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Abstract. This paper proposes a meta-learning framework in the context of in-
formation extraction from the Web. The proposed framework relies on learning 
a meta-level classifier, based on the output of base-level information extraction 
systems. Such systems are typically trained to recognize relevant information 
within documents, i.e., streams of lexical units, which differs significantly from 
the task of classifying feature vectors that is commonly assumed for meta-
learning. The proposed framework was evaluated experimentally on the chal-
lenging task of training an information extraction system for multiple Web sites. 
Three well-known methods for training extraction systems were employed at 
the base level. A variety of classifiers were comparatively evaluated at the meta 
level. The extraction accuracy that was obtained demonstrated the effectiveness 
of the proposed framework of collaboration between base-level extraction sys-
tems and common classifiers at meta-level.   

1   Introduction 

One common meta-learning approach, known as stacked generalization [18], deals 
with the task of learning a meta-level module to combine the predictions of multiple 
base-level learners. Base learners are treated as “black boxes”, i.e., only their output 
predictions are used, without considering the details of their functionality. The meta-
level module is expected to achieve performance superior to each of the base learners, 
on unseen data.  

Current work in meta-learning of this type focuses on the classification problem, 
i.e. learn how to assign the correct class value to each one of a set of different events, 
where each event is described by a vector of predefined features. Various studies, e.g. 
[1] and [16], have investigated which classifiers and data representations, either at the 
base or the meta level, and under which strategies, can lead to better classification 
results over unseen events.  

In this paper, we attempt to drive the meta-learning framework outside the common 
feature-vector representation, employed in classification tasks. Our motivation is the 



information extraction (IE) task, which can be defined as the process of directly ex-
tracting relevant text fragments from collections of documents and filling the slots of a 
predefined template. In particular, information extraction from Web pages is a simpli-
fied version of the harder free-text information extraction examined by the Message 
Understanding Conferences [11]. Despite its simplicity, though, it has gained popular-
ity in the past few years, due to the proliferation of online sources, and the need to 
recognize useful pieces of information inside the Web chaos.  

IE can be formulated as a regular-expression matching process within a document 
that is modeled by a sequence of lexical units (tokens). Learning a classifier to per-
form this task is unnatural and as a result specialized systems, like STALKER [12] 
and SoftMealy [10], learn extraction rules in the form of special types of regular ex-
pressions. However, there is a small number of approaches, which enumerate the pos-
sible text fragments that can be found within a document and then model the task as a 
binary classification one [5], [6]. In this case, the task is to learn whether or not a 
candidate fragment fills some template-slot. There is a number of problems associated 
with this approach, such as the exponential number of candidate fragments and the 
disproportionately large number of “negative” events. Therefore, it is particularly 
desirable to design an alternative framework that will use common IE systems.   

Thus, the main contribution of this paper is a novel meta-learning framework that 
removes the constraint of employing classifiers at the base level, accommodating IE 
systems that recognize relevant text instances within documents, rather than classify-
ing text fragments. The prediction output of the base IE systems is appropriately trans-
formed into vectors of features, to be used for training a common meta-level classifier. 
We have experimented with three algorithms at the base level: two deterministic 
(STALKER [12] and (LP)2 [2]) and a stochastic finite-state approach (Hidden Markov 
Models (HMMs) [13]). Four classifiers were evaluated at the meta level. 

Section 2 reviews some basic theory in meta-learning for classification tasks. Sec-
tion 3 illustrates our proposed framework. Section 4 presents the experimental results. 
Finally, the basic conclusions of this work are presented in Section 5. 

2   Building a meta classifier – Basic theory 

Wolpert [18] introduced an approach for constructing ensembles of classifiers, known 
as stacked generalization or stacking. A classifier ensemble, consists of a set of n 
classifiers C1, …Cn, called base-level classifiers and a meta-level classifier CML that 
learns how to combine the predictions of the base-classifiers. The base-classifiers are 
generated by applying n different classification algorithms on a labeled dataset LB = 
{(xk, yk)}, where xk and yk are the features and the class value for the k-th instance 
vector respectively. The individual predictions of the base-classifiers on a different 
labeled dataset LM, are used to train the meta-classifier CML. The predictions of the 
base-classifiers on LM are then transformed into a meta-level set of classification vec-
tors. At runtime, CML combines the predictions PM(x) = {Pi(x), i = 1…n} of the n base-
classifiers on each new instance x, and decides upon the final class value y(x). The 
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predictions of the base-classifiers on x are transformed into a single vector representa-
tion, which is then classified by CML.   

3   Building a meta-classifier for information extraction  

The majority of IE systems that use machine learning, e.g. [10], [12], represent the 
acquired knowledge in the form of finite-state automata (FSA) or stochastic FSA [13]. 
Thus, IE becomes a task of matching a set of regular expressions within each docu-
ment. We further assume a single-slot approach to IE that deals with extracting in-
stances of isolated facts (i.e. extraction fields), whereby a different automaton is in-
duced for each fact. For example, in a Web page describing CS courses, one automa-
ton has to be induced for extracting instances of the “course number” fact, while a 
different one is required for extracting instances of the “course Title” fact.  

3.1   Preliminaries 

Our goal is to incorporate single-slot IE systems, into a meta-learning framework and 
thus exploit the advantages provided by the meta-learning theory, aiming at higher 
extraction accuracy. We make the following assumptions: 
1. Let D be the sequence of a document’s tokens, and Ti(si, ei) a fragment of that se-

quence, where si , ei are the start and end token bounds respectively. 
2. Let EB = {Ek | k = 1…n} be the set of n single-slot IE systems, generated by n dif-

ferent learning algorithms.  
3. Let Ik = {ij : Tj → factj} be the set of instances extracted by Ek, and factj the pre-

dicted fact associated with the text fragment Tj. 

3.2   The proposed framework 

We suggest a novel framework for combining the IE systems at base-level with a 
common classifier at meta-level, which is graphically illustrated in Figure 1. 

Fig. 1. Combining extraction systems and a common classifier at runtime 

 



The starting point of the architecture depicted in Figure 1 is a document D, which is 
the input to each extraction system Ek, which generates a set of extracted instances Ik, 
over D. In contrast, the input to each classifier Ci in the common stacking framework, 
is an instance vector x, while the output is the predicted class value Pi(x). 

The combination of the base-level IE systems with the meta-level classifier CML 
depends on a composer module. At runtime, the input to the composer comprises the n 
sets of extracted instances I1,…,In. The output of the composer must be a set of vec-
tors, to be finally classified at meta-level by CML. Similarly in the training phase of 
CML, the output of the composer must be a set of classified vectors, based on informa-
tion from the hand-labeled data. In order to translate the output of the IE systems to a 
fixed-length vector of events for CML, we make the following assumptions, affecting 
the functionality of the composer module: 
1. Each event corresponds to a distinct text fragment T(s, e) among all predicted in-

stances in ∪Ik, k = 1…n. Note that two text fragments T1(s1, e1) and T2(s2, e2) are 
different, if either s1 ≠ s2 or e1 ≠ e2 . 

2. The features of the new vector, associated with the text fragment T, are based on 
the predicted facts for T by the base-level IE systems. Note that for each distinct T 
among all instances in ∪Ik, k = 1…n., there exists at least one instance ik : T → 
factk. 

3. At runtime, each vector associated to a fragment T is to be classified into one of a 
set of nominal values, corresponding to the f different facts in the domain of inter-
est, plus an additional value “false” if the text fragment is judged as not being an 
interesting fact. 

4. During the training of CML, each vector associated to a T, is augmented with a class 
value, corresponding to the hand-labeled fact of the fragment. If T is not labeled, 
the new vector is assigned to the “false” class. 

Consider the token table in Table 1(a), which is part of a page describing computer 
science courses. Table 1(b) shows the extracted instances by 2 base-level IE systems 
over the token table in Table 1(a). Note that the first system has not predicted a fact 
for the text fragment T2(27, 28). 

Table 1. (a) Part of a token table for a page describing computer science courses. (b) Extracted 
instances by two base-level IE systems E1, E2. (c) The distinct text fragments and the 
information associated to each T for constructing the new vectors 

… 25 26 27 28 …
… CS414 : Operating Systems …
   (a)   

T(s, e) Information for meta-level vectors 
T1(25, 25) (1, Course Number),  

(2, Course Number) 
T2(27, 28) (2, Course Title) 

(c) 

T(s, e) Ek Fact  

T1(25, 25) 1 Course 
Number 

T1(25, 25) 2 Course 
Number 

T2(27, 28) 2 Course Title 

(b) 

 
Table 1(c) shows the two distinct text fragments, each associated with a set of pairs 
<Ek, factk>, where factk is the predicted fact by the k-th base-level IE system. The 



information in those pairs will be used for building the two meta-level vectors – one 
for each distinct T.  

3.3   Meta-level data representation 

In this paper we experiment with two different vector representations: 
1. Numeric-feature representation: each distinct text fragment T is modeled by a vec-

tor of f numeric features, each one corresponding to a fact of interest, e.g. Course 
Number, Course Title. During the training of the meta-classifier, the vector is aug-
mented with an additional class feature, which is the true fact of T, according to the 
labeled document. For each fact predicted by an IE system, the corresponding fea-
ture value is incremented by one, starting from zero.  

2. Binary-feature representation: each distinct text fragment T is modeled by a vector 
of n*f  binary features. The output of each of the n base-level IE systems is a set of 
f  binary features. For each predicted fact, the corresponding feature is set to one. In 
case of ambiguous facts, more that one features will have the value one. All other 
features are set to zero.  

The advantage of the first representation is that the number of features depends only 
on the number of the facts of interest, and remains fixed, independently of the IE sys-
tems employed at base-level. The advantage of the second representation is that the 
predicted facts of the base-level IE systems are modelled separately. The numeric and 
binary representations for each of the two distinct text fragments of Table 1(c) are 
depicted in Table 2.  

Table 2. Numeric (a) and binary (b) feature representation for the text fragments of Table 1(c), 
f1 = course number, f2 = course title 

 f1 f2 … 
T(25, 25) 2, 0, … 
T(27, 28) 0, 1, … 

(a)  

 E1 E2 

 f1 f2 … f1 f2 … 
T(25, 25) 1, 0, … 1, 0, … 
T(27, 28) 0, 0, … 0, 1, … 

(b)  

4   Experiments 

Our goal is to empirically evaluate the proposed architecture in the context of single-
slot IE from the Web. For this purpose, we conducted experiments on the task of IE 
from pages across multiple Web sites, which exhibit multiple formats, including ta-
bles, nested tables and lists, thus making the extraction task more difficult. 



4.1   Base-learners and meta-learners employed 

At base level, we experimented with three learning algorithms for performing IE: 
STALKER [12], (LP)2 [2] and Hidden Markov Models (HMMs) [13]. In this paper 
we used STALKER in a single-slot mode, as described in [15]. For the HMMs, we 
adopted the approach proposed in [7] and [14]. For the (LP)2 system, we used the 
default settings of the Amilcare [3] environment1, in which the (LP)2 is embedded. 

At meta level, we experimented with four classification algorithms, all imple-
mented in the WEKA environment [17]. The first one is j48, a reimplementation of 
the C4.5 decision-tree learning algorithm. The next two belong in the family of boost-
ing algorithms: AdaBoost.M1 [8], with j48 as a weak classifier, and LogitBoost [9]. 
The last one is the IB1, an implementation of the 1-nearest-neighbor algorithm.  

4.2   Dataset description 

Experiments were conducted on a collection of 101 Web pages describing CS courses, 
collected from four different university sites in the context of the WebKB project [4]. 
Three facts were hand-tagged for this domain: course number, course title, and course 
instructor. All pages were pre-processed by a tokenizer module, using wildcards [12]2. 

This corpus was selected due to the fact that it has been used in the past and results 
are reported in [5]. The approach in [5] is a multi-strategy one, but it does not involve 
the learning of a meta-classifier. Simple regression models are learned to map the 
relationship between confidence values in the predictions of the base classifiers to true 
probabilities. At runtime, they rely on a voting scheme, to decide upon the prediction 
with the highest true probability.  

4.3   Results 

In order to evaluate our approach we employed a 5-fold double cross-validation pro-
cedure, known as cross-validation stacking [18] and we used micro-average recall 
and precision over all facts. Table 3 shows the base-level experimental results for the 
CS courses domain. Results for the F1 metric are also provided, which is the harmonic 
mean of the recall and precision metrics. 

Table 3. Base-level results for the CS courses domain 

Macro (%) Prec. Recall F1 
HMMs 60,85 62,06 61,45 
(LP)2 69,74 62,12 65,71 
STALKER 19,77 49,55 28,26 
Best Indiv. [5] 74,37 59,47 66,08  

                                                           
1 The pattern-length was set to 5.  
2 For the (LP)2, pages were preprocessed by a POS tagging module and a Stemming module. 



In the CS courses domain, the results of the (LP)2 are comparable to the best individual 
learner’s results, reported in [5]. (LP)2 and HMMs share the same recall, however 
(LP)2  achieves a higher precision. STALKER does not perform well in this domain. 
However, we rely on the diversity in the results of the three systems, aiming at higher 
performance at meta-level. 

Tables 4(a) and 4(b) show the meta-level results, using the numeric-feature and bi-
nary-feature representation respectively. The results are micro-averages of the corre-
sponding results for the three facts. The false class is excluded as it is of no particular 
interest. 

Table 4. Meta-level results using (a) the numeric-feature and (b) binary feature representation 
for the CS courses domain 

Macro (%) Prec. Rec. F1 
J48 83,80 59,59 69,65 
AdaBoostM1 83,80 59,59 69,65 
LogitBoost 84,59 58,93 69,46 
KNN (k=1) 84,33 58,75 69,25 
Average 84,13 59,22 69,50 
M/strategy [5] N/A N/A 66,9 

(a) 

Macro (%) Prec. Rec. F1 
J48 86,35 56,45 68,27 
AdaBoostM1 86,92 56,15 68,22 
LogitBoost 87,48  56,03 68,31 
KNN (k=1) 85,19 57,60 68,73 
Average 86,49 56,56 68,38 
M/strategy [5] N/A N/A 66,9 

(b) 

A clear conclusion from the above results is that the differences between the meta-
level classifiers –in each vector representation- are negligible. The numeric-feature 
representation led to slightly better results than the binary-feature one, but the differ-
ence is too small to lead to an interesting conclusion.  

Comparing the meta-level results of Table 4 against the base-level results of Table 
3 and the results reported in [5] we note a small decrease in recall, accompanied by a 
substantial improvement in precision. The meta-level classifiers exploited the diversity 
in the predictions of the three systems and achieved an overall performance higher 
than the individual IE systems. The overall conclusion is that the proposed meta-
learning framework helps to improve the extraction performance of a series of base-
level IE systems.  

5   Conclusions 

We presented and evaluated a meta-learning framework in the context of IE from the 
Web. The proposed framework is independent of the employed IE systems at base-
level that are not required be classifiers. The presented results are encouraging, show-
ing that the proposed approach improves the precision and overall performance of the 
IE systems, while outperforming also the state-of-the-art reported in the literature. 

Plans for future work include experiments with more complex meta-level vector 
representations. Additional sources of information (e.g. DOM-based information) will 
also be investigated. Finally, we plan to experiment with more IE systems and more 
extraction tasks, in order to evaluate the proposed framework more thoroughly. 
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