
May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Building Search Methods with Self-Confidence in a

Constraint Programming Library

Nikolaos Pothitos and Panagiotis Stamatopoulos

Department of Informatics and Telecommunications

National and Kapodistrian University of Athens
Panepistimiopolis, 157 84 Athens, Greece

{pothitos,takis}@di.uoa.gr

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

In the late 1990s, Constrained Programming (CP) promised to separate the declaration

of a problem from the process to solve it. This work attempts to serve this direction, by

implementing and presenting a modular way to define search methods that seek solutions
to arbitrary Constraint Satisfaction Problems (CSPs). The user just declares their CSP,

and it can be solved using a portfolio of search methods already in place. Apart from the

pluggable search methods framework for any CSP, we also introduce pluggable heuris-
tics for our search methods. We found an efficient stochastic heuristics’ paradigm that

smoothly combines randomness with normal heuristics. We consider a factor of disobe-

dience to normal heuristics, and we fine-tune it each time, according to our estimation
of normal heuristics’ reliability (confidence). We prove mathematically that while the

disobedience factor decreases, the stochastic heuristics approximate deterministic nor-
mal heuristics. Our algebraic evidence is supported by empirical evaluations on real life

problems: A new search method, namely PoPS, that exploits this heuristics’ paradigm,

can outperform regular well-known constructive search methods.

Keywords: Randomness; stochastic methods; discrepancy; constructive search; CSP.

1. Introduction

Artificial Intelligence (AI) methodologies aim to tackle difficult computational and

real life problems, such as scheduling,1,2 radio frequency assignment,3 other NP-hard

problems, and also problems stemming from various disciplines, e.g. Bioinformatics.4

All these Constraint Satisfaction Problems or Constrained Optimization Prob-

lems have been declared in our Constraint Programming Naxos Solver.5 In such

solvers, the solution phase is completely independent of the CSP declaration phase,

as this serves the original promise of Constraint Programming: The user states the

problem, the computer solves it.6

In this work, we go one step further and allow the user/programmer to state

their own search methods that can apply to any CSP. We found a framework where

the user can compose their search methods out of conjunctive and disjunctive goals.

1

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

2 Nikolaos Pothitos and Panagiotis Stamatopoulos

Naxos Solver is a C++ constraint programming library. We implemented on

top of it our search methods’ framework, but the framework can be adopted by

other solvers too. Our goal is not to compare Naxos against other solvers, but to

use it as an open source ground/environment for this work’s contributions.

Of course, Constraint Programming is not the only paradigm that solves Arti-

ficial Intelligence problems like the aforementioned. For example, course scheduling

can be addressed via plain simulated annealing.7 In comparison to Constraint Pro-

gramming, this is not a complete method, i.e. it doesn’t explore all the possible

solutions, and therefore it doesn’t always find the best solution, if any.

Another way to solve the course scheduling problem is by employing the sim-

plex method in the context of linear programming.8 In comparison to Constraint

Programming, linear programming is less expressive, as it requires the formulation

of every problem in a strict mathematical model.9

Naive search methods explore the whole candidate solutions spectrum, in order

to find a real solution. The issue here is that the candidate solution range is expo-

nential in the problem instance parameters, and, unavoidably, an iteration through

every candidate solution becomes infeasible as the problem scales.

Heuristics’ role in this situation is to change the order of the candidate solutions,

so as to favor the “promising” ones. In other words, heuristics make an estimation

of the possibility of an incomplete or candidate solution being a real solution, and

label it with a priority. A high priority means that the candidate solution should

be examined soon.

This reordering cannot make the search space tractable—this is most probably

impossible10—but it is able to dramatically decrease the time needed to guide a

search method toward a real solution. In this direction, we study heuristic prop-

erties, such as reliability/confidence, and we propose a generic framework in order

to exploit them by incorporating a randomness factor into them. This work is an

extended and revised version of a preliminary conference paper.11

In Section 2 we introduce just the necessary formal definitions for CSPs. In

Section 3 we found the framework that can be used to define search methods; the

algorithmic details are isolated in Appendix A. In Section 4 we explore a search

tree by consulting heuristics. In Section 5 we link heuristics to probabilities and

we bridge total determinism to total randomness while consulting them. Section 6

illustrates a new search method, namely PoPS, that exploits the values of the

heuristic evaluations. Finally, in Section 7 we conduct experiments to support the

previous theoretical sections.

In summary, the contributions of the paper are

‚ the foundation of a modular search methods framework for Constraint Pro-

gramming,

‚ the introduction of a confidence factor into regular heuristics and their

gradual randomization when we aren’t confident about them, in order to

make them more flexible, and finally

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 3

‚ the implementation of an efficient new search method PoPS that exploits

heuristics as values/evaluations—as they are—and not simply as ranks of

possible choices.

2. Preliminaries

We focus on constraint satisfaction problems (CSPs)12 that can be solved via a

plethora of available constraint programming (CP) solvers.13,14

2.1. Constraint satisfaction problems

Every single CSP can be stated using commonplace formalizations.15 It is a triplet

of

(i) constrained variables X1, . . . , Xn,

(ii) their corresponding domains DX1
, . . . , DXn

, which are normally finite sets of

integers, and

(iii) the constraints between variables; a constraint contains the tuples of all the valid

assignments for a specific pair/set of variables. To put it differently, a constraint

is a relation between the variables, such as X1 ă X2.

In the attempt to find a solution to a CSP, we have to make assignments.

Definition 2.1. We say that a variable X is assigned a value v P DX , if its domain

is made singleton, i.e. DX ø tvu.

A solution is an assignment that involves all variables and also satisfies all the

constraints. A search method leads a CSP after consecutive assignments into a

solution.

2.2. Map-coloring problem

There exists a huge list of interesting CSPs.16 For example, map-coloring is a CSP

for assigning colors to each prefecture in a given map, so as no neighboring prefec-

tures have the same color. Figure 1 illustrates a map of the Greek region “Thessaly,”

containing four prefectures; the colors in the figure form an indicative solution.

Problem 1. Typically, “Thessaly-coloring” is a CSP with:

(i) Four constrained variables: X1, X2, X3, X4. Each one of them represents a

prefecture color.

(ii) The corresponding domains are DX1 “ DX3 “ t1, 2u and DX2 “ DX4 “ t1, 3u.

Numbers 1 2 3 represent respectively red, green, blue.a

(iii) The constraints are X1 ‰ X2, X1 ‰ X3, X2 ‰ X3, and X2 ‰ X4.

aWe could initially set all the domains equal to t1, 2, 3u. We used smaller initial domains just to

simplify the problem.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

4 Nikolaos Pothitos and Panagiotis Stamatopoulos

X2

X4

X1

X3

Fig. 1. The four Thessaly prefectures

The solution in Fig. 1 is represented by the assignment

tX1 Ð 1, X2 Ð 3, X3 Ð 2, X4 Ð 1u . (1)

2.3. Constrained optimization

A variation of Constraint Satisfaction Problems (CSPs) are the so-called Con-

strained Optimization Problems (COPs). A COP consists of variables, domains,

and constraints, just like any CSP, but there are two differences.

‚ A COP also requires an objective function which maps any assignment/solution

to a number, which is called the cost of the solution.

‚ The target while solving a COP isn’t just to find a solution, but to find a best

solution, i.e. a solution with a minimum cost.b

COPs can be solved like CSPs, using a branch and bound strategy: When a solution

is found, its cost is recorded, and a new constraint is added to guarantee that the

next solution cost will have a smaller cost than the recorded one. This is repeated

until all candidate solutions have been examined.

In relation to CSP solving, the only additional requirement of the above COP

solving procedure is adding dynamically a new constraint while searching. This

makes it compatible with plain CSP search methods, so this work covers both CSPs

and COPs as a whole.

On the other hand, this work does not cover convex optimization, a variant in-

troduced in Mathematics which paved the way for advances in Computer Science.17

Besides, convex optimization applies to continuous domains, e.g. r0.5, 3.1s, while in

Constraint Programming we focus on discrete domains of constrained variables, e.g.

t1, 2, 3u.

bThere is also a COP variation which requires to find the solution with the maximum cost.
However, for simplicity reasons, we will not focus on it, as it can be easily transformed into a COP

with a minimization objective.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 5

3. A Goal-driven Search Methods’ Framework

Apart from a way to state CSPs, a user/programmer needs an elegant way to state

search methods that solve them. The CSPs should be “search-methods-agnostic,”

while the search methods should be “CSP-agnostic” in order to keep the indepen-

dence between Constraint Programming stages.

In related works, a lot of search methods have been implemented “out of the box”

in modern solvers.18 This means, at least to our knowledge, that the implemented

search methods are coupled with the existing solvers. Nevertheless, our contribution

is to introduce an extensible framework, so that the user can easily define their own

“custom” search methods.

3.1. Search methods are made up of goals

Every constructive search method is built up of goals. Each goal executes an oper-

ation, e.g. an assignment of a value to a constrained variable. Otherwise, one goal

returns another goal to be executed. The goal returned can be a meta-goal, that is

a goal that refers to another two goals. There are two meta-goal kinds:

(i) The ANDpg1, g2q, which implies that the two sub-goals g1 and g2 must be

executed and succeed both.

(ii) The ORpg1, g2q, which executes g1. If g1 does not succeed, i.e. if it does not

lead to a solution, then g2 is executed.

This goal-driven framework is able to describe most of the common search methods.

3.2. The Depth-First Search example

An elementary search method that can be straightforwardly described via goals

is depth-first search (DFS). This method iterates through the variables of a CSP.

For each variable X selected, it selects a value v from its domain and makes the

assignment X Ð v. It subsequently proceeds to the next unassigned variable and

makes another assignment, etc.

If every variable is assigned a value and no constraint is violated, the assignments

set comprises a solution. In any case, if there is a constraint violated, the last

assignment to a variable is undone and we try to assign another value from its

domain. If all the alternative values are exhausted, we backtrack to the previous

variable selected and we undo its assignment and so forth.

3.3. Defining DFS using goals

The ultimate goal in DFS and in every constructive search method is to Label every

variable with a value. Each Label’s call aims to Instantiate a variable.

‚ Label(H) := success.

‚ Label(X) := AND(Instantiate(X), Label(X ´tXu)), with X P X ,

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

6 Nikolaos Pothitos and Panagiotis Stamatopoulos

where X is the set of all the variables. While Label iterates recursively through

the CSP variables, an Instantiate call attempts to assign a selected value v to the

variable X. If the assignment fails to produce a solution, the value v is deleted and

another instantiation is attempted, until all the alternatives in DX are exhausted.

‚ Instantiate(X) := failure, with DX “ H.

‚ Instantiate(X) := OR(XÐv, AND(DXÐDX t́vu, Instantiate(X))), with

v P DX .

The interdependencies between the above DFS goals are graphically displayed in

Fig. 2.

Label(X)

AND

Instantiate(X)

OR

XÐv AND

DXÐDX t́vu Instantiate(X)

Label(X ´tXu)

Fig. 2. The combination of the goals that compose DFS

3.4. Defining Iterative Broadening using goals

Figure 3 displays the corresponding goals’ graph for the Iterative Broadening search

method.19 The goals’ structure is similar to DFS. However, one basic difference is

that there is one more level, namely Broadening, above the ordinary DFS goals.

‚ Broadening(Breadth) := failure, if Breadth ą d,

‚ Broadening(Breadth) := OR(Label2(X), Broadening(Breadth ` 1)), other-

wise.

For each Iterative Broadening iteration, the Breadth parameter defines the max-

imum number of values that a constrained variable can be successively assigned.

This value is initially 1. The Breadth value cannot exceed d, which in this context

is the maximum cardinality (size) of the domains of all constrained variables. If

Breadth exceeds d, Broadening fails.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 7

Broadening(Breadth)

OR

Label2(X)

AND

CurrentBreadthÐ0 Instantiate2(X, CurrentBreadth)

OR

XÐv AND

DXÐDX t́vu Instantiate2(X, CurrentBreadth ` 1)

Label2(X ´tXu)

Broadening(Breadth ` 1)

Fig. 3. The goals composing Iterative Broadening

Therefore, a second basic difference in comparison with DFS comes into play. The

Instantiate goal is now named Instantiate2, and it takes one more argument.

‚ Instantiate2(X, CurrentBreadth) := failure, if DX “ H,

‚ Instantiate2(X, CurrentBreadth) := failure, if CurrentBreadth ą Breadth,

‚ Instantiate2(X, CurrentBreadth) := OR(XÐv,

AND(DXÐDX t́vu, Instantiate2(X, CurrentBreadth ` 1))), otherwise.

This implements Iterative Broadening’s semantics: The number of consecutive in-

stantiations to the same variable cannot exceed Breadth.

4. Search Tree Exploration

A search tree is a descriptive way to depict every possible assignment in a CSP,

such as map-coloring. Figure 4 displays the search tree for the Thessaly-coloring

problem. The struck-out nodes have been pruned as no-goods.

Each path from the root (i.e. the uppermost node) represents an assignment.

If the path from the root ends up into a leaf (lowest node), we have a complete

assignment. E.g., the dotted path in Fig. 4 is an alternative form of the solution

assignment in (1).

4.1. The goals are the search tree nodes

There is a direct relationship between a search tree and the goals hierarchy.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

8 Nikolaos Pothitos and Panagiotis Stamatopoulos

X1 :

X2 :

X3 :

X4 :

hX
2
Ð
1

h
X

2Ð
3

Fig. 4. The search tree for Thessaly-coloring

‚ When the first goal, e.g. Label(X) in DFS, is called, the search tree root is

created.

‚ When an OR goal occurs, the current node is extended into two branches that

represent the two alternative choices.

In this work, we consider only sequential search methods. Nevertheless, the pre-

sented search methods framework naturally supports distributed search methods

too. We can simply distribute a search tree when we encounter an OR goal. The left

and right branches of selected OR nodes can be explored concurrently to reduce the

total tree exploration time. There are many different approaches regarding which

OR nodes should be selected in order to split their two sub-trees.20,21

4.2. Heuristic estimation as a real number

A heuristic function maps every possible choice in the search tree to a number that

corresponds to the estimation that it will eventually guide us toward a solution.

Definition 4.1. For a specific search tree node, let Choices be the set with the

alternative assignments that one may follow. The heuristic function hi maps each

alternative assignment i P Choices to a positive number, i.e. h : ChoicesÑ R`.

Example 4.1. In Fig. 4 uppermost right node, there are two alternative assign-

ments in Choices “ tX2 Ð 1, X2 Ð 3u. One heuristic function may provide the

estimations, e.g. hX2Ð1 “ 0.7 and hX2Ð3 “ 2.8; that is, the assignment X2 Ð 3 is

more promising.

The above example is almost ideal, as the heuristic function h favors the assignment

X2 Ð 3 over X2 Ð 1. Besides, the latter leads to a dead end, as its two descendants

are struck-out in Fig. 4, because they violate the constraints.

Unfortunately, this is not always the case, i.e. the heuristic value for an assign-

ment that leads to a dead end (say X2 Ð 1 in Fig. 4) may be overestimated or, even

worse, may be greater than the heuristic estimation for an assignment that really

leads to a solution (e.g. X2 Ð 3).

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 9

A heuristic value hi is actually a prediction whether a specific assignment will

ultimately guide us to a solution or not. Being a prediction, it implies an inherent

reliability/confidence level.

In the above definition, we excluded negative values as the heuristic function’s

output. A negative heuristic evaluation could probably mean “don’t make this choice

at all.” But heuristics are normally used to favor one choice over another and not

to prune a choice. In any case, if we had a function h with minh ă 0, we could

transform it into h1 “ h` |minh| to make it comply with the above definition.

4.3. Heuristics exploitation in related work

In constructive search, one can build a solution either with a deterministic/

systematic search method or by making one-by-one random assignments. Do these

methods exploit heuristics and how?

4.3.1. Deterministic search methods

To our knowledge, existing search methods such as limited discrepancy search (LDS)

use heuristics only to order the possible assignments and do not exploit the differ-

ence of the one heuristic estimation to another, but only their rank.22 For example,

the iterative broadening method explores only a limited children’s number for each

search tree node.19 Of course, it chooses to visit only the children with the highest

ranks. Credit search23 and limited assignment number (LAN)24 are other determin-

istic methods that also take into account the rank of the heuristic estimations and

not the heuristic values themselves.

Last but not least, there are also methods that make the assumption that the

heuristic function is more reliable as the search tree node depth increases. E.g.,

depth-bounded discrepancy search (DDS) allows to override a heuristic estimation,

only when we have not yet reached a specific search tree depth.25 Finally, there

are some methodologies that take into account two or more heuristic functions and

learn as the search proceeds which heuristic is the best to use.26

4.3.2. Random search methods

On the other hand, stochastic search methods completely ignore heuristics, as they

choose to make an assignment at random.27 For example, depth first search with

restarts traverses the search tree making random choices, and when a specific time

limit is reached, it restarts from the beginning.

4.3.3. Local search methods

The aforementioned search methods belong to constructive search, as they build a

solution from scratch, step by step, by assigning a value to a variable each time.

On the other hand, there are non-systematic indirect search methods, also known

as local search methods, which assemble a candidate solution, and then try to fix

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

10 Nikolaos Pothitos and Panagiotis Stamatopoulos

it by eliminating conflicting sets of variables and constraints. Local search itera-

tively tries to repair the candidate solution, in order to satisfy the constraints a

posteriori.28

Stochastic local search makes a random repair action in each step. There are

many other local search variants.

Hill climbing. A well-known variant is hill climbing, also known as iterative im-

provement. In each step, it changes only one variable assignment (1-exchange). Nor-

mally, we make the change which will reduce the violated constraints number as

much as possible.29

Simulated annealing. The above practice is prone to be trapped into local min-

ima. This means that we can end up in a candidate solution that cannot be improved

by modifying only one assignment any more. In this case, we have to escape the

current local minimum by making a random step.

Simulated annealing methodology permits random steps to skip local minima

while a parameter called temperature is high; as time passes by and temperature

drops, the method becomes less tolerant in random steps, especially if their eval-

uation is poor.30 In this work we attempt to bring this (local search) approach in

constructive search methods.

4.3.4. Heuristics and probabilities

Constructive search methods either use heuristics as Choices ranks, or completely

ignore them. In 1996, Bresina transformed the heuristic ranks into probabilities via

the so-called heuristic-biased stochastic sampling (HBSS).31 He provided a set of

various decreasing functions biasprq, e.g. 1
r or e´r etc., that take a specific integer

choice rank r P t1, 2, . . .u and return a number that corresponds to the probability

of the choice to be selected. Cicirello and Smith improved HBSS by introducing the

value-biased stochastic sampling (VBSS). The bias function now takes as argument

the heuristic value itself.32

On the other hand, Gomes et al. exploit the so-called heuristic-equivalence to

equate the choices with the highest heuristic values.33 In this way, we can exclude

the choices with the lower heuristic values and select at random amongst the choices

with the most prevailing values.

5. New Probabilistic Heuristics

Our contribution lies in the mathematical foundation of a framework that covers

both deterministic and random heuristics in constructive search. In contrast to exist-

ing methodologies, we leverage on the smooth transition from the total randomness

to determinism.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 11

5.1. Heuristics probabilistic foundations

Probabilities are a more precise way to depict heuristics than orderings, because

heuristics are actually estimations whether a choice will guide us to a solution; they

are not a strict quality rank.

Definition 5.1. A function P : Choices Ñ r0 , 1s , namely a heuristic distribution

function, maps each available choice to a corresponding probability, i.e. P piq.

As in Definition 4.1 and the Example 4.1 that follows it, Choices may include all

the possible/candidate assignments to a constrained variable.

Property 1. It should hold that
ř

i P piq “ 1, as P denotes a probability for each

i P Choices.

Regarding random search methods (Section 4.3.2), the probability is distributed

uniformly along the Choices. Conclusively,

Property 2. The heuristic distribution for a random method is always P piq “
1

|Choices| , @ i.

Example 5.1. Say that Choices “ tv1, v2, . . . , v5u. Every vi denotes a possible

assignment. Furthermore, in a specific search tree node we can make five differ-

ent assignments, and their corresponding heuristic estimations hi are 1, 5, 2, 4, 3

respectively, as in Fig. 5.

Figure 6 depicts the corresponding heuristic distribution function for a random

method, that is P piq “ 1
5 , @ i.

0

1

2

3

4

5

v1 v2 v3 v4 v5

h
i

Fig. 5. Heuristic estimations hi for each value vi

On the other extreme, deterministic search methods (Section 4.3.1) always select

the choice vi that corresponds to the hi with the highest rank.

Property 3. Formally, in deterministic search methods, if i “ arg maxj hj , then

P piq “ 1, otherwise P piq “ 0.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

12 Nikolaos Pothitos and Panagiotis Stamatopoulos

0

0.2

0.4

0.6

0.8

1

v1 v2 v3 v4 v5

P
pi
q

Fig. 6. The probability is spread uniformly

0

0.2

0.4

0.6

0.8

1

v1 v2 v3 v4 v5

P
pi
q

Fig. 7. Systematic search favors the highest hi

con
fv1 v2 v3 v4 v5 0

1
2

3
4

5

0

0.2

0.4

0.6

0.8

1

P
pi
q

Fig. 8. As conf rises, the effect to P piq is greater

Example 5.2. The greatest heuristic value in Example 5.1 is h2 “ 5. Hence, a

deterministic search method would select v2 with a certain probability P p2q “ 1.

Consequently, the rest of the probabilities are zero, as in Fig. 7.

If there is more than one maximum heuristic value, deterministic methods arbitrarily

concern only one of them as maximum. To simplify the following equations, we will

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 13

assume that there is only one maximum. Without loss of generality, we also assume

that heuristic values are non-zero.

5.2. Bridging the two opposites

We extend our previous formulation of the heuristic distribution function (Defini-

tion 5.1) in order to compromise random and deterministic methods. We introduce

a parameter conf P R`, that signifies how much the heuristic estimations will be

taken into account; it is the heuristic’s confidence. This confidence parameter is the

basis to define the condition when a heuristic distribution function is “balanced.”

Definition 5.2. A parameterized heuristic distribution function Pconfpiq is balanced

if and only if:

1. @ i, lim
confÑ0

Pconfpiq “
1

|Choices| , and

2a. if i “ arg maxj hj , lim
confÑ8

Pconfpiq “ 1,

2b. otherwise, lim
confÑ8

Pconfpiq “ 0 .

Moreover, the function Pconfpiq must be monotonic and continuous with respect to

conf and for fixed i.

Intuitively, conf is the link between random and deterministic search methods, as

the above definition covers both Property 2 when conf Ñ 0 and Property 3 when

conf Ñ8. In other words, conf is the position along the random-deterministic axis.

What happens for intermediate conf values? This depends on the precise param-

eterized heuristic distribution function instance. We define the following function

that gradually scales randomness.

Lemma 5.1. The function Pconfpiq “
hconf
i

ř

j hconf
j

is balanced.c

Proof. We prove Definition 5.2 three requirements.

1. lim
confÑ0

Pconfpiq “
h0
i

ř

jPChoices

h0
j
“ 1

ř

jPChoices

1 “
1

|Choices| .

2a. Let n “ |Choices|. This number is bounded as the possible assignments in a

CSP are a finite set. Thus, the distribution function can be analyzed as

Pconfpiq “
hconf
i

ř

j hconf
j

“
hconf
i

hconf
1 `hconf

2 `¨¨¨`hconf
max`¨¨¨`hconf

n
.

Let hmax be the maximum hi. If we divide by hconfmax both the nominator and

cFor conf “ 1, the function P1piq “
hi

ř

j hj
is equivalent to the fitness proportionate selection

function—resembling a roulette wheel—that is used in Genetic Algorithms.34

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

14 Nikolaos Pothitos and Panagiotis Stamatopoulos

denominator, we have

Pconfpiq “

´

hi
hmax

¯conf

p
h1

hmax
q
conf
`¨¨¨`1`¨¨¨`p hn

hmax
q
conf

“

´

hi
hmax

¯conf

1`
ř

j‰max

´

hj
hmax

¯conf . (2)

Here, max is an abbreviation for arg maxi hi. Therefore, @ j ‰ max,

hj ă hmax ñ
hj
hmax

ă 1 ñ

lim
confÑ8

ˆ

hj
hmax

˙conf

“ 0 . (3)

As a result from (2) and (3),

lim
confÑ8

Pconfpiq “
limconfÑ8

´

hi
hmax

¯conf

1`
ř

j‰max limconfÑ8

´

hj
hmax

¯conf

“ lim
confÑ8

´

hi

hmax

¯conf

. (4)

A direct derivation is that for i “ max ” arg maxj hj , we have

limconfÑ8 Pconfpmaxq “ 1, which is the second prerequisite for a balanced func-

tion.

2b. Finally, the last prerequisite of Definition 5.2 involves i ‰ max ñ hi ă hmax ñ
hi

hmax
ă 1, which, combined with (4), gives limconfÑ8 Pconfpiq “ 0, which had to

be demonstrated.

The above function (in Lemma 5.1) is balanced, and it also moves smoothly from

the random extreme to the deterministic one, because it is a continuous function,

with regard to conf P R`.

Hence, the overall function is a transition from the total randomness to the

almost total determinism. This is illustrated in the three-dimensional Fig. 8, which

for conf “ 0, is equivalent to the two-dimensional Fig. 6, and when conf Ñ8, it is

equivalent to Fig. 7.

Furthermore, our initial goal was to propose flexible heuristics which perform

better than purely deterministic or purely stochastic ones. To implement and mea-

sure the transition from randomness to determinism, we just introduced a confidence

value. However, new questions now arise. Which conf value should be used? Which

is the best way to bind the proposed hybrid heuristics to search processes?

6. Piece of Pie Search

The probabilistic framework founded in the previous section, naturally complies

with existing search methods; it affects only the heuristic function and not the

methods themselves. But in order to fully exploit the introduced heuristics frame-

work, we built the new constructive search method Piece of Pie Search (PoPS).

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 15

6.1. The algorithm’s core

Figure 9 describes PopsSample, which is the PoPS core. It is called inside PoPS

in order to solve a CSP by providing a complete and valid Assignments set, which

is initially empty. From now on, we consider that the value conf “ 100 represents

infinity.

function PopsSample(PieceToCover, conf)

arguments:

PieceToCover: The proportion of the heuristics’ pie to be explored

conf: A “confidence” value between 0 and 100

local variables:

Assignments: set with all the assignments made until this call

X : set with all the constrained variables

X: constrained variable that is going to be instantiated

value: value that is going to be assigned

hXÐv: heuristic value for the assignment X Ð v

DXinit
: initial domain of X, before any assignment was made

DX : current domain of X

CoveredPiece: current covered proportion of the pie

if Assignments violate any constraint then

return failure

else if Assignments include every variable then

Record Assignments as solution

return success

end if

X Ð VariablesOrderHeuristicpX q

DXinit
Ð DX

CoveredPiece Ð 0

while CoveredPiece ď PieceToCover do

value Ð ValuesOrderHeuristicpDX , confq

CoveredPiece Ð CoveredPiece `
hconf
XÐvalue

ř

vPDXinit
hconf
XÐv

Assign value to X and add it to Assignments

PopsSample(PieceToCover, conf` 100´conf
|X |

)

Undo the assignment

DX Ð DX ´ tvalueu

end while

DX Ð DXinit
Ź Restores initial domain

return failure Ź All alternative values are exhausted

end function

Fig. 9. The recursive PopsSample called by PoPS

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

16 Nikolaos Pothitos and Panagiotis Stamatopoulos

In each PopsSample call we get an unassigned variable returned by the func-

tion VariablesOrderHeuristic(X), where X is the set of all the constrained

variables. Then, it stores its domain DX , in order to restore it in a future backtrack.

All the above steps are common in constructive search methods.

The crucial and novel part of this function is inside the while iteration where

we iterate through the different values in DX . The call ValuesOrderHeuris-

tic(DX , conf) returns the best value out of DX , according to the heuristic estima-

tion, using the heuristic function in Lemma 5.1.

Normal search methods, like Depth First Search (DFS), Limited Discrepancy

Search (LDS), and other known deterministic methods explore in their steps a spe-

cific number of values in DX or every value in it (cf. Section 4.3.1). In PopsSam-

ple, we explore a specific subset D1X of DX , which corresponds to a proportion

of the heuristics pie. The proportion is the argument PieceToCover P r0, 1s. When

PieceToCover is 1, PopsSample becomes a complete search method as it explores

all the DX set values.

Example 6.1. Figure 10 demonstrates the heuristics-probabilities pie for the Ex-

ample 5.1: Each P piq corresponds to a value vi in DX . In this case, a PopsSam-

ple(0.5, 1) invocation would explore half the pie. E.g., the choices that correspond

to the heuristics P p1q ` P p2q ` P p3q or P p2q ` P p5q make half the pie and more.

A more detailed step by step explanation follows.

‚ We are inside the while loop of a PopsSample(0.5, 1) call.

‚ CoveredPiece is initially 0; the loop stops when CoveredPiece exceeds 0.5.

‚ ValuesOrderHeuristic(DX , 1) is called.

‚ According to Example 5.1, this function will return a value out of

tv1, v2, v3, v4, v5u.

‚ Each value vi has been evaluated with a heuristic value hi.

‚ Most specifically, h1 “ 1, h2 “ 5, h3 “ 2, h4 “ 4, and h5 “ 3.

‚ The probability that vi is selected by ValuesOrderHeuristic is P piq, which

is calculated using the above evaluations together with Lemma 5.1.

‚ Thus, the respective probabilities are P p1q “ 0.07, P p2q “ 0.33, P p3q “ 0.13,

P p4q “ 0.27, and P p5q “ 0.20.

‚ Again, all the above are probabilities (P piq) of the event that a specific value

(vi) will be selected. Therefore, every value can be selected in each iteration.

‚ Suppose that v5 is selected at the first iteration with P p5q “ 0.20.

‚ This probability is also used to increase the current CoveredPiece, which be-

comes 0.20 too.

‚ X is assigned v5.

After the assignment, PopsSample(0.5, 1 ` 99
|X |

) is called. Please note the slight

increase of the conf value. This recursive call will choose another variable out of

X and enter the while loop again. This loop will try to assign a value to the new

variable from its domain. If the attempts fail, we continue back to the first while

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 17

loop, which was described in the above bullets.

‚ The assignment of v5 to X is undone, v5 is removed from the domain, and

another iteration begins.

‚ We proceed to the second iteration, as the PieceToCover (0.5) is still greater

than the CoveredPiece (0.2).

‚ Let’s say that v2 is then chosen by ValuesOrderHeuristic with a P p2q “

0.33 probability.

‚ CoveredPiece now equals 0.20` 0.33 “ 0.53.

Again, PopsSample(0.5, 1` 99
|X |

) is called. If the attempts to instantiate the next

variable fail, we are back to the first while loop:

‚ The assignment of v2 to X is undone.

‚ We proceed to the third iteration.

‚ However, CoveredPiece (0.53) is now greater than PieceToCover (0.5).

‚ More than half of the pie of the choices for X has been already explored; no

other alternatives are examined.

‚ The rest of the values v1, v3, v4 are left unused/unexplored. This makes

PopsSample an incomplete search method, as it may override a solution (which

involves for example these values) for the sake of speed.

P p1q

P p2q

P p3q

P p4q

P p5q

Fig. 10. The heuristics-probabilities pie chart for Example 5.1

Again, LDS is an incomplete search method too; at each search tree node, it

may explore only a limited number of the available choices. The difference with our

method is that we may explore a limited proportion of the heuristics pie of choices,

which makes our method more “heuristics-aware.” This means that the number of

the explored choices by our method in a specific node may vary, depending on how

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

18 Nikolaos Pothitos and Panagiotis Stamatopoulos

the heuristics pie is distributed to the choices. On the other hand, LDS explores a

fixed number of choices, independently of the heuristics pie distribution.

It’s worth noting that while more variables get instantiated, the conf value grad-

ually increases. Besides, heuristic estimations tend to be more reliable when we have

less unassigned variables.

Example 6.2. We will consider the above Example 6.1 for a PopsSample(0.5, 2)

call, i.e. for conf “ 2.

According to Lemma 5.1, the probabilities for conf “ 2 are computed as P piq “
h2
i

ř

j h2
j
. For example, P p1q “

h2
1

ř

j h2
j
“ 12

12`52`22`42`32 “ 0.02. The other probabilities

are P p2q “ 0.45, P p3q “ 0.07, P p4q “ 0.29, and P p5q “ 0.16. Thus, the pie is

redistributed as in Figure 11.

While conf-idence increases, the value v2 which had initially the greatest heuris-

tic evaluation h2 is even more likely to be selected, as P p2q increases too. In other

words, we get closer to total determinism and closer to complete confidence in the

highest heuristic evaluation: In total determinism (in systematic search) v2 would

have been always selected with a certain probability 1.

P p1q

P p2q

P p3q

P p4q

P p5q

Fig. 11. The previous heuristics-probabilities pie chart when conf “ 2

6.2. POPSSAMPLE declaration using our search methods framework

Figure 12 expresses graphically the PopsSample method using our search methods

framework (Section 3).

One essential difference with DFS is the instantiation goal for each variable.

Instantiate3 takes one more argument, namely CoveredPiece. When this exceeds

PieceToCover, the goal fails.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 19

Label3(X)

AND

Instantiate3(X, CoveredPiece)

OR

X Ð value AND

DXÐDX´tvalueu Instantiate3(X, CoveredPiece `
hconf
XÐvalue

ř

vPDXinit
hconf
XÐv

)

Label3(X ´tXu)

Fig. 12. The goals that build up PopsSample

‚ Instantiate3(X, CoveredPiece) := failure, if DX “ H,

‚ Instantiate3(X, CoveredPiece) := failure, if CoveredPiece ą PieceToCover,

‚ Instantiate3(X, CoveredPiece) := OR(XÐvalue, AND(DXÐDX´tvalueu,

Instantiate3(X, CoveredPiece `
hconf
XÐvalue

ř

vPDXinit
hconf
XÐv

))), otherwise.

6.3. Heuristic confidence vs. node level

An important detail in PopsSample appearing in Fig. 9, is the increase in conf as

the current search tree node level deepens.

When we make the first recursive PopsSample call (inside while), we have

already made an assignment. Hence, the current tree level will be augmented by 1

and conf will be increased by 100´conf
|X |

.

Each subsequent recursive call deepens search by 1, until the current depth

reaches |X |, which means that every variable in X has been assigned a value. For

a specific depth k the conf value is increased by k ¨ 100´conf
|X |

. Finally, when k “ |X |,

the conf argument of PopsSample will become equal to the value 100.

The following is not guaranteed, but in the deepest node levels, heuristics are

usually more accurate, because more variables have been instantiated, and we have

a clearer picture of the problem. In our framework, more accuracy means more

confidence, that’s why we increase conf as the search method proceeds with the

assignments.

6.4. POPSSAMPLE average complexity

The PopsSample complexity depends on PieceToCover argument and the heuristic

function distribution.

Lemma 6.1. Let n be the constrained variables number and let d be the average

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

20 Nikolaos Pothitos and Panagiotis Stamatopoulos

domain size. Then, the average complexity of a PopsSamplepPieceToCover, confq

call is Opdn ¨ PieceToCovernq.

Proof. An initial PopsSample(PieceToCover, conf) call iterates through the values

of, let’s say, the first variable X1. If the heuristic function numbers for the values

in DX1
are uniformly distributed, the expected value for hX1Ðvalue would be µ “

ř

vPDX1
hXÐv

|DX1
|

.

Thus, to reach the pie proportion A “ PieceToCover ¨
ř

vPDX
hXÐv, we need

A{µ “ PieceToCover ¨ |DX1 | iterations, i.e. OpPieceToCover ¨ dq loops.

The total time needed is T1 “ OpPieceToCover¨dq¨T2, where T2 is the time for the

PopsSample call inside the loop. It also holds that T2 “ OpPieceToCover ¨ dq ¨ T3,

etc., and finally Tn “ OpPieceToCover ¨ dq. In conclusion, the aggregate complexity

is OpPieceToCovern ¨ dnq for the initial call.

We can observe that PopsSample(1, conf) is equivalent to a complete search space

exploration, which has an Opdnq time complexity.

6.5. The motivation behind POPS

Finding the best conf is the motivation behind PoPS. Unfortunately, we do not

know a priori which conf is the best parameter for PopsSample. However, we can

find it by trial and error. In Fig. 13, the PoPS function invokes PopsSample for

SamplesNum different confi values, including the values 0 and 100.

Each different confi is used in turn. Initially, the Coveri parameter in the PoPS

algorithm is zero for every confi. When a specific confi has been examined, the

corresponding Coveri is increased by 1
d , where d is the average domain size. When

the second iteration over a specific confi ends, the Coveri is increased again by 1
d

and so on.

In this way, each confi is given the same opportunity (search space) to find a

solution. If some confi does not produce a solution, it is deactivated. It is reactivated

only if all other confi’s fail to produce a solution.

7. Empirical Evaluations

The gradual switch from randomness to determinism can boost search in demanding

CSPs, such as course scheduling and the radio frequency assignment problems.

With the help of our free constraint programming C++ library Naxos Solver,5

we solved official instances of these problems for different heuristic distribution

configurations.

The source code for our evaluations is freely available at http://di.uoa.gr/

~pothitos/PoPS including the problem datasets. The experiments were conducted

on an HP computer with an Intel dual-core E6750 processor clocked at 2.66 GHz

with 2 GB of memory and a Xubuntu Linux 12.04 operating system.

http://di.uoa.gr/~pothitos/PoPS
http://di.uoa.gr/~pothitos/PoPS

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 21

function PoPS

local variables:

SamplesNum: how many different conf values are initially employed

confi: array with all the initially employed conf values

Samplei: a Boolean array; if its ith element is false, the corresponding

confi value is currently ignored

Coveri: corresponding “piece to cover” argument for PopsSample call

d: average domain size of the constrained variables

for i from 1 to SamplesNum do

Samplei is activated

Coveri Ð 0

confi Ð 100 ¨ i´1
SamplesNum´1

end for

while the available time is not exhausted do

for each active Samplei do

if PopsSample(Coveri, confi) did not return a solution then

Samplei is deactivated

end if

Coveri Ð Coveri `
1
d

end for

if every Samplei is deactivated then

Activate every Samplei Ź to keep searching.

end if

end while

end function

Fig. 13. Piece of Pie Search (PoPS) Method

In the following three subsections (7.1, 7.2, 7.3) the experiments are repeated

for different conf values, as we do not use PoPS. On the other hand, in the last

subsection 7.4, PoPS automatically chooses by itself the employed conf values.

7.1. University course scheduling

Automated timetabling is nowadays a crucial application, as many educational insti-

tutions still use ad hoc manual processes to schedule their courses. The International

Timetabling Competition (ITC) is an attempt to unify all these processes. We bor-

rowed the fourteen instances of the latest contest track concerning universities.35

In these problems, we have to assign valid teaching periods and rooms to the

curriculum lectures. The objective is to distribute them evenly during the week but

without having gaps between them, if scheduled on the same day; each gap increases

the solution cost.36 As variables ordering heuristic, we used minimum remaining

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

22 Nikolaos Pothitos and Panagiotis Stamatopoulos

values and degree for tie breaking, and we randomized it using the function in

Lemma 5.1.

Due to the ITC specifications, we had 333 seconds in our machine to solve each

instance and minimize the solution cost as much as we could. Figures 14 and 15

display the minimum solution costs found per instance for various conf values. We

observe that as conf increases the costs tend to a specific number, whilst for small

conf values we have fluctuations because search becomes more random.

600

650

700

750

800

850

900

950

0 20 40 60 80 100 120 140

S
ol

u
ti

o
n

C
o
st

conf

Ing0203-2

Ing0304-1

Ing0304-3

Ing0405-2

Ing0506-3

Ing0708-1

Fig. 14. Timetabling solutions costs vs. conf

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 20 40 60 80 100 120 140

S
ol

u
ti

on
C

os
t

conf

Fis0506-1

Ing0405-3

Let0405-1

Ing0506-1

Ing0607-2

Ing0607-3

Fis0506-2

Let0506-2

Fig. 15. Solutions for the rest of the ITC instances

It was expected that for high conf values the results would be more constant,

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 23

as the search process approximates the default depth-first-search (DFS). For the

marginal low values, e.g. conf “ 0, search is completely stochastic and the results

are worse on average, as we have higher solution costs. However, the evaluations for

intermediate conf values, e.g. conf « 20, are more promising. Remember that an

intermediate conf value favors the selection which corresponds to the best heuristic

evaluation, but it also gives room to other selections (the “outsiders”) as their

probabilities are not zero.

The automatic selection of the best conf is an open question here; in Section 7.4,

PoPS finds automatically the best conf values.

In practice, as shown in Fig. 14 and 15, a conf value around 100 actually repre-

sents infinity, because search tends to produce the same solutions for conf ě 100.

It is worth to mention that in Fig. 15 the only solution found for the Let0405-1

instance, depicted with an asterisk ˚, was for an intermediate conf “ 10.

7.2. Radio link frequency assignment

Another important real problem is the frequency assignment, in which we have

to assign a frequency to each radio transmitter with the objective to minimize

the interference. The interference is minimized by assigning different frequencies to

every two transmitters that are close to each other.

The Centre Electronique de l’Armement (CELAR) provides a set of real datasets

for this NP-hard problem.3 We chose to solve the five so-called “MAX” problem in-

stances, namely SCEN06–SCEN10, in which, generally speaking, we try to maximize

the number of the satisfied soft constraints. Similarly to the above course scheduling

experiments, as variables ordering heuristic we used minimum remaining values and

degree for tie breaking, and we randomized it using the function in Lemma 5.1.

For each of these instances, we had 15 minutes to explore the search space. We

recorded the best (lowest) solution costs found so far in Fig. 16 for several conf

values. Approximately the same as in course scheduling, the lowest solution costs

occur around conf « 10, which gives better results on average than the marginal

conf values. This means that we achieve best results when the confidence to our

heuristic is neither too high nor very low.

7.3. POPSSAMPLE during hard optimization

The conf parameter can refine any search method that adopts our heuristic frame-

work. The PopsSample method goes a step further: it incorporates our heuristic

confidence semantics into its search engine.

In order to solve the first university course timetabling instance (Fis0506-1 of

Section 7.1), we invoked PopsSample for various PieceToCover and conf values

and we plotted the best solution costs found in Figure 17. The third dimension is

the cost of the solutions found: the lower the solution cost is, the more qualitative

timetable is produced.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

24 Nikolaos Pothitos and Panagiotis Stamatopoulos

280000

300000

320000

340000

SCEN07

10000

11000

12000

SCEN10

460

480

500

520

540

S
o
lu

ti
on

C
os

t
(t

h
ou

sa
n

d
s)

SCEN09

170

180

190

SCEN06

8.4

8.6

0 20 40 60 80 100 120

conf

SCEN08

Fig. 16. Unsatisfied soft constraints increase cost

DFS
Iterative
Broadening

LDS

PieceToCover
0

0.5
1

020406080100120140

conf

50

100

150

200
250

300

350

400

450

S
ol

u
ti

on
C

os
t

Fig. 17. PopsSample for the first ITC instance

In the same graphs, we include some of the well-known search methods results,

such as DFS, LDS, and Iterative Broadening, implemented in the same solver, with

only their best solution cost depicted as a plane grid, in order to make comparisons

easily.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 25

7.4. POPS vs. other search methods

In the above sections, it was not easy to figure out which is the best PieceToCover

and conf combination. That is why we employed PoPS to solve the fourteen course

timetabling instances.

As described in Section 6.5, PoPS uses several conf values and favors the most

fruitful ones. We used five conf samples, i.e. 0, 25, 50, 75, and 100, by setting

SamplesNum equal to 5. In this way, PoPS constructed solutions with lower costs

than the other methods, except for the fifth instance, as illustrated in Table 1.

In this section, we used least constraining value as ValuesOrderHeuristic,

and we randomized it using the function in Lemma 5.1. The time limit for all the

methods was set to 15 minutes.

Table 1. Solution costs for fourteen ITC instances

Instance PoPS LDS DFS It. Broad.

Fis0506-1 105 171 345 286

Ing0203-2 241 288 698 321

Ing0304-1 279 307 578 353
Ing0405-3 195 215 817 235

Let0405-1 655 627 X X

Ing0506-1 307 311 812 342
Ing0607-2 282 283 1184 328

Ing0607-3 223 239 635 262

Ing0304-3 288 294 675 370
Ing0405-2 265 284 877 344

Fis0506-2 12 33 486 34
Let0506-2 713 783 1621 937

Ing0506-3 231 256 660 280

Ing0708-1 223 227 660 264

8. Conclusions and Perspectives

The initial contribution of this work is the provision of an interface that everyone

can use to define their search methods. Apart from easing the declaration of custom

search methods, we elaborated on the algorithm behind the scenes supporting our

interface in an open source solver.

We also presented a well-founded paradigm to exploit both stochastic and de-

terministic heuristics. Empirical evaluations showed that our hybrid approach can

produce better results than fully random or fully deterministic methodologies.

In order to achieve this, we approached and used heuristics as a confidence

and reliability measure. By exploiting these heuristic semantics, we were able to

produce a new efficient search method, namely PoPS, that can outperform other

methodologies. In general, our proposed framework gives the opportunity to exploit

“on the fly” whichever heuristic confidence fluctuations occur.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

26 Nikolaos Pothitos and Panagiotis Stamatopoulos

In the future, it will be challenging to parallelize it, as it supports a whole grid

of strategies, by concurrently invoking PopsSample with several PieceToCover and

conf arguments.

Constraint Programming consists of the CSP definition and search phases. A

crucial goal in this area is to make these two phases as independent as possible

of each other.6 The presented search methods interface was one step into making

the search phase more transparent. But the search phase doesn’t include only the

search method; it includes also mechanisms that check if the constraints are violated

and enforces a kind of consistency between the domains of the variables that are

connected via constraints.37

Therefore, in the next years, it would be also important to modularize the con-

sistency enforcement part of the search phase, as we did in this work for the search

methods.

Acknowledgments

We want to thank Foivos Theocharis who initially built the search methods library

Amorgos, which is available together with Naxos.5 We also thank the anonymous

reviewers for their constructive comments.

References

1. M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, fourth edn. (Springer,
New York, 2012).

2. A. M. Malik, J. McInnes and P. van Beek, Optimal basic block instruction scheduling
for multiple-issue processors using constraint programming, International Journal on
Artificial Intelligence Tools 17(01) (2008) 37–54.

3. B. Cabon, S. de Givry, L. Lobjois, T. Schiex and J. P. Warners, Radio link frequency
assignment, Constraints 4(1) (1999) 79–89.

4. P. Barahona, L. Krippahl and O. Perriquet, Bioinformatics: A challenge to constraint
programming, in Hybrid Optimization, eds. P. Van Hentenryck and M. Milano, 45
(Springer, New York, 2011) pp. 463–487.

5. N. Pothitos, Naxos Solver http://github.com/pothitos/naxos, (2017).
6. E. C. Freuder and B. O’Sullivan, Grand challenges for constraint programming, Con-

straints 19(2) (2014) 150–162.
7. D. Zhang, Y. Liu, R. M’Hallah and S. C. Leung, A simulated annealing with a new

neighborhood structure based algorithm for high school timetabling problems, Euro-
pean Journal of Operational Research 203(3) (2010) 550–558.

8. E. K. Burke, J. Mareček, A. J. Parkes and H. Rudová, Decomposition, reformulation,
and diving in university course timetabling, Computers & Operations Research 37(3)
(2010) 582–597.

9. R. J. Vanderbei, Linear Programming: Foundations and Extensions, fourth edn.
(Springer, New York, 2014).

10. L. Fortnow, The status of the P versus NP problem, Communications of the ACM
52(9) (2009) 78–86.

11. N. Pothitos and P. Stamatopoulos, Piece of Pie Search: Confidently exploiting heuris-
tics, in SETN 2016: 9th Hellenic Conference on Artificial Intelligence, eds. N. Bassili-

http://github.com/pothitos/naxos

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 27

ades, A. Bikakis, D. Vrakas, I. P. Vlahavas and G. A. Vouros (ACM, New York, 2016),
pp. 8:1–8:8.

12. E. Tsang, Foundations of Constraint Satisfaction (Books on Demand, Norderstedt,
2014).

13. ECLiPSe constraint programming system http://eclipseclp.org, (2017).
14. Ilog Solver http://ilog.com/products/cp, (2017).
15. S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall,

2010), ch. 6, pp. 202–233, third edn.
16. I. P. Gent and T. Walsh, CSPlib: A benchmark library for constraints, in CP 1999:

5th International Conference on Principles and Practice of Constraint Programming,
Alexandria, Virginia, ed. J. Jaffar LNCS 1713, (Springer, Heidelberg, 1999), pp. 480–
481. http://CSPLib.org.

17. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press,
2004).

18. Gecode: Generic constraint development environment http://gecode.org, (2017).
19. M. L. Ginsberg and W. D. Harvey, Iterative broadening, Artificial Intelligence 55(2-3)

(1992) 367–383.
20. J.-C. Régin, M. Rezgui and A. Malapert, Improvement of the embarrassingly par-

allel search for data centers, in CP 2014 , ed. B. O’Sullivan, LNCS 8656 (Springer
International Publishing, Switzerland, 2014) pp. 622–635.

21. N. Pothitos and P. Stamatopoulos, Constraint Programming MapReduce’d, in SETN
2016: 9th Hellenic Conference on Artificial Intelligence, eds. N. Bassiliades, A. Bikakis,
D. Vrakas, I. P. Vlahavas and G. A. Vouros (ACM, New York, 2016), pp. 5:1–5:4.

22. P. Prosser and C. Unsworth, Limited discrepancy search revisited, J. Experim. Algor.
16 (2011) 1.6:1–1.6:18.

23. R. Barták, Incomplete depth-first search techniques: A short survey, in CPDC 2004:
6th Workshop on Constraint Programming for Decision and Control (Institute of Au-
tomation Control, Silesian University of Technology, 2004), pp. 7–14.

24. R. Barták and H. Rudová, Limited assignments: A new cutoff strategy for incomplete
depth-first search, in SAC 2005: Symposium on Applied Computing, Santa Fe, New
Mexico, eds. H. Haddad, L. M. Liebrock, A. Omicini and R. L. Wainwright (ACM,
New York, 2005), pp. 388–392.

25. T. Walsh, Depth-bounded discrepancy search, in IJCAI 1997: 15th International Joint
Conference on Artificial Intelligence, Nagoya, Japan, ed. M. E. Pollack 2, (Morgan
Kaufmann, San Francisco, 1997), pp. 1388–1393.

26. Y. Xu, D. Stern and H. Samulowitz, Learning adaptation to solve constraint problems,
in LION 3: 3rd International Conference on Learning and Intelligent Optimization
(Springer, 2009).

27. B. Jafari and M. Mouhoub, Heuristic techniques for variable and value ordering in
CSPs, in GECCO 2011: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, Dublin (ACM, New York, 2011), pp. 457–464.

28. H. H. Hoos and E. Tsang, Local search methods, in Handbook of Constraint Program-
ming , eds. F. Rossi, P. van Beek and T. Walsh, Foundations of Artificial Intelligence
(Elsevier Science, Amsterdam, 2006) pp. 135–167.

29. W. Cohen, R. Greiner and D. Schuurmans, Probabilistic hill-climbing, in Comp. Learn.
Theory and Natural Learn. Syst., eds. S. J. Hanson, T. Petsche, M. Kearns and R. L.
Rivest II, (The MIT Press, Cambridge, 1994), pp. 171–181.

30. S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, Optimization by simulated anneal-
ing, Science 220(4598) (1983) 671–680.

31. J. L. Bresina, Heuristic-biased stochastic sampling, in AAAI 1996: 13th National Con-

http://eclipseclp.org
http://ilog.com/products/cp
http://CSPLib.org
http://gecode.org

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

28 Nikolaos Pothitos and Panagiotis Stamatopoulos

ference on Artificial Intelligence, Portland, Oregon, eds. W. J. Clancey and D. S. Weld
1, (AAAI Press, Menlo Park, 1996), pp. 271–278.

32. V. A. Cicirello and S. F. Smith, Enhancing stochastic search performance by value-
biased randomization of heuristics, Journal of Heuristics 11(1) (2005) 5–34.

33. C. P. Gomes, B. Selman, N. Crato and H. Kautz, Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problems, Journal of Automated Reasoning 24(1-2)
(2000) 67–100.

34. D. Sharma, V. Singh and C. Sharma, GA-based scheduling of FMS using roulette
wheel selection process, in SocProS 2011: International Conference on Soft Computing
for Problem Solving 131, (Springer, 2012), pp. 931–940.

35. B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes,
L. Di Gaspero, R. Qu and E. K. Burke, Setting the research agenda in automated
timetabling: The second international timetabling competition, INFORMS Journal
on Computing 22(1) (2010) 120–130.

36. N. Pothitos, P. Stamatopoulos and K. Zervoudakis, Course scheduling in an adjustable
constraint propagation schema, in ICTAI 2012: 24th IEEE International Conference
on Tools with Artificial Intelligence 1, (IEEE, 2012), pp. 335–343.

37. H. Chen, V. Dalmau and B. Grußien, Arc consistency and friends, Journal of Logic
and Computation 23(1) (2013) 87–108.

Appendix A. An Algorithm that Satisfies Search Methods’ Goals

In Section 3 we described a high-level language to define search methods. This

framework consists of goals that support recursion (goals that return another goal

or success) and meta-goals used to combine other goals in a conjunctive (AND) or

disjunctive (OR) manner.

This is a not only a theoretical model; it has been implemented in a C++

Constraint Programming Naxos Solver. DFS and Iterative Broadening have been

already declared in Naxos without losing much of the above expressiveness, along

with many other search methods in the solver’s repository.5

The search methods’ goals cannot solve by themselves any CSP; we need a

procedure to satisfy these goals. Solve algorithm in Figure 18 uses an advanced

“stack of stacks” data structure to store goals. Initially, the stack of stacks contains

just a single goal, e.g. Broadening(1) or Label(X) for DFS, as in Figure 19(a).

Appendix A.1. The “stack of stacks” data structure

In order to understand the Solve pseudocode, we should look closer at the under-

lying data structure in Fig. 19. Each subfigure from (a) to (v) displays a snapshot

of the “stack of stacks” main data structure while trying to satisfy the Label(X)

goal for the Thessaly-coloring problem. Here we focus on the data structure itself.

‚ The “stack of the stacks” is outlined by the outer borders of each subfigure.

– The frames of the (outer) stack are connected with an OR relationship.

‚ Each frame of the outer stack is a stack too, containing goals.

– The goals of each (inner) stack are connected with an AND relationship.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 29

function Solve

local variables:

stacks: the “stack of stacks” instance

Goal : current goal that has to be satisfied

NextGoal : generated goal by current goal’s execution

while time limit has not been reached do

if stacks.top is not empty then

Goal Ð stacks.top.poppq

else

Goal Ð stacks.top.pending

stacks.top.pending Ð get the next goal of the frame that “pending”

points to or (if there is not such a goal) get

the next “pending” goal of that frame

end if

if Goal is an AND-goal then

stacks.top.push(2nd subgoal of Goal)

stacks.top.push(1st subgoal of Goal)

else if Goal is an OR-goal then

stacks.top.push(2nd subgoal of Goal)

stacks.push() Ź Push an empty frame

stacks.top.push(1st subgoal of Goal)

stacks.top.pending Ð the goal after the 2nd subgoal in the below frame

else

NextGoal Ð Goal .execute()

if PropagateConstraintspq “ false then

stacks.pop() Ź Backtrack to previous frame

if stacks empty then

return failure

end if

else if NextGoal ‰ null then

stacks.top.push(NextGoal)

else if stacks.top is empty and stacks.top.pending “ null then

return success

end if

end if

end while

return failure

end function

Fig. 18. Goals’ Satisfaction Algorithm

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

30 Nikolaos Pothitos and Panagiotis Stamatopoulos

Fig. 19. Solve with DFS example: X1 instantiation and X2 instantiation attempt

‚ Each inner stack contains additionally a pending pointer.

– It points to the first unsatisfied goal of the previous inner stacks.

Appendix A.2. SOLVE in a nutshell

We can see the “stack of stacks” data structure inside the Solve algorithm.

‚ The outer stack corresponds to the “stacks” variable.

‚ The “stacks.top” expression corresponds to the top frame of the “stacks.”

‚ The “stacks.top.pending” corresponds to the pointer of the top frame.

The algorithm is wrapped into a while loop. Each iteration examines another

goal.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 31

Inside the loop we have two “if” statements. In the first “if,” we select the goal

that we will attempt to satisfy. In the second “if,” we check if the Goal is a meta-

goal and we handle properly its two subgoals. If it is not a meta-goal, we simply

“execute()” it and store the returned value into the NextGoal variable. A “null”

returned value means that the executed Goal did not generate another goal to be

satisfied.

After each Goal execution, PropagateConstraints is called. A simple im-

plementation for this function would just check if every constraint is still valid. If

even a single constraint is violated, PropagateConstraints should return false.

However, as its name implies, PropagateConstraints can do more just than

checking constraints: it may remove no-good values from the variables and enforce

a kind of “consistency” between them, but this is beyond the scope of this paper to

further analyze.37

Appendix A.3. SOLVE in action

Let’s execute Solve to find a solution to the Thessaly-coloring (Problem 1) using

the DFS method goals (Section 3.3). The snapshots of the “stack of stacks” data

structure are visible in the corresponding subfigures of Figures 19 to 22:

(a) Before Solve begins, the first goal to be satisfied should be already in the

single inner stack. In the case of DFS, the initial goal is Label(X) which in

Thessaly-coloring is equivalent to Label(tX1, X2, X3, X4u).

(b) Solve begins and pops the Label goal out of the inner stack and executes it.

By definition, Label returns an AND goal. In other words, Label is substituted

by an AND goal at the inner stack.

This AND goal is then popped out in turn by the next Solve iteration,

and after its execution it returns its two subgoals Instantiate(tX1u) and

Label(tX2, X3, X4u). At this time, the “stack of stacks” looks like Fig. 19(b).

(c) By definition, Instantiate(tX1u) is substituted by an OR goal. The

complete expression for this goal is OR(X1 Ð 1, AND(DX1
Ð DX1

´

t1u, Instantiate(X1))). In this case, Solve algorithm should cover three re-

quirements.

1. Execute the first subgoal and all the returned/generated goals.

2. Execute the “pending” goals that were unsatisfied before the OR-goal.

3. If the above fail, undo all the actions and execute the second subgoal.

In Fig. 19(c), all three requirements have been implemented.

1. The first subgoal is in the top stack and will be executed in the next iteration.

2. The “pending” pointer of the top stack points to the next unsatisfied goal.

3. Most importantly, a new stack has been created on top of the previous inner

stack. The new stack was added in order to isolate the previous inner stack.

This would be useful if any of the top stack goals fails: The top stack will

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

32 Nikolaos Pothitos and Panagiotis Stamatopoulos

be popped, and the second OR-subgoal that is stored in the previous inner

stack will be executed.

For simplicity reasons, instead of adding the whole second subgoal AND(DX1
Ð

DX1 ´t1u, Instantiate(X1)) into the bottom stack in Fig. 19(c), we “un-

wrapped” it and added directly its two subgoals.

(d) X1Ð1 is executed. This assignment does not violate any constraint. This goal

did not return another goal, so the top stack is now empty.

(e) As the top stack is empty, Solve uses its “pending” pointer to fetch the next

goal. Therefore, Label(tX2, X3, X4u) is fetched and the “pending” pointer is

moved one step further, to the next goal. As there aren’t any more goals, the

top stack “pending” pointer is assigned the bottom stack “pending” value, which

is “null.”

The Label goal is executed and returns AND(Instantiate(X2),

Label(tX3, X4u)), which is executed in turn in the next iteration. The result is

depicted in Fig. 19(e).

(f) Instantiate(X2) is executed. As in (c), this is an OR goal, and a new stack is

pushed.

(g) X2Ð1 gets executed.

(h) The assignment makes PropagateConstraints fail, as it violates the X1 ‰

X2 constraint. Backtracking, i.e. popping the whole top stack, is activated.

(i) DX2
ÐDX2

´t1u is successfully executed. This removes the “no-good” value.

(j) Instantiate(X2) is executed again. However, this time the corresponding do-

main DX2
does not contain the removed value 1. Thus, the only value left to

assign to X2 is 3.

(k) X2Ð3 is successfully executed.

(l) Top stack is empty, so we fetch the “pending” goal Label(tX3, X4u) and set

“pending” equal to “null.” The Label goal returns an AND goal. Its two subgoals

are pushed on the top stack.

(m) Instantiate(X3) returns an OR goal. When this is executed, another stack is

pushed on top of the others.

(n) X3Ð1 is executed.

(o) PropagateConstraints fails, as the constraint X1 ‰ X3 is violated. The top

stack is immediately popped.

(p) The no-good value is removed after DX3ÐDX3´t1u execution.

(q) Instantiate(X3) is executed again for the new domain.

(r) The new assignment X3Ð2 is executed.

(s) PropagateConstraints now succeeds and, as the top stack is empty, we

proceed to the “pending” goal Label(tX4u). The execution of this goal generates

AND(Instantiate(X4), Label(tu)).

(t) Again, Instantiate(X4) produces an OR goal which, in turn, forces Solve to

push another stack on top of the others.

(u) X4Ð1 is executed.

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 33

Fig. 20. Solve with DFS example: X2 successful instantiation and X3 instantiation attempt

(v) The “pending” Label(H) is executed. By definition, this goal does not return

any other goal. This means that the top stack is empty. And as there isn’t any

other “pending” goal, Solve has reached a solution and returns success!

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

34 Nikolaos Pothitos and Panagiotis Stamatopoulos

Fig. 21. Solve with DFS example: X3 successful instantiation

May 31, 2018 22:25 WSPC/INSTRUCTION FILE Search˙Methods

Building Search Methods with Self-Confidence in a Constraint Programming Library 35

Fig. 22. Solve with DFS example: X4 instantiation

