
Journal of Intelligent Information Systems, 19:1, 111–134, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Efficient Management of Persistent Knowledge

DIMITRIS G. KAPOPOULOS dkapo@di.uoa.gr
MICHAEL HATZOPOULOS mike@di.uoa.gr
PANAGIOTIS STAMATOPOULOS takis@di.uoa.gr
Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis, Ilisia 157 84, Greece

Received March 27, 2000; Revised June 4, 2001; Accepted October 16, 2001

Abstract. Although computer speed has steadily increased and memory is getting cheaper, the need for storage
managers to deal efficiently with applications that cannot be held into main memory is vital. Dealing with large
quantities of clauses implies the use of persistent knowledge and thus, indexing methods are essential to access
efficiently the subset of clauses relevant to answering a query. We introduce PerKMan, a storage manager that uses
G-trees, and aims at efficient manipulation of large amounts of persistent knowledge. PerKMan may be connected
to Prolog systems that offer an external C language interface. As well as the fact that the storage manager allows
different arguments of a predicate to share a common index dimension in a novel manner, it indexes rules and
facts in the same manner. PerKMan handles compound terms efficiently and its data structures adapt their shape
to large dynamic volumes of clauses, no matter what the distribution. The storage manager achieves fast clause
retrieval and reasonable use of disk space.

Keywords: G-trees, performance evaluation, persistent knowledge, storage manager

1. Introduction

Although computer speed has steadily increased and memory is getting cheaper, the need for
storage managers to deal efficiently with applications that cannot be held into main memory
is vital. An example of such application might be a logic-based data mining system which
needs to access a very large telephone directory.

The efficient management of persistent knowledge in deductive database systems requires
the adoption of effective indexing schemes in order to save disk accesses, while maintain-
ing reasonable use of available space. Deductive database systems incorporate the func-
tionality of both logic programming and database systems. They have four major architec-
tures: ‘logic programming systems enhanced with database functionality,’ e.g., NU-Prolog
(Ramamohanarao et al., 1988), ‘database access from Prolog,’ e.g., BERMUDA (Ioannidis
et al., 1994), TERMdb (Cruickshank, 1994), ‘relational database systems enhanced with
inferential capabilities,’ e.g., Business System 12 (Boas and Boas, 1986), and ‘systems from
scratch,’ e.g., SICStus (Nilsson and Ellemtel, 1995), CORAL (Ramakrishnan et al., 1994),
Aditi (Vaghani et al., 1994), Glue-Nail (Derr et al., 1994), XSB (Sagonas et al., 1994),
ECLi PSe(ECLi PSe 3.7, 1998).

In multidimensional data structures, all attributes are treated in the same way and no
distinction exists between primary and secondary keys. This seems to be suitable in a
knowledge base environment, where queries are not predictable and clauses may be used
in a variety of input/output combinations.

112 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

G-trees (Kapopoulos and Hatzopoulos, 1999; Kumar, 1994) are adaptable multidimen-
sional structures that combines the features of B-trees and grid files. They have the ability to
adapt their shape to high dynamic data spaces and to non-uniformly distributed data. G-trees
divide the data space into a grid of variable size partitions. Only non-empty partitions, which
span the data space, are stored in a B-tree-like organization. G-trees use a variable-length
partition numbering scheme. Each partition is assigned a unique partition number. This
number is a binary string of 0’s and 1’s, where leading zeros are significant. Each partition
corresponds to a physical disk block, and data points are assigned to it until it is full.

A full partition, P , is split into two equal sub-partitions P0 and P1, e.g., if P = 10, then
P0 = 100 and P1 = 101. The points of P are moved to P0 and P1. P is deleted then from
the G-tree, while P0 and P1, if non-empty, are inserted. The new entry is assigned to the
appropriate child Pc. If there is room, the new entry is added to Pc. Otherwise, Pc must be
split. The splitting dimension alternates with a period equal to the number of dimensions in
a way that each dimension appears once in a cycle. No meta-information is stored regarding
splitting. The splitting point is fixed because the attribute domains are split in the middle.

Figure 1 shows the partitioning of a two-dimensional space with non-uniform distribution
and data block capacity BC = 2. The correspondence of partition numbers to letters is only
for presentation. Internally, the partition numbers are stored as binary strings.

A leaf level entry in a G-tree consists of a partition number and a pointer to the block
where the data points of this partition are stored. Figure 2 shows the internal and the leaf
layer of the G-tree for the partitions of figure 1.

In Kumar (1994), the G-tree arithmetic is presented as well as algorithms for insertion,
deletion and processing of range queries. Moreover, the advantages of the G-tree over
similar data structures are examined.

This work discusses PerKMan, a new storage manager that makes database access from
Prolog and aims at efficient manipulation of large amount of persistent knowledge. The

Figure 1. The partition of a two-dimensional space.

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 113

Figure 2. The G-tree for the partitions of figure 1.

rest of the paper is organized as follows: Section 2 deals with the syntax of predicates for
the manipulation of persistent knowledge. Then, Section 3 presents the use of user-defined
domains. Section 4 explains the data structures of the storage manager and Section 5 gives
some formulae of its performance. Next, Section 6 exhibits experimental results and show
that PerKMan achieves fast clause retrieval and good utilization of disk space. Section 6
concludes this work with a summary and a future research issue.

2. Syntax

PerKMan provides persistent storage of any size of knowledge and may be connected to
Prolog systems offering an external C language interface. Throughout this paper, the word
‘Prolog’ stands for the ‘Edinburgh standard’. PerKMan is used for large volumes of clauses
that are not possible to fit into main memory. Otherwise for smaller programs, normal
Prolog should be used instead, because of the unnecessary overhead that PerKMan would
introduce. The design motivation of PerKMan has been the organization of persistent clauses
in a way that results in efficient update and retrieval operations.

The arguments of each permanent predicate belong to predefined domains and this cannot
be changed dynamically at run time. The user provides the declaration of these arguments.
User-defined domains are also declared, where they exist. From the Prolog point of view,
the definition and manipulation of knowledge may be achieved through appropriate built-in
predicates. These predicates have to be defined, using the external C language interface, in
terms of the functions provided by PerKMan. In the following, we describe the proposed
syntax only for few predicates due to space limitation.

PerKMan allows users to define custom domains built up from simple (sdomain) or
complex (cdomain) domains. Domains are created with cr dom/2. Its syntax is

cr dom(cdomain, domain {; domain})
domain = cdomain | sdomain | 〈 functor〉 (domain {, domain}) | udom.

The symbol ; denotes disjunction. The universal domain udom incorporates any structure
including lists. The meta-symbol | is used for the declaration of alternatives, the pair 〈 〉
stands for 0 or 1 instances of the included term and the pair { } for 0 or more instances.
A basic unit sdomain is one of the types atom, integer and real. The system grants as
much space as needed for the storage of sdomains.

?- cr dom(supp name,supplier(atom,atom)).
yes.

114 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

Apart from storing the data as an unsorted sequence of clauses (heap organization),
PerKMan supports the G-tree to store and retrieve clauses. A predicate definition is added
to a knowledge base with cr pred/2. Its syntax is

cr pred(predicate, ((argument, domain, y | n)
{, (argument, domain, y | n)})).

The value y(n) means the participation (or not) of the argument in the index.

?- cr pred(supplies, ((supplier,supp name, y),
(product, atom, y),
(price, integer, n)))

yes.

Although PerKMan does not exclude the definition of recursive domains, such as a list,
it does not employ them in indices due to their unpredictable number of elements.

A knowledge base is queried through PerKMan either with set-oriented or clause-oriented
operations. In clause-oriented operations further solutions are found through backtracking.
The retrieval of clauses can be transparent if a permanent predicate pred(X,Y,...) is
defined as pred(X,Y,...):-sel c(pred(X,Y,...)). The predicate sel c/1 selects
clauses in a clause-oriented mode.

?- sel c(supplies(supplier(stafford,terry),Product,Price)).
Product = television
Price = 230 more? -- ;

Product = telephone
Price = 40 more? --
yes.

Hence, from the user’s point of view, there is no difference between permanent (disk)
and temporary (main memory) predicate access.

3. User-defined domains

In this Section, we deal with the use of User-Defined Domains (UDDs) built up from simple
or complex domains. Appendices A and B contain the symbols in alphabetical order and
their corresponding definitions used throughout this paper. Appendix B summarizes symbols
used in formulae, whereas Appendix A includes the other symbols. Only for variables do
we use italics. For predicates, clauses and code we use courier fonts.

We can distinguish between two kinds of UDDs: Non-Recursive Domains (NRD) and
Recursive Domains (RD). The maximum number of elements for an argument defined on
a NRD is known in advance, whereas an argument defined on a RD has an unpredictable
number of elements. Compound terms or disjunction(s) of compound terms represent cus-
tom domains. A compound term consists of sub-terms. A functor may lead sub-terms. The

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 115

following program udd ex is an example of UDDs. The predicate ins c/1 inserts clauses
in a clause-oriented mode.

?- cr dom(q,a(z,c)).
?- cr dom(z,(d(atom);e(integer))).
?- cr dom(c,(f(s,t);w(integer))).
?- cr dom(s,s(integer)).
?- cr dom(t,(l(atom);v(atom))).
?- cr pred(pr,((name,q,y))).
?- ins c(pr(a(d(atm1),f(s(9),v(atm2))))).

3.1. Domain trees

PerKMan flattens UDDs in order to handle them efficiently. Domain Trees (DTs) of UDDs
include functors and sub-terms and helps understanding. Figure 3 shows the DT of q. We
use dashed lines for disjunction and continuous for conjunction. Functors are inside ‘’.

DTs are unbalanced AND/OR-trees. Simple domains reside on the leaf nodes of DTs
and the way we traverse them (the path) gives the form of the clauses. All possible paths
are constructed by successive replacements of UDDs. Because the hierarchical structure
of complex domains is flattened, they can be organized into G-trees. As an example, we
decompose the UDD q of the program udd ex. The symbols + and · denote disjunction and
conjunction, respectively.

q = z.c
= (atom + integer)·(s.t + integer)
= (atom + integer)·(integer·(atom + atom) + integer)
= atom·integer·atom + atom·integer·atom + atom·integer +

integer·integer·atom + integer·integer·atom + integer·integer

Figure 3. The tree of the user-defined domain q.

116 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

The six components of the last equation span the space of the alternative expressions and
each one represents the ordered leaf nodes (simple domains) of a possible path.

3.2. Path identity

For the storage of clauses involving UDDs, PerKMan uses a prefix PI (Path Identity)
that declares the correspondence between arguments and used terms. In other words, PI
declares the path of the DT that corresponds to the selected terms. Its use is necessi-
tated by the existence of disjunctions between sub-terms. We use the depth-first method
to traverse a DT, because this method is both simple and efficient. If there are alterna-
tives, we select a node according to a number that declares its position amongst the other
nodes of the disjunction. A PI is a sequence of these numbers. The order of terms cor-
responds to the place of terms in DTs and therefore there is no confusion in the creation
of PIs.

We examine the PI of the clause of the program udd ex. The first choice occurs at node
z. The d(atom) is chosen and thus 1 is the first element of PI. Next, at node c, we have the
selection of f(s,t), and so the second element of PI is 1. The last decision concerns node
t and the selection of v(atom) corresponds to number 2. We have PI = 1, 1, 2.

The storage of a clause includes its PI and the used terms. Only the arguments that
participate in indices are involved in PIs. The length of PIs is limited, for RDs are not
included in indices.

4. Data structures

The data structures that PerKMan uses to organize persistent knowledge form four areas:
User-Defined Domains (UDDA), Predicate Declarations (PDA), Index (IA) and Clauses
(CA) Area. The first two are loaded into main memory when a knowledge base is opened,
while the other two remain on disk. Figure 4 shows the above areas.

Figure 4. Data structures of PerKMan.

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 117

4.1. User-defined domains area

It includes the definitions of UDDs. An example of entries in the user-defined domains
area is

supp name = supplier(atom,atom).
expert fields = fields(atom,expert fields);atom.

UDDs and predicates are declared with the predicate cr dom/2 and cr pred/2, respec-
tively. Clauses are inserted with the predicate ins c/1, e.g.,

?- cr dom(expert fields,(fields(atom,expert fields);atom)).
?- cr pred(experts,((exp fld,expert fields, n),

(name, atom, y))).
?- ins c(experts(fields(databases,systems analysis),peterson)).

The value r in the field RD of the user-defined domains area declares recursion in the
corresponding domain. Recursions are found through DTs. From the above example only
the entry for the UDD expert fields is accomplished with the indicator r.

4.2. Predicate declarations area

It includes the predicate declarations as they are provided by the users and subsequently con-
verted by the system. It is divided into the ‘User Predicate Declarations Segment’ (UPDS)
and the ‘System Predicate Declarations Segment’ (SPDS).

UPDS: This contains for each persistent predicate, its name and arity, the domains of
its arguments and the participation of each argument in the index. Users give the above
declarations through cr pred/2.

SPDS: For the persistent predicates it contains their names, arity, domains, the number
of bits of the largest and the smallest partition (bmin, bmax) and the G-tree addresses in IA.

If at least one non-recursive UDD with compound term has been declared in the index
of a predicate, then the predicate arity and domains in SPDS are different from the ones in
UPDS. If a predicate PRi has in its index at least one argument defined on a compound term,
in general, it is Ni �= Mi . In SPDS, the predicate dimensions are related to simple domains.
When a clause is inserted, each of its arguments corresponds to the first non-occupied
dimension of the index that has the same domain type.

4.3. Index area

The IA is composed of G-trees and is used for the fast retrieval of clauses.
Each G-tree corresponds to one predicate. This means that clauses are organized in

parts according to the relation they implement. These parts are accessed easily because the
addresses of G-tree roots are held in main memory. The above organization of predicates
avoids accumulation in a big segment and speeds up the procedures of update and retrieval.

118 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

A G-tree dimension can be shared by two or more predicate arguments that belong to
different paths. These arguments have to be of the same type, e.g., the argument with domain
atom of the first path of the UDD q and the argument with the same domain type of the
second path can share an index dimension with data type atom. This means that the required
dimensions to index the domain q are integer, integer, atom and atom. Consequently, the
predicate pr of the program udd ex is declared in SPDS as,

pr(integer,integer,atom,atom).

If some G-tree dimensions are left without arguments (the opposite never happens), they
take a default value from their domain. This does not influence G-trees, for they are adaptable
structures. The number of the required dimensions to index a predicate is greater than or
equal to the number of the attributes that participate in the index, and less than or equal to
the number of the leaves of the DTs that the index includes. If the number of paths in a DT
is n and there are k different simple domain types in it and li j is the number of i-domains
in the j-path, 1 ≤ i ≤ k, then the number of required G-tree dimensions with i-domain type
is:

max
j=1,..,n

li j

The number of required dimensions to index a UDD is:

k∑
i=1

max
j=1,..,n

li j

We examine the insertion of the clause of the program udd ex. The first argument (atom)
corresponds to the third dimension, which has the same type. Likewise, the second argument
(integer) corresponds to the first dimension and the last argument (atom) to the fourth
dimension. The second dimension takes the default value that is not necessary to be stored
in the CA due to the existence of PIs. The clause is stored as ‘1,1,2 (atm1,9,atm2)’.

The retrieval procedure is analogous to the insertion one, e.g., the goal

?- pr(a(e(X),f(s(8),l(atm3)))).

triggers a search for clauses with PI = 2, 1, 1 and data (,8,atm3). When a query does
not have an explicit functor declaration, it is replaced with the set of goals that corresponds
to the paths of the DT, e.g., the query

?- pr(a(X,w(7))).

is analyzed into the goalspr(a(d(Y),w(7)) andpr(a(e(Y),w(7)). The first corresponds
to clauses with PI = 1, 2 and data (,7) while the second to clauses with PI = 2, 2 and
data (,7). The auxiliary variable Y does not appear in answers that have the form X =
d(atm4) or X = e(9). The most general query

?- pr(X).

is replaced by six calls.

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 119

The storage manager handles rules and facts in the same manner. Indexing the head of
rules is achieved by inserting them into the G-tree. In order to achieve that, PerKMan relates
the declaration of variables in rules head, since we only match with the head of rules, to the
lower values of their domains. For integer and real numbers ‘lower’ means the minimum
value that the variable could have, e.g., for integer it is −2147483647. For atoms the lower
value is ‘NULL’. Lower values are reserved by the manager and cannot be regarded as data.
For example, to retrieve rules with head goodprice(X,Y), the index is searched for the
partition where the entry goodprice(NULL,-2147483647) belongs. The clauses block of
this partition is accessed and rules like the goodprice(X,Y):-supplies(,X,Y),Y < 10
are found where they exist. Similarly, the rule goodprice(radio,Y):-Y < 60 is stored in
the clauses block of the partition of the clause goodprice(radio,-2147483647). Rules
in secondary storage are interpreted after their retrieval; that is, no compilation is needed
at run time. Non-ground facts are treated as rules, e.g., the goodprice(,20) is indexed
as goodprice(NULL,20). The lower values of complex domains are constructed from the
lower values of the simple domains that reside in the leaf nodes of their domain tree.

In order to make things clearer, we consider the following example program that deals
with courses attended by students in an informatics department. Courses are divided into
two groups. A course may be compulsory or optional. All students take databases as
the one of the compulsory courses. If a student has chosen the course analysis 2, then
analysis 1 is compulsory. The persistent predicate st cr/2 stores the courses of the
students. The letters in the comments of the program are used for better presentation of
clauses in figure 5. These are shown in italics.

Figure 5. The partition scheme of the program st cr.

120 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

?- cr pred(st cr, ((course,atom,y), (student,atom,y))).

?- ins c(st cr(,compilers)). % α

?- ins c(st cr(,databases)). % β

?- ins c(st cr(,software engineering)). % γ

?- ins c((st cr(X,analysis 1) :- st cr(X,analysis 2))). % δ

?- ins c((st cr(X,os 1) :- st cr(X,os 2))). % ε

?- ins c(st cr(dimas,computer networks)). % ζ

?- ins c(st cr(dimas,linear algebra)). % η

?- ins c(st cr(eframidis,expert systems)). % θ

?- ins c(st cr(eframidis,logic design)). % ι

?- ins c(st cr(vassileiou,speech processing)). % κ

?- ins c(st cr(alexiou,funcional programming)). % λ

?- ins c(st cr(konstandinou,image processing)). % µ

?- ins c(st cr(gregoriou,novel architectures)). % ν

?- ins c(st cr(petrou,robotics)). % ξ

?- ins c(st cr(dimitriou,files organization)). % o
?- ins c(st cr(fotiou,files organization)). % π

?- ins c(st cr(hatzis,image processing)). % ρ

?- ins c(st cr(lazarou,logic design)). % σ

?- ins c(st cr(lazarou,files organization)). % τ

?- ins c(st cr(coutris,teory of linear circuits)). % υ

Figure 5 shows the partition scheme of the above example.
Figure 6 shows the G-tree for the partitions of the program st cr.
In each recursive step of a rule application, PerKMan retrieves the first block that includes

at least one matching clause. The first matching clause is used for the next step. Backtracking
uses the second matching clause from the buffer and so on until all the matching clauses
are exhausted. Then, a second matching block comes into main memory. We do not support
the presentation of answers according to the insertion order of clauses, in order to avoid
additional cost. Query answers are stored in buffers. If an answer cannot fit in buffers, it
is cached and stored in a file. Garbage collection removes old answers. We use the LRU
(Least Recently Used block) policy to replace the data that has not been referenced for the
longest time.

Figure 6. The G-tree for the partitions of figure 5.

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 121

Figure 7. A clauses block structure.

4.4. Clauses area

The clauses of all persistent predicates compose the CA. Each block of clauses is composed
of a header, a clause allocation table (CAT), the clause declarations and the free space.
The header includes control information, the amount of free space, the number of clauses
in the block (NBC) and one pointer that is used to connect blocks in case of overflow. A
full block may overflow when its clauses have their arguments that participate in the index
identical. This means that the block cannot be split. This may occur when the index includes
only attributes that do not identify its predicate or there are many rules with variables in
the same indexing arguments. The size of a clause cannot be larger than the size of its
block.

A CAT contains NBC + 1 pointers. The first NBC pointers indicate the beginning of
clauses whereas the last one indicates the end of the last clause. A clause declaration con-
sists of the prefix PI, the arguments ARGi j , 1 ≤ i ≤ NBC, 1 ≤ j ≤ Nk, 1 ≤ k ≤ NBC and the
BODYi , when the clause is a rule. The use of CAT is necessary due to the variable length
of clauses. The order of clauses within a block is not significant. Figure 7 shows a block of
clauses.

A split occurs when the free space cannot accommodate a new clause. The splitting point
is fixed, as the attribute domains are split in the middle. For integer and real numbers, the
splitting point is the half of the sum of the upper and lower value of the considered interval.
For atoms, we use an algorithm that transforms them to unsigned long integers. This makes
possible an arithmetic comparison between arguments and splitting points for all data types.
There is a small possibility for two different atoms to be transformed to the same number
and a slight possibility not to find a dimension to split due to identical transformations. If
this happens, we use overflow blocks.

5. Cost formulae

In this Section we present some formulae for clauses insertion, deletion and simple queries
on predicates organized as G-trees. The creation of general formulae presents difficulties
due to the existence of the many parameters and complex rules.

122 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

5.1. Clause insertion

The index is searched for PL and if it does not exist, the search continues to find an ancestor
of PL (up to PL ′), moving backward in the leaf level. When the proper partition is found,
the corresponding clause block is accessed. If there is room, the clause is inserted in it.
Otherwise, we have a case of overflow and we split the partition. The old partition number
is deleted from the index, whereas the new partitions are inserted into it. If the partition
of the inserted clause does not exist in the index, then it is inserted into it and the clause
is stored into a new block. Let PF be the probability that a block cannot store any more
clauses. The insertion cost is

PBAI = hrba + (NPB − 1)sba + PE ∗ (1rba + (1 − PF) sba

+ PF ∗ ([delete one partition] + 2 ∗ [insert one partition] + 2 rba + 1sba))

+ (1 − PE) ∗ ([insert one partition] + 1rba)

= (h + 1 + 2 ∗ PE ∗ PF)rba + (NPB − 1 + PE) sba

+ PE ∗ PF ∗ [delete one partition]

+ (2 ∗ PE ∗ PF − PE + 1) ∗ [insert one partition]

Due to the possibility of successive splits or merges in the index it is

1sba ≤ [delete one partition] ≤ (2 ∗ h − 1)rba

1sba ≤ [insert one partition] ≤ (2 ∗ h + 1)rba

we have

PBAI ≥ (h + 1 + 2 ∗ PF ∗ PE)rba + (NPB + 3 ∗ PF ∗ PE)sba

PBAI ≤ (h + 1 + 2 ∗ PE ∗ PF)rba + (NPB − 1 + PE)sba

+ (2 ∗ h − 1) ∗ PE ∗ PFrba + (2 ∗ PE ∗ PF − PE + 1) ∗ 2 ∗ (h + 1)rba

= (3h + 2 + 3 ∗ PE ∗ PF ∗ (2 ∗ h + 1) − PE ∗ (2 ∗ h + 1)) rba

+ (NPB − 1 + PE)sba

5.2. Clause deletion

A clause deletion requires the following steps. The proper partition, say P , where the clause
may exist, is obtained as happens in case of insertion. Then the corresponding clauses block
is accessed. If after the deletion of a clause, the block does not underflow, the procedure
stops. Otherwise, Pand its complement are merged into their parent and the index is updated.
If the complement partition is empty and, thus, it does not exist in the index, the merge is
propagated upwards. PU is the underflow probability. We have

PBAD = hrba + (NPB − 1)sba + 1rba + (1 − PU)sba

+ PU ∗ (2 ∗ [delete one partition] + [insert one partition] + 2rba)

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 123

From the formulae of the previous Subsection, we have

PBAD ≥ (h + 1 + 2 ∗ PU)rba + (NPB + 2 ∗ PU)sba

PBAD ≤ (h + 1 + (6 ∗ h + 1) ∗ PU)rba + (NPB − PU)sba

5.3. Queries without variables

The answer to a query without variables is ‘true’ or ‘false’. We consider a query referring
to a single predicate. PBANV is the physical block access cost of a query without variables.
If PBANVF is the cost of searching the predicate facts, PBANVRq is the corresponding cost
of the qth rule of the predicate and r is the number of rules in the query, then

PBANV = PBANVF +
r∑

q=1

PBANVRq

The number of the descendants in a G-tree node depends on the size of the partition
numbers. Because this size is variable, we can only deal with the average order m of a
G-tree. If PNS, PRS and BS are the average size of partition numbers, the pointer size and
the block size in bytes respectively, we have

(m − 1) ∗ PNS + m ∗ PRS ≤ BS

Since the order m is the maximum integer in the above inequality, we have

m =
⌊

BS + PNS

PNS + PRS

⌋

h is the height of the G-tree and p is the number of partitions that have to be accessed in
the leaf level. This number is at least one (PH) and at most all entries in [PL ′ , PH]. NPB is
the number of blocks occupied by the above partitions and NP is the number of partitions
in the leaf level of the G-tree. We have

2 ∗ (�m/2� − 1) ∗ �m/2�h−2 ≤ NP ≤ (m − 1) ∗ mh−1

or

1 + logm
NP

m − 1
≤ h ≤ 2 + log�m/2�

NP

2 ∗ (�m/2� − 1)

Because h is an integer, we have

⌈
logm

NP

m − 1

⌉
+ 1 ≤ h ≤

⌊
log�m/2�

NP

2 ∗ (�m/2� − 1)

⌋
+ 2

124 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

In addition, because partition numbers are stored in a B+-tree like organization, we have

⌈
p

m − 1

⌉
≤ NPB ≤

⌈
p

�m/2� − 1

⌉

The first access to clauses blocks is random (rba) and the remaining sequential (sba). h rba
are needed to traverse top-down the tree. The leaf level of the tree is accessed sequentially
as it is kept in a contiguous area. PE reflects the probability that the partition of the searched
fact exists in the index. It is

PBANVF = h rba + (NPB − 1)sba + PE rba

= (h + PE)rba + (NPB − 1)sba

The evaluation of PBANVRq depends on the rules form and complexity. We examine the
simple case where in the body of a rule there are no other variables except those existing in
its head. If the body of a rule consists of k conjunctions, we have

PBANVRq = PBANVq0 + PBANVq1 + PEq1 ∗ PBANVq2

+ PEq1 ∗ PEq2 ∗ PBANVq3 + · · · + PEq1 ∗ · · · ∗ PEqk−1 ∗ PBANVqk

= PBANVq0 + PBANVq1 +
k∑

i=2

PBANVqi ∗
i−1∏
j=1

PEq j

PBANVq0 is the cost to find the qth rule, PBANVqi , 1 ≤ i ≤ k, is the cost to match the i th
sub-goal of its body and PEq j , 1 ≤ j ≤ k−1, the probability of a match for the j th sub-goal
of the qth rule. Recalling that variables are related to the lower values of their domain, we
have

PBANV = PBANV F +
r∑

q=1

(
PBANVq0 + PBANVq1 +

kq∑
i=2

PBANVqi ∗
i−1∏
j=1

PEq j

)

5.4. Queries with variables

Let PBAV be the cost to find all the answers. If a query refers to one predicate that has only
facts, we have

hrba + (NPB − 1)sba ≤ PBAV ≤ (h + p)rba + (NPB − 1)sba

The lower bound of the above formulae is reached when none of the p partitions overlaps
with the query region, and the upper bound when all of them overlap with the query region.

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 125

6. Experimental results

In this Section we provide experimental results on the performance of PerKMan and compare
them to the corresponding performance of ECLi PSe.

ECLi PSe is a Prolog-based system, whose aim is to provide a platform for integrating
various extensions of logic programming. One of these extensions is the persistent storage of
clauses through the DB and the KB module (ECLi PSe 3.7, 1998). The BANG file (Freeston,
1987), a multiattribute indexing structure that is a variant of the BD-tree, is used in both
modules to index on the attributes that the user indicates. In the DB (DataBase) module,
attributes of type term cannot be included in the index. This module does not manipulate
rules and non-ground facts. The KB (Knowledge Base) module supports the persistent
storage of any clause. The storage of terms does not need any type of size declaration.
ECLi PSeallocates space as required. The KB version is less efficient than the DB version
and the second should be preferred when possible. None of the modules supports the
coexistence of DB and KB relations.

The statistics of ECLi PSeinform us about the size of the page buffer area for the DB
handling, the pages of the relations that are currently in buffers, the real I/O and buffer
access. This allows a comparison between the access efficiency of ECLi PSe and PerKMan,
on the base of disk reads. We present experiments with four dimensions, all included in the
index and attribute size of 4 bytes. We used 8 Kbytes page size because this is the default
for the BANG file in ECLi PSe. The data followed the normal distribution with mean value
0 and standard deviation 5∗106. We choose to present our experiments with data following
the normal distribution because as well as the fact that this distribution is common in real
world measurements, it approximates many other distributions well. We used non-duplicate
facts. Their range was [105, 2 ∗ 106] and the step of increment 105. Similar experiments
with other distributions showed that results depend very slightly upon the nature of the
distribution from which the data is drawn. Our implementation was made in C and the
performance comparison on a SUN4u Sparc Ultra 5/10 under SunOS 5.8.

Figure 8 shows the total insertion time in minutes versus the number of facts. We repeated
the insertion procedure three times in a dedicated machine. We present the average insertion

Figure 8. Total insertion time versus number of facts.

126 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

Figure 9. Space requirements versus number of facts.

times. The insertion time of PerKMan becomes lower than the one of ECLi PSe in a volume
of 2 ∗ 106 facts.

Figure 9 shows the space requirements of the two systems in Mbytes compared with the
number of facts. We present the total storage space, as ECLi PSe does not inform us about
the storage space of index and data separately. As shown in this figure, PerKMan needs
much smaller storage space than ECLi PSe to organize its data.

The following results correspond to the average disk block accesses using 1000 queries of
the same type. The queries are taken uniformly from the insertion file. That is, the constant
values of a partial match query over a file of NC clauses were taken from the places
�NC/1000� ∗ j, 1 ≤ j ≤ 1000, of the insertion file. We decided to take average values from
1000 queries in order to have more accurate results. The average value of disk accesses
from a high number of queries reduces substantially the possibility of obtaining decreasing
segments in the curve of disk accesses versus the number of facts. Such segments are justified
by the fact that queries were taken uniformly from the insertion file and, consequently, the
queried facts were not the same for all steps. The insertion file consists of facts in order to
have a comparison with ECLi PSe that provides statistics for the DB handling.

Figure 10 shows that the two systems need the same number of disk access for exact
match queries. An example of these queries is

?- pr(874608,595741,-1371850,-1115738).

Figures 11–13 present the accesses for partial match queries with one, two and three
variables, respectively. Examples of these queries are the following:

?- pr(X,595741,-1371850,-1115738).
?- pr(X,Y,-1371850,-1115738).
?- pr(X,Y,Z,-1115738).

For PerKMan there are two curves that represent the number of accesses to find the first
and all matching facts. ECLi PSe statistics give us the same number of accesses for both

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 127

Figure 10. Average number of disk block accesses per exact match query versus number of facts.

Figure 11. Average number of disk block accesses per partial match query of one variable versus number of
facts.

Figure 12. Average number of disk block accesses per partial match query of two variables versus number of
facts.

128 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

Figure 13. Average number of disk block accesses per partial match query of three variables versus number of
facts.

cases. The figures show that the disk accesses required by PerKMan are less than the ones
required by ECLi PSe. This difference is due to the underlying indexing schemes of the two
systems.

Figure 14 presents the average elapsed query time in milliseconds for the exact match
queries of figure 10. Figures 15–17 present the average elapsed query time in milliseconds
required to obtain all the answers for the partial match queries of the figures 11–13, re-
spectively. During the experiments, the machine was dedicated. These figures indicate that
the efficiency of PerKMan, in terms of elapsed query time, increases with larger numbers
of facts. We can also see that for large volumes of data, the elapsed time of PerKMan is
much less than that of ECLi PSe, as far as its comparison with the number of disk accesses
is concerned. We also notice that there is no identical behaviour of the curves of block
accesses and their coresponding processing time. This is justified by the fact that elapsed
time is sensitive to many more factors than disk accesses (implementation, replacement
policy, etc.).

Figure 14. Average elapsed query time per exact match query versus number of facts.

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 129

Figure 15. Average elapsed query time per partial match query of one variable versus number of facts.

Figure 16. Average elapsed query time per partial match query of two variables versus number of facts.

Figure 17. Average elapsed query time per partial match query of three variables versus number of facts.

130 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

Figure 18. Average number of disk block accesses per partial match query of three variables versus selectivity.

The selectivity of the above exact match and partial match queries was low (no more
than 5 facts), because data followed the normal distribution with a high value of standard
deviation. Experiments with higher values of selectivity showed that PerKMan keeps the
amount of saving accesses shown in previous figures, for all the selectivity values. In figure
18, we present the number of physical block accesses versus selectivity for partial match
queries with three variables. We use a file of 106 facts. The selectivity varies from 1% to
10% of the insertion file.

We proceed with a discussion with regard to the indexing schemes of PerKMan and
ECLi PSe that justifies, theoretically, the results shown in the above diagrams.

The G-tree maps a partition directly into a block and avoids the complex solution, where
blocks are defined by including some and excluding other sub-partitions from a partition,
as does the BANG file. The partition algorithm of the BANG file is more complex than
that of the G-tree. It uses a recursive procedure to achieve the best balance of the regions
resulting from the partition of a logical region (a block region minus the block regions it
encloses). Neither the partition scheme nor the recombination of a region is unique. The
first depends on the order in which data is added, and for the second, algorithms provide the
best recombination. The partition scheme of the G-tree, on the other hand, does not depend
on the order of insertions and deletions. Moreover, when a partition becomes empty, it is
recombined efficiently with its complement.

The directory maintenance of the BANG file is more expensive than that of the G-tree.
When a new entry is added to the directory of the BANG file due to the split of a logical
region, it is possible for a logical region which does not span its enclosed space to exist in
an upper directory level. To avoid this problem, the logical region is forced to split before
it overflows, but the union of the regions which it encloses may not span the new logical
region. This situation may be propagated recursively up to the leaf level (data pages). The
splitting procedure incorporates an algorithm that ensures the minimum size of regions
after the split. The existence of this algorithm is essential because it avoids the creation of
empty directory pages. The maintenance of the G-tree consists of insertions and deletions
of partition numbers.

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 131

Our experimental results verified the cost formulae of Section 5. In the following,
we examine the cost formulae with regard to a file of 106 facts, which took part in our
experiments.

For the insertion cost we had h = 2, NPB = 1. As the data block capacity was 511 facts
and the utilization of data blocks 68%, we have PF = 100

511∗68 = 0.0029. The capacity and
the utilization of the leaf nodes of G-tree were found to be 628 and 70%, respectively. For
the last 10000 facts of the insertion file the G-tree created 30 new partition numbers. This
means that the probability for a partition to exist is PE = 1 − 30

10000 = 0.997. Replacing the
variables in the last two inequalities of Subsection 5.1 we have 4.014 ≤ PBAI ≤ 4.055.
From the experiments we found that on average the insertion cost of the last 10000 facts of
the insertion file was 4.021 accesses. This value falls between the upper and lower limit of
the above inequality.

We proceed with the estimation of the deletion cost. Based on the above values of data
block capacity and utilization and because an underflow occurs when utilization falls under
50%, we estimate the underflow probability as

PU = 1(
511 ∗ 68

100 − 511
2

) + 1
= 0.01076

As we have h = 2 and NPB = 1, the inequalities of Subsection 5.2 give, 4.043 ≤
PBAD ≤ 4.129. For the deletion of the first 10000 facts from the file of 106 facts we needed
on average 4.07 block accesses. This value is compatible with the above inequality.

As we can see from the above application of formulae, both the insertion and deletion
inequalities approximate very tightly to the corresponding costs.

Next, we examine some formulae of Subsection 5.3. For the file of 106 facts the G-tree
created NP = 3112 partition numbers with average length PNS = 17 bits, that is 2.125
bytes. Since PRS = 4 and BS = 8192, we have

m =
⌊

8192 + 2.125

2.125 + 4

⌋
= 1337

From the formula that estimates the height of the G-tree, we have

⌈
log1337

3112

1336

⌉
+ 1 ≤ h ≤

⌊
log669

3112

2 ∗ (669 − 1)

⌋
+ 2

or

2 ≤ h ≤ 2.

This estimates the height of the G-tree properly, because for 106 facts it is h = 2.
On average for 1000 queries we had p = 192. Thus,

⌈
192

1336

⌉
≤ NPB ≤

⌈
192

669 − 1

⌉

132 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

or

1 ≤ NPB ≤ 1

The value of PE is the same as in the insertion cost, as queried facts were taken from the
insertion file. Thus, PBANVF = 2 + 0.997 + 1 − 1 = 2.997. This value is very close to
that of figure 10 (exact match query versus 106 facts), which is 3.

For a partial match query with one variable we had h = 2, NPB = 2, p = 25 and 17 disk
accesses. These values are compatible with the formulae of Subsection 5.4 as, 3 ≤ 17 ≤ 28.

7. Summary

The increasing need for large knowledge bases and efficient handling of non-ad hoc queries
implies the adoption of effective data structures. We presented PerKMan, a storage manager
that may be connected to Prolog systems that offer an external C language interface. This
means that in order for PerKMan to be usable, an intermediate interface has to be developed
that connects the host Prolog system with the functions provided by the storage manager.
PerKMan handles facts and rules uniformly and allows different arguments of a predicate
to share an index dimension in a novel manner. It indexes compound terms efficiently and
its data structures are not only independent of the data distribution but also adapts well to
dynamic large volumes of clauses. We presented cost formulae and reported experimental
results.

In order to find all answers in partial match queries with one, two and three variables in
four-dimensional predicates, PerKMan achieves 42%, 28% and 19%, respectively, savings
on average in disk block accesses compared to the indexing method of ECLi PSe. Moreover,
the elapsed query time of PerKMan is increasingly less, versus the number of data, compared
to that of ECLi PSe. From the performance of PerKMan, we believe that it achieves its design
motivation, which is to handle efficiently large quantities of persistent knowledge.

Work in progress includes sophisticated methods that relate rules to data on a scheme
that is based on the distribution of query types.

Appendix A: Symbols and definitions

Symbol Definition

BC Capacity of data block
bmax Number of bits of the smallest partition
bmin Number of bits of the largest partition
CA Clauses area
CAT Clause allocation table
cdomain Complex domain
cr dom/2 Creates domains
cr pred/2 Creates predicates

(Continued on next page.)

EFFICIENT MANAGEMENT OF PERSISTENT KNOWLEDGE 133

(Continued).

Symbol Definition

DT Domain tree
IA Index area
ins c/1 Inserts clauses in a clause-oriented mode
LRU Least recently used
NBC Number of clauses in a block
NC Number of predicate clauses
NRD Non-recursive domain
P Partition
PDA Predicate declarations area
PI Path identity
RD Recursive domain
sdomain Simple domain
sel c/1 Selects clauses in a clause-oriented mode
SPDS System predicate declarations segment
UDD User-defined domain
UDDA User-defined domains area
udom Universal domain
UPDS User predicate declarations segment

Appendix B: Symbols and definitions in formulae

Symbol Definition

BS Block size in bytes
h G-tree height
m G-tree average order
NP Number of partitions in the leaf level of the G-tree
NPB Number of blocks occupied by p partition numbers
p Number of searched partition numbers
PBAD Physical block accesses to delete a clause
PBAI Physical block accesses to insert a clause
PBANV Physical block accesses for a query without variables
PBANVF Physical block accesses for retrieving facts in a query without variables
PBANVRq Physical block accesses for the qth rule execution in a query without

variables
PBANVRq0 Physical block accesses to find the qth rule

(Continued on next page.)

134 KAPOPOULOS, HATZOPOULOS AND STAMATOPOULOS

(Continued).

Symbol Definition

PBANVRqi Physical block accesses to match the i th sub-goal of the rule body
PBAV Physical block accesses for a query with variables
PE Probability for a partition to exist in a G-tree
PEqJ Probability of a match for the j th sub-goal of the qth rule
PF Probability for a block to be full
PH bmax-bit long partition number of the rightmost point of a query
PL bmax-bit long partition number of the leftmost point of a query
PL′ Ancestor of PLwith length at least bmin-bit, existing in a G-tree
PNS Average partition numbers size in bytes
PRS Pointer size in bytes
PU Probability for a block to underflow
rba Random block access
sba Sequential block access

References

Cruickshank, G. (1994). Persistent Storage Interface for Prolog—TERMdb System Documentation. Draft
Revision:1.5, Cray Systems.

Derr, M.A., Morishita, S., and Phipps, G. (1994). The Glue-Nail Deductive Database System: Design, Implemen-
tation, and Evaluation. The VLDB Journal, 3(2), 123–160.

ECLi PSe 3.7 (1998). Knowledge Base User Manual. ECRC GmbH.
Emde Boas, G. and Emde Boas, P. (1986). Storing and Evaluating Horn-Clause Rules in a Relational Database.

IBM J Res. Develop., 30(1), 80–92.
Freeston, M. (1987). The BANG File: A New Kind of Grid File. In Proc. ACM SIGMOD Conf. (pp. 260–269).
Ioannidis, Y.E. and Tsangaris, M. (1994). The Design, Implementation, and Performance Evaluation of

BERMUDA. IEEE Trans. on Knowledge and Data Eng., 6(1), 38–56.
Kapopoulos, D.G. and Hatzopoulos, M. (1999). The G-Tree: The Use of Active Regions in G-Trees. In Proc. 3rd

Intern. Conf. on Advances in Databases and Information Systems, Maribor (pp. 141–155).
Kumar, A. (1994). G-Tree: A New Data Structure for Organising Multidimensional Data. IEEE Trans. on Knowl-

edge and Data Eng., 6(2), 341–347.
Nilsson, H. and Ellemtel, A. (1995). The External Storage Facility in SICStus Prolog. R:91:13, Swedish Institute

of Computer Science.
Ramakrishnan, R., Srivastava D., Sudarshan, S., and Seshadri, P. (1994). The CORAL Deductive System. The

VLDB Journal, 3(2), 161–210.
Ramamohanarao, K. , Shepherd, J., Balbin, I., Port, G., Naish, L., Thom, J., Zobel, J., and Dart, P. (1988). The

NU-Prolog Deductive Database System. In P.M.D. Gray and R.J. Lucas (Eds.), Prolog and Databases, Reading,
West Sussex: Ellis Horwood.

Sagonas, K., Swift, T. and Warren, D.S. (1994). XSB as an Efficient Deductive Database Engine. In Proc. of ACM
SIGMOD Conf. (pp. 442–453).

Vaghani, J., Ramamohanarao, K., Kemp, D.B., Somogyi, Z., Stuckey, P.J., Leask, T.S., and Harland, J. (1994).
The Aditi Deductive Database System. The VLDB Journal, 3(2), 245–288.

