
PETINA — Tour Generation

Using the ElipSys Inference System

Panagiotis Stamatopoulos Isambo Karali Constantine Halatsis

University of Athens, Department of Informatics

Abstract

PETINA is a Personalized Tourist Information Advi-

sor system aiming at helping tourists to construct tours

satisfying specified constraints. The system consults
a large database that contains tourist data. PETINA
has been implemented in the ElipSys language, which
is a pure parallel logic programming system extended
with various powerful mechanisms and features to al-
low efficient parallel execution. Although the expressive
power of logic programming is profitable for the devel-
opment of PETINA, standard Prolog systems lack of
facilities that are vital for the PETINA application to
work. ElipSys haa proved to be very suitable tool for
the implementation of PETINA, as most of the former’s
features are indispensable for handling the complexity

of the encountered problems.

Introduction

Many combinatorial search problems are NP-complete
[5] and no general and efficient algorithm exists to solve
them. A big subset of these problems involves user de-
fined constraints over their search space, so the straight-

forward and classical method to cope with them is to

employ the traditional generate-and-test method. The
declarative formulation of this method can be achieved
in a logic programming environment, via the Prolog lan-
guage [2, 16]. However, due to the inefficiency of the
exhaustive search of Prolog, real-life problems cannot
be solved in this basic framework.

In this paper, a specific combinatorially hard search
problem is presented. The application that exemplifies
the problem is called PETINA [6], which is a Person-
alized Tourist Information Advisor about Greece. Its
Permission to copy without fee afl or part of this material is
grantad protidad that the copias ara not made or distributed for
direct commercial advantaga, the ACM copyright notica end the
title of ths publication and its date appear, and notica is given
that copying ia by permission of tha Association for Computing
Machinary. To copy otherwise, or to republish, requires a fee
and/or specific permission.
e 1992 ACM O-89791 -502-X192/000210320 ...$ 1.50

purpose is to help tourists to construct toura satisfying
specified constraints. A parallel logic programming lan-

guage, ElipSys [1], is used for the implementation. Elip-

Sys provides, apart from parallelism, other additional
features which are exploited to attack the encountered
problems. Both PETINA and ElipSys are being devel-
oped in the context of the ESPRIT II EDS (European
Declarative System) project by the University of Athens
and ECRC respectively.

The previous work in the specific problem domain com-
prises two prototypes, namely TIA [10] and TInA [11],
which were implemented in the PEPSys parallel logic

programming language [14]. Although these proto-
types had to deal with similar problems to the ones
of PETINA, they cannot be considered as real-life ap-
plications, since they addressed limited amount of data.
Moreover, the extended database structure and the ad-
vanced functionality of PETINA, with respect to the

ones of TIA and TInA, require more power by the
underlying implementation framework than the one of
PEPSys’ parallel execution.

h the following, a brief description of the ElipSys lan-
guage is given as well as PETINA’s database structure,
the functionalist y of the system’s Tour Generation En-
gine and the structural specification of the whole ap-
plication is presented. Emphasis is put on the method
employed by the Tour Generation Engine in conjunction
with the exploited ElipSys features. Finally, implemen-
tation issues are discussed and performance measure-

ments are presented.

ElipSys Language

ElipSys is a parallel logic programming language, which
has been extended to incorporate various powerful ex-

ecution mechanisms. The language supports pure OR-
parallelism, data-parallelism, data driven computation,

320

constraint satisfaction techniques over finite domains

and an interface to relational databases.

OR-parallelism aims at the concurrent exploration of
the various alternative clauses that define an ElipSys
procedure. The programmer has to declare “good
points” for efficient OR-parallel execution. This is
achieved by using the parallel/1 directive, which de-
clares that all clauses defined by a specific predicate

might be explored in parallel, if there are available re-
sources, that is processing elements. In this case, a

branch point is created with fertility equal to the num-
ber of alternative clauses.

Data-parallelism [7] is a kind of parallelism arising from
the concurrent treatment of the elements of a set of
data. It issupported byvarious built-in predicates, e.g.
par.member/2, par.delete/3, par-select/3 etc. In all

cases, if there are available resources, a branch point
is created with fertility equal to the number of theele-

mentsin the set of data.

In addition, ElipSys supports a data driven computa-
tion rule [13] on top of the usual depth-first left-t~right
execution strategy of Prolog. This rule modifies the
reduction order of goals according to instantiations of
variables. The model 1 directive is used to declare that

every goal that refers to a specific predicate has to be de-
layed, if its arguments are not adequately instantiated.
A delayed goal is awakened when the degree of instan-
tiation declared by the mode/1 directive is achieved.

Constraint satisfaction techniques over finite domains
[17] may tackle real-world problems efficiently, since
they lead to a priori pruning of the search space and
thus, they result in more optimized execution. ElipSys
provides this facility [18] by allowing the programmer

to define domain variables which may range over integer
intervals or enumerated sets, using the :: /2 and ::: /2

built-in predicates respectively. A set of arithmetic and

symbolic built-in constraints on domain variables is sup-
ported, either forward or Iookahead checkable. The pro-
grammer has to define his/her problem by stating the
constraints that describe it. Then, the generation of val-
ues for the domain variables must be triggered, via the
indomain/ 1 predicate, in order to start the constraint
propagation and the pruning of the search space. More-
over, the constraint satisfaction mechanism of ElipSys

supports additional predicates that are used to make

choices, that is to generate values in a specific way, as
well as a set of higher-order predicates useful for opti-

mization problems.

The last, but not least, major feature of ElipSys con-
cerns the connection of the language with conventional
relational databases. More precisely, an interface to the
ESQL language [4] of the EDS database server is sup-

ported. Two levels are provided in the interface. At the

lower level, the built-in predicates sql/2 and par-sql/2
are used to embed the full power of ESQL into the
ElipSys language. At the higher level, the directive
relation/ 1 is used to define that database relations are
treated as predicates and can be manipulated in a sim-
ilar way as normal predicates.

PETINA’s Database

The PETINA system consults a database that contains
information about activities, events and sites. Activi-

ties are considered to be the tourist’s visits to various
spots, while events are shows that he/she may attend.
In addition, the sites refer to the geographical entities
of Greece.

Three data structures are defined in the system’s data-
base, namely the activity tree, the event tree and the site
tree. However, the main part of the database consists of

the activities’ and events’ instances as well as the sites’

ones. Every instance is identified by a unique key value.
The activity and event instances are linked to nodes of
the corresponding trees. On the other hand, the site in-
stances themselves compose the site tree. The activity,
event and site instances are characterized by their at-
tributes. Currently, PETINA’s database is implemented

as a set of ElipSys facts, Once the actual ElipSys to
ESQL connection is available, the above information
will be implemented using a relational database to be

handled by ESQL.

The nodes of the activity tree represent activity cate-
gories. The tree organization is baaed on a tourist in-
terest hierarchy and the nodes of a part of the tree are
considered as interest nodes. These nodes are located
higher than other nodes in the tree. The ElipSys im-
plementation of the activity tree is carried out by the

activity -.ako/2 predicate. For example, the fact:

activity _ako(church(l) ,historical-site (2)).

denotes that the activity category church(1) is a kind
of historical_s lte(2), which is also an activity cate-
gory.

Activity categories whose instances have various kinds

of interest are represented by more than one tree nodes,
denoted with the same keyword but with different in-
dices. In this way, a graph idea is implemented with a
tree structure. Activity instances can be linked to more
than one nodes according to the categories they belong
to and according to the types of intereat they present.
Each type of interest corresponds to an interest node.
An activity instance is linked either directly or indi-

rectly to all, and only these, interest nodes that corre-
spond to the types of interest it presents. The links be-

321

tween the activity instances and the activity tree nodes
are implemented by the activity isa/2 predicate, e.g.:

activity-isa(ainstOOOOl ,amseum(l)).

activity-isa(ainstOOOOl ,building(l)) .

activity-isa(ainstOOOOl ,museum(4)).

The above example denotes that the activity instance
with key value ainstooooi” is an instance of the cate-
gories museum(l) ,building(l) and museum(4).

An activity instance is characterized by its attributes,
namely the site, the denomination, the duration, the

cost, the time period, the closed days, the interest and
the detail. The interest attribute isaspecialone in the

sense that it collects aa many values as the types of in-
terest the instance presents. The activity attributes are
implemented by ElipSys facts with predicates of arity
2 which relate the key value of the instance with the
attributes’ values.

The event tree nodes correspond to event categories.
The tree’s organization is bssed on event type hierar-
chy. The event tree implementation is carried out in a
similar waytothe oneofthe activity tree. However, the
structure of the event tree is simpler. A pure tree idea is
reflected, so there are no indexed nodes. In contrast to

the activity instances, event instances are not linked to

more than one tree nodes. The implement ation of the

links, however, is carried out in a similar way. An event
instance is characterized by its attributes, namely the
site, the denomination, the duration, the cost, the time

period, the interest, the takes place, the series and the
detail. The interest attribute does not play any special
role in the case of the event instances. The event at-
tributes implementation is carried out in a similar way
to the activity ones.

Finally, the nodes of the site tree are site instances. The
tree hierarchy reflects a site inclusion relation, needed to

refer to villages, cities, islands, island groups, provinces,
districts etc. The site tree implementation is carried out
in a similar way to the ones of the other two trees. In the

case of the site tree, however, the instances themselves
compose the site tree, so no other kind of link is intro-
duced. A site is characterized by its attributes, namely
the type, the accommodation, the approachability, the
entertainment, the tour availability, the eating facilities

and the detail. Every site is identified by its name which

is a unique key value. As far as the attributes’ imple-
mentation is concerned, ElipSys facts are again used.

Functionality of the System

PETINA takes as input user wishes about tour gen-
eration, named tour generation requests, expressed as
constraints over visits’ properties. Its output is tours

satisfying the user’s constraints, as sets of activity in-
stances or as sets of event instances. The user is also al-
lowed to ask for information about activities, events and
sites via information retrieva/ queries. Finally, manage-
ment of PETINA’s databsse is supplied by the system

through database administration commands. Currently,
the above three kinds of requests are expressed using
a formal language close, however, to natural language.
This language is defined by a Definite Clause Grammar
(DCG) [12] which offers the possibility to handle context
sensitivity, transformation of the input and procedure
calls. However, in the future, a graphical interface will
be developed. The rest of this section concentrates on

the tour generation requests giving a general description
of the constraints of the language.

There are two kinds of tours the system produces. Con-
sequently, there are two kinds of tour generation re-
quests the user may express. The one concerns the
activity tour generation and the other the event tour
generation. In both cases, at the beginning of the re-
quest, the user haa to give a time constraint concerning

the time period when his/her visit is going to take place,
in order to avoid visiting spots that are inactive. The
other part of the request is a set of activity constraints
or a set of event constraints. The answer to a tour gen-
eration request consists of the tours which satisfy all the
constraints of the request.

A time constraint is satisfied by a tour, if the time pe-
riod attribute of every instance that belongs to the tour
has a non empty intersection with the visit period de-
fined in the time constraint. An example of a time con-
straint is the following:

visit period is 20 Jul 92 - 10 Sep 92

An activity or event constraint may be either simple or
cross. A simple constraint has the general form

(condition) for (subtour)

and is satisfied by a tour in case (condition) holds for
the (subtour).

The (condition) may be local, globs{, t opoiogical or com-

plex. The latter involves the operators “and”, “or” and
“not” applied to the first three kinds of conditions. Lo-

cal conditions refer to every instance of the {subtour) in-
dividually, They involve an attribute expression, i.e. ei-

ther an arithmetic expression of attributes or a single at-
tribute. Global conditions refer to the entire (subtour)

as a whole. They involve an aggregate function (“sum”,
“avg”, “max”, “rein”) applied to an attribute expression.
Topological conditions refer to the number of instances
in the (subtour). The keyword “number” is used.

A simple constraint may be local, global or topological

322

if its (condition) is local, global or topological respec-
tively. In case a complex condition appears in a sim-
ple constraint, the condition has to be transformed into
conjunctive normal form. Then, the original constraint
is substituted by one or more constraints whose condi-
tions are the and-operands of the normal form. If an
and-operand involves only local conditions, the corre-

sponding constraint is local. The same holds for global

and topological. Otherwise, if no such classification can

be done, the constraint is called mixed,

As far as the (subtour) part of a simple constraint is con-

cerned, this k defined in terms of one or more tree nodes,

possibly refined by the so-called where-properties, An

entire category (set of nodes) may be referenced or a
single node by using the “with” specifier.

The following are examples of simple activity con-
straints:

1. duration* interest >= 600
for plant (local constraint)

2. max(religious place interest) >= 7

for building vith architectural place
interest (global constraint)

3. number = 1 for picturesque spot where
interest z 5 (topological constraint)

4. mln(cost) =< 300 or duration > 180
for holiday resort (mixed constraint)

Apart from the usual comparison operators, the “in”
and “betueen” operators may be used as well, which
actually introduce complex conditions.

As already mentioned, there are cross constraints as
well. A cross constraint haa the general form

(cum)l for (subtour)l (crnp.op) (curn)2 for (subtour)2

where (cum) 1 and (cum) z are either aggregate func-

tions applied to attribute expressions or the keyword
“number”. This constraint is satisfied by a tour if the cu-

mulative property (cum) 1 of {sutdour) 1 is related with

the cumulative property (cum)2 of (subtour)2 via the
comparison operator (cmp-op). According to the kind
of the cumulative properties, a cross constraint may be
global or topological.

The following are examples of cross activity constraints:

1. sum(cost) for ancient history place =<

sum(cost) for middle age history

place (global constraint)

2. number for modern year history place >

number for nature (topological constraint)

A complete activity tour generation request k the fol-

lowing:

visit period is 20 Jul 92 - 10 Sep 92 &

cost < 500 for animal &

duration* interest >= 600 for plant &

site in [“Athens’’, ’’Cret,’’, ’’Cyclades”]

for general activity &

not closed days in [“Saturday’’,’’Sunday”]

for geology &

avg(interest) > 8 for general activity &

sum(duration) > 120 and avg(cost) < 300

for ancient history place &

max(religious place interest) >= 7

for building with architectural place

interest &

number >= 1 for middle age history place t

number = 1 for picturesque spot

where interest > 5 k

number < 2 for architectural place &

number =< 1 for religious place, culture &

number \= 2 for holiday resort &

number between [2,4] for general activity &

min(cost) =< 300 or duration > 180

for holiday resort &
sum(cost) for ancient history place =<

sum(cost) for middle age history place k

number for modern year history place >

number for nature.

The syntax and the semanticsof the event tour genera-

tion requests are similar.

PETINA’s Structural Specification

PETINA is a clearly modularized system. The mod-
ules it consists of are the User Interface, the Language
Analyzer, the Tour Generation Engine, the Information
Retrieval Engine and the Database Administration En-
gine.

The User Interface module is responsible for the user-
system communication. The Language Analyzer trans-
forms the input request expressed in PETINA’s formal

language into a form suitable for further processing.

The Tour Generation Engine, the most important mod-
ule of the system, generates activity and event tours
satisfying the user’s constraints. The Information Re-
trieval Engine supplies the information the user asked
for. Finally, the Database Administration Engine man-
ages the database contents.

This paper concentrates on the Tour Generation Engine
(TGE)moduleofthe system, asithasthe mostcomplex

problem tosolve and various mechanisms are required.

The TGE consists of the Domains Creator, the Config-

323

urator, the Daiabase Filter, the Tour Generator and the
Tour Evaluator submodules.

The Domains Creator partitions the appropriate tree,
either activity or event, into domains. The Configurw
tor produces all possible configurations of the solutions,
taking into account the topological constraints. The
Database Filter determines the candidate instances for
the solution by rejecting ones that do not satisfy the lo-
cal constraints. The Tour Generator produces all tours,
according to the configurations, that satisfy the global
and mixed constraints. Finally, the Tour Evaluator ar-

ranges the generated tours, taking into account some
criteria, currently their average intereat.

Method of Computation in TGE

Some of the submodules of TGE deal with extremely
cumbersome tasks. The Tour Generator involves a com-
binatorial search problem over a real-world database.

The Configurator has to solve a system of equalities
and inequalities. Moreover, the Database Filter has to
handle a large amount of data.

Taking into consideration the above, a methodology
that solves the various encountered problems in a sys-
tematic way has to be employed. This methodology, as
followed in every submodule of TGE, is presented in the
following.

Firstly, the Domains Creator partitions the activity or

event tree, depending on the type of the request, into
domains. This partitioning is based on global and top-
logical constraints, both simple and cross, as well as on
the mixed ones, in such a way that no two domains have
the same set of global, topological or mixed constraints
applied to them. Each domain is further partitioned
into jine domains according to the local constraints in

a similar way to the partitioning into domains.

The partitioning is carried out by the Domains Cre-

ator in the following way. Starting from the root of
the relevant tree, either activity or event, all the nodes

are visited in a depth-first left-to-right fashion. During
each visit, the global, mixed and topological constraints
that apply directly to the node are considered as well

as the ones of the same types which are inherited from
the ancestor nodes. As far as the cross constraints are
concerned, actually their left and right hand sides are
considered separately. The node into consideration is
embedded into a domain among those that have been
currently established, if the set of constraints that char-
acterizes this domain is the same to the one that applies

to the node. Otherwise, a new domain is created that
contains this node. At the same time, the local con-

straints are also considered, both the ones that apply

directly to the node and the ones that are inherited from

ancestor nodes. The whole set of the local constraints
that apply to the node is the criterion for embedding

the node into a fine domain in its domain. An already

generated fine domain may be used or a new one has to
be created. The decision is based upon the comparison
of the set of the local constraints that apply to the node
with the sets of the local constraints that characterize
the fine domains in the domain into consideration.

For simplicity reasons, the presented method does not
take into account the where-properties that may refer

to nodes. Actually, the method is correct, if instead

of referring to nodea of the tree, partitioned nodes are
considered, that is nodes refined by where-properties,
For example, if a node nd is associated with the where-
propertiea whl and wh2, then four parts of this node,
that is four sets of instances, have to be considered.
These parts refer to the node nd refined by the where-

properties whl A wh2, ~ A wh2, whl A ~ and
~ A ~. This partitioning of the node nd is inher-
ited to all its successor nodes, where it is possible to
be combined with other where-properties which are di-
rectly associated with these nodes and to produce more
fine partitions.

In order to demonstrate how the Domains Creator par-
titions the activity or event tree, consider the tree in
Figure 1. Each one of the symbols cl, c2, c3, C4 and C5
represents either a simple non-local constraint (global,

topological, mixed) or one of the left and right hand
sides of a cross constraint (global, topological). The

symbols wh 1 and wh2 represent where-properties refer-
ring to the nodes nd12 and nd13 in association with C4
and C5 respectively. Only the case of partitioning this
tree into domains is considered here, since the partition-
ing of domains into fine domains is similar.

. ...
ndO1

Cl :

1
: . :
:,
:r,d02 md03

=2:.
!:

::
::
:.

r—————l /!
r,d04 atollS , !

I
I

:Whl .4ndos ndla

p-ml.
;; ;,dfi,,
:md14 .dl S:. ----- .

r :;,,,,,,
sd21md22 ! !

~.. ::. ,
Cso f;:

;mdm; , ,
.. , :

::-; ;,,:
: ---.---,...--j

Figure 1: The constraints’ application

Six domains are created by the Domains Creator, in this
example. Each one of these domains contains a number

of nodes, possibly refined by where-properties, and is
related to a subset of the set {cl, c2, c3, c4, c5}. This

324

subset identifies the domain. The results are presented

in Table 1.

1doma I c0n4tm I wh.propn I nodes
11

,: ‘c’~
d3 cl, c2, c3 — nd06,nd07,nd08, nd20

d4 cI, c2, c4 whl nd121nd16,rad17, nd18

whl Awh2 nd13,nd14,nd15

d5 cI, c2, c4, c5 whl Awh2 nd13,nd14,nd15

d6 cl, c2, c5 =Awh’ nd13,nd14,nd15 G

Table 1: The partition of a tree into domains

The Configurator produces all possible configurations
of the requested tours, either activity or event. A con-
figuration represents acceptable numbers of instances
per domain in a tour satisfying the user’s constraints.
This module, taking into account the simple and cross
topological constraints generates and solves a system of

linear equalities and inequalities. The solution of the

system is achieved by exploiting the constraint satis-
faction techniques that ElipSys offers. Firstly, a set of
ElipSys domain variables is generated, each one corre-
sponding to a domain and representing the acceptable
number of instances from this domain in the requested
tour. Then, for every topological constraint, a linear
equality or inequality is formed, which is stated as an

ElipSys constraint. Finally, the generation of values for
the created domain variables is triggered, which leads

to the computation of the solutions of the system of the
linear equalities and inequalities. Each solution corre-
sponds to a configuration.

Next, the Database Filter selects the instances, either
activity or event, according to the type of the request,
that satisfy the time constraint and the relevant local
constraints. Theses instances are selected for every node
refined by its where-property to build the instances of a
fine domain. Then, such sets are structured to form

a domain, leading to the composition of the filtered
databaae. Finally, for every domain, the lists of in-
stances corresponding to its fine domains are combined
into a single list and any duplicate instances are re-
moved. Such duplicates may occur in the case of an ac-
tivity tour generation request due to the multiple links

of the activity instances with the nodes of the activity
tree.

The Tour Generator is the module where the actual
tours are constructed. The method used for the con-

struction of tours is test-and-generate implemented us-

ing the delay mechanism of ElipSys. Firstly, a configu-
ration is selected and each one of the simple global, cross
global and mixed constraints is stated, though it is de-
layed until the subtours it applies to become ground.
Next, the generation of instances for every domain is
triggered extracting them from the filtered databaae.

During this generation, a constraint is activated and
checked as soon as all the subtours it involves become

fully instantiated. The tour that is being built is re-

jected, if a constraint is not satisfied. This procedure is
repeated for every configuration. Then, each tour that
is computed is processed in order to flatten its subtours,
check for possible duplicate elements that might appear
in different domains and lexicographically sort its ele-
ments. Possible duplicate tours are removed from the
whole set of tours.

Finally, the Tour Evaluator sorts the tours produced by
the Tour Generator in descending order according to
their average interest. In addition, it replaces the key
values of the instances by the corresponding denomina-
tions. The quicksort algorithm is used.

ElipSys Exploitation

PETINA application is a complex one and involvea a

computation ally intensive problem. Thus, although it
profits from the expressive power of Prolog, it requires
additional mechanisms that standard Prolog systems
lack of. More precisely, as it processes a large amount
of instances, grouping them together and exploiting the
facility to process the groups in parallel can be very use-
ful. What is more, is that in case alternative candidate
tours are constructed and tested as soon as they are cre-
ated, the execution time would decrease considerably.

ln addition, it is extremely hard for a standard Prolog
system to solve any arbitrary system of equalities and
inequalities on the domain of integers. Finally, the size
of the database the system will actually consult exceeds
the amount of information Prolog can handle efficiently.
In this way, there is the need for a powerful system, such
as ElipSys, to meet the above requirements. Most of the
ElipSys features are exploited and are considered vital
to make PETINA work.

More precisely, in the various submodules of TGE, the
following exploitation is made. The Configurator gener-
ates and solves a system of linear equalities and inequal-
ities. The system is solved by the ElipSys constraint
satisfaction mechanism, which has proved to be indis-
pensable. The topological constraints of the request are

directly mapped into ElipSys built-in arithmetic con-
straints, thus assigning the whole computation to the
internal ElipSys constraint solver.

Parallelism is exploited in the Database Filter. More

325

precisely, there are three levels of exploitation, the con-
current processing of domains, fine domains and nodes
refined by their where-properties. Parallel execution is

carried out during the postprocessing phase of the fil-
tered database as well. The kind of parallelism encoun-
tered is dat-parallelism, in the sense that all elements
of a set are processed in parallel. This is achieved by
the par.rnember/2 ElipSys predicate.

However, the main source of parallelism of the whole
system exists in the Tour Generator. Initially, there
are two levels of parallelism exploitation. Firstly,
there is the parallel processing of all configurations and

secondly, the selection of possible instances to build
a subtour for the corresponding domain in parallel.
In both cases, the kind of parallelism is again dat-
parallelism, expressed in terms of the par-member/2
and par.select/3 ElipSys predicates. Data-parallelism
is also exploited in the postprocessing of the generated
tours. In addition, in this submodule, data driven com-
putation is carried out using the delay mechanism of
ElipSys. The employed test-and-generate method forces

specific constraints to be tested as soon as the relevant
subtour is created, although the whole tour is still under
construction.

Finally, the ElipSys to ESQL interface will be exploited,
when the relational database approach is followed. The
Database Filter, the Tour Generator as well as the Tour
Evaluator consult the database, so they’ll exploit the
interface.

Implementation & Performance Measurements

The first implementation of TGE was carried out in
Sepia Prolog [15]. Sepia is an advanced sequential Pro-
log system. Among the various features it offers, the
delay mechanism was used in the Tour Generator as

weli as in the Configurator, in order to solve the sys-

tem of equalities and inequalities by a test-and-generate
method.

Currently, TGE is implemented in the ElipSys version
0.2 [3]. This version considers only one worker, so par-
allelism cannot be actually exploited. The submodules
of TGE which involve parallelism, namely the Database
Filter and the Tour Generator, were also implemented
in the PEPSys language. PEPSys is a parallel logic pro-
gramming language that supports OR- and restricted
AND- parallelism. The dat~parallelism facility of Elip-
Sys, required by TGE, was simulated by the PEPSYS
OR-parallelism. The COKE preprocessor [9, 8], that
allows to measure the performance of parallel execution
of PEPSYS programs, was used. The Sepia, ElipSys
and PEPSys/COKE work was carried out on SUN 3/60
workstations under SunOS 4.1.1.

The above implementations gave the opportunity for
comparing various programming methodologies. The

performance gain by using the delay mechanism of E1ip-

Sys in the Tour Generator ranged from 3:1 to 5:1, for
typical tour generation requests.

As far as the use of the constraint satisfaction tech-
niques is concerned, a dramatical improvement was
achieved by the ElipSys implementation of TGE with
respect to the one in Sepia. In moat cases, the perfor-
mance gain was several orders of magnitude.

200

150

100

50

0 n
I I 4 I I
o 200 400 600

Executiontime

Figure 2: Database Filter graph

Finally, as mentioned above, parallelism was exploited
in two submodules. For the presented complete re-
quest, the speedup achieved by the Database Filter was
40.11 ni/et (number of inferences / execution time) and
the one by the Tour Generator was 825.41 ni/et. The

COKE tool was used to obtain these measurements.
This tool assumes that each goal executes in one time
unit and unlimited resources (processors) are available.
The graphs representing the number of processes vs.
execution time for both submodules are presented in

Figures 2 and 3.

2000

l—

\
41 b

oy~. .!?. ..~. . ..1

0 100 2W 300 w 500

Execution time

Figure 3: Tour Generator graph

326

Commenting on the performance of these submodules,
where parallelism is used, the following might be men-

tioned. The main source of parallelism exists in the

Tour Generator. As far as the Database Filter is con-
cerned, the more balanced the partitioning into domains
is, the more worthwhile the parallelism exploitation is.

Conclusions

In this paper, the most significant part of PETINA, that

is its Tour Generation Engine, was presented. PETINA
is a Personalized Tourist Information Advisor about

Greece consult ing a large database that contains tourist
data.

The problem of tour generation is a combinatorial
search one, thus advanced mechanisms are required to
cope with it efficiently. The ElipSys parallel logic pro-
gramming Ianguage is a suitable vehicle in this direc-

tion, since, apart from the parallel execution, it offers

the possibility of declarative formulation of the problem

as well as it provides various extended features, such as
data driven computation, constraint satisfaction tech-
niques and an interface to relational databases.

Although a tourist database for a whole country is ad-
dressed by PETINA and the search space of the tour
generation problem is extremely large, it was shown that

ElipSys features help to attack the complexity of the al-
gorithms needed. Parallelism was highly exploitable, as

it was proved by the presented performance measure-
ments. Moreover, the data driven computation and the
constraint satisfaction facilities of ElipSys, especially
the latter one, were found to be indispensable. Finally,
PETINA could not be considered as a real-life appli-
cation, if an interface between ElipSys and relational
databases did not exist. The amount of data that needs
to be handled, exceeds the capabilities of standard logic
programming systems.

References

[1]

[2]

[3]

[4]

U. Baron, S. Bescos, S, A. Delgado-Rannauro,
P. Heuz6, M. Dorochevsky, M .-B. Ibiii’iez-Espiga,
K. Schuerman, M. Ratcliffe, A. V6ron, and J. Xu.
The ElipSys logic programming language. Techni-
cal Report DPS-81, ECRC, December 1990.

W. Clocksin and C. Mellish. Programming in Pro-
log. Springer Verlag, New York, 1981.

ElipSys User Manual jor release version 0.2, May
1991.

G. Gardarin, P. Valduriez, h4. Bbrard, L. Chen,
O. Gerbe, M. Lopez, and J. Mondelli. ESQL:
An Extended SQL with Object Oriented and De-
ductive Capabilities. Project Deliverable EDS.DD.
11B.O91O, INFOSYS1 December 1989.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Garey and D. Johnson. Computers and In-
tract ability. Freeman, New York, 1979.

C. Halatsis, M. Katzouraki, M. Hatzopoulos, P.
Stamatopoulos, 1. Karali, C. Mourlas, M. Gergat-
soulis, and E, Pelecanos. PETINA: Personalized
Tourist Information Advisor. Project Deliverable
EDS.WP.9E.AO05, University of Athens, Decem-
ber 1990.

P. Heuz6. Using Data-Parallelism in the ElipSys.
Internal Report ElipSys-003, ECRC, June 1989.

P. Heuz6 and B. Ing. COKE: User manual 1.0.
Internal report, ECRC, February 1989.

B. Ing. COKE—An analysis tool for PEPSys pro-
grammed. Internal Report 23, ECRC, October
1987.

B. Ing. Tourist information advisor: A case study
of an application in PEPSys. Internal Report PEP-

Sys/15, ECRC, April 1987,

B. Ing. Tourist information advisor-A case study
of an application in PEPSys—Final report. Inter-
nal Report PEPSYS-32, ECRC, September 1988.

F. Pereira and D. Warren. Definite clause gram-
mars for language analysis—A survey of the for-

malism and a comparison with augmented tran-
sition networks. Artificial lnte//igence, 13(3):231-

278, 1980.

M. Ratcliffe. On the use of the delay in ElipSys

Prolog. Technical Report elipsys/001, ECRC, June

1989.

M. Ratcliffe and J .-C. Syre. A parallel logic pro-

gramming language for PEPSys. In hternational
Joint Conference on Artificial Intelligence, pages
48-55, 1987.

Sepia 3.0 User Manual, June 1990.

L. Sterling and E. Shapiro. The Art of Prolog. MIT
Press, Cambridge, MA, 1986.

P. van Hentenryck. Constraint Satisfact ion in Logic
Progmmrning. MIT Press, 1989.

J. Xu and A. V6ron. Types and constraints in the
parallel logic programming system ElipSys. Tech-
nical Report DPS-105, ECRC, March 1991.

327

