2, G,, G4 and G5 denote disjoint (but not necessarily distinct) 
obstructionsfor k-GML, and let ui denote an arbitrary vertex of Gifor 1 < i < 5. Let C5 
denote a cycle graph of order Jive, with vertex set {vi: 1 < i < 5}, disjoint from 
G~LJGZUG~UG~UG~. ThegraphG=G1uGzuGguG4uG5u{uivi: l<i<5} 
is an obstruction for (k + 2)-GML. 

Proof. Let Gi, Ui, Cg, Vi and G be as defined in the statement of the lemma. 
Let M denote an optimal permutation for G and, in M, let ci denote a 
column of Gi with cost at least k + 1 in the rows of Gi. If any ci lies between 
the leftmost and rightmost columns of Cg, then it incurs at least two additional 
fill-ins (in rows of C,). Otherwise, without loss of generality, assume c1 lies to 
the left of c2 which lies to the left of cj which lies to the left of the leftmost column 
of Cg. In this event, cj incurs two additional fill-ins (one in a row of G1 u (vl}, 
and one in a row of G2 u {vz}). Thus the cost of G is at least k + 3. 

Letting Mi denote a cost k + 1 permutation for G, in which every column with cost 
k + 1 has a 1 or a fill-in in row Ui, we observe that G has cost exactly k + 3 as 
evidenced by the permutation Ml, ulvl, M,, u2v2, v1v2, v2v3, u3v3, MS, v3v4, v4v5, 
~1~5, ~4~4, M4, ~505, M5. 

We now establish the minimality of G. As in the proof of Lemma 6.1, we need only 
consider the effect of removing or contracting a single edge, e, and may assume that 
either (1) e is in Gi, (2) e = ulvl, or (3) e = v1v2. 

Suppose (1) holds. Let G; and G’ denote the minors of Gi and G, respectively, 
that are obtained by the removal or contraction of e (if a contraction, e is con- 
tracted to u1 if ui me). Because Gi is minimal for parameter k, G; possesses a permuta- 
tion M; with cost at most k. Let M;’ denote the matrix formed at no extra cost 
from M; by adding row v1 and placing column uivi adjacent to an arbitrary 
column with a 1 in row ui. Let M’ denote the permutation M2, u2v2, MS, u3v3, 
vZu3, VlVZ> M;‘, u3v4, utv5, v4v5, u4v4, M4, ~5~5, M5, which has cost at 
most k + 2. 

Suppose (2) holds. If G’ = G\(e), let M’ denote the permutation M2, u2v2, M3, 
u3v39 vZu3, ulu2, v304, u4uS, ulv5, u4v4, M4, u5v5, MS, Ml, which has cost at most 
k + 2. If G’ is obtained from G by contracting e to ui, let M’ denote the permutation 
M2, UzV2, M3, U3V3, v2u3> u2u1, Ml, u1v5, u4u5, u3u4, u4v4, M4, w5, M5, which has 

cost at most k + 2. 
Suppose (3) holds. If G’ = G\(e), let M’ denote the permutation M2, u2v2, ~2~3, 

~3~3, M3, 03~4, ~4~4, M4, ~405, ~505, M5, ~5~1, ~1~1, Ml, which has cost at most 
k + 2. If G’ is obtained from G by contracting e to vi, let M’ denote the permutation 
M1, ulvt, M2, n2vlr M3, u3v3, u1u3, u3u4, u1u5, v4u5, u4a4, M4, u5u5, M5, which has 
cost at most k + 2. 

In any case, M’ is a permutation for G’, and thus the cost of G’ is strictly less than 
that of G. 0 
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7. Special tools for three-track obstructions 

Unlike the work of the last two sections, the results we now derive hold only for 
k = 3. 

7.1. General properties of the three-truck obstructions 

Lemma 7.1. No obstruction for 3-GML contains a vertex of degree four or more 
adjacent to a pendant vertex. 

Proof. Assume otherwise, and let G denote an obstruction for 3-GML with vertex v 
adjacent to vertices w, x, y and pendant vertex z. Let G’ = G\{z}, and let M’ denote 
a cost-three permutation for G’. Without loss of generality, assume that column VW lies to 
the left of both vx and vy, and that column VW has a 0 in row x. Let c denote the column 
that contains the leftmost 1 in row x. We construct matrix M from M’ by adding row 
z and placing column vz to the immediate left of c. M is a permutation for G with cost at 
most three, contradicting our assumption that G has no three-track layout. 0 

This result (aided by the corollaries to Lemma 5.6) is easily extended. 

Corollary 7.2. No obstruction for 3-GML contains two adjacent vertices each adjacent 
to a pendant vertex. 

Given a permutation for a plane graph, the overlap of two or more face spans is the 
collection of columns common to all spans. 

Lemma 7.3. If a plane graph of cost three contains two faces whose intersection is 
exactly one vertex, then it possesses an optimal permutation in which the overlap of the 
spans for these faces is empty. 

Proof. Let G denote a plane graph of cost three with faces F1 and F2 such that 
F1 n F, = v. Let M denote a cost-three permutation for G, and suppose the overlap of 
the face spans for F, and F2 is nonempty. Because these faces are not edge adjacent, 
their overlap contains at least two columns, each with cost two in the rows of F,, and 
each with cost two in the rows of F2 (Lemma 5.18). Since M has cost three, and since 
v is the only vertex on both F1 and F1, each column of the overlap represents an edge 
of either F, or F2 that is incident on v. 

Without loss of generality, assume the leftmost column of the overlap is VW of F,, 
with a fill-in in row u of F,. Since the cost of M is three, the column to the immediate 
right of VW must be MU. If vx of F1 is to the right of uv, then VW requires a fill-in in row 
x as well, contradicting the fact that M has cost three. Therefore, the overlap contains 
only VW and uv, and interchanging the two columns yields a cost-three permutation for 
G with the desired property. 0 
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Lemma 1.4. lf a plane graph of cost three contains two faces whose intersection is 
exactly one edge, then it possesses an optimal permutation in which the overlap of the 
spans for these faces is exactly one column. 

Proof. Let G denote a plane graph of cost three with faces Fr and F2 such that 
F1 n F, = uv. Given a cost-three permutation for G, suppose the overlap of the face 
spans for F, and F2 contains two or more columns (it cannot be empty because it 
must contain uv). Moreover, suppose the overlap contains no pendant edges incident 
on u or v (any such edge can be removed initially, then reinserted after our forthcom- 
ing permutation modification at no extra cost). 

Without loss of generality, assume that the rightmost column of F1 lies to the right 
of both uv and the leftmost column of F,. It is straightforward to verify that the 
overlap contains at most three columns, that uv and the leftmost column of F2 are the 
same, and that the column to the immediate right of uv must have the form uw (or VW) 
for some w E F1. Thus column uv must have a fill-in in row w, uw (or VW) must have 
a fill-in in row v (or u), and so uu and uw (or VW) can be interchanged at no extra cost, 
an action which eliminates a column from the overlap. At most one more application 
of this interchange reduces the overlap to uv alone. 0 

7.2. Three-track obstructions that are not outerplanar 

Since Kq, an obstruction for 3-GML, is a minor of both K5 and K3,3, all 
obstructions for 3-GML are planar. We now establish that K4 and the four graphs 
illustrated in Fig. 4 are the only obstructions for 3-GML that are not outerplanar. 

Lemma 7.5. The four graphs depicted in Fig. 4 are the only obstructions for 3-GML 
with the property that,for any planar embedding, there exists an edge not adjacent to the 
exterior face. 

Proof. Computation suffices to check that these four graphs are indeed obstructions 
for 3-GML; clearly, each has the property stated in the lemma. Thus we need only to 
establish that these are the only obstructions for 3-GML that possess this property. 

Let G = (I’, E) denote an arbitrary plane obstruction for 3-GML with the desired 
property, and assume without loss of generality that its embedding maximizes the 
number of edges on or adjacent to the exterior face. Let Vf denote the set of vertices on 
this exterior face, and let V, denote I’\ I’,. Let G’ denote the subgraph of G induced by 
V,. Thus G’ contains at least one edge, uv. 

Fig. 4. Four related obstructions 
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Let S denote the set of (simple) paths in G with an initial vertex in (u, u}, internal 
vertices in V,, and a terminal vertex in Vr. If three or more distinct terminals are 
contained in the elements of S, then G >, K,, contradicting the presumed minimality 
of G. If every element of S contains the same terminal, then the connected component 
of G’ containing uu can be moved to the exterior face, contradicting the presumed 
maximality of (the number of edges on or adjacent to) that face. Thus the elements of 
S contain exactly two different terminals, which we denote by w and x. 

It now follows that G contains three vertex-disjoint paths from w to x. Moreover, 
the maximality of the exterior face dictates that each path either has length at least 
three, or contains an internal vertex adjacent to a distinct, additional vertex not on 
any of the three paths. Therefore G 3, H for some H depicted in Fig. 4. 0 

Lemma 7.6. No obstruction for 3-GML contains a vertex of degree two adjacent to 
vertices of degree three or more unless those vertices are also adjacent. 

Proof. Assume otherwise, and let G denote a plane obstruction for 3-GML with 
degree two vertex v adjacent to vertices u and w, each of degree three or more, but not 
adjacent to each other. Lemma 7.1 and Corollary 5.9 guarantee that neither u nor w is 
adjacent to a pendant vertex. Let G’ denote the minor of G obtained by contracting 
edge uv to u, and let M’ denote a cost-three permutation for G’. Consider the overlap 
of the spans for u and w, and without loss of generality, assume the leftmost column is 
uw and that it contains the leftmost 1 in row w. If the overlap is uw, or if uw has cost 
two, adding row v and replacing uw with uu and VW produces a cost-three permutation 
for G, a contradiction. If uw has a fill-in in row x, it is straightforward to verify that 
some column of the overlap contains the rightmost 1 in row x, or that the overlap 
contains at most three columns one of which is ux. In either case, a cost-three 
permutation for G can be constructed from M’, again contradicting the assumption that 
G has no three-track layout. Therefore, an obstruction for 3-GML contains a vertex of 
degree two adjacent to vertices of degree three or more, only if (as obstruction 6.4.1 in 
the appendix illustrates) the three vertices are pairwise adjacent. 0 

Lemma 7.7. K, and the graphs depicted in Fig. 4 are the only obstructions for 3-GML 
that are not outer-planar. 

Proof. Assume otherwise. Let G denote a nonouterplanar obstruction for 3-GML 
other than one of the five noted in the statement of the lemma. Thus, due to Lemma 
7.5, there is at least one embedding of G in which every edge is adjacent to the exterior 
face. From the embeddings of G with this property, select one that maximizes the 
number of vertices on the exterior face, and let v denote a vertex that is not on this 
face. It must be that v has degree two, since otherwise G 3, K4 due to the way the 
embedding was chosen. Let u and w denote the vertices adjacent to v. The maximality 
of the embedding ensures that G contains three edge-disjoint paths of length two or 
more between u and w. Moreover, Lemma 7.6 implies that UWEG. 
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Consider this embedding restricted to G’ = G\{u}. There are faces Fi and F2 in G’ 
such that F1 n F2 = uw. Let M’ denote a cost-three permutation for G’ in which, due 
to Lemma 7.4, the overlap of the face spans for F, and F2 is uw. 

If uw contains no fill-in, then we construct a new matrix M from M’ by adding row 
u and placing columns uu and z.rw to the immediate left of uw. 

If uw contains a fill-in in some row x, then it follows that ux and wx must exist, 
contain the only Is in row x, and lie immediately to each side of UW. In this case, we 
construct a new matrix M from M’ by adding row v and placing columns uv and VW to 
the immediate left of the column to the immediate left of uw. 

In either case, M is a cost-three permutation for G, contradicting the assumption 
that G is an obstruction for 3-GML. 0 

7.3. Additional properties of three-track obstructions 

We shall henceforth consider only outerplane obstructions and outerplanar embed- 
dings in which all vertices lie on the exterior face. Thus the intersection of two faces is 
at most a single edge. 

Lemma 7.8. If an obstruction for 3-GML contains two faces that are adjacent at and 
only connected through a single vertex, then at least one of these faces is a triangle with 
two vertices of degree two. 

Proof. Let G denote an obstruction, with faces F1 and F2 adjacent at and only 
connected through u. Assume neither F1 nor F, is a triangle with two vertices of 
degree two. 

Let C1 denote the (unique) connected component of G\(v) that contains an edge 
of F,\(v). Let C2 denote (G\(u})\C,. Let u and w denote a pair of isolated vertices 
not in G. We define Gi = (G\C,) u { u, w} u (uv, VW, uw} and G2 = (G\C,) u {u, w} u 
{uu, uw, UW}. 

Observe that both G, and G2 are proper minors of G and both, therefore, have 
cost-three permutations. It is straightforward to show that G1 must possess an 
optimal permutation M 1 with the three columns of {u, v, w > on the extreme right, else 
G properly contains an obstruction as described in Lemma 6.1. Similarly, G2 must 
possess an optimal permutation M2 with the three columns of {u, u, w} on the extreme 
left. 

But this means that we can construct a cost-three permutation for G by placing 
M2 to the right of Ml and removing the (six) columns of {u, u, w}. This contradicts the 
fact that G is an obstruction, however, and so the assumption that neither F1 nor F2 is 
a triangle with two vertices of degree two cannot hold. 0 

Let u denote a vertex on a face of an outerplane graph G. If the connected 
component of G\{vw(w lies on a face} that contains u has at least one edge, then we 
term this component the attachment at u. 
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Lemma 7.9. If an obstruction for 3-GML contains a face in which two or more vertices 
have attachments, then each attachment is a minor of S(K,,,). 

Proof. Assume otherwise for obstruction G, in which vertices u and v of face F have 
attachments, with the attachment at v, A(v), not a minor of S(K,,,). 

No vertex of A(v) has degree greater than three unless A(v) contains a cycle 
(Lemmas 5.4 and 7.1). No degree-three vertex of A(v) is adjacent to both a vertex of 
degree two and a pendant vertex unless that vertex is v (Corollary 5.9). No degree-two 
vertex of A(v) is adjacent to two vertices of degree three (Lemma 7.6). It follows that 
either A(v) contains a cycle or S(K,,,) cm A(v), and thus A(v) has cost three. 

Let A+ = A(u)u { u , w } u  {uv, VW, uw }. Let A- = A(v)\(v). It is straightforward to 
show that A+ possesses an optimal permutation Mi in which uvw7 is the rightmost 
column. Let G’ = (G\A-)u {x, y) u {xv, uy, xy}. If A(v) contains a cycle, then 
G’ cm G, and thus G’ has cost three. If A(v) is acyclic, then S(K,,,) cm A(v), and thus 
(with the help of Lemma 5.16) again G’ has cost three. Now it is straightforward to 
show that G’ possesses an optimal permutation M2 in which vxy is the leftmost 
column. But this means we can construct a cost-three permutation for G by placing 
M2 to the right of MI and removing uvw and vxy, a contradiction. 0 

Lemma. 7.10. If an obstruction for 3-GML contains two faces that are adjacent at and 
only connected through a single vertex, then there is an obstruction for 3-GML with one 
less face and with a vertex whose attachment is two or three pendant paths. 

Proof. Let G denote an obstruction with faces F1 and F, adjacent at and only 
connected through v. Assume F1 is a triangle in which only v has degree three or more 
(Lemma 7.8). Let H denote the graph obtained from G by deleting F,\{v) and 
identifying the degree-three vertex of (a disjoint copy of) S(K,,,) with v. H has cost 
four (Lemma 5.16). Let G’ denote an obstruction contained in H. Observe that, in G’, 
the attachment at v contains more than one pendant path, else G’ cm G. Thus, due to 
Corollary 5.17, either G’ = H or G’ = H\{ vx, xy) where x and y are vertices on 
a pendant path incident on v and the lemma holds. 0 

Corollary 7.11. If an obstruction for 3-GML contains two faces that are adjacent at and 
only connected through a single vertex v, then v has no attachment. 

We say that two disjoint faces are separated if the removal of some edge places the 
faces in different connected components. 

Lemma 7.12. If an obstruction for 3-GML contains a pair of separated faces, then the 
obstruction is one obtained from Lemma 6.1. 

‘As justified by Lemma 5.13, we shall from now on represent a triangular face by a column with three 1s 
rather than three columns each with two 1s. 
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Fig. 5. A 4-GML obstruction. 

Proof. Assume otherwise for obstruction G with separated faces F1 and F1. Let uv 
denote an edge of G whose removal places F, and F2 in distinct connected compo- 
nents C1 and Cz, respectively. Assume u E Ci and v E C2. C1 must possess an optimal 
permutation MI in which every column to the right of the span for u has cost two, else 
Ci\{u} contains two disjoint obstructions for 2-GML and the minimality of G en- 
sures that it is obtained from Lemma 6.1. Similarly, C2 must possess an optimal 
permutation M2 in which every column to the left of the span for v has cost two. But 
now M, , uv, M2 is a cost-three permutation for G, a contradiction. Cl 

7.4. Nonextendability of these results to four or more tracks 

Unfortunately, the results of this section cannot be extended to values of k > 3. 
Consider, for example, the graph depicted in Fig. 5. We know from Lemma 6.1 that it 
is an obstruction for 4-GML. 

Clearly, analogs of Lemmas 7.1 and 7.6 are ruled out by uv and w. Similarly, Lemma 
6.2 quickly gives rise to obstructions for 4-GML that eliminate analogs for Lemmas 
7.8 and 7.9. More complicated constructions [12] can be devised to rule out analogs 
for Lemmas 7.3, 7.4 and 7.12. 

8. The complete three-track obstruction set 

In this section, we shall complete the task of identifying all obstructions for 3-GML. 
Each is given a three-integer name, denoting its number of vertices, its number of 
interior faces and an index. For example, obstruction 8.2.3 is the third obstruction we 
list with eight vertices and two faces. For the reader’s convenience, the entire set is 
displayed in an appendix to this paper. 

8.1. Obstructions from previous constructions 

Lemma 6.1 provides twenty obstructions: ten are trees (22.0.1-10); six have one face 
(18.1.1-6); four have separated faces (10.3.1 and 14.2.1-3). 
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Lemma 6.2 provides forty-three more obstructions (6.4.1, 8.3.1, 9.4.1-2, 11.2.1-2, 
11.3.1, 12.3.1, 13.2.1, 13.3.1-6, 15.1.14, 15.2.1-7, 16.2.1, 16.2.5-6, 17.1.1-3, 17.2.1, 
17.2.3-4, 18.1.7, 18.1.9-10, 19.1.1-3, 20.1.1 and 21.1.1). 

Lemma 6.4 provides one additional obstruction (151.5). 
Therefore, including the five nonouterplanar obstructions identified in Section 7, 

sixty-nine obstructions for 3-GML are known up to this point. 

8.2. Conventions for describing new obstructions 

We know from [S, 121 and Lemma 7.12 that no more tree or separated-face 
obstructions are possible. Moreover, those with vertex-adjacent faces can be obtained 
indirectly with Lemma 7.10. Thus we now consider only outerplane graphs with either 
a single face or with two or more edge-adjacent faces. Without loss of generality, we 
assume the outerplane embedding induces a left-to-right ordering of the faces, so that 
we can employ a simple (decimal) integer pattern to denote its face structure. In such 
a pattern, the number of digits equals the number of faces, and the value of each digit 
equals the number of vertices in the corresponding face. (As we shall see later, this easy 
scheme suffices, because we need only consider candidate obstructions in which no 
interior face has more than six vertices.) 

If a face contains four or more vertices, then we assume each vertex of the face has 
degree at least three (Lemmas 5.5, 5.6 and 7.6). If a vertex has an attachment, then we 
assume this attachment is either a pendant edge or one, two or three pendant paths 
(Lemma 7.9). If the attachment consists of three pendant paths, then a minimal- 
ity-preserving replacement is possible thanks to Lemmas 5.16 and 7.6. We term this 
a type 1 replacement. If the attachment is a pendant edge, then a minimality-preserving 
replacement is possible thanks to Lemma 5.6. We term this a type 2 replacement. Fig. 6 
illustrates these two replacements, which we shall use to identify obstructions that 
might otherwise be missed due to the assumptions just stated. 

Fig. 6 Type 1 and 2 replacements 
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We can thus use a succinct (character) string to denote a graph’s attachment 
structure. We begin by visiting the vertices that lie on any internal face clockwise 
around the external face. If two or more (internal) faces are present, then we start with 
the vertex at the “top” of the edge shared by the leftmost two faces, otherwise we start 
at an arbitrary vertex. Letting Ui denote the ith vertex visited in this fashion, we 
represent the attachment at Vi with the ith character of the string. Such a character is 
either a 0 to denote that there is no attachment, the letter e to denote that it is 
a pendant edge, or an integer in the range [l, 31 to denote the number of pendant 
paths it contains. 

New obstruction candidates are now uniquely (modulo rotations and reflec- 
tions) describable in pattern-string form. For example, the graph denoted by 
34-2e300 contains a triangle, edge adjacent to a square to its right. These two faces 
share the edge u1v4. The triangle’s vertex set is {vi, u4, v5}. The attachments at 
vertices ol, v2, and v3 are, respectively, two pendant paths, a pendant edge and three 
pendant paths. 

In describing permutations of graphs, we adopt the convention that Ui denotes the 
other vertex of an edge pendant at Vi. It is also helpful to use a shorthand for (complete 
and partial) permutations of more complicated attachments. See Fig. 7. For example, 
if three pendant paths are incident on v, then we use A(v) in a permutation to indicate 
that the six edges of the attachment are to be placed in the order listed. 

8.3. Obstructions with one face 

Triangular face. If two vertices of the face have degree two, then it is straight- 
forward to show that the graph can be obtained from Lemma 6.1. Otherwise, since the 
attachments at the vertices of the face are minors of S(K1, 3), the graph can be obtained 
from Lemma 6.2. Hereafter, we shall not consider any string that contains 333, 3321, 
3312,3213,3123,2133 or 1233, since the corresponding graph contains a minor whose 
pattern-string is 3-333 (known obstruction 21.1.1). 

Square face. Pattern-string 4-2221 denotes new obstruction 18.1.8. Pattern-string 
4-232e represents known obstruction 19.1.2. Any other graph with this pattern either 
contains one of these obstructions, or is a minor of a graph whose cost-three 
permutation resides in the following list. 

4-323e A(u,), Bl(u2),ulu2,u u u u 1 4, 4 4, 0 u u u 3 49 2 39 B2(u2),A(2)3) 

4-3311 A(U,),C,(Il4),U 0 U U U V U V C2(U3),A(U2) 1 49 1 27 3 49 2 3r 

Pentagonal face. Pattern-strings 5-l 1111 and 5-22ele correspond to known ob- 
structions 15.1.5 and 17.1.1, respectively. Any new obstruction with a pentagonal face 
contains at least one, and at most two pendant edges. If a string has a single e and 
a single 1, then the corresponding graph contains obstruction 18.1.8 (4-2221). Any 



N.G. Kinnersley, M.A. Langston / Discrete Applied Mathematics 54 (1994) 169-213 189 

Attachment 

” 

Name Notation Permutation 

A 44 V 

a 

b 
e C 

b 

B W) V 

a 
b 

B,(v) V 

t; 

c Cl (4 V 

a 
b 

c+> V 

a 

b 

Fig. 7. Shorthand used in permutations. 
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other candidate obstruction is a minor of a graph whose cost-three permutation 
resides in the following list. 

5-3131e A(V1),C1(u~),~,1VZ,U1ug,U 21 U v u u v v C,(V,),A(U3) 5 59 4 5, 3 4, 2 3, 

5-3113~ A(V~),C~(~~),~~~~,~~~~,~~V~,~~~~,~~~~,VZ~~,C~(~~),A(~~) 

Hereafter, no string with five or more entries from { 1,2, 3) will be considered, because 
the corresponding graph contains known obstruction 15.1.5. 

Hexagonalface. If three vertices of a graph with a hexagonal face have pendant 
edges incident on them, then the graph contains known obstruction 15.1.1 (6-lelele). 
Thus we need only consider strings whose two e characters are in the third and sixth 
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positions. The graph with pattern-string 6-22elle contains known obstruction 17.1.1 
(5-22ele). All other possibilities are minors of a graph whose cost-three permutation 
resides in the following list. 

6-31e31e A(v,), C1(uZ),v1u2,v2~3,~ v v v u u v v v v v u C2(vg), A(v,) 3 3, 1 6> 6 67 5 6, 3 4, 4 5, 

6-13e31e A(o,), C1(v~),u~u~,u~u3,u3v3,v v u v v v v v v u C2(vg), A(v,) 1 62 6 62 5 67 3 4, 4 5, 

Otherfaces. Any graph that contains a face with seven or more vertices, each with 
an attachment, must contain either known obstruction 15.1.1 (6-lelele) or known 
obstruction 15.1.5 (5-11111). An obstruction whose face contains seven or more 
vertices must therefore have adjacent vertices of degree two on the face, in which case 
the obstruction can be obtained from a type 2 replacement and has already been 
considered. 

Lemma 8.1. There are exactly 23 obstructions for 3-GML that contain only one face. 

In summary, only one new one-faced obstruction exists, bringing the total number 
of known obstructions up to 70. 

8.4. Obstructions with two ,faces 

To identify obstructions with two vertex-adjacent faces, we apply the reverse of the 
replacement used in the proof of Lemma 7.10. Table 1 summarizes the two-faced 
obstructions thereby obtained. Other two-faced obstructions must contain edge- 
adjacent faces. 

Two triangles. Pattern-string 33-0232 represents new obstruction 18.2.2, from 
which new obstruction 17.2.5 is obtained with a type 1 replacement. Pattern-string 

Table 1 
Two-faced obstructions from Lemma 7.10 

Starting one-faced 
obstruction 

Resultant two-faced 
obstruction(s) 

17.1.1 15.2.4 
17.1.2 15.2.5, 15.2.6 
17.1.3 15.2.7 
18.1.8 15.2.2, 16.2.4 
18.1.9 16.2.5 
18.1.10 16.2.6 
19.1.1 15.2.1 
19.1.2 15.2.2, 17.2.3 
19.1.3 15.2.3, 17.2.4 
20.1.1 16.2.1 
21.1.1 17.2.1 

a New obstruction 
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33-3230 denotes new obstruction 20.2.1, from which new obstructions 19.2.1 and 
18.2.1 are obtained with type 1 replacements. The graph with pattern-string 33-2221 
contains known obstruction 18.1.8 (4-2221). Pattern-string 33-2e22 represents new 
obstruction 17.2.6, from which new obstruction 17.2.7 is obtained with a type 2 re- 
placement. All other possibilities are minors of a graph whose cost-three permutation 
resides in the following list. 

33-0323 A(Q), BI(Q), ui 02~3, uiu3 04, B,(Q), A(u,) 

33-1313 ~(~2),~l(~l),~,~2”3~ hU3U4,C2@3),Ab4) 

33-3113 ~~~1),~1(~~2),~1~2~3, ulu3U4>C2(U3),A(~4) 

33-3131 ~(~l),CI(~~2),~1~2~3,~1~3~4,C2(~4),~(~3) 

33-3320 A(U2),B1(L’3),UlUtU3rU1u3U4,B2(U3),A(U1) 

Triangle and square. We assume the square is to the right of the triangle, so that both 
u2 and u3 must have attachments. If there is no e in the string, then there is at least one 
0 in a position corresponding to a vertex of the triangle. Since known obstruction 13.2.1 
has pattern-string 34-02200, we only consider graphs in which u2 or v3 has a pendant 
edge or a single pendant path as its attachment. A string with three 2s and a 1 corres- 
ponds to a graph that contains known obstruction 18.1.8 (4-2221). Pattern-string 
34-21120 represents new obstruction 17.2.2. Pattern-string 34-2e102 denotes new ob- 
struction 16.2.2, from which new obstruction 16.2.3 is obtained with a type 2 replace- 
ment. Pattern-string 34-l 11 le denotes new obstruction 14.2.7, from which new obstruc- 
tion 14.2.8 is obtained with a type 2 replacement. Graphs with pattern-strings 34-2e230 
and 34-2e232 contain known obstruction 19.1.2 (4-232e). The graph with pattern-string 
34-le22e contains known obstruction 17.1.1 (522ele). All other possibilities are minors 
of a graph whose cost-three permutation resides in the following list. 

34-Oe323 A(u~),B~(u~),u~u~,Dzu~,~z~z,U~U~, VIU~U~,B~(U~),A(U~) 

34-01313 A(u3), c1(“2)>u2~3> ulu27 u3u4, olu4u5, C,(u,),@$) 

34-01331 A(~J),C~(UZ),U~UJ,U~~~,U~U~,~~U~U~,C~(U~),A(U~) 

34-03113 A(~Iz), C1(U3),U2~3,“1~2,U3~4,V1~4~~,C2(~4),A(U~) 

34-03131 A> c1@3), u2u3, UlU29U3U4, ‘J1U4U5, c2@5), A(u4) 

34-1e133 A(u4),Cl(U3),u3~4,U2~3,~2u2,ulU2, ~lU4U5,C2h),&5) 

j4-lej13 A(~3),C~(04),03~4,~2~3,~2~2,~1~2~ h”4hC2(~l),&5) 

34-11330 &3), ~1(“2),~3~4,u2~3~ul~2,~l~4~~, c2(ul), A(u4) 

34-13130 A(~~),C~(U~),U~U~,U~U~,U~U~,U~U~U~,CZ(U~),A(U~) 

34-3e131 A(~~),~1(~3),~304,~203,~2~2,~1~2, u~u~G,C~(Q,A(U~) 

34-3e311 .4(~3),~1(~4),~3~4,~2~3,~2~2,~~2, ~lU4~5jC2(~5)~A(~1) 

34-3e320 A(U3)~B1(~4),~3v4,~2U3,U2U2,vlU2, u~u~G,B~(u~),A~) 
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Two squares. Pattern-string 44-1elOle denotes new obstruction 14.2.4, from which 
new obstructions 14.25 and 14.2.6 are obtained with type 2 replacements. Graphs 
with pattern-strings 44-2elOe2 and 44-Oe22el contain known obstruction 17.1.1 
(522ele). The graph with pattern-string 44-Oe2320 contains known obstruction 19.1.2 
(4-232e). If a string contains no e, then its first and fourth characters must both be 
0 (Lemma 7.1 and avoidance of known obstruction 15.1.5 (5-l 1111)). Known obstruc- 
tion 13.2.1 (34-02200) is a minor of any graph with pattern 44 in which both v2 and v3 
(or both vg and v6) have two or more pendant paths as attachments. All other 
possibilities are minors of a graph whose cost-three permutation resides in the 
following list. 

44-Oe1313 A(vq),C1(v3),u v v u u v v v v v v v v1vg,vgvs,C2(ug),A(vs) 3 49 2 3, 2 29 1 2, 1 49 4 5r 

44-Oe1331 A(v4), Cl(v3),v3v4,v2v3,u v v v v v v v v v v v C,(v,),A(v5) z 2, 1 2, 1 4, 4 5, 1 6, 5 6, 

44-Oe3113 A, C~(v4),~3~4,~203,~ v v v v v v v v v v v C2(~5), A 2 27 1 29 1 49 4 59 1 6, 5 6, 

44-Oe3131 A(v3), C1(v4),v3v4,v2v3,u v u v v v v v v u v v C,(v,),A(v5) 2 29 1 2, 1 49 4 57 1 63 5 69 

44-Oe323e A(v3), B (v ) v v v v u v v v B2(v4), A(v5) 1 4 2 3 4, 2 3, 2 2, 1 2, v1v4,v1v6,u6v6, v5v6, v4v5, 

bbOe331e A(v3), v3v4~v2v3~~2V2~v~v2~Vlv4rv~v6~U6v6rvSv6~v4v5~C2(v5)~A(v4) 

44-031031 A(v2),Cl(vJ),v2v3,v v v v v v v v v v v v C,(v,),A(v,) 1 29 3 49 1 4, 1 69 4 57 5 6, 

44-031013 A(v2), C1(v3),v2v3,v1v2,v3v4>vlv4>vlv6,v4v5,v5v6, C,(v,),A(v6) 

44-1e31e3 A(v3),C~(v4),v3v4,v2v3,~2v21vlv2,vlv4,v4v5,u5v5,V5v67V~v6,C2(v~),A(v6) 

44-3e13e1 A(v,), C1(v3),v V V U U 2 U U 1 U V 1 U v 4 V u 5 v v V C2(v6),A(vl) 3 4, 2 3, 2, 2, 4, 5, 5, 5 6, vlv6, 

44-3e31el A(v3),C (v ) v v v u u u v I v ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 4 > 3 4, 2 37 2 2, 

Other patterns. The next result ensures that all two-faced obstructions with other 
patterns are already known (either by Lemma 6.2 or by type 2 replacements). 

Lemma 8.2. Obstruction 11.2.1 is the only two-faced outerplane obstruction for 3-GML 
with edge-adjacent faces in which one face has jive or more vertices each with degree at 

least three. 

Proof. Assume otherwise for some obstruction G with faces Fl and F2, where 
Fl n F2 = vl v,, m 2 5, and vertices v2, v3,. . . , v,_ 1 of F2 each has an attachment. 
Since G does not by assumption contain obstruction 11.2.1 (35-OlelOO), the attach- 
ment at v2 or v4 must be a pendant edge, and the attachment at v3 must be one or 
more pendant paths. 

Suppose the attachment at v2 is the pendant edge u2v2. Let G’ = G\{u2v2}. Thanks 
to Lemma 7.4, G’ possesses a cost-three permutation M’ in which the overlap of the 
face spans for Fr and F2 is column vrv,, the leftmost column of F2. If the attachment 
at v4 contains one or more pendant paths, then ul u2 must be the rightmost column in 
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the span for ul. But this means that a cost-three permutation for G can be constructed 
from M’, a contradiction. Thus the attachment at u4 is a pendant edge. It follows that 
F2 must be a pentagon (else v5 has an attachment with one or more pendant paths and 
G properly contains obstruction 11.2.1). Additionally, both L’~ and v5 must have 
attachments, since otherwise M’ can again be modified to produce a cost-three 
permutation for G. It is now clear that F1 must be a triangle with vertex set {ul, u5, ug}, 
and that ug must have degree two, else G properly contains obstruction 1.5.1.1 
(6-lelele). Also, the attachment at v 1 or vg must be a single pendant path, else 
G contains obstruction 17.1.1 (52ele2). But this means that G is a minor of the graph 
with pattern-string 353e3el0, which has cost-three permutation A(v,), C1(u,), v1v51i6, 
VlV2, u2v2, v4u5, QU4, v3v4, u2u3, A(zI~), again a contradiction. 

Suppose the attachment at v2 is one or more pendant paths. The attachment at v4 
must be a pendant edge, from which it again follows that F2 must be a pentagon, 
reducing this by symmetry to the previous case. 0 

Lemma 8.3. There are 39 obstructions for 3-GML that have exactly two faces. 

In summary, sixteen new two-faced obstructions exist, bringing the total number of 
known obstructions up to 86. 

8.5. Obstructions with three faces 

To identify obstructions with three faces some of which are adjacent at and only 
connected through a single vertex, we again apply the reverse of the replacement used 
in the proof of Lemma 7.10. Table 2 summarizes the three-faced obstructions thereby 
obtained. 

In any additional three-faced obstruction, each face must be edge adjacent to at 
least one other. Furthermore, the three faces cannot be mutually edge adjacent, else 
the graph contains K,. 

Lemma 8.4. No outerplane obstruction for 3-GML contains faces, F , F,, and F3, 
where F1 n F, = 0, such that both F, and F, are edge adjacent to F,. 

Proof. Assume otherwise for some obstruction G with faces F1, F2, and F, for which 
F,nF2=v,v,andF2nFj=vivj,where1~i~j~r. 

Suppose F2 is a square with vertex set {vl, v2, u,_ 1, v,}. Let G’ = G\{ul vI}, and let 
F; denote the (enlarged) face that results from the removal of ulv, from F,. G 
possesses a cost-three permutation M’ in which the overlap of the spans for F; and F3 
is column u2u,_ 1, the leftmost column of F3. If both v1 and v, have attachments, then 
their spans must include the leftmost column of F;, and u1u2 can be placed to the 
immediate left of the span for F; to obtain a cost-three permutation for G, a contra- 
diction. Thus u1 or u, (and analogously u2 or v,_ 1) has no attachment. If neither v2 nor 
u, has an attachment, then v1 v2 can be moved to the immediate left of u2 u, 1 and 
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Table 2 
Three-faced obstructions from Lemma 7.10 

Starting two-faced 
obstruction 

Resultant three-faced 
obstruction(s) 

13.2.1 11.3.1 
15.2.2 13.3.5 
15.2.3 13.3.6 
15.2.4 13.3.2 
15.2.5 13.3.3 
15.26 13.3.3 
15.2.7 13.3.4 
16.2.1 12.3.1 
162.2 14.3.3”, 14.3.5” 
162.3 14.3.4”, 14.3.6” 
16.2.4 13.3.1, 14.3.2” 
16.2.5 12.3.1 
16.2.6 12.3.1 
17.2.1 13.3.1 
17.2.2 15.3.1” 
17.2.3 13.3.1, 13.3.5 
17.2.4 13.3.1, 13.3.6 
17.2.5 15.2.1 
17.2.6 15.2.2, 15.3.3” 
17.2.7 15.2.3, 15.3.4 
18.2.1 15.2.1 
18.2.2 14.3.1”, 16.2.1 
19.2.1 15.3.2”, 16.2.1 
20.2.1 16.3.1”, 17.2.1 

a New obstruction 

v,_ rv, can be moved to the immediate left of vlvz, making it easy to construct 
a cost-three permutation for G, a contradiction. Thus v2 or v, (and analogously vr or 
v,_ 1) has an attachment. So, without loss of generality, assume both u1 and v2 have 
attachments. Let G” denote the graph obtained from G by contracting edge II,- 1 v, to 
v,, and let F” denote the triangle with vertex set {vl, v2, v,}. G” possesses a cost-three 
permutation M” in which vr v2 lies between v1 v,., the rightmost column of F,, and v2 v,, 
the leftmost column of F3. M” can now be modified by adding row v,_ r, replacing vzv, 
by v,_rv, and v~v,_~, and, in every column to the right of v2 v,_ 1, interchanging the 
contents of rows v, and v,_ r, thereby producing a cost-three permutation for G, 
a contradiction. 

F, must therefore have five or more vertices. Without loss of generality, assume 
v2 does not lie on F, and has degree three or more. The attachment at v2 must 
be the pendant edge uzv2 and v3 must lie on F 3, else G contains obstruction 8.3.1 
(343-010000). But now it is a simple matter to modify a cost-three permutation 
for G\{u2v,} to obtain a cost-three permutation for G, again a contra- 
diction. El 
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Three triangles. Since known obstruction 13.2.1 has pattern-string 34-02200, and 
since removal of vr vq (or u2 vq) leaves an edge-adjacent triangle and square, we do not 
consider any graph in which both v2 and vj (or both vr and v5) have two or more 
pendant paths as attachments. Any graph with attachments at all five vertices 
contains new obstruction 13.3.7 denoted by pattern-string 333-l lele, from which new 
obstructions 13.3.8 and 13.3.9 are obtained with type 2 replacements. Pattern-string 
333-21e20 denotes new obstruction 16.3.2, from which new obstruction 16.3.3 is 
obtained with a type 2 replacement. Pattern-string 333-22030 denotes new obstruc- 
tion 19.3.1, from which new obstruction 18.3.1 is obtained with a type 1 replacement. 
Graphs with pattern-strings 333-00232 and 333-02032 contain known obstruction 
18.2.2 (33-0232). The graph with pattern-string 333-12021 contains known obstruc- 
tion 17.2.2 (34-21120). All other possibilities are minors of a graph whose cost-three 
permutation resides in the following list. 

X33-00323 A(+), B~(v~)>vzu~u~+, v1v2v4, v1~4~5,B2(t’4), A(~51 

333-01313 A(v3)> ~1(~2),~2~3~4,~1vZv4,~1~4~5, C,(v,),A(v,) 

333-01331 ~~~3~,~1~V2~,~2v3v4,U1U2~4,~1~4v5r~2~z~5~,A~V4~ 

333-03023 A(uz), B,(v,), UZV~V~,VI ~2~4, ~1~4~5, B2(04), A(~51 

333-03113 A(%), ~1(~3),~2~3~4,~1v2~4,~~1~4~5,~2(~4),A(v5) 

333-03131 &2), cl(uJ), hu3v4,ul v2u4, ul v4vSr C2(v5kA(v4) 

333-11033 &,), clb2~~v2v3v4,vl~Z~4,~lv4v5, C2(ul),A(05) 

333-I1303 ~(~3),~1(~2)~~2~3~4,~lV2~4,~1~4~5~~2(~I),~(~5) 

333-13013 ~~~2~,~1(v4),~2V3v4,vl~2~4,~l~4~5,~2~~l~,~(~5~ 

333-13103 ~(VZ),~l(V3),~2~3~4,~lV2~4,~1~4~5,~2(~1),~(~5) 

333-31031 ~(~4),~1(~2)~~2~3~4,~1~2~4,~1~4~5,~2(~5),~(~1) 

333-33011 A(v,)> cl(v4), v2v3~4, vlu2u4, vlv4u5, C,(v,),A(vl) 

333-33020 A(v,), B (U ) v v v v v v v1v4v5, B2(v4),A(vl) 1 4 9 2 3 4, 1 2 47 

333-33101 A(v2),~1(~3),v2v3u4,~lv2v4,vlv4v5,~2(v5),Ah) 

Other patterns. The next result ensures that all three-faced obstructions with other 
patterns are already known (either by Lemma 6.2 or by type 2 replacements). 

Lemma 8.5. Obstruction 8.3.1 is the only three-faced outerplane obstruction for 3-GML 
in which each face is edge adjacent to at least one other and one face has four or more 
vertices each with degree at least three. 

Proof. Assume otherwise for some obstruction G with faces Fl, F2, and F3 such that 
both F, and F, are edge adjacent to F *. Thanks to lemma 8.4, we may assume 
Fl n F2 = ~1 u,, and Fz n F3 = ViU,. 
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Suppose F, is not a triangle. To avoid obstruction 8.3.1 (343-OlOOOO), F, must be 
a square with vertex set {ul,uz,u~,vrJ, and u2 must be adjacent to pendant vertex u2. 
Let G’ = G\{uzuz}. G’ possesses a cost-three permutation M’ in which ulvz and u2uJ 
lie between u1 u,, the rightmost column of F,, and QU,, the leftmost column of F3. It is 
straightforward to verify that u1 u2 contains the rightmost 1 in row vi, that u2 u3 is to 
the immediate right of v1u2, and that u2u2 can be inserted in M’ to produce 
a cost-three permutation for G, a contradiction. 

Thus F2 must be a triangle. Without loss of generality, assume F, has at least four 
vertices each with degree at least three. If v2 has an attachment, then to avoid 
obstruction 11.2.1 (35-OlelOO) it follows that F3 must be a square with vertex set 
{ u2, Us, vq, us}, the attachment at uq is the pendant edge uqu4, and the attachment at uj 
contains at least one pendant path. Let G” = G\ ( u4uq) and let M” denote a cost-three 
permutation for G” in which the span for F, is to the right of column v1 u2 u5. Since u4v5 
must be the rightmost column in the span for us, it is straightforward to construct 
a cost-three permutation for G, a contradiction. Thus u2 can have no attachment. Let 
G”’ denote the graph obtained from G by contracting edge u2 uj to u2, and let F’j’ denote 
the (shrunken) face that results from this contraction in F3. Using a cost-three permuta- 
tion for G”’ in which the span for F j,’ is to the right of column u1 u2uI, it is again 
straightforward to construct a cost-three permutation for G, a contradiction. 0 

Lemma 8.6. There are 29 obstructions for 3-GML that have exactly three faces. 

In summary, eighteen new three-faced obstructions exist, bringing the total number 
of known obstructions up to 104. 

8.6. Obstructions with four faces 

To identify obstructions with four faces some of which are adjacent at and only con- 
nected through a single vertex, we again apply the reverse of the replacement used in the 
proof of Lemma 7.10. Table 3 summarizes the four-faced obstructions thereby obtained. 

In any additional four-faced obstruction, each face must be edge adjacent to at least 
one other. One face cannot be edge adjacent to the other three, else the graph contains 
known obstruction 6.4.1. Furthermore, to avoid K4, at least two faces must be edge 
adjacent to exactly one other face. Our next result ensures that all four-faced obstruc- 
tions are already known. 

A chain in an outerplane graph is a sequence of faces F1, F,, . . . , Fh such that Fi and 
Fj intersect at a single edge if 1 i - j 1 = 1, and are either disjoint or intersect at a single 
vertex otherwise. The length of a chain is the number of faces it contains. Fig. 8 
illustrates four different four-faced chains. 

Fig. 8. Sample four-faced chains. 
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Table 3 
Four-faced obstructions from Lemma 7.10 

Starting three-faced 
obstruction 

Resultant four-faced 
obstruction(s) 

11.3.1 9.4.2 
13.3.1 9.4.1 
13.3.5 9.4.1 
13.3.6 9.4.1 
14.3.1 12.3.1 
14.3.2 9.4.1 
14.3.3 12.3.1 
14.3.4 12.3.1 
14.3.5 12.3.1 
14.3.6 12.3.1 
153.1 12.4.1” 
15.3.2 12.3.1 
15.3.3 12.4.1”, 13.3.1 
15.3.4 12.4.1”, 13.3.1 
16.3.1 12.4.1”, 13.3.1 
16.3.2 14.4.1”, 14.4.3” 
16.3.3 14.4.2”, 14.4.4” 
18.3.1 15.3.2 
19.3.1 15.4.1”, 16.3.1 

a New obstruction 

Lemma 8.7. No obstruction for 3-GML contains a chain whose length exceeds three. 

Proof. Assume otherwise for some obstruction G with chain F1, F2, . . . , F,, where 
h34andFinFi+i=viwifor1<i<h. 

Thanks to Lemma 8.4, we assume without loss of generality that wi = w2. To avoid 
obstruction 8.3.1, G must contain either v1v2 or a degree-three vertex x adjacent to 
vi, v2 and pendant vertex y. 

Let G’ = G\(uZ w2}, and let F; denote the (enlarged) face that results from the 
removal of v2 w2 from F2. G’ possesses a cost-three permutation in which the overlap of 
the spans for F1 and F; is vi wi, the leftmost column of F;. Since any attachment at u1 
must lie to the left of the span for FL, since the span for F4 must be to the right of vi wi, 
and since outerplanarity ensures vi $ F4, column vl v2 (or column vrx) must contain the 
rightmost 1 in row v1 Thus, with no increase in cost, column vr v2 (or the set of columns 
a vix, xy, xv2) may be moved to the immediate right of vlwlr from which it is 
straightforward to construct a cost-three permutation for G, a contradiction. 0 

Lemma 8.8. There are nine obstructions for 3-GML that have exactly four faces. 

In summary, six new four-faced obstructions exist, bringing the total number of 
known obstructions up to 110. We shall now show that there are no more. 
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Table 4 
A review of the 3-GML 
obstruction set 

Number of 
faces 

Number of 
obstructions 

none 10 
one 23 
two 39 
three 29 
four 9 
five or more 0 

8.7. Obstructions withjke or more faces 

Lemma 8.9. No obstruction for 3-GML containsJive or more faces. 

Proof. The reverse of the replacement used in the proof of Lemma 7.10 generates only 
known obstructions 9.4.1 and 12.4.1. Thus there can be no obstruction with five or 
more faces some of which are adjacent at and only connected through a single vertex. 
Thanks to Lemmas 7.8 and 8.7, no obstruction can contain either separated faces or 
a chain whose length exceeds three. 0 

9. Main result 

All elements of the 3-GML obstruction set are now known. The structure of this set 
is reviewed in Table 4. 

Theorem 9.1. There are exactly 110 obstructionsfor 3-GML, namely, those identified in 
preceding results and depicted in the appendix. 

10. Conclusions 

Gate matrix layout is a well-known but notoriously difficult problem. Each of its 
fixed-parameter variants, however, possesses a finite-basis characterization that pro- 
vides a polynomial-time recognition algorithm. In this paper, we have isolated the 
basis for parameter value three. In order to accomplish this, we have also derived 
a number of more general results to bound and identify basis elements for any 
parameter value. 

We conjecture that the trees are the largest elements in each basis. A proof of this, if 
it is indeed true, would be particularly interesting, because it would automatically 
mean that every basis is computable. (Exhaustive computation could, at least in 
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principle, be applied until the trees were reached, after which it would be pointless to 
look further.) 

Lemma 6.1 makes it easy to see that basis size grows monotonically. This and the 
fact that the basis for parameter value four contains at least 122 million elements [12] 
suggest that no other bases for this problem are likely to be isolated in the foreseeable 
future. 
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Appendix 

The 3-GML Obstruction Set 

A 
4.3.1 

A 
6.4.1 

8.3.1 

8.2.3 

e 
8.2.1 

8.2.4 

9.4.2 

3-GML <=>  pw =2
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h 
10.3.1 11.2.1 

12.3.1 12.4.1 11.3.1 

13.2.1 13.3.1 13.3.2 
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13.3.3 

13.3.6 

13.3.4 
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13.3.7 

13.3.9 14.2.1 14.2.2 

/ I 
13.3.5 
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_; 14.2.3 

203 

14.2.6 14.2.7 14.2.8 
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0 OF%:; 
14.3.1 14.3.2 14.3.3 
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14.4.2 

14.3.6 

\ 

14.4.4 15.1.1 15.1.2 
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15.2.7 

b 

15.3.1 15.3.2 

16.2.1 16.2.2 16.2.3 
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16.2.6 
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17.1.2 



208 N.G. Kinnersley, M.A. Langston / Discrete Applied Mathematics 54 (1994) 169-213 

17.2.1 

17.2.4 17.2.5 17.2.6 
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18.2.2 

A& ! !j 
l = :‘\I/ & 

19.1.2 l * 
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/ 4 R-4 \\ 
_ 

19.3.1 / 20.1.1 
\ 
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