Guiding Constructive Search
with Statistical Instance-Based Learning

Orestis Telelis Panagiotis Stamatopoulos
Department of Informatics and Telecommunications
University of Athens
157 84 Athens, Greece
{telelis,takig§ @di.uoa.gr

Abstract

Several real world applications involve solving combimatiooptimization prob-
lems. Commonly, existing heuristic approaches are dedigmeddress specific
difficulties of the underlying problem and are applicabldyonithin its frame-
work. We suspect, however, that search spaces of combigaproblems are
rich in intuitive statistical and numerical informationhigh could be exploited
heuristically in a generic manner, towards achievemenpbfrozed solutions. Our
work presents such a heuristic methodology, which can bguadely configured
for several types of optimization problems. Experimen&sutts are discussed,
concerning two widely used problem models, namely the SeitiBaing and the
Knapsack problems. It is shown that, by gathering stasisfittormation upon
previously found solutions to the problems, the heurigtialile to incrementally
adapt its behaviour and reach high quality solutions, edicgethe ones obtained
by commonly used greedy heuristics.

1. Introduction

An important issue to notice in combinatorial optimizati@@®O) problems that
emerge from real world applications is that they exhibit ednherent structural and
statistical properties. These properties constitute rvbbée common knowledge for
the humans that are in charge of solving the problem. The huexperience trans-
forms into heuristic tools for obtaining a satisfactoryumn. In most heuristic al-
gorithms, important knowledge concerning a particularopem is embedded in an
abstracted and more generic form, so that it can be appligdiltiple instances of the
same problem model. This abstraction, however, is an destacecognizing specific
numerical and structural properties of the particularanse being solved.

The application of machine learning towards achievemermiptifnized solutions
is a relatively recent aspect. However, there have been semarkable, as well as
pioneering, works dealing with it. We discuss here some eifritioy reporting briefly
their point of view.

A reinforcement learning approach has been described byiBand Moore for
learning evaluation functions of startup search statesaflocal search algorithri.

Reinforcement learning metho8shave gained great attention because of their state-
reward policy, which seems to fit well in the search stategligra imposed by problem
solving. Another related work addresses a job-shop schegdploblem through ap-
plication of reinforcement learnin§. Accumulation of scheduling control knowledge
through reinforcements has also been exploited for oltginépaired schedulés.
Applications of machine learning for deciding the best skamolicy on a problem, as
well as for configuring specific problem solving methods ¢ibue an alternative re-
search directiofi-'4. Analytical learning techniques have also been used fobsyjim
heuristic inductiort®.

Four main research directions of statistical machine legrapplication to combi-
natorial optimization are surveyed in The approach presented in our paper shares a
common part with theearch space understandidgrection because it gathers statis-
tical information relative to properties of the search gpdaring the solving process.
It also lies in part within theevaluation function learningliscipline, since &ernel
RegressionfKR) scheme is employed for the approximation of an evaluatioction,
which shares its optimum with the objective function of tmelgem.

Within the framework of evaluation function learning, thn@ain directions of ap-
plication to combinatorial optimization have appeareddoent literature, according
to 3. One is to learn an evaluation function for guiding localrsba@ ! to obtain
improved solutions over a single instance of some CO probléhe second, mostly
ambitious and interesting approach, focuses on learniafyiation functions generi-
cally applicable across several instances of the same Chlgond?1:16. Finally a
third approach®, within which our work falls, is about guiding the direct atruc-
tion of solutions to the problem. In particular, the apptoatentioned ir?, is about
learning a global policy for guiding constructive searctotigh reinforcement learn-
ing methods, while we investigate the dynamics of a locat@axmation scheme for
learning evaluation functions.

To our knowledge, machine learning techniques have beetiymaegrated in lo-
cal search procedures. In this paper, we present a heutistition which employs
KR and is designed to cooperate witblution constructive search methdds global
optimization. This aspect is of particular interest in sofyCO problems, since con-
structive search methods are able to preserve the valifli?ypyoblem’s constraints
during the search. This is not the case with local searchegiares. They often visit
invalid search states, and thus it is harder to even find &feasolution.

In the following, the proposed methodology is presentetiity at a higher level
and then, the machine learning based heuristic algorithsessribed in more detail.
The application of the approach on two specific problems,etathe knapsack prob-
lem and the set partitioning problem, is discussed next. iBents on the experimental
results are made and, finally, the concluding remarks argepted and further work is
briefly described. A preliminary version of our work has ageel in'5.

2. Framework Overview

Constructive searcls the kind of solving procedure exploited in this work. By
the term constructive search, we designate the construofi@a solution to the CO
problem by assigning a value to each decision variable im, @md thus by searching

a tree of variable assignments. This search policy comesritrast with the various
local search techniques, such as hill climbing and simdlatenealing, which alter an
already known complete assignment of all decision vargabfethe problem at each
step, in order to obtain a new one.

As far as optimality is concerned, the main interest in tesrch is associated with
selecting dynamically the most promising combination afalsle and value to assign,
in order to proceed towards a near-optimal solution (in seafithe problem’s objec-
tive function value). Several problem-specific heuriséigist, which provide an upper
(or lower) bound to the expected quality of the solution tratbably lies beneath the
current state of the search. Other heuristic policies tateubased on incomplete
information) an expected quality of the solution under ¢nretion. However, incom-
pleteness of available information during the intermeglgihges of construction is the
curse of heuristics. Their estimations often prove to bedneate, thus misleading the
search towards suboptimum search space regions.

In this paper, we propose a heuristic methodology for CO lerab, which embeds
simple machine learning methods for recognition and etiian of specific numerical
problem properties. On every search state of the solvinlg, dternative choices are
evaluated by &R scheme. The evaluation of each choice is an estimation afxhe
pected objective function value, under the assumptionttieasolving path extends in
favour of the respective choice. Solutions previously fbbg the proposed method-
ology are utilized as training examples, for evaluatiorpaftial solutions on each
search state. The core assumption of our work is that goadisos lie somewhere
nearbythe best ones already found. Thus, we actually explore theclsespace by
visiting neighbouring areas of known solutions, hoping talfbetter ones. The notion
of neighbourhood is a rather geometric one as will be shaglyarent, and should not
be confused with its corresponding definition in local skditerature.

The huge search spaces of the CO problems faced in this werkatrexpected
to supply consistent training sets. Therefore, the widelgvkn Leave One Out Cross
Validation(LOOCYV) test adjusts th&R approximator’s parameters with respect to the
underlying training set, so that a minimal estimation ersachieved.

3. The Search Schema

The algorithmic schema is iterative. An overview of the agmh is presented in
Fig. 1. If I is a problem instance to be solved, the first thing to do is éosagne simple
heuristic method to obtain initial solutioss A simple method might be Bepth First
SearchDFS), guided by a common heuristic that intuitively fits freblem. This step
stops after a limited time interval, which suffices for obhtag some initial solutions.
The setS is then used for the production of an initial training gefor the machine
learning algorithm employed by the heuristic.

The first step of the iterative process shown in Fig. 1 is anmegssing procedure,
which adapts th&R approximator to the training set, in order to achieve higirer
diction accuracy with respect to the underlying training&e The problem instance
is then solved by some constructive search algorithm, glideiristically by theKR
supported heuristic. The search stops when some critesti@h, as a time limit, is met.
The training sef is augmented with information extracted from newly fountlisons

Find sone solutions S to I using a "sinple" nethod
Produce training set £(S)
Iterate until end criterion net
Adapt KR approxi mator to £(S) using LOOCV
Qbtain new solutions &' with KR-Heuristic
S« Sus
Produce training set £(S)
Return Best Sol ution

Figure 1: The overall algorithmic schema

and the process is repeated. The number of iterations isdtbjexperimentation. It
is important to note that there is no constraint dictatirag #olutions obtained in each
iteration should be better than those found in the previtarations. The absence of
such a constraint contributes to the enrichment of theitrgiset with feasible solutions
of varying qualities, which contribute to a more detailectpie of the search space.

The algorithm presented in Fig. 1 should terminate if in aeyaition is unable
to produce at least one new (notdf) solution. Indeed, the predictions of theR
approximator depend solely on the training §&f). Once the search within the loop
fails to augmens with new solutions (cas§’ C S), the heuristic’s suggestions remain
unchanged for the next iteration. Then the search has toaddpe algorithm is unable
to proceed further. This case should be incorporated wiltérend criterion mentioned
in Fig. 1. This weakness can be easily overcome through raimal restart of each
iteration. However, our preference in constructive seaechains justified, due to its
ability of handling complicated constraints and, thus,ngesuitable for real world
applications, which also offer a great potential of stet#tinformation.

A simple data-flow representation of the algorithm appeafsig. 2 and presents
the main parts of our implementation. The dotted line ereddke iteratively interact-
ing parts.

4. Integration of Instance-based Learning

In this section, various aspects of the heuristic algorigmediscussed concerning
the instance-based learning method, the representatitmining examples and the
dynamicKR approximator selection.

4.1. Kernel Regression on Nearest Neighbours

The machine learning methodology exploited within the isgd framework be-
longs to the family of memory-based or instance-based nistho Memory-based
learning methods explicitly store all training examplesyttare shown. Only at pre-
diction time do they perform non-trivial amounts of comgian, which is their main
disadvantage. We use tKernel Regressio(KR) method for approximating the value
of areal function. Th&R method is also known dcally Weighted Averagind here
is a generic scheme f&R, which might be configured in many different ways as is the
case follocally weightedearning methodologie’s

The exact configuration dkR used in this work follows. Th&R algorithm is

Approximator

Known)
; Selection
Feasible
Solutions (K, k)=— LoOCV

(Training Set)

Evaluation Function
Guided

Solution
Production

Search

Figure 2: Parts of the implemented system and data flows leetthem

used here for real function value estimation. The functieimtp approximated can be
considered asf : ®" — R.

The training set for th&R algorithm contains pairs of input vectors faand their
correspondingf-outputs. Thus, iff € R" is an input vector to the function, the
respective training example contained in the training sktbw the pair(Z, f(Z)).

Let 2; be a query to th&R algorithm. The predictiorf(a?,]) is calculated by the
algorithm as follows:

flay) == (1)

In formula (1),d(z;, ©,) denotes the Euclidean distance of the query vegfdérom
thei-th training example vectof;. Thek parameter stands for the number of training
examples nearest &), that contribute their knowyi-values to the predictiofi(z).

The functionK : ® — % is thekernelfunction, which assigns a smaller weight
to the contribution off () to the sum, as much as greater is the distanc& éfom
the query vector;. Thus, the contribution of less significant values, i.euealthat
correspond to more distant vectors, is punished. The kéunetion to be used at each
iteration of the search schema is determined dynamically®®CV, from a repertoire
of available kernel functions. Dynamic selection of kerfwgliction is a part of the
KR approximator’s adjustment, and will be discussed in a Wilhg paragraph in more
detail. When the algorithm is presented with a query, alitattes are scaled down
to the[0, 1] range. This normalization helps avoiding the dominatiofacde-ranged
attributes in computations.

4.2. Representation of Training Examples

An important issue for the applicability &R is the implicit definition of thef
function, mentioned in the previous paragraph, whose vialgeing to be estimated.
The function input consists of vectors in the Euclidean st which describe fea-
sible solutions to the CO problem. The function value forheatthese vectors is the
value of the objective function of the problem for the cop@sding solution.

Each training example for thKR approximation scheme is a pair of a solution
descriptive vectoF', known as théeatures vectgrand the respective objective function
valueobj(F). Thus, the training set can be defined as

& = {(F,obj(F)) | F: extracted from a solutign .

The features (i.e. the dimension values) of the featurexeare real arithmetic
values that correspond to specific properties of the salutiche optimization prob-
lem. Each feature should be an aggregate function on thgresents of the problem
variables. As in every step of the search a decision varialdelected to be assigned
a value, the features of each vector should be calculated ty@osolution path. The
only limitations on the features that might belong in a feaswector are imposed by
the problem structure. As discussed later, a solution cateberibed through statisti-
cal information that is considered to be characteristitefdolution’s quality in terms
of the objective function value.

4.3. Selection of KR Approximator

ThelLeave One Out Cross ValidatighOOCYV) test appears to be quite appropriate
for adapting &KR approximator to the training set of each iteration in Fig Aldis-
cussion on cross validation tests can be fountl ilVithin our study we have limited
the selection of a propé¢R approximator to the selection ofiavalue and a kernel
function K from a set of available kernel functions. A brief overviewagimmonly
used kernel functions can be founcfin

Each different pair ok-value (number of nearest neighbours contributing to the
estimation) and kernel function yields a differé&®R approximator. For each candidate
approximator, each training example is estimated, as ia# wnovel example, using as
training set the remaining training examples. The distaridhis estimation from the
actual target value is a measure of the error in predictibie. Selected approximator is
the one that yields the lowest average prediction error alvéraining examples.

To illustrate, assume that the dét= {K; | i = 1,...,n} contains the available
kernel functions. If€ is the available training set, then the test is going to erami
each training example = (f,v) € &, using as training sef — {e}. Thus, thek
parameter receives a valuef, ..., || — 1}. For every parameter pai#;, k), the
resulting approximator is tested over all training exarapte€. The approximator,
that is the pai K;, k), which minimizes the average errerr g, ;) over all training
examples is selected as the most appropriate with respeletonderlying training
setf. Figure 3 describes the testing procedure. Although thegahore might seem
time consuming because of the triple for-loop, a more efiicimplementation than

—

the one depicted in the figure is possible. In fact, the qtahfiR(K;, k, £ — {e}, f)

foreach K; € K
fork=1...|1|—-1
err(g; k) < 0
foreache=(f,v) €&
&+ & —{e}
erT (K, k) < €rT(K, k) + \KR(Ki,k,E’,f—B — v
eTT(Ki,k) <« €T‘T'(Ki7k)/|g|
returnargming, gy {errx, k)t

Figure 3: Leave-One-Out Cross Validation R approximator selection

can be calculated incrementally for increasing valugs afhile keeping the rest of its
arguments constant. This can be easily verified from thedtaifi). Except from that,
as will be clarified from our system’s experimental configiora, the cardinalitie$|
and|&| remain within acceptable bounds, so that the test procethegnot burden the
system’s time requirements.

As the proposed methodology is supposed to solve problem&iitlose proper-
ties in a rather statistical than precisely defined manrainihg data collected during
the solving process are expected to be inconsistent. Sepeates of CO problems
are extremely large and different solutions to a CO problaghtbelong to different
neighbourhoods of the problem’s search space. The featseekfor the description of
the solutions are chosen empirically as representativieeoptoblem’s a priori known
statistical properties. However, the selected featurghngrove to be insufficient for
the discrimination of certain solutions. It is expected $@me solutions might belong
to different neighbourhoods, whereas their discrimimatioterms of distance of fea-
tures vectors might be inaccurate. Such inconsistencyeofrttining data is handled
via the dynamic approximator selection.

4.4. The Heuristic Function

During the construction of a potential solution, the sys&multaneously con-
structs a path of variable assignments towards the bottdaimec$earch tree. On each
node of the tree visited, decisions must be taken, so thatekestep down the tree is
the most promising for the solution quality among all aval#achoices. We describe
the heuristic function which guides the search by explgitime previous experience
acquired by the system.

Let P be the so far constructed path during the search. Thip&tal path. Each
search step consists of two choices: the selection of arsigmesl decision variable of
the problem and the determination of a value to be assigngdltet .4 be the set of
all possible (i.e. feasibility preserving) such assignta@md, consequently, the set of
all possible ways to augment the partial p&thThe heuristic function should dictate
an assignment froml as the next step for the extension/af

As already discussed, the training examplegdBrare features vectors calculated
upon feasible solutions of the problem, i.e. upon completihig However, even a
partial path can be used to calculate such a vector, if thesigi@ed decision variables

get Best Assi gnnent (£, P, A)
For each assignment a=(z; =v) e A
P« PU{a}
Cal cul ate Fp
valy KR(E,F;)
Choose B € A such that wvalg is optinmm
return g

Figure 4: TheKR supported heuristic function

are ignored. If statistical or aggregate information isdusedescribe the partial path
extension by using a features vector, then it is reasonahpeefer extensions whose
features present similarity to these of the best known Ewlatcontained in the training
set. In this way, portions of the search space that havequslyi produced good solu-
tions are explored further. L&t be the partial path resulting after augmentidgyith

a choice fromA4. The features vectcﬁﬁ is calculated upof®. TheKR approximation

scheme is requested to produce an objective function valira&ion forﬁﬁ. The ex-
tension of P which yields the optimum estimation is preferred over afiastchoices.
An overview is presented in Fig. 4.

5. Application on Two Problems

The heuristic methodology was tested on two well known Cblenos, namely
theknapsaclkand theset partitioningproblems. These are described below.

decision variables and some capadite Zt,

n
maximizeZ = Z DiTj
j=1

n
subjectto ~wjz; < C .
Jj=1

Set Partitioning (SP). Given am x n binary matrix4A = {a;;}, @ n-dimensional
cost vectorC = (ci,...,¢,) With ¢; € ZT and the n-dimensional vectof =
(z1,...,z,) Of binary decision variables, we want to

n
minimize Z = Z CjT;
j=1

subjectto ~ajz; =1, i=1...m .
j=1

5.1. Generation of Problem Instances

An important assumption mentioned in the very beginnindhf paper is that the
CO problems faced have some a priori known properties. Fopthvious problems,
instances were generated that have such properties?, lm generation method for
knapsack instances is briefly discussed. Tihevector mentioned previously is deter-
mined from a normal distribution, while the fractipn/w; is also calculated from a
normal distribution. Eachp; element of theP vector is computed as = w; - pj/wj.
The knapsack instances created in this way tend to assgeestep; values to greater
w; values. These problems have been shown to be more difficulhtuitively one
can understand the difficulty that emerges as follows: aegdy heuristic trying to
collect as many of the most profitable items within the knaksa punished by their
increased weight. This rough monotonicity correspondéeteeen weight and profit
is also a realistic matter, corresponding to real life eiqrare.

For the SP problem, instances were generated in a similaawégr the knapsack
problem. The number of 1s contained in theolumn of 4, «,, and the ratio of the
column costc; to the number of 1s were determined by two different normsiiridi
butions, while the:; quantity was computed as a dependent variable. Thus, cslumn
containing more 1s, tend to have higher cost valyeg8ecause the 1s in each column
are decided via a uniform distribution, the mentioned priypis slightly depressed
by the satisfiability of the problem’s constraints. Greelipking in this case, would
impose construction of solutions by including columnsigf«,, which cover as much
rows as possible. This practice tends to punish our choig@&sdorring higher costs.

For the SP and knapsack instances, optimum solutions wargepl in a simple
manner.

5.2. Selection of Features

The selection of features that assemble the features geistanostly important
for the accuracy of the predictions of tK&k scheme. Features that encapsulate some
information relevant to the objective function’s value greferred, since they are ex-
pected to provide a quantitative partition of the searclesjirasto regions with expected
objective function value. For each of the aforementioneabjams, their features are
presented, which were selected intuitively.

Knapsack. Three features constitute the features vector for the kawdgsroblem:

1. The mean value of the fractign/w; for js such that; = 1 in the solution.

2. The mean value of the profits which participate in the objective function value,
i.e. forjs such that; = 1.

3. The weighted average of profits that participate in theabje function value.
The contribution of eacl; profit to the average is weighted by the inverse cor-
respondingu; value.

Set Partitioning. For the SP problem, the features vector constituted of tatufes:

1. The mean value of the humber of 1s contained in the colurhitiseobinary
matrix A that participate in a solution.

2. The mean value of the costs of the columns of matrtkat constitute the solu-
tion.

The j-th column of the matrix4 is part of a solution ifr; = 1.

6. Experimental Results

Experiments were carried out on 10 instances for each probl&e instances were
of varying sizes.

6.1. Experimental Configuration

For each problem, a heuristic solving method was chosen gri@most com-
monly used. The chosen method provided the best resultedardrresponding prob-
lem, within the experimentation time interval, and was ewgptl for the construction
of the initial training set. The results obtained by the m®gd methodology were com-
pared to those provided by the common method in the same @mig.solutions found
by the common method within the first 10 minutes were considiéor the construc-
tion of the initial training set. The common methods wereli@polfor 4200 seconds.
The overall running time of the iterative part of our methlodyy was arranged to last
for 3600 seconds, so that summed to the initial training eesttuction time equals to
4200 seconds.

The system was provided a set of kernel functions to choase, fin order to con-
figure aKR approximator, which would yield a minimum expected prdditterror
during theLOOCV test. We let the system choose among the following kernai-fun
tions: K,(d) = 1/d* andE,(d) = 1/e?", fora = 1,2,3. The formsk, andE, lie
among the most commonly usédParticularly for thel(, form, rared = 0 cases were
handled by assigning the query vector an estimation equakt&nown value for the
corresponding nearest (zero distance) neighbour. Valuegjoeater than 3 were not
considered, since they would yield very low kernel valuesl thus, theKR estimation
would be dominated by the contribution of one unique neareigthbour.

The training set expands from one iteration to the next. beoto avoid cases
where theLOOCYV test would decide large values fbr and thus, slowing down the
KR approximator, the size of the training set was kept stahlattonost, 25 training
examples. At the end of each iteration, the training examitiat represent solutions
of worse qualities are removed.

The measurement of success for the experiments preseritésisection is defined
as the percentage of improvement achieved by our methogtdegards the optimal
solution, in comparison with the performance of the commethod. Thus it, is the
best solution found by the common methad,, is the best solution obtained by our
methodology andpt is the optimal solution, performance is measured as

o mlo

a=100x &
co — opt

Instance Performance

n | m Co | ml, | opt | Q@
3000 15| 53848 | 54856 | 57499 | 27.6
4000 | 20 || 73954 | 77976 | 78693 | 84.8
4000 | 40 || 140669| 143079| 151415| 22.4
4000 | 51 || 179656| 186341 | 189211| 69.9
4000 | 23 || 82385 | 83882 | 88849 | 23.1
4000 | 30 || 107621| 109785| 113112| 39.4
6000 | 30 || 108744 | 111043| 116577| 29.3
6000 | 20 || 70956 | 71750 | 76909 | 13.3
8000 | 15| 56049 | 57100 | 60031 | 26.4
8000 | 23 || 90257 | 91352 | 96367 | 17.9

Table 1: Experimental results for the knapsack problem

6.2. Knapsack

For the knapsack problem, the simple heuristic policytof the most profitable
choice first”on a DFS proved to be quite successful in obtaining soon soghejoal-
ity solutions.

Twelve iterations, of 5 minutes each, were performed on @achlem instance
after the construction of the initial training sdtimited Discrepancy Searqf.DS) ”
was used as constructive procedure for the proposed méthibd.quality of solutions
which were obtained for all instances significantly excekthe quality of solutions
found by the employed common heuristic method. Table 1 suizesthe results. The
characteristics of each problem are depicted, namely ffrerameter and an estimation
1 of the average number of “items” that fit in the knapsack, Waked as the ratio of
the capacityC' to the mean value of the weights in vectr.

6.3. Set Partitioning

The common method that provided the best results for the 8Blgmn was the
heuristic policy‘try the column with the minimum cost firstvith DFS. The proposed
methodology performed significantly better on all instandeble 2 depicts the charac-
teristics of the SP instances and the performance of ouradetbgy. The dimensions
of the A,,, «» binary matrix are shown as the major characteristics forRimStance.

Six iterations, of 10 minutes each, were performed on eacin8&nce. Remark-
ably better solutions were found by the proposed methogalstngLDS, than those
obtained by the common heuristic policy.

6.4. Behaviour of the Methodology

The experimentations on the SP and the knapsack problenesagaiew of the
behaviour of the methodology during the solving procesgufé 5 gives a low level
view of a solving path followed by the heuristic function afjF4 for a knapsack in-

*LDSwas also tested with common heuristics on both problemngstabut did not outperform DFS.

feature 2

Instance Performance

n | m Co | ml, | opt | Q
4000 15| 1175 | 1063 | 898 | 40.4
4000| 18 1474 | 1401 | 1113 | 20.2
4000 20 || 900 481 452 | 935
5000 | 18 || 15698 | 12563 | 10669 | 62.3
5000 | 25 || 993 910 544 | 18.5
5000 | 30 || 2720 | 2538 | 1734 | 18.4
6000 | 20 || 754 580 407 | 50.1
6000 | 25 || 1148 | 893 593 | 45.9
6000 | 30 || 1133 | 1088 | 779 | 12.7
7000 | 25 || 1128 | 905 569 | 39.8

Table 2: Experimental results for the SP problem

knapsack (3000, 15) instance

known solutions ¢
solution construction - +--

o
5000 [
4500 + +$+Solution
4000 [S ®
3500 | A
3000
2500 - + .
First Assignment 5000
4500

113

114

115
116 77

feature 1 118 1192500

Figure 5: Solution construction path for a knapsack instanc

Set Partitioning (6000, 25) instance

T T
KR heuristic solving process—<—

objective function

O
: : : : : Best
850 i i i i i Solutio
0 600 1200 1800 2400 3000 3600
time (seconds)

Figure 6: Solving process for an SP instance

stance, whereas the overall solving performance of theqeegiterative methodology
is depicted in Figures 6, 7, 8 and 9 for two set partitionind &mo knapsack instances
respectively.

Figure 5 depicts the features vectors (as independentspwirthe diagram) for
known solutions to thén = 3000, x = 15) knapsack instance that belong to the train-
ing set. It also demonstrates the trajectory of a solutiorstraction using the given
training set. Every cross point in the trajectory represenfieatures vector calculated
upon a partial path, after a new assignment to some deciaiaable is performed. At
every search step, the heuristic function chooses theramsigt which brings the fea-
tures vector of the extended path closer to specific feattget®rs of the best known
solutions. As is clearly visible from the diagram, althoubk trajectory in the fea-
tures space is somewhat awkward, it leads to the construetia complete solution,
with statistical properties (as indicated by its featurestor), which locate it within
a desirable cluster of known solutions. When the choseresemitation features are
indeed relevant to the objective function’s value, thermtéwly constructed solution is
expected to be of comparable quality to the solutions of theter.

The overall functionality of our methodology for the SP piegh is demonstrated
in Fig. 6 and 7, on thén = 6000, m = 25) and(n = 4000, m = 18) SP instances.
Subsequent iterations of the algorithm in Fig. 1 are sepdray the vertical grid lines
on the diagrams. Within the iterations each solution shoel8etter than the previous
found. The best solution is found in the last iteration fag {h = 6000,m = 25)
instance. A natural explanation for this fact is that Kie-heuristic provided the most
accurate predictions during this iteration, having acclated in its training set an
appropriate representation of the search space duringopieiterations. However
this was not the case for all instances.

One can notice in Fig. 7 that the best solution was found duttie fifth iteration,
whereas the system was tragically misled during the sulesgderation. This is pos-

Knapsack (4000, 18)instance
1850 T T

T T
‘ ‘ KR heuristic solving process—o—
Por R R SRR B

objective function

0 600 1200 1800 2400 3000 3600
time (seconds)

Figure 7: Solving process for an SP instance

sibly due to introduction of inconsistent data in the tragnset during the previous
iteration. However, we expect that the heuristic is ablemiprove its behaviour in
subsequent iterations, since solutions of lower qualigysaored in the training set and
contribute to future estimations. This fact confirms thechie information acquisi-
tion and exploitation regarding the search space, in ocdexplore its most promising
portions.

Figures 8 and 9 depict the solving process for two knapsathites. Analogous
situations to the ones discussed for the set partitioniisg can be observed. To be
precise, one can certainly notice the heuristic’s poor Wielia during the first iter-
ations, and how it subsequently improves towards discogesome good solutions.
For both instances, solutions found during iterationsrdfte first 2100 seconds are of
comparable quality.

6.5. Depth-First Search Experiments

In order to assess further the heuristic value of our metlogypwe experimented
with it in a pure manner by using the simple DFS procedure.ati, fa multi-restart
variant of the original DFS scheme was used: each time aigolistfound the search
backtracks to the root of the tree. Thus, one can think ofssésch procedure as draw-
ing multiple depth-first explorations down the tree, staytfrom the next preferable
choice at the root, every time a new solution is found. Welsk&r to it asmodified
DFS (mDFS. This strategy is not a complete one, in contrast to theiposly used
LDS and its performance heavily depends on the heuristicesinencloses a DFS
scheme.

As already discussed in section 2, it is generally known, tbatstructive search
heuristics tend to make mistaken decisions on early intdiae stages of the search,
that is near the top of the search tree. By enforcing the bgaozedure to restart from

objective function

objective function

Knapsack (3000,15) instance

55500
KR heuristic solving process —+—
55000
54500 vj TQ
54000 T\ &
53500 ?b\
53000
52500
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
time (seconds)
Figure 8: Solving process for a Knapsack instance
Knapsack (4000,20) instance
79000
KR heuristi¢ solving process —<—
78000 f\ﬂ
77000 b
76000 / f
75000 /
74000 \/ﬁ\ (g
73000 \ ?\I Wl
72000 /
71000 /
70000
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

time (seconds)

Figure 9: Solving process for a Knapsack instance

Instance Performance

n [pll mo | @ [a—apg| T
3000 | 15| 55299 | 39.9 12.1 3.7
4000 | 20 || 74947 | 20.9 -63.9 5.1
4000 40 || 141893 11.3 -11.1 4.2
4000 | 51 || 181723| 21.6 -48.3 3.4
4000 | 23 || 84114 | 26.7 3.6 5.3
4000 | 30 || 109800| 39.6 0.2 3.6
6000 | 30 | 112421| 46.9 17.6 3.2
6000 | 20 | 74557 | 60.4 47.1 3.6
8000 | 15| 57985 | 48.6 22.2 35
8000 23 || 91141 | 144 -3.5 3.1

Table 3: Experimental results withDFSfor the knapsack problem

the next preferable choice from the root (according to therisdc’s decision), we
intend to investigate the heuristic’s sensitivity to thiatter. For a knapsack instance
with n decision variables, the meaningful available assignnaritee root of the search
tree are exactly. (z; = 1,5 = 1...n). The same holds for a set partitioning instance
with n decision variables. Regarding the problem instances usedriexperiments,
this size reaches the order of a few thousands. It is shovinahaverage per iteration
of the search schema (Fig. 1), trying only a small fractiotheke alternatives suffices
for reaching high quality solutions. This fact confirms theutistic’s robustness with
respect to its early decisions.

For each instance of both problems, the methodology wawedidl2 iterations,
of 5 minutes each, that is, a total of one hour. Results areranmed in Tables 3
and 4. Table 3 shows, for each Knapsack instance, the imprawveover the greedy
heuristic’s performance of Table 1. The last colurifpnghows the average number of
restarts per iteration, performed by the modified DFS proced

The improvements achieved on some instances are unexpyeicigdessive. On
four out of ten instances the results were poorer than the ob&ined withLDS
However, in their entirety we consider them to be quite enagimg, since they only
exhibit the heuristic’s guiding ability, and still they asggnificantly improved relative
to the greedy heuristic. By combining information from aldg known feasible solu-
tions, KR provided useful heuristic predictions, thus guiding threge mDFSsearch
towards improvements. In fact, we get a confirmation of oitialhassumption that
improved solutions lie nearby already known solutionsemmis of euclidian distances
between their features vectors (we wish to remind the reafdgig. 5 and the corre-
sponding discussion). The small values of theounter indicate that the heuristic’s
initial decisions are generally quite informed. It actyakploits only a small fraction
over the thousands of choices at the root of the search teteity performance is at
least satisfactory.

The heuristic proved to be quite successful with our SeftRaning dataset. Solu-
tions found on almost all instances were near-optimal, aedtty exceeded the heuris-

Instance Performance
n | m ml, | Q@ | a— o ps | T
4000 15 935 | 86.6 46.2 8.1
4000| 18 || 1171 | 83.9 63.7 4.75
4000 20 461 | 97.9 4.4 5.6
5000 | 18 || 10987 | 93.6 31.3 7.2
5000 | 25 544 | 100 81.5 4.8
5000| 30| 1734 | 100 81.6 8.1
6000 | 20 409 | 99.4 49.3 7.1
6000 | 25 738 | 73.8 27.9 6.6
6000| 30| 1011 | 34.4 21.7 4.7
7000| 25 692 | 77.9 38.1 9.7

Table 4: Experimental results withDFSfor the SP problem

tic's performance with.DS. Table 4 summarizes the results. These results convincingl
confirm the value of the heuristic and the existence of an siifumctional relation be-
tween the statistical characteristics (features) of at&wland its quality.

Another aspect we examine concerns the heuristic’s behiawiith respect to the
underlying training set. In particular, we measure for égatation the deviation of the
best found solution from the best one contained within thaning set. Lets; be the
objective function value for the best solution found duritggation: of the algorithm
in Fig. 1. Suppose that the best solution contained withintthining set of théth
iteration was of qualityy. Then for a maximization problem we define the following
improvement ratio on iteration

*

S; — S;
IR; = !
R U-1L
whereU and L are the highest and the lowest among the valyes}, i = 1,...,1.

The quantityl R; is the fraction, by which the heuristic exceeded (or misgedase
of s; < s7), its best known solution (always contained within itsriiag set) on iter-
ationi. For a minimization problem théR; quantity is defined similarly, but with an
opposite sign, in order to preserve it positive when rearowpment occurs.

Figures 10 and 11 depict thez; measure for three instances of each problem. It
would have been an ideal situation, if the curves were kept aero, thus implying
a constant improvement over the best known solution, fromitaration to the next.
However, what the reader can actually observe is a satisfestiability on the method’s
behaviour, only partially disturbed by great improvementksses.

Particularly on all three knapsack instances (Fig. 10) oupments on iteratioi
are followed with big losses during iteration 2. The cunastiue thereafter with only
small positive or negative deviations from the best knowntsns. This behaviour
implies that, even though the heuristic’s predictions magdme spurious with respect
to the underlying training set of some iteration, accumarfabf training examples
helps guiding the search more conservatively during sulbesgqterations, towards
informed solution constructions.

3000,15> instanc:
6000,30> instanc
0.8 8000;15> instanc:

ot

0.6

0.4

0.2

Improvement Ratio (IR)
o

0.2 iy

-0.4

-0.6

-0.8

Iteration

Figure 10: Improvement per Iteration on Knapsack

For the Set Partitioning instances (Fig. 11) there is ancayuals behaviour, with the
difference of great improvements happening in iteratiosdbsequent iterations also
provided small improvements and losses. Although posititeleaps are generally
desirable since they indicate optimization, we should tdebcomfortable with small
movements around zero, because they exhibit the existéisogomth functional corre-
spondence between the chosen solution descriptive fasdnckthe objective function
value. This statement stems from the way the heuristic tagdace the newly con-
structed solution somewhere in the geometric space definéd training examples.

7. Conclusions and Further Work

In this paper, we propose a heuristic methodology for comtbial optimization,
which employs instance-based learning and function apmration through kernel re-
gression, for guiding any constructive search procedubgs Work is not concerned
with the achievement of feasible solutions to a problens(ibsue is addressed suc-
cessfully by sophisticated implementations of constuectiearch methods, e.g. back-
tracking), but with the guidance of search to promisingeagiof the search space, as
far as optimality is concerned.

Problem models grown from real world applications usuatiglese vast contents
of numerical information, which can be statistically hatifor the construction of
optimized solutions. The objective functions of such peofs are generally designed
upon desirable facts and dictate the intuitive policy faitloptimization. We suggest
that known solutions to these problems are representedatiatial information cal-
culated upon each solution’s structural constituents. groposed policy constructs a
solution by minimizing its distance (in terms of its stdtiat properties) from the best
(in terms of objective function value) known solutions, atiie nearby.

4000,20> instanc:
5000,30> instanc
0.8 7000, 255> instanc

ot

0.6

0.4 [B

0.2

-0.2

Improvement Ratio (IR)
o

-0.4

-0.6

-0.8

Iteration

Figure 11: Improvement per Iteration on Set Partitioning

Experimental results were carried out on two widely used efodf real world
combinatorial problems, namely the knapsack and the sgtipaing problems. These
problems model important real world applications, suchwdear waste packing and
crew scheduling. The methodology performed satisfactorthese problems and ob-
tained solutions whose quality exceeded the quality oftemis obtained by other
heuristic methods, common for each of the problems.

Some directions for further research are drawn from questioat arise quite nat-
urally. In our experiments, the proposed framework perfosatisfactory for an initial
training set created by some simple methddiswever, which is the proper way for sys-
tematically sampling initial solutions of a useful qualitigtribution from the problem’s
search spaceThis is an important issue, which could possibly boost thégpmance
of the heuristic function, since an initial set of solutiavith known quality distribution
is actually a detailed picture of the search space.

The complexity of the heuristic function depends on the sfzbe training set. Us-
ing big training sets slows down the search, while small gaigide little information
about the search space. We have started to examine the oppartitioning the train-
ing set into consistent clusters, each of which represestsad portion of the search
space. Each of these clusters is meant to be used as a séy@anaig set, for searching
the corresponding sections of the search space in a locdibustive manner.

As an aspect of future work, extended experimentations amiaty of optimization
problems is expected to reveal valuable statistical featustrongly informative and
representative of the corresponding search spaces.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Justin A.Boyan and Andrew W. Moore. Learning evaluationctions to improve optimiza-
tion by local searchJournal of Machine Learning Researcti77-112, 2000.

Christopher G. Atkeson, Andrew W. Moore, and Stefan &thhocally weighted learning.
Artificial Intelligence Reviewl1(1-5):11-73, February 1997.

D. P. Bertsekas and J. N. Tsitsiklisleuro-Dynamic ProgrammingAthena Scientific, 1996.
Justin Boyan, Wray Buntime, and Arun Jagota (eds.).iSteal machine learning for large-
scale optimizationNeural Computing Survey8:1-58, 2000.

Justin A. Boyan and Andrew W. Moore. Learning evaluationctions for global optimiza-
tion and boolean satisfiability. IRroceedings of the 15th National Conference on Artificial
Intelligence AAAI-98pages 3-10, Madison, Wisconsin, July 1998. AAAI Press.

Diane J. Cook and R. Craig Varnell. Maximizing the bersadit parallel search using machine
learning. InProceedings of the 14th National Conference on Artificig¢lligence AAAI-97
pages 559-564, Providence, Rhode Island, July 1997. AAédr

William D. Harvey and Matthew L. Ginsberg. Limited diggancy search. IRroceedings of
the 14th International Joint Conference on Atrtificial Idtgénce IJCAI-95pages 607-613,
Montréal, Québec, Canada, August 1995. Morgan Kaufmann.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew Woore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research:237-285, 1996.

Ron Kohavi. A study of cross-validation and bootstrap dacuracy estimation and model
selection. IrProceedings of the 14th International Joint Conference difigial Intelligence
IJCAI-95 pages 1137-1145, Montréal, Québec, Canada, August M®§an Kaufmann.
Steven Minton. An analytic learning system for spagiaby heuristics. InProceedings of
the 13th International Joint Conference on Atrtificial Idigénce IJCAI-93 pages 922-929,
Chambeéry, France, August 1993. Morgan Kaufmann.

Tom M. Mitchell. Machine Learning McGraw-Hill, 1997.

Kazuo Miyashita. Learning scheduling control knowdedhrough reinforcementfnterna-
tional Transactions in Operational Reseaydt{2):125-138, March 2000.

Robert Moll, Andrew G. Barto, Theodore J. Perkins, andh@rd S. Sutton. Learning
instance-independent value functions to enhance locatise@dvances in Neural Infor-
mation Processing Systepis:1017-1023, 1999.

M. J. Realff, P. H. Kvam, and W. E. Taylor. Combined anialyl and empirical learning
framework for branch and bound algorithms: The knapsacklpro. Artificial Intelligence
in Engineering 13(3):287-300, July 1999.

Orestis Telelis and Panagiotis Stamatopoulos. Coatbiral optimization through statistical
instance-based learning. Rroceedings of the IEEE 13th International Conference asisTo
with Artificial Intelligence ICTAI-2001pages 203—209, November 2001.

Wei Zhang and Thomas G. Dietterich. A reinforcementri@sy approach to job-shop
scheduling. InProceedings of the 14th International Joint Conference atifiéial In-
telligence 1JCAI-95pages 1114-1120, Montréal, Québec, Canada, August M&Fan
Kaufmann.

