
The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

1 of 14 9/27/2006 9:25 PM

“ Soon, my friends, you will look at a child's
homework — and see nothing to eat. ”

 Copyright © Bernard Chazelle Princeton 2006

The Algorithm: Idiom of Modern Science

by Bernard Chazelle

hen the great Dane of 20th century physics, Niels Bohr, was not busy chewing on a juicy morsel of
quantum mechanics, he was known to yap away witticisms worthy of Yogi Berra. The classic Bohrism
“Prediction is difficult, especially about the future” alas came too late to save Lord Kelvin. Just as physics
was set to debut in Einstein's own production of Extreme Makeover, Kelvin judged the time ripe to pen
the field's obituary: “There is nothing new to be discovered in physics now.” Not his lordship's finest

hour.

Nor his worst. Aware that fallibility is the concession the genius makes to keep common mortals from despairing,
Kelvin set early on to give the mortals much to be hopeful about. To wit, the thermodynamics pioneer devoted the first
half of his life to studying hot air and the latter half to blowing it. Ever the perfectionist, he elevated to an art form the
production of pure, unadulterated bunk: “X-rays will prove to be a hoax”; “Radio has no future”; “Heavier-than-air
flying machines are impossible”; and my personal favorite, “In science there is only physics; all the rest is stamp
collecting.” Kelvin's crystal ball was the gift that kept on giving.

Gloat not at a genius' misfortunes. Futurologitis is
an equal-opportunity affliction, one hardly confined
to the physicist's ward. “I think there is a world
market for maybe five computers,” averred IBM
Chairman, Thomas Watson, a gem of prescience
matched only by a 1939 New York Times editorial:
“The problem with television is that people must sit
and keep their eyes glued to the screen; the
average American family hasn't time for it.” The
great demographer Thomas Malthus owes much of
his fame to his loopy prediction that exponentially
increasing populations would soon outrun the food
supply. As the apprentice soothsayer learns in
“Crystal Gazing 101,” never predict a geometric
growth!

Apparently, Gordon Moore skipped that class. In
1965, the co-founder of semiconductor giant Intel
announced his celebrated law: Computing power
doubles every two years. Moore's Law has, if
anything, erred on the conservative side. Every
eighteen months, an enigmatic pagan ritual will see
white-robed sorcerers silently shuffle into a temple
dedicated to the god of cleanliness, and soon
reemerge with, on their faces, a triumphant smile
and, in their hands, a silicon wafer twice as densely
packed as the day before. No commensurate growth
in human mental powers has been observed: this
has left us scratching our nonexpanding heads,
wondering what it is we've done to deserve such
luck.

To get a feel for the magic, consider that the latest
Sony PlayStation would easily outpace the fastest
supercomputer from the early nineties. If not for

Moore's Law, the Information Superhighway would be a back alley to Snoozeville; the coolest thing about the
computer would still be the blinking lights. And so, next time you ask who engineered the digital revolution, expect
many hands to rise. But watch the long arm of Moore's Law tower above all others. Whatever your brand of high-tech

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

2 of 14 9/27/2006 9:25 PM

The rule of law

addiction, be it IM, iPod, YouTube, or Xbox, be aware that you owe it first and foremost to the engineering wizardry
that has sustained Moore's predictive prowess over the past forty years.

Enjoy it while it lasts, because it won't. Within a few decades, say the optimists, a repeal is all but certain. Taking their
cue from Bill Gates, the naysayers conjure up the curse of power dissipation, among other woes, to declare Moore's
Law in the early stage of rigor mortis. Facing the bleak, sorrowful tomorrows of the Incredible Shrinking Chip That
Will Shrink No More, what's a computer scientist to do?

Break out the Dom and pop the corks, of course! Moore's Law has added
fizz and sparkle to the computing cocktail, but for too long its exhilarating
potency has distracted the party-goers from their Holy Grail quest: How to
unleash the full computing and modeling power of the Algorithm. Not to
stretch the metaphor past its snapping point, the temptation is there for
the Algorithmistas (my tribe) to fancy themselves as the Knights of the
Round Table and look down on Moore's Law as the Killer Rabbit, viciously
elbowing King Arthur's intrepid algorithmic warriors. Just as an
abundance of cheap oil has delayed the emergence of smart energy
alternatives, Moore's Law has kept algorithms off center stage.
Paradoxically, it has also been their enabler: the killer bunny turned
sacrificial rabbit who sets the track champion on a world record pace, only
to fade into oblivion once the trophy has been handed out. With the fading
imminent, it is not too soon to ask why the Algorithm is destined to achieve
celebrity status within the larger world of science. While you ask, let me
boldly plant the flag and bellow the battle cry:

“The Algorithm's coming-of-age as the new language of science
promises to be the most disruptive scientific development since
quantum mechanics.”

If you think such a blinding flare of hyperbole surely blazed right out of Lord Kelvin's crystal ball, read on and think
again. A computer is a storyteller and algorithms are its tales. We'll get to the tales in a minute but, first, a few words
about the storytelling.

Computing is the meeting point of three powerful concepts: universality, duality, and self-reference. In the modern
era, this triumvirate has bowed to the class-conscious influence of the tractability creed. The creed's incessant call to
complexity class warfare has, in turn, led to the emergence of that ultimate class leveler: the Algorithm. Today, not
only is this new “order” empowering the e-technology that stealthily rules our lives; it is also challenging what we
mean by knowing, believing, trusting, persuading, and learning. No less. Some say the Algorithm is poised to become
the new New Math, the idiom of modern science. I say The Sciences They Are A-Changin' and the Algorithm is Here to
Stay.

Reread the previous paragraph. If it still looks like a glorious goulash of blathering nonsense, good! I shall now
explain, so buckle up!

The universal computer

Had Thomas Jefferson been a computer scientist, school children across the land would rise in the morning and chant
these hallowed words:

“We hold these truths to be self-evident, that all computers are created equal, that they are endowed by
their Creator with certain unalienable Rights, that among these are Universality and the separation of
Data, Control, and Command.”

Computers come in different shapes, sizes, and colors, but all are created equal—indeed, much like 18th century white
male American colonists. Whatever the world's fastest supercomputer can do (in 2006, that would be the IBM Blue
Gene/L), your lowly iPod can do it, too, albeit a little more slowly. Where it counts, size doesn't matter: all computers

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

3 of 14 9/27/2006 9:25 PM

The field of computing
later opened up to men

Alas, it still strikes the hours

are qualitatively the same. Even exotic beasts such as quantum computers, vector machines, DNA computers, and
cellular automata can all be viewed as fancy iPods. That's universality!

Here's how it works. Your iPod is a tripod (where did you
think they got that name?), with three legs called control,
program, and data. Together, the program and the data
form the two sections of a document [program | data] that,
to the untrained eye, resembles a giant, amorphous string of
0s and 1s. Something like this:

[1110001010110010010 | 1010111010101001110]

Each section has its own, distinct purpose: the program
specifies instructions for the control to follow (eg, how to
convert text into pdf); the data encodes plain information,
like this essay (no, not plain in that sense). The data string is
to be read, not to be read into. About it, Freud would have
quipped: “Sometimes a string is just a string.” But he would
have heard, seeping from the chambers of a program, the
distant echoes of a dream: jumbled signs crying out for
interpretation. To paraphrase the Talmudic saying, an
uninterpreted program is like an unread letter. The beauty of
the scheme is that the control need not know a thing about
music. In fact, simply by downloading the appropriate
program-data document, you can turn your iPod into: an
earthquake simulator; a word processor; a web browser; or,
if downloading is too much, a paperweight. Your dainty little
MP3 player is a universal computer.

The control is the computer's brain and the sole link between
program and data. Its only function in life is to read the data,
interpret the program's orders, and act on them—a task so

pedestrian that modern theory of reincarnation ranks the control as the lowest life form on the planet, right behind the
inventor of the CD plastic wrap. If you smash your iPod open with a mallet and peek into its control, you'll discover
what a marvel of electronics it is—okay, was. Even more marvelous is the fact that it need not be so. It takes little
brainpower to follow orders blindly (in fact, too much tends to get in the way). Stretching this principle to the limit,
one can design a universal computer with a control mechanism so simple that any old cuckoo clock will outsmart it.
This begs the obvious question: did Orson Welles know that when he dissed the Swiss and their cuckoo clocks in “The
Third Man”? It also raises a suspicion: doesn't the control need to add, multiply, divide, and do the sort of fancy
footwork that would sorely test the nimblest of cuckoo clocks?

No. The control on your laptop might indeed do all of
those things, but the point is that it need not do so. (Just
as a bank might give you a toaster when you open a new
account, but it need not be a toaster; it could be a pet
hamster.) Want to add? Write a program to add. Want to
divide? Write a program to divide. Want to print? Write a
program to print. A control that delegates all it can to the
program's authority will get away with a mere two dozen
different “states”—simplicity a cuckoo clock could only
envy. If you want your computer to do something for you,
don't just scream at the control: write down instructions
in the program section. Want to catch trouts? Fine,
append a fishing manual to the program string. The great
nutritionist Confucius said it better: “Give a man a fish
and you feed him for a day. Teach a man to fish and you
feed him for a lifetime.” The binary view of fishing = river
+ fisherman makes way for a universal one: fishing =
river + fishing manual + you. Similarly,

computing = data + program + control.

This tripodal equation launched a scientific revolution, and it is to British mathematician Alan Turing that fell the
honor of designing the launching pad. His genius was to let robots break out of the traditional binary brain-brawn
mold, which conflates control and program, and embrace the liberating “tripod-iPod” view of computing. Adding a
third leg to the robotic biped ushered in the era of universality: any computer could now simulate any other one.

Underpinning all of that, of course, was the digital representation of information: DVD vs VCR tape; piano vs violin;
Anna Karenina vs Mona Lisa. The analog world of celluloid film and vinyl music is unfit for reproduction: doesn't die;
just fades away. Quite the opposite, encoding information over an alphabet opens the door to unlimited, decay-free
replication. In a universe of 0s and 1s, we catch a glimpse of immortality; we behold the gilded gates of eternity flung
wide open by the bewitching magic of a lonely pair of incandescent symbols. In short, analog sucks, digital rocks.

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

4 of 14 9/27/2006 9:25 PM

Two sides of the same coin

Load your iPod with the program-data document [Print this | Print this]. Ready? Press the start button and watch the
words “Print this” flash across the screen. Exciting, no? While you compose yourself with bated breath amid the gasps
and the shrieks, take stock of what happened. To the unschooled novice, data and program may be identical strings,
but to the cuckoo-like control they couldn't be more different: the data is no more than what it is; the program is no
less than what it means. The control may choose to look at the string “Print this” either as a meaningless sequence of
letters or as an order to commit ink to paper. To scan symbols mulishly or to deforest the land: that is the option at
hand here—we call it duality.

So 1907, I almost hear you sigh. In that fateful year, Ferdinand de Saussure, the father of linguistics, announced to a
throng of admirers that there are two sides to a linguistic sign: its signifier (representation) and its signified
(interpretation). A string is a sign that, under the watchful eye of the control, acts as signifier when data and as
signified when a program.

Saussure's intellectual progeny is a breed of scholars known as semioticians. Funny that linguists, of all people, would
choose for themselves a name that rhymes with mortician. Funny or not, semiotics mavens will point out the imperfect
symmetry between program and data. The latter is inviolate. Signifiers must be treated with the utmost reverence:
they could be passwords, hip-hop rhymes, or newfound biblical commandments. Mess with them at your own peril.

Programs are different. The encoding of the signified is wholly conventional. Take the program “Print this”, for
example. A francophonic control would have no problem with “Imprimer ceci ” or, for that matter, with the
obsequious “O, control highly esteemed, may you, noblest of cuckoos, indulge my impudent wish to see this humble
string printed out, before my cup runneth over and your battery runneth out.” The plethora of programming
languages exposes how so many ways there are of signifying the same thing. (Just as the plethora of political speeches
exposes how so many ways there are of signifying nothing.)

Sensing the comic, artistic, and scholarly potential of the duality
between program and data, great minds went to work. Abbott and
Costello's “Who's on First?” routine is built around the confusion
between a baseball player's nickname (the signifier) and the pronoun
“who” (the signified). Magritte's celebrated painting “Ceci n'est pas une
pipe” (this is not a pipe) plays on the distinction between the picture of a
pipe (the signifier) and a pipe one smokes (the signified). The great
painter might as well have scribbled on a blank canvas: “Le signifiant
n'est pas le signifié ” (the signifier is not the signified). But he didn't,
and for that we're all grateful.

English scholars are not spared the slings and arrows of duality either.
How more dual can it get than the question that keeps Elizabethan lit

gurus awake at night: “Did Shakespeare write Shakespeare?” And pity the dually tormented soul that would dream up
such wacky folderol: “Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the
borogoves, And the mome raths outgrabe.”

Say it ain't true

I am lying. Really? Then I am lying when I say I am lying; therefore, I am not lying. Yikes. But if I am not lying then I
am not lying when I say I am lying; therefore, I am lying. Double yikes. Not enough yet? Okay, consider the immortal
quip of the great American philosopher Homer Simpson: “Oh Marge, cartoons don't have any deep meaning; they're
just stupid drawings that give you a cheap laugh.” If cartoons don't have meaning, then Homer's statement is
meaningless (not merely a philosopher, the man is a cartoon character); therefore, for all we know, cartoons have
meaning. But then Homer's point is... Doh! Just say it ain't true. Ain't true? No, please, don't say it ain't true! Because
if it ain't true then ain't true ain't true, and so...

AAARRRGGGHHH !!!!!!

Beware of self-referencing, that is to say, of sentences that make statements about themselves. Two of the finest
mathematical minds in history, Cantor and Gödel, failed to heed that advice and both went stark raving bonkers. As
the Viennese gentleman with the shawl-draped couch already knew, self-reference is the quickest route to irreversible
dementia.

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

5 of 14 9/27/2006 9:25 PM

Escher's reproductive parts

“ Elementary, my dear Watson! ”

It is also the salt of the computing earth. Load up your iPod, this time
with the program-data document [Print this twice | Print this twice].
Push the start button and see the screen light up with the words: “Print
this twice Print this twice”. Lo and behold, the thing prints itself! Well,
not quite: the vertical bar is missing. To get everything right and put on
fast track your career as a budding computer virus artist, try this
instead: [Print this twice, starting with a vertical bar the second time |
Print this twice, starting with a vertical bar the second time]. See how
much better it works now! The key word in the self-printing business is
“twice”: “never” would never work; “once” would be once too few;
“thrice”?? Please watch your language.

Self-reproduction requires a tightly choreographed dance between: (i) a
program explaining how to copy the data; (ii) a data string describing
that very same program. By duality, the same sequence of words (or
bits) is interpreted in two different ways; by self-reference, the duality
coin looks the same on both sides. Self-reference—called recursion in
computer parlance—requires duality; not the other way around. Which
is why the universal computer owes its existence to duality and its
power to recursion. If Moore's Law is the fuel of Google, recursion is its engine.

The tripodal view of computing was the major insight of Alan Turing—well, besides this little codebreaking thing he
did in Bletchley Park that helped win World War II. Not to discount the lush choral voices of Princeton virtuosos
Alonzo Church, Kurt Gödel, and John von Neumann, it is Maestro Turing who turned into a perfect opus the hitherto
disjointed scores of the computing genre.

Mother Nature, of course, scooped them all by a few billion
years. Your genome consists of two parallel strands of DNA that
encode all of your genetic inheritance. Your morning addiction
to Cocoa Puffs, your night cravings for Twinkies? Yep, it's all in
there. Now if you take the two strands apart and line them up,
you'll get two strings about three billion letters long. Check it
out:

[ACGGTATCCGAATGC... | TGCCATAGGCTTACG...]

There they are: two twin siblings locking horns in a futile
attempt to look different. Futile because if you flip the As into Ts
and the Cs into Gs (and vice versa) you'll see each strand morph
into the other one. The two strings are the same in disguise. So
flip one of them to get a more symmetric layout. Like this:

[ACGGTATCCGAATGC... | ACGGTATCCGAATGC...]

Was I the only one to spot a suspicious similarity with [Print
this twice | Print this twice] or did you, too? Both are
program-data documents that provide perfectly yummy recipes
for self-reproduction. Life's but a walking shadow, said
Macbeth. Wrong. Life's but a self-printing iPod!
Ministry-of-Virtue officials will bang on preachily about there

being more to human life than the blind pursuit of self-replication, a silly notion that Hollywood's typical fare swats
away daily at a theater near you. Existential angst aside, the string “ACGGTATCCGAATGC...” is either plain data (the
genes constituting your DNA) or a program whose execution produces, among other things, all the proteins needed for
DNA replication, plus all of the others needed for the far more demanding task of sustaining your Cocoa Puffs
addiction. Duality is the choice you have to think of your genome either as a long polymer of nucleotides (the data to
be read) or as the sequence of amino acids forming its associated proteins (the “programs of life”). Hence the
fundamental equation of biology:

Life = Duality + Self-reference

On April 25, 1953, the British journal Nature published a short article whose understated punchline was the shot
heard 'round the world: “It has not escaped our notice that the specific pairing we have postulated immediately
suggests a possible copying mechanism for the genetic material.” In unveiling to the world the molecular structure of
DNA, James Watson and Francis Crick broke the Code of Life. In so doing, they laid bare the primordial link between
life and computing. One can easily imagine the reaction of that other codebreaker from Bletchley Park: “Duality and
self-reference embedded in molecules? Jolly good to know God thinks like me.”

Turing's swagger would have been forgivable. After all, here was the man who had invented the computer. Here was
the man who had put the mind-matter question on a scientific footing. Here was the man who had saved Britain from
defeat in 1941 by breaking the Nazi code. Alas, good deeds rarely go unpunished. In lieu of a knighthood, a grateful
nation awarded Alan Turing a one-way ticket to Palookaville, England: a court conviction for homosexuality with a
sentence of forced estrogen injections. On June 7, 1954, barely one year to the day of Watson and Crick's triumph,
Alan Turing went home, ate an apple laced with cyanide, and died. His mother believed, as a mother would, that it was
an accident.

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

6 of 14 9/27/2006 9:25 PM

“First you prove it,
then you let it sink in.”

The modern era

The post-Turing years saw the emergence of a new computing paradigm: tractability. Its origin lay in the intuitive
notion that checking a proof of Archimedes's theorem can't be nearly as hard as finding it in the first place; enjoying a
coke must be simpler than discovering its secret recipe (or so the Coca Cola Company hopes), falling under the spell of
'Round Midnight ought to be easier than matching Monk's composing prowess. But is it really? Amazingly, no one
knows. Welcome to the foremost open question in all of computer science!

Ever wondered whether the 1,000-song library stored in your iPod could be reordered and split up to form two
equal-time playlists? Probably not. But suppose you wanted to transfer your songs to the two sides of an extra-length
cassette while indulging your lifelong passion for saving money on magnetic tape. Which songs would you put on
which side so as to use as little tape as possible? Now you'd be wondering, wouldn't you? (Humor me: say yes.)

You wouldn't wonder long, anyway. After a minute's
reflection, you'd realize you didn't have the faintest idea how
to do that. (Warning: splitting a tune in the middle is a
no-no.) Of course, you could try all possibilities but that's a
big number—roughly 1 followed by 300 zeroes. Ah, but your
amazing friend Alice, she knows! Or so she says. Then why
not just get the two playlists from her? By adding up a few
numbers, you'll easily verify that she's not lying and that,
indeed, both lists have the same playing time. What Alice
will hand you over is, in essence, a proof that your song
library can be split evenly. Your job will be reduced to that of
proof-checking, a task at which a compulsive tape-saving
Scrooge might even shine. Heads-up: did you notice my
nonchalant use of the word “lying”? When a movie's opening
scene casually trains the camera on a gun, no one might get
hurt for a while, but you know that won't last.

Alas, wondrous Alice fell down the rabbit hole eons ago and,
these days, a good library splitting friend is hard to find. And
so, sadly, you'll have little choice but to compile the two lists
yourself and engage in that dreaded thing called
proof-finding. That's a tougher nut to crack. So much so that
even if you were to harness the full power of an IBM Blue
Gene/L running the best software available anywhere on
earth and beyond, the entire lifetime of the universe
wouldn't be enough! You might get lucky with the
parameters and get it done sooner, but getting lucky? Yeah, right...

To add insult to injury, computer scientists have catalogued thousands of such Jurassic problems—so named for the
dinosaur-like quality of their solutions: hard to discover but impossible to miss when they pop up in front of you; in
other words, proofs hopelessly difficult to find but a breeze to verify. Courtesy of Murphy's Law, of course, the great
Jurassics of the world include all of the hydra-headed monsters we're so desperate to slay: drug design; protein
folding; resource allocation; portfolio optimization; suitcase packing; etc. Furthermore, even shooting for good
approximate solutions—when the notion makes sense—can sometimes be just as daunting.

Now a funny thing happened on the way back from the word factory. Despite its dazzling lyricism, metaphorical
felicity, hip-hoppish élan, not to mention a Niagara of adulatory gushing I'll kindly spare you, my staggeringly brilliant
coinage “Jurassic” hasn't caught on. Yet. Skittish computer scientists tend to favor the achingly dull “NP-complete.”
Worse, their idea of bustin' a dope, def funky rhyme is to—get this—write down the thing in full, as in “complete for
nondeterministic polynomial time.” To each their own.

Back to the Jurassics. Always basking in the spotlight, they are famously difficult, impossibly hard to satisfy, and—if
their resilience is any guide—quite pleased with the attention. These traits often run in the family; sure enough, the
Jurassics are blood kin. The first to put them on the analyst's couch and pin their intractable behavior on
consanguinity were Stephen Cook, Jack Edmonds, Richard Karp, and Leonid Levin. In the process they redefined
computing around the notion of tractability and produced the most influential milestone in post-Turing computer
science.

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

7 of 14 9/27/2006 9:25 PM

“ What do you mean, ‘intractable’ ? ”

But what is a tractable problem, you ask? Answer: one that can be solved in polynomial time. Oh, swell; nothing like
calling upon the opaque to come to the rescue of the obscure! Relax: it's quite simple, really. If you double the size of
the problem—say, your iPod library will now hold 2,000 tunes instead of a mere 1,000—then the time to find an even
split should at most double, or quadruple, or increase by some fixed rate (ie, independent of the problem size). That's
what it means to be tractable. Convoluted as this definition may seem, it has two things going for it: one is to match
our intuition of what can be solved in practice (assuming the fixed rate isn't “fixed” too high); the other is to leave the
particular computer we're working on out of the picture. See how there is no mention of computing speeds; only of
growth rates. It is a statement about software, not hardware. Tractability is a universal attribute of a problem—or lack
thereof. Note: some scholars prefer the word feasibility. Obviously, to resist the lure of the opening riff of
Wittgenstein's “Tractatus Logico-Philosophicus” takes willpower; predictably, the feasibility crowd is thin.

Library splitting does not appear to be tractable. (Hold the
tears: you'll need them in a minute.) Any algorithm
humans have ever tried—and many have—requires
exponential time. Read: all of them share the dubious
distinction that their running times get squared (not
merely scaled up by a constant factor) whenever one
doubles the size of the problem. If you do the math, you'll
see it's the sort of growth that quickly gets out of hand.

Well, do the math. Say you want to solve a problem that
involves 100 numbers and the best method in existence
takes one second on your laptop. How long would it take to
solve the same problem with 200 numbers, instead?
Answer: just a few seconds if it's tractable; and 2^100
seconds if it's not. That's more than a billion trillion years!
To paraphrase Senator Dirksen from the great State of
Illinois, a trillion years here, a trillion years there, and
pretty soon you're talking real time. Exponentialitis is not a
pretty condition. Sadly, it afflicts the entire Jurassic
menagerie.

The true nature of the ailment eludes us but this much we know: it's genetic. If any one of the Jurassics is tractable,
wonder of wonders, all of them are. Better still: a cure for any one of them could easily be used to heal any of the
others. Viewed through the tractability lens, the Jurassics are the same T. rex in different brontosaurus' clothings.
Heady stuff! The day Alice can split your song library within a few hours will be the day biologists can fold proteins
over breakfast, design new drugs by lunch, and eradicate deadly diseases just in time for dinner. The attendant
medical revolution will likely make you live the long, jolly life of a giant Galápagos tortoise (life span: 150 years).
Alice's discovery would imply the tractability of all the Jurassics (P=NP in computer lingo). Should the computing
gods smile upon us, the practical consequences could be huge.

Granted, there would be a few losers: mostly online shoppers and mathematicians. All commercial transactions on the
Internet would cease to be secure and e-business would grind to a halt. (More on this gripping drama in the next
section.) The math world would take a hit, too: P=NP would prove Andrew Wiles, the conqueror of Fermat's Last
Theorem, no more deserving of credit than his referee. Well, not quite. Mathematicians like to assign two purposes to
a proof: one is to convince them that something is true; the other is to help them understand why something is true.
Tractability bears no relevance to the latter. Still, no one wants to see friendly mathematicians swell the ranks of the
unemployed as they get replaced by nano iPods, so the consensus has emerged that P is not NP. There are other
reasons, too, but that one is the best because it puts computer scientists in a good light. The truth is, no one has a clue.

To be P or not to be P, that is NP's question. A million-dollar question, in fact. That's how much prize money the Clay
Mathematics Institute will award Alice if she resolves the tractability of library splitting. (She will also be shipped to
Guantánamo by the CIA, but that's a different essay.) Which side of the NP question should we root for? We know the
stakes: a short existence blessed with online shopping (P≠NP); or the interminable, eBay-less life of a giant tortoise
(P=NP). Tough call.

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

8 of 14 9/27/2006 9:25 PM

Cryptology will help you
win wars and shop online

“Remember, guys, not a word about
our factoring algorithm, okay? ”

P=NP (Or why you won't find the proof on eBay)

An algorithm proving P=NP might conceivably do for technology what the discovery of the wheel did for land
transportation. Granted, to discover the wheel is always nice, but to roll logs in the mud has its charms, too. Likewise,
the intractability of proof-finding would have its benefits. That 1951 vintage Wham-O hula hoop you bought on eBay
the other day, er, you didn't think the auction was secure just because online thieves were too hip for hula hoops, did
you? What kept them at bay was the (much hoped-for) intractability of integer factorization.

Say what? Prime numbers deterring crooks? Indeed. Take two primes, S and T, each one, say, a thousand-digit long.
The product R= S × T is about 2,000 digits long. Given S and T, your laptop will churn out R in a flash. On the other
hand, if you knew only R, how hard would it be for you to retrieve S and T? Hard. Very hard. Very very hard. Repeat
this until you believe it because the same algorithm that would find S and T could be used to steal your credit card off
the Internet!

Am I implying that computer security is premised on our inability to do some
silly arithmetic fast enough? I surely am. If the Jurassics were shown to be
tractable, not a single computer security system would be safe. Which is why
for eBay to auction off a proof of P=NP would be suicidal. Worse: factoring is
not even known—or, for that matter, thought—to be one of the Jurassics. It
could well be a cuddly pet dinosaur eager to please its master (if only its
master had the brains to see that). One cannot rule out the existence of a fast
factoring algorithm that would have no incidence on the P=NP question.

In fact, such an algorithm exists. All of the recent hoopla about quantum
computing owes to the collective panic caused by Peter Shor's discovery that
factoring is tractable on a quantum iPod. That building the thing itself is
proving quite hopeless has helped to calm the frayed nerves of computer
security experts. And yet there remains the spine-chilling possibility that
maybe, just maybe, factoring is doable in practice on a humble laptop.
Paranoid security pros might want to hold on to their prozac a while longer.

Cryptology is a two-faced Janus. One side studies how to decrypt the secret
messages that bad people exchange among one another. That's cryptanalysis:
think Nazi code, Bletchley Park, victory parade, streamers, confetti, sex,
booze, and rock 'n' roll. The other branch of the field, cryptography, seeks
clever ways of encoding secret messages for good people to send to other
good people, so that bad people get denied the streamers, the confetti, and all
the rest. Much of computer security relies on public-key cryptography. The
idea is for, say, eBay to post an encryption algorithm on the web that everybody can use. When you are ready to
purchase that hula hoop, you'll type in your credit card information into your computer, encrypt it right there, and
then send the resulting gobbledygook over the Internet. Naturally, the folks at eBay will need their own secret
decryption algorithm to make sense of the junk they'll receive from you. (Whereas poor taste is all you'll need to make
sense of the junk you'll receive from them.) The punchline is that no one should be able to decrypt anything unless
they have that secret algorithm in their possession.

Easier said than done. Consider the fiendishly clever
algorithm that encodes the first two words of this
sentence as dpotjefs uif. So easy to encrypt: just replace
each letter in the text by the next one in the alphabet.
Now assume you knew this encryption scheme. How in
the world would you go about decrypting a message?
Ah, this is where algorithmic genius kicks in.
(Algorithmistas get paid the big bucks for a reason.) It's
a bit technical so I'll write slowly: replace each letter in
the ciphertext by the previous one in the alphabet.
Ingenious, no? And fast, too! The only problem with
the system is that superior minds can crack it. So is
there a cryptographic scheme that is unbreakable,
irrespective of how many geniuses roam the earth? It
should be child's play to go one way (encrypt) but a
gargantuan undertaking to go back (decrypt)—unless,
that is, one knows the decryption algorithm, in which
case it should be a cinch.

RSA, named after Ron Rivest, Adi Shamir, and Len
Adleman, is just such a scheme. It's an exceedingly
clever, elegant public-key cryptosystem that, amazingly,

requires only multiplication and long division. It rules e-commerce and pops up in countless security applications. Its
universal acclaim got its inventors the Turing award (the “Nobel prize” of computer science). More important, it got
Rivest a chance to throw the ceremonial first pitch for the first Red Sox-Yankees game of the 2004 season. Yes, RSA is
that big! There is one catch, though (pun intended): if factoring proves to be tractable then it's bye-bye RSA, hello
shopping mall.

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

9 of 14 9/27/2006 9:25 PM

Fresh, juicy primes!

The computational art of persuasion

Isn't intractability just a variant of undecidability, the mother's milk of logicians? One notion evokes billions of years,
the other eternity—what's the difference? Whether the execution of [program | data] ever terminates is undecidable.
In other words, one cannot hope to find out by writing another program and reading the output of [another program |
[program | data]]. Of side interest, note how the whole document [program | data] is now treated as mere data: an
artful cadenza from Maestro Turing.

Very nice, but how's undecidability helping us go through life with a smile on our face? It doesn't. In fact, no one ever
tried to benefit from an undecidable problem who didn't wind up slouched face down on the Viennese gentleman's
couch. Not so with intractable problems. Just as quantum mechanics shattered the platonic view of a reality amenable
to noninvasive observation, tractability has clobbered classical notions of identity, randomness, and knowledge. And
that's a good thing.

Why? Let me hereby declare two objects to be “identical” if to tell them apart is intractable, regardless of how different
they might actually be. A deck of cards will be “perfectly” shuffled if it's impossible to prove it otherwise in polynomial
time. It is one of the sweet ironies of computing that the existence of an intractable world out there makes our life
down here so much easier. Think of it as the Olympics in reverse: if you can't run the 100-meter dash under 10
seconds, you win the gold!

Scientists of all stripes are insatiable consumers of random numbers: try taking a poll, conducting clinical trials, or
running a lottery without them! To produce randomness can be quite arduous. To this day, only two methods have
been scientifically validated. One of them is the infamous “Kitty Flop.” Strap buttered toast to the back of a cat and
drop the animal from a PETA-approved height: if the butter hits the ground, record a 1; else a 0. For more bits, repeat.
Randomness results from the tension between Murphy's law and the feline penchant for landing on one's feet. The
other method is the classical “Coriolis Flush.” This time, go to the equator and flush the toilet: if the water whirls
clockwise, your random bit is a 1; else it's a 0.

Now think how much easier it'd be if cheating were allowed. Not even bad plumbing could stop you (though many
hope it would). Okay, your numbers are not truly random and your cards are not properly shuffled, but if to show they
are not is intractable then why should you care? Hardness creates easiness. Of course, computer scientists have simply
rediscovered what professional cyclists have known for years: the irresistible lure of intractability (of drug detection).

You're not thinking, I hope, that this is all perched on the same moral high ground as Don Corleone's philosophy that
crime is not breaking the law but getting caught. If you are, will you please learn to think positive? Our take on
intractability is really no different from the 1894 Supreme Court decision in Coffin vs US that introduced to American
jurisprudence the maxim “Innocent until proven guilty.” Reality is not what is but what can be proven to be (with
bounded patience). If you think this sort of tractability-induced relativism takes us down the garden path, think again.
It actually cleanses classical notions of serious defects.

Take knowledge, for example: here's something far more faith-based
than we'd like to admit. We “know” that the speed of light is constant,
but who among us has actually bothered to measure it? We know
because we trust. Not all of us have that luxury. Say you're a fugitive
from the law. (Yes, I know, your favorite metaphor.) The authorities
don't trust you much and—one can safely assume—the feeling is
mutual. How then can you convince the police of your innocence?
Reveal too little and they won't believe you. Reveal too much and they'll
catch you. Intractability holds the key to the answer. And the Feds hold
the key to my prison cell if I say more. Sorry, nothing to see here, move
along.

Years have passed and you've traded your fugitive's garb for the funky
duds of a math genius who's discovered how to factor integers in a
flash. Sniffing a business opportunity, you offer to factor anybody's
favorite number for a small fee. There might be a huge market for that,
but it's less clear there's nearly enough gullibility around for anyone to
take you up on your offer—especially with your mugshot still hanging in
the post office. No one is likely to cough up any cash unless they can see
the prime factors. But then why would you reward such distrust by
revealing the factors in the first place? Obviously, some
confidence-building is in order.

What will do the trick is a dialogue between you and the buyer that
persuades her that you know the factors, all the while leaking no
information about them whatsoever. Amazingly, such an unlikely
dialogue exists: for this and, in fact, for any of our Jurassics. Alice can convince you that she can split up your iPod
library evenly without dropping the slightest hint about how to do it. (A technical aside: this requires a slightly
stronger intractability assumption than P≠NP.) Say hello to the great zero-knowledge (ZK) paradox: a congenital liar

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

10 of 14 9/27/2006 9:25 PM

The book of zero-knowledge

“Gotta run. Let's try PCP ! ”

can convince a hardened skeptic that she knows something without revealing a thing about it. ZK dialogues leave no
option but for liars to tell the truth and for doubting Thomases to believe. They render dishonesty irrelevant, for
trusting comes naturally to a society where all liars get caught.

What's intractability got to do with it? Everything. If factoring were known to be tractable, the buyer would need no
evidence that you could factor: she could just do it herself and ignore your services—bakers don't buy bread. At this
point, the reader might have a nagging suspicion of defective logic: if factoring is so hard, then who's going to be the
seller? Superman? In e-commerce applications, numbers to be factored are formed by multiplying huge primes
together. In this way, the factors are known ahead of time to those privy to this process and live in intractability
limboland for all others.

It gets better. Not only can two parties convince each other of their
respective knowledge without leaking any of it; they can also reason
about it. Two businessmen get stuck in an elevator. Naturally, a
single thought runs through their minds: finding out who's the
wealthier. Thanks to ZK theory, they'll be able to do so without
revealing anything about their own worth (material worth, that
is—the other kind is already in full view).

Feel the pain of two nuclear powers, Learsiland and Aidniland. Not
being signatories to the Nuclear Non-Proliferation Treaty, only they
know the exact size of their nuclear arsenals (at least one hopes they
do). Computing theory would allow Learsiland to prove to Aidniland
that it outnukes it without leaking any information about its
deterrent's strength. The case of Nariland is more complex: it only
wishes to demonstrate compliance with the NPT (which it's signed)
without revealing any information about its nuclear facilities. While

these questions are still open, they are right up ZK 's alley. Game theorists made quite a name for themselves in the
Cold War by explaining why the aptly named MAD strategy of nuclear deterrence was not quite as mad as it sounded.
Expect zero-knowledgists to take up equally daunting “doomsday” challenges in the years ahead. And, when they do,
get yourself a large supply of milk and cookies, a copy of Kierkegaard's “Fear and Trembling,” and unrestricted access
to a deep cave.

More amazing than ZK still is this thing called PCP (for “probabilistically checkable proofs; not for what you think).
For a taste of it, consider the sociological oddity that great unsolved math problems seem to attract crackpots like
flypaper. Say I am one of them. One day I call the folks over at the Clay Math Institute to inform them that I've just
cracked the Riemann hypothesis (the biggest baddest beast in the math jungle). And could they please deposit my
million-dollar check into my Nigerian account presto? Being the gracious sort, Landon and Lavinia Clay indulge me
with a comforting “Sure,” while adding the perfunctory plea: “As you know, we're a little fussy about the format of our
math proofs. So please make sure yours conforms to our standards—instructions available on our web site, blah,
blah.” To my relief, that proves quite easy—even with that damn caps lock key stuck in the down position—and the
new proof is barely longer than the old one. Over at Clay headquarters, meanwhile, no one has any illusions about me
(fools!) but, bless the lawyers, they're obligated to verify the validity of my proof.

To do that, they've figured out an amazing
way, the PCP way. It goes like this: Mr and
Mrs Clay will pick four characters from my
proof at random and throw the rest in the
garbage without even looking at it. They will
then assemble the characters into a four-letter
word and read it out loud very slowly—it's not
broadcast on American TV, so it's okay.
Finally, based on that word alone, they will
declare my proof valid or bogus. The kicker:
their conclusion will be correct! Granted,
there's a tiny chance of error due to the use of
random numbers, but by repeating this little
game a few times they can make a screwup less
likely than having their favorite baboon type
all of Hamlet in perfect Mandarin.

At this point, no doubt you're wondering
whether to believe this mumbo-jumbo might
require not only applying PCP but also
smoking it. If my proof is correct, I can see how running it through the Clays' gauntlet of checks and tests would leave
it unscathed. But, based on a lonely four-letter word, how will they know I've cracked Riemann's hypothesis and not a
baby cousin, like the Riemann hypothesis for function fields, or a baby cousin's baby cousin like 1+1=2? If my proof is
bogus (perish the thought) then their task seems equally hopeless. Presumably, the formatting instructions are meant
to smear any bug across the proof so as to corrupt any four letters picked at random. But how can they be sure that, in
order to evade their dragnet, I haven't played fast and loose with their silly formatting rules? Crackpots armed with
all-caps keyboards will do the darndest thing. Poor Mr and Mrs Clay! They must check not only my math but also my
abidance by the rules. So many ways to cheat, so few things to check.

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

11 of 14 9/27/2006 9:25 PM

When Abu's light was
shining on Baghdad

“ ‘ fetch branch push load store jump fetch... ’
Who writes this crap? ”

PCP is the ultimate lie-busting device: ultimate because instantaneous and
foolproof. The time-honored approach to truth finding is the court trial, where
endless questioning between two parties, each one with good reasons to lie,
leads to the truth or to a mistrial, but never to an erroneous judgment (yes, I
know). PCP introduces the instant-trial system. Once the case has been
brought before the judge, it is decided on the spot after only a few seconds of
cross-examination. Justice is fully served; and yet the judge will go back to her
chamber utterly clueless as to what the case was about. PCP is one of the most
amazing algorithms of our time. It steals philosophy's thunder by turning on
its head basic notions of evidence, persuasion, and trust. Somewhere,
somehow, Ludwig the Tractatus Man is smiling.

To say that we're nowhere near resolving P vs NP is a safe prophecy. But why?
There are few mysteries in life that human stupidity cannot account for, but to
blame the P=NP conundrum on the unbearable lightness of our addled brains
would be a cop-out. Better to point the finger at the untamed power of the
Algorithm—which, despite rumors to the contrary, was not named after Al
Gore but after Abū ‘Abd Allāh Muhammad ibn Mūsā al-Khwārizmī. As ZK and
PCP demonstrate, tractability reaches far beyond the racetrack where
computing competes for speed. It literally forces us to think differently. The
agent of change is the ubiquitous Algorithm. Let's look over the horizon where
its disruptive force beckons, shall we?

Thinking algorithmically

Algorithms are often compared to recipes. As clichés go, a little shopworn perhaps, but remember: no metaphor that
appeals to one's stomach can be truly bad. Furthermore, the literary analogy is spot-on. Algorithms are—and should be
understood as—works of literature. The simplest ones are short vignettes that loop through a trivial algebraic
calculation to paint fractals, those complex, pointillistic pictures much in vogue in the sci-fi movie industry. Just a few
lines long, these computing zingers will print the transcendental digits of π, sort huge sets of numbers, model
dynamical systems, or tell you on which day of the week your 150th birthday will fall (something whose relevance
we've already covered). Zingers can do everything. For the rest, we have, one notch up on the sophistication scale, the
sonnets, ballads, and novellas of the algorithmic world. Hiding behind their drab acronyms, of which RSA, FFT, SVD,
LLL, AKS, KMP, and SVM form but a small sample, these marvels of ingenuity are the engines driving the algorithmic
revolution currently underway. (And, yes, you may be forgiven for thinking that a computer geek's idea of culinary
heaven is a nice big bowl of alphabet soup.) At the rarefied end of the literary range, we find the lush, complex,
multilayered novels. The Algorithmistas' pride and joy, they are the big, glorious tomes on the coffee table that
everyone talks about but only the fearless read.

Give it to them, algorithmic zingers know how to make a
scientist swoon. No one who's ever tried to calculate the
digits of π by hand can remain unmoved at the sight of its
decimal expansion flooding a computer screen like lava
flowing down a volcano. Less impressive perhaps but just
as useful is this deceptively simple data retrieval
technique called binary search, or BS for short.
Whenever you look up a friend's name in the phone
book, chances are you're using a variant of BS—unless
you're the patient type who prefers exhaustive search
(ES) and finds joy in combing through the directory
alphabetically till luck strikes. Binary search is
exponentially (ie, incomparably) faster than ES. If
someone told you to open the phone book in the middle
and check whether the name is in the first or second half;
then ordered you to repeat the same operation in the
relevant half and go on like that until you spotted your
friend's name, you would shoot back: “That's BS!”

Well, yes and no. Say your phone book had a million
entries and each step took one second: BS would take
only twenty seconds but ES would typically run for five
days! Five days?! Imagine that. What if it were an
emergency and you had to look up the number for 911?
(Yep, there's no low to which this writer won't stoop.)

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

12 of 14 9/27/2006 9:25 PM

“Don't google us, we'll google you.”

The key to binary search is to have an ordered list. To appreciate the relevance of sorting, suppose that you forgot the
name of your friend (okay, acquaintance) but you had her number. Since the phone numbers typically appear in
quasi-random order, the name could just be anywhere and you'd be stuck with ES. There would be two ways for you to
get around this: to be the famous Thomas Magnum and bribe the Honolulu police chief to get your hands on the
reverse directory; or to use something called a hash table: a key idea of computer science.

Hash table? Hmm, I know what you're thinking: Algorithmistas dig hash tables; they're down for PCP; they crack
codes; they get bent out of shape by morphin'; they swear by quicksnort (or whatever it's called). Coincidence?
Computer scientists will say yes, but what else are they supposed to say?

Algorithms for searching the phone book or spewing out the digits of π are race horses: their sole function is to run fast
and obey their masters. Breeding Triple Crown winners has been high on computer science's agenda—too high, some
will say. Blame this on the sheer exhilaration of the sport. Algorithmic racing champs are creatures of dazzling beauty,
and a chance to breed them is a rare privilege. That said, whizzing around the track at lightning speed is not the be-all
and end-all of algorithmic life. Creating magic tricks is just as highly prized: remember RSA, PCP, ZK. The
phenomenal rise of Google's fortunes owes to a single algorithmic gem, PageRank, leavened by the investing
exuberance of legions of believers. To make sense of the World Wide Web is algorithmic in a qualitative sense. Speed
is a secondary issue. And so PageRank, itself no slouch on the track, is treasured for its brains, not its legs.

Hold on! To make sense of the world, we have math. Who needs algorithms? It is beyond dispute that the dizzying
success of 20th century science is, to a large degree, the triumph of mathematics. A page's worth of math formulas is
enough to explain most of the physical phenomena around us: why things fly, fall, float, gravitate, radiate, blow up,
etc. As Albert Einstein said, “The most incomprehensible thing about the universe is that it is comprehensible.”
Granted, Einstein's assurance that something is comprehensible might not necessarily reassure everyone, but all
would agree that the universe speaks in one tongue and one tongue only: mathematics.

But does it, really? This consensus is being challenged
today. As young minds turn to the sciences of the new
century with stars in their eyes, they're finding old math
wanting. Biologists have by now a pretty good idea of what a
cell looks like, but they've had trouble figuring out the
magical equations that will explain what it does. How the
brain works is a mystery (or sometimes, as in the case of our
43rd president, an overstatement) whose long, dark veil
mathematics has failed to lift.

Economists are a refreshingly humble lot—quite a surprise
really, considering how little they have to be humble about.
Their unfailing predictions are rooted in the holy verities of
higher math. True to form, they'll sheepishly admit that this
sacred bond comes with the requisite assumption that
economic agents, also known as humans, are benighted,
robotic dodos—something which unfortunately is not always
true, even among economists.

A consensus is emerging that, this time around, throwing more differential equations at the problems won't cut it.
Mathematics shines in domains replete with symmetry, regularity, periodicity—things often missing in the life and
social sciences. Contrast a crystal structure (grist for algebra's mill) with the World Wide Web (cannon fodder for
algorithms). No math formula will ever model whole biological organisms, economies, ecologies, or large, live
networks. Will the Algorithm come to the rescue? This is the next great hope. The algorithmic lens on science is full of
promise—and pitfalls.

First, the promise. If you squint hard enough, a network of autonomous agents interacting together will begin to look
like a giant distributed algorithm in action. Proteins respond to local stimuli to keep your heart pumping, your lungs
breathing, and your eyes glued to this essay—how more algorithmic can anything get? The concomitance of local
actions and reactions yielding large-scale effects is a characteristic trait of an algorithm. It would be naive to expect
mere formulas like those governing the cycles of the moon to explain the cycles of the cell or of the stock market.

Contrarians will voice the objection that an algorithm is just a math formula in disguise, so what's the big hoopla
about? The answer is: yes, so what? The issue here is not logical equivalence but expressibility. Technically, number
theory is just a branch of set theory, but no one thinks like that because it's not helpful. Similarly, the algorithmic
paradigm is not about what but how to think. The issue of expressiveness is subtle but crucial: it leads to the key
notion of abstraction and is worth a few words here (and a few books elsewhere).

Remember the evil Brazilian butterfly? Yes, the one that idles the time away by casting typhoons upon China with the
flap of a wing. This is the stuff of legend and tall tales (also known as chaos theory). Simple, zinger-like algorithms
model this sort of phenomenon while neatly capturing one of the tenets of computing: the capacity of a local action to
unleash colossal forces on a global scale; complexity emerging out of triviality.

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

13 of 14 9/27/2006 9:25 PM

Al-Khwarizmi takes wing

Had Newton been hit by a flying
goose and not a falling apple...

Create a virtual aviary of simulated geese and endow each bird
with a handful of simple rules: (1) Spot a flock of geese? Follow
its perceived center; (2) Get too close to a goose? Step aside;
(3) Get your view blocked by another goose? Move laterally
away from it; etc. Release a hundred of these critters into the
(virtual) wild and watch a distributed algorithm come to life, as
a flock of graceful geese migrate in perfect formation. Even
trivial rules can produce self-organizing systems with patterns
of behavior that look almost “intelligent.” Astonishingly, the
simplest of algorithms mediate that sort of magic.

The local rules of trivial zingers carry enough punch to produce
complex systems; in fact, by Church-Turing universality, to
produce any complex system. Obviously, not even algorithmic
sonnets, novellas, or Homeric epics can beat that. So why
bother with the distinction? Perhaps for the same reason the
snobs among us are loath to blur the difference between Jay
Leno and Leo Tolstoy. But isn't “War and Peace” just an endless
collection of one-liners? Not quite. The subtlety here is called
abstraction. Train your binoculars on a single (virtual) goose in flight and you'll see a bird-brained, rule-driven robot
flying over Dullsville airspace. Zoom out and you'll be treated to a majestic flock of birds flying in formation.
Abstraction is the ability to choose the zoom factor. Algorithmic novels allow a plethora of abstraction levels that are
entirely alien to zingers.

Take war, for example. At its most basic, war is a
soldier valiantly following combat rules on the
battlefield. At a higher level of abstraction, it is a clash
of warfare strategies. Mindful of Wellington's dictum
that Waterloo was won on the playing fields of Eton
(where they take their pillow fighting seriously), one
might concentrate instead on the schooling of the
officer corps. Clausewitz devotees who see war as
politics by other means will adjust the zoom lens to
focus on the political landscape. Abstraction can be
vertical: a young English infantryman within a platoon
within a company within a battalion within a regiment
within a mass grave on the banks of the Somme.

Or it can be horizontal: heterogeneous units interacting
together within an algorithmic “ecology.” Unlike
zingers, algorithmic novels are complex systems in and
of themselves. Whereas most of what a zinger does
contributes directly to its output, the epics of the
algorithmic world devote most of their energies to
servicing their constituent parts via swarms of intricate
data structures. Most of these typically serve functions
that bear no direct relevance to the algorithm's overall
purpose—just as the mRNA of a computer programmer
rarely concerns itself with the faster production of Java
code.

The parallel with biological organisms is compelling
but far from understood. To this day, for example,
genetics remains the art of writing the captions for a
giant cartoon strip. Molecular snapshots segue from
one scene to the next through plots narrated by

circuit-like chemical constructs—zingers, really—that embody only the most rudimentary notions of abstraction.
Self-reference is associated mostly with self-replication. In the algorithmic world, by contrast, it is the engine powering
the complex recursive designs that give abstraction its amazing richness: it is, in fact, the very essence of computing.
Should even a fraction of that power be harnessed for modeling purposes in systems biology, neuroscience, economics,
or behavioral ecology, there's no telling what might happen (admittedly, always a safe thing to say). To borrow the
Kuhn cliché, algorithmic thinking could well cause a paradigm shift. Whether the paradigm shifts, shuffles, sashays, or
boogies its way into the sciences, it seems destined to make a lasting imprint.

Now the pitfalls. What could disrupt the rosy scenario we so joyfully scripted? The future of the Algorithm as a
modeling device is not in doubt. For its revolutionary impact to be felt in full, however, something else needs to
happen. Let's try a thought experiment, shall we? You're the unreconstructed Algorithm skeptic. Fresh from splitting
your playlist, Alice, naturally, is the advocate. One day, she comes to you with a twinkle in her eye and a question on
her mind: “What are the benefits of the central law of mechanics? ” After a quick trip to Wikipedia to reactivate your
high school physics neurons and dust off the cobwebs around them, you reply that F=ma does a decent job of
modeling the motion of an apple as it is about to crash on Newton's head: “What's not to like about that? ” “Oh,

The Algorithm: Idiom of Modern Science http://www.cs.princeton.edu/~chazelle/pubs/algorithm-print.html

14 of 14 9/27/2006 9:25 PM

nothing,” retorts Alice, “except that algorithms can be faithful modelers, too; they're great for conducting
simulations and making predictions.” Pouncing for the kill, she adds: “By the way, to be of any use, your vaunted
formulas will first need to be converted into algorithms.” Touché.

Ahead on points, Alice's position will dramatically unravel the minute you remind her that F=ma lives in the world of
calculus, which means that the full power of analysis and algebra can be brought to bear. From F=ma, for example,
one finds that: (i) the force doubles when the mass does; (ii) courtesy of the law of gravity, the apple's position is a
quadratic function of time; (iii) the invariance of Maxwell's equations under constant motion kills F=ma and begets
the theory of special relativity. And all of this is done with math alone! Wish Alice good luck trying to get her beloved
algorithms to pull that kind of stunt. Math gives us the tools for doing physics; more important, it gives us the tools for
doing math. We get not only the equations but also the tools for modifying, combining, harmonizing, generalizing
them; in short, for reasoning about them. We get the characters of the drama as well as the whole script!

Is there any hope for a “calculus” of algorithms that would enable us to knead them like Play-Doh to form new
algorithmic shapes from old ones? Algebraic geometry tells us what happens when we throw in a bunch of polynomial
equations together. What theory will tell us what happens when we throw in a bunch of algorithms together? As long
as they remain isolated, free-floating creatures, hatched on individual whims for the sole purpose of dispatching the
next quacking duck flailing in the open-problems covey, algorithms will be parts without a whole; and the promise of
the Algorithm will remain a promise deferred.

While the magic of algorithms has long held computing theorists in its thrall, their potential power has been
chronically underestimated; it's been the life story of the field, in fact, that they are found to do one day what no one
thought them capable of doing the day before. If proving limitations on algorithms has been so hard, maybe it's
because they can do so much. Algorithmistas will likely need their own “Google Earth” to navigate the treacherous
canyons of Turingstan and find their way to the lush oases amid the wilderness. But mark my words: the algorithmic
land will prove as fertile as the one the Pilgrims found in New England and its settlement as revolutionary.

Truth be told, the 1776 of computing is not quite upon us. If the Algorithm is the New World, we are still building the
landing dock at Plymouth Rock. Until we chart out the vast expanses of the algorithmic frontier, the P vs NP mystery is
likely to remain just that. Only when the Algorithm becomes not just a body but a way of thinking, the young sciences
of the new century will cease to be the hapless nails that the hammer of old math keeps hitting with maniacal glee.

One thing is certain. Moore's Law has put computing on the map: the Algorithm will now unleash its true potential.
That's one prediction Lord Kelvin never made, so you may safely trust the future to be kind to it.

“May the Algorithm's Force be with you.”

