
EXTENDING A PARALLEL CLP LANGUAGE TO SUPPORT

THE DEVELOPMENT OF MULTI-AGENT SYSTEMS

Panagiotis Stamatopoulos Dimitris Margaritis Constantin Halatsis
University of Athens, Department of Informatics

Abstract

An extension of Me parallel constraint logic programming lan-

guage ElipSys is presented. This extension is directed towards

the development of multi-agent systems which have to deal with

large combinatorial problems that are distributed in nature. Prob-
lems of this kind, after being decomposed into subproblems, may

be tackled efficiently by individual agents using ElipSys' pow-

erful mechanisms, such as parallelism and constraint satisfaction
techniques. The proposed extension supports the communication

requirements of the agents, in order to have them cooperate and
solve the original combinatorially intensive problem. The com-

munication scheme among the agents is viewed as a three-layered

model. The first layer is socket oriented, the second realizes a

blackboard architecture and the third supports virtual point-to-
point interaction among the agents.

Keywords

multi-agent systems, distributed execution, parallel CLP

Introduction

Multi-agent systems is a major research area of Distributed Arti-

ficial Intelligence (DAI) [9, 2], in which agents of various types

and capabilities cooperate in problem solving. Besides its very

challenging nature, the research in this area is motivated by the

need for large scale programming to attack intensive problems, as

far as the sizes of the required knowledge and computation are

concerned. What is more is that advances in parallel computing

are exploited, both at the machine and the programming levels.

The approach that has to be followed for the development of a

multi-agent system is to build a separate subsystem for each prob-

lem domain and, then, make these subsystems cooperate. There

are many advantages in a procedure like that. Firstly, the modular-

ity achieved reduces the complexity of the whole system, which,

in addition, i~ more reliable, in the sense that it can continue to

Permission to copy without fee all o r part of this material is granted provided that
the copies arc not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

O 1994 ACM 089791-647,.6/941 0003 $3.50

operate even if part of it fails. Moreover, there might be a speedup

in execution, since the subsystems can operate in parallel. Another

advantage is that the subsystems are reusable. Finally, the knowl-

edge acquisition procedure is facilitated, since it is easier to find
experts in narrower domains.

In the multi-agent systems research area, the main problems at the
theoretical level are the development of representation techniques

for the formal specification of agents, cooperation etc. At the

pragmatic level, open problems are related to the required compu-

tational models and the programming environments. The choice

of a programming environment depends on the capabilities of the

adopted system in conjunction with the nature of the application.

Search-based distributed applications are computationally inten-

sive and require a powerful underlying system to cope with the

combinatorial nature of the problems involved. In addition, this

system should offer the appropriate features to handle the distribu-

tivity of the application, tn this paper, staying at the pragmatic
level, a framework for the development of search oriented multi-

agent systems in the ElipSys language [1,6] is presented. ElipSys

is a parallel constraint logic programming system developed at the

European Computer-Industry Research Centre (ECRC).

The framework which is proposed is an extension of the ElipSys

language as a three-layered communication scheme that facilitates

the interaction among ElipSys agents. The flow of information

among the agents is carried out, at the lower layer, through Stream

sockets over a TCP/IP network. Various Prolog systems, such

as SICStus Prolog [11], Quintus Prolog [10], ECL'PS "- [5] etc.,

provide the socket facility. However, much programming effort

is required to build multi-agent systems directly on top of socket
I/O. SICStus Prolog goes a step further, since it provides also a

library with some higher level blackboard-based communication

facilities, which are of the client/server variety. A client program

may connect to the server and, then, read and write arbitrary terms.
The work which is presented in this paper adopts, as a second

layer, the blackboard approach, which forms the basis of a thi/d

layer for virtual point-to-point agent communication. This layer

provides the higher level facilities, which may be used by an

ElipSys programmer for the development of multi-agent systems.

In the following, a brief introduction to the ElipSys language is

410

given. Next, the communication oriented extension of the lan-

guage is presented in detail and, finally, the proposed approach is

discussed and compared to related systems.

The ElipSys Language

ElipSys is a parallel logic programming language which incor-
porates various powerful execution mechanisms. The language
suppor~ OR-parallelism, AND-parallelism, data-parallelism, d=ta
driven computation and constraint satisfaction techniques over fi-
nite domains. All these features make the language ideal for stat-
ing and describing combinatorial problems.

OR-parallelism aims .at the concurrent exploration of the vari-
ous alternative clauses that define an ElipSys procedure. AND-

parallelism results from the concurrent execution of two goals in
conjunction and data-parallelism is a kind of parallelism arising
from the concurrent treatment of the elements of a set of data.

In an ElipSys session, the user supplies the number of the de-
sired workers, which are mapped, during parallel execution, to
real processing elements, if available. In addition, ElipSys pro-
vides a data driven computation rule on top of the usual depth-first

left-to-right execution strategy of Prolog. This rule modifies the

reduction order of goals according to instantiations of variables.
The language also .supports constraint satisfaction techniques over
finite domains [12], which lead to a priori pruning of the search
space of a problem and thus result in more opt,_'mized execution.

Finally, an interface with the C language is offered, which allows
the programmer to define customized built-in predicates and link
them with the core system.

ElipSys has been designed for maximum portability between dif-
ferent parallel platforms. It is currently available on various

machines, namely Sun workstations (in sequential and pseudo-

parallel mode), Sequent Symmetry, Sparc based multiprocessors
from Sun and ICL and the KSR-1 distributed memory machine.

A Three-layered Communication Scheme in ElipSys

The main features of the ElipSys language aim to support the ef-
ficient solution of problems that may be mapped to a search of

OR-trees. The parallelism offered may serve as a means for the
concurrent exploration of branches of these trees and the constraint

satisfaction mechanism may be used to prune the OR-trees and re-
duce the search space. However, this computational environment
is not sufficient to support the development of multi-agent systems,

because a framework is needed to allow the agents to exchange
information. In any case, the searching facilities of ElipSys are

indispensableat the intra-agent level, especially if someone has to
cope with combinatorial problems.

For this reason, an appropriate extension of ElipSys is needed
that can be integrated smoothly with the core system and is able
to support the interaction requirements of multi-agent systems.
The aim is to allow an agent to be viewed as an ElipSys program
and to be identified by a name. For every agent, there has to be a

way to send requests to other agents and to get answers to these

requests. The coupling of a request wPh the respective answer

is necessary, since an agent may send ,more than one request to
another agent and get the answers at any torte. It is also required
that the requests and the answers h a v e t o b e arbitrary ElipSys
terms. Moreover, a desirable feature is to be able to have more

than one agent of the same type for !he purpose of load sharing.

Following the above requirements, a set of predicates has been
designed which is sufficient to s~pport transparent point-to-point
communication among agents i~ ElipSys. TO this er/d, a low-level

communication framework has be,m adolrted, namely stream sock-

ets in the Internet domain, on which ~ese predicates are based.

The direct implementation in C of. the required predicates via
socket oriented system calls is very complicated and difficult to
debug and maintain. Thus, it has been decided to implement the

appropriate primitives in C, through ~he operating system low-
level calls, and enhance ElipSys, via the ElipSys to C interface,
with the corresponding built-ins. Actually, these built-ins form

a low layer of communication, where ElipSys processes running
on different, or even the same, machine(s) may be connected and

exchange messages. These messages are simple strings.

Unfortunately, the implementation of the required predicates for
point-to-point agent interaction directly on top of the low socket
layer presents many disadvantages, such as:

• There may be many connections among the agents which
can increase super-linearly with the number of agents of the

same type.

• An application based on such a framework has irregular
structure which is not easy to uriderstand and maintain.

• It is difficult to have more than one agent of the same type

and to vary the number of the agents dynamically.

• It is necessary for all agents to know the network location
of the agents that they want to cooperate with.

• A predefined order of agent initiation is required, so that
deadlocks will not occur during the startup of the system.

Having in mind the above, it has been decided to introduce a

medium layer between the low-level built-ins and the high-level
predicates. This layer realizes a blackboard structure where clients

may connect and then read and write information (actually arbi-
trary ElipSys terms). The format of these terms is irrelevant and

is not examined by the blackboard, The functionality provided is

similar to that of the client/server library of SICStes Prolog.

The blackboard is an ElipSys program which may be started via
a specific predicate and begin, listening for connections at a user

supplied port number. It has been implemented in ElipSys us-
ing the low-level socket built-ins. The clients are agentz, that is
ElipSys programs, which are supported by a set of predicates to
handle connections, disconnections and I / O with the blackboard.
These predicates are also implemented in ElipSys via the low-level

411

built-ins. A client may connect to the blackboard, if it knows the

hosmame of the machine where the blackboard is running and

the port number where it listens for connections. The blackboard

functions as a central network-wide communication area. It uses

its ElipSys workspace to assert and retract information accord-

ing to the requests coming from the clients. I/O is unification

based, rather than simple pattern matching. Another interesting

characteristic of the blackboard is ,/daat it may also function as a

broadcast medium. This latter feature is in fact exploited by the

agents to advertise work to be done. This work can be assigned

to be executed by any agent requesting this kind of work.

The predicates required to support the development of multi-agent

systems form a high layer which has been implemented in ElipSys

on top of the medium blackboard layer. These are the high-level

predicates that may be used by a programmer and they realize a

virtual'point-to-point interaction framework. In this way, all the

disadvantages of the implementation of these predicates directly

via the low-level built-ins have been eliminated. The only re-

quirements for each agent are to know the network location of the

blackboard and to begin execution after the blackboard has started

listening to connections. The agents may be started in any order.

Thus, the communication scheme adopted to support distributed

applications in ElipSys is a three-layered one. In a nutshell, these
layers consist of the following:

Low-level built-ins: These built-ins implement all the required

primitives to support the communication among processes
through stream sockets in the Interact domain. They are im-

plemented in C and connected to the core language through

the ElipSys to C interface.

Medium-level predicates: These can be used to pass arbitrary

terms between a blackboard server and various clients. This

set of predicates is implemented in ElipSys on top of the

low-level built-ins ~ d supports the upper layer of the com-

munication scheme.

High-level predicates: These predicates are tailored to be used

for virtual point-to-point message passing, actually through

the blackboard, by multi-agent applications. They are im-

plemented in ElipSys on top of the medium layer.

In the following sections, the built-ins and the predicates that sup-

port the three layers are presented in more detail.

Socket-based lnterprocess Communication

As was stated above, the low-level built-ins are very similar to

actual system calls adapted to Prolog. With these built-ins one

can communicate strings to another network entity. The format of

the strings sent should be known by the other party in any case.

The adopted format is a 4-byte integer followed by this number

of ASCII characters which contain the actual string itself. Short

descriptions of the low-level built-ins follow:

• s o c k e t _ c r e a t e (-Socket) :
Create a stream Socket in the InteraCt domain.

• s o c k e t . b i n d (+Socket, +Address):
Bind a Socket to a name. Address has the form Host : Port.

• s o c k e t . l i s t e n (+Socket, +Length):
Establish a maximum backlog queue of Length number of

pending connections.

• c u r r e n t . h o s t (?HostName):
HostName is unified with the name of the host the ElipSys

system is running on.

• s o c k e t _ c o n n e c t (+Socket, +Address):
Connect the socket Socket to the specified address Addrez's.

• s o c k e t _ a c c e p t (+Socket, -NewSock, ?Frornl-tost) :
Accept the first pending request for connection on socket

Socket. The new socket available for !/O is returned in

NewSock, while Socket is still waiting for new connections.

The hosmame and port from which the remote connection is

being attempted is unified with FromHost.

, s o c k e t _ s e l e c t (+WtSocks, ?RdSocks, +TimeOut):

Return the list off socket descriptors that will not block upon

reading in RdSocks, from the list that is input in WtSocks.
TimeOut is of the form Secs:Usecs. The call will return

after Sees seconds and Usecs microseconds if no descrip-

tor becomes available and RdSocks will be []. The call

will wait indefinitely if TimeOut is instantiated to the atom

off. If one of the sockets in WtSocks has been exe-

cuted a socket_listen/2 call upon, an appearance of
this socket descriptor in RdSocks means that a subsequent

s o c k e t _ a c c e p t / 2 call on this socket will not block.

• socket_close (+Socket) :

Close the specified Socket.

• s o c k e t _ w r i t e (+Socket, +String):
Write the string String to the specified Socket.

• s o c k e t _ r e a d (+Sockel, -String) :
Read the string String from the specified Socket.

Blackboard and Clients

The medium-level predicates are used by the blackboard and a

client. These predicates are written in ElipSys and use the low-

level built-ins described previously. They can be used to com-

municate arbiuary ElipSys terms, limited only by the length of

an ElipSys string (64K). The terms that are passed by the client

medium-level predicates to the low-level built-ins (to be subse-

quendy converted to strings and sent to the blackboard) have a

certain format. So do the responses returned from the blackboard.
They both include, in addition to the terms involved, some infor-

mation in their functor as to what was the medium-level predicate

that was called. This information dictates the behaviour of the

blackboard in response to the call, but do not affect in any way

the terms, which are not interpreted at this level.

The blackboard and client medium-level predicates are:

412

• blaekboard(+Port):

Start the blackboard server on the current machine. The

blackboard starts listening to Port for incoming connections.

• blackboard_connec~ (+Address, -Socket) :

Connect to the blackboard server which resides at Address.
Address is of the format Host : Port.

• blackboard_disconnect (+ S o c k e t) :

Disconnect from the blackboard server.

• out (+Socket, +Term) :
Send the term Term to the blackboard server.

• in (+Socket, ?Term) :
Read and retract term Term from the blackboard server.

Blocks if Term is unavailable until it is written on the black-

board by another client.

• in_noblock (+Socket, ?Term) :
Like in/2 but return immediately. Fail i f Term is not on the

blackboard.

• in (+Socket, +TermList, ?Term) :
Any one of the terms in TermList is removed and returned

when available on the blackboard after being unified with

Term.

• rd (+Socket, ?Term):
Wait until term Term appears on the blackboard and return

it when it does. Do not remove it from the blackboard.

• rd_noblock (+Socket, ?Term) :
Like r d / 2 but return immediately. Fail if Term is not on the

blackboard.

• r d (+Socket, +Term.List, ?Term) :
Any one of the terms in Term.List is returned when available

on the blackboard after being unified with Term.

• u n i q u e _ i d (+Socket, +Counter, ?Value):
Generate a blackboard-wide unique value for the specified

counter. Counter can be any number or atom. Counters do

not need initialization. A counter that is used for the first

time by a client is automatically initialized to 0.

Virtual Point-to-point Agent Interaction

In order to support the development of multi-agent systems in the

ElipSys language, in a somehow transparent way, a third layer

consisting of some high-level predicates has been implemented

on top of the previous medium-level client/server predicates. A

concept used at this level is that of an agent which is actually a

program running under ElipSys. This third layer provides a vir-

tual point-to-point communication model among the agents. The

relevant predicates are implemented in EtipSys and their design is

based on the'requirement that an agent may need to send a request

to another agent and, in most cases, it has to get an answer to its

request. The request is identified via the blackboard by a unique

identifier, so as to couple it with the expected answer.

Special care is taken for the high-level predicates to work cot.

rectly in a parallel environment. To this end, a dynamic con-

nection approach has been adopted, which means that for every

communication transaction, an agent connects to the blackboard,

sends or receives data and then disconnects. In this way, multiple

connections f rom an agent to the blackboard . ray be active at any

time, actually from parallel ElipSys threads.. "

What is sent to the blackboard by ~n agent, both for,.'equests and

for answers to requests, is an ElipSys term that encodes the names

of the sending and the receiving agents, the message itself and the
unique identifier of the message. .,

The high-level predicates that realize the agent-oriented commu-

nication model are the following:

• s e n d _ r e q u e $ < {?Agent, +Request, - l d) :
Send the request Request to the agent Agent. The unique

identifier of the request is returned as ld.

• s e n d _ a n s w e r (?Agent, +Answer, +Id) :
Send the answer Answer to the agent Agent. This answer

corresponds to the request whose identifier is Id.

• g e t . m e s s a g e (? A g e n t , ?Message, ?Id) :
Get either a request or an answer Message, whose identifier

is fd, from agent Agent. Block fill a message is available.

• g e t . ~ m e s s a g e ~ o b ! o c k (?Agent, ?Message, ?ld) :
Similar to g e z . ~ e s s age /3 , but fail if message is not avail-

able and return immediately, rather than block.

These predicates assume that every agent has a unique name

which is defined in the agent's code by a specific fact of

the form m y s e l f (AgentName) where AgeraNarne is the name

of the agent. Another assumption is that every agent knows

where the blackboard is running. Thus, a fact of the form

b l a c k b o a r d . a d d r e s s (H o s t : P o s t) has to be defined in the

code of each agent, where Host is the name of the machine where

the blackboard is running and Port is the port where it listens for

connections.

Discussion

The three-layered communication scheme which was presented in

the previous sections, as an extension of the parallel CLP lan-

guage ElipSys, is a modular framework that supports th.e solution

of combinatorial problems by decomposing them into mutually

dependent subproblems. In this way, a multi-agent system may

be designed, where each agent tackles a specific subproblem by

using the search oriented features offered by the language. The

extension proposed in this paper is responsible for handling the

communication issues among the agents .

Taking into consideration the above, the extended ElipSys lan-

guage is unique for the specific kind of applications mentioned

previously. What is more is that even for applications where the

language is partially exploitable, there still exists the possibil-

ity to design them using a multi-agent architecture, where some

agents may be developed under different environments. These

413

, - " , 4 •

environments may be different languages or even different hard-
ware platforms. The only requirement is to adapt the three-layered

communication scheme to the other language and/or machine and
respect the communication protocol of each layer. This is the case
of an application on tourism, called MaTourA (Multi-agent Tourist

Advisor) [7, 8], which is currently under development in the ES-

pRr r III 6708 APPLAUSE Project (Application & Assessment of

Parallel Programming Using Logic). MaTourA comprises a set of

autonomous agents (Tour Generation Agent, Activity Agent, Event

Agent, Site Agent, Accommodation Agent, Transportation Agent,

Ticketing Agent etc.). Each agent reflects procedures involved in

a tourist advisory environment, accomplishes specific functional-
ity and manipulates specific knowledge. These agents may either
answer queries on their own or coordinate their knowledge and
communicate with each other, in case joint action is required.

The most complex problem that MaTourA has to solve is the con-
struction of personalized tours that satisfy the tourists' wishes'.
A tour is a journey through various sites where the tourist may

visit activities and attend events. Accommodation, transportation

and ticketing information is also included in a tour's description.

Most of the MaTourA agents are being developed in the extended

ElipSys under UNIX on Sun workstations. Some other agents are

going to be implemented in ECL'PS ~ in the same environment
and the User Interface Agent is currently being designed to run

under MS windows on PC platforms.

As far as related work is concerned, there are various logic pro-
gramming systems that provide some kind of support for the de-
velopment of multi-agent systems. Apart from many commer-

cial Prolog languages that pro'vide socket-based features, more

advanced systems are IC Prolog H [4] and Shared Prolog [3]. I C

Prolog [I is a multi-threaded Prolog system which includes also
a Parlog subsystem, high-level communication primitives and an

object-oriented extension. The high-level communication primi-

tives support pipes for interaction among threads as well as stream
and datagram sockets for interaction among various Prolog pro-

cesses. The concept of mailboxes is also provided as a means for
a more abstract communication model. Shared Prolog is a concur-

rent language which is useful for coordinating communication and
synchronization of agents via a blackboard structure. An agent is
a Prolog program extended with a guard mechanism which gov-
erns the message exchange with the blackboard. There are no

explicit primitives for communication. However, these languages

as well as others with similar features, such as Delta Prolog, CS-
Prolog, PMS-Prolos, Multi-Prolog and Linda Prolog, do not pro-
vide the necessary facilities to tackle combinatorial problems in a
diswibuted environment, as the extended ElipSys language does.

Conclusions

A three-layered communication scheme was presented as an exten-

sion of the parallel constraint logic programming language Elip-
Sys. This communication scheme is based at the lower level on
stream sockets which are used for message passing among ElipSys

processes over a TCP/IP network. A blackboard/client architec-
ture was built on top of the previous level and, finally, virtual

point-to-point interaction is supported at the higher level.

The proposed framework is suitable for developing multi-agent

systems in ElipSys, where the agents themselves may exploit the

parallelism and the constraint satisfaction techniques offered by

the language. The whole system, i.e. the extended ElipSys lan-
guage, is extremely useful for search-based applications that are

distributed in nature.

Acknowledgements

This work is partially funded by the ESPRIT Programme of the
Commission of the European Communities as part of the AP-
PLAUSE ESPRIT Project 6708. The authors would like to thank
the APPLAUSE Team of the Athens University for the fruitful
discussions they had on the presented system. Special thanks ere
also directed to ECRC Gmbh (Muriich, Germany) for providing

the ElipSys language.

References

[1] U. Baron, S. Bescos, S. A. Delgado-Rannauro, P. Heuz~,

M. Dorochevsky, M. Ib~fiez-Espiga, K. Schuerman, M. Rat-
cliffe, A. V~ron, and J. Xu. The ElipSys logic programming
language. Technical Report DPS-81, ECRC, December 1990.

[2] A. Bond and L. Gasser, editors. Readings in Distributed
Artificial Intelligence. Morgan Kaufmann Publishers, Inc.,

San Marco, California, 1988.

[3] A. Brogi and P. Ciancarini. The concurrent language Shared

Prolog. ACM Transactions on Programming Languages and
Systems, 13(1):99-123, January 1991.

[4] D, Chu and K. Clark. IC Prolog II: A multi-threaded l~o-

log system. In Proceedings of the ICLP'93 Post Conference
Workshop on Concurrent, Distributed & Parallel lrnplemen.
tat ions of Logic Programming Systems, pages 115---141, 1993.

[5] ECL'PS*. • User Manual, March 1993.

[6] ElipSys User Manual for Release Version 0.6, April 1993.

[7] C. Halatsis, P. Stamatopoulos, I. Kaxali, C. Mourlas, D.

Gouscos, D. Margaritis, C. Fouskakis, A. Kolokouris, P. Xi-

nos, M. Reeve, A. Vtron, K. Schuerman, and L,-L. Li.
MaTourA: Multi-Agent Tourist Advisor. In Proceedings of
the International Conference on Information and Corrununi.
cations Technology in Tourism. Springer Verlag, 1994.

[8] C. Halatsis, P. Stamatopoulos, D. Margaritis, I. Karali,
C. Mourlas, D. Gouscos, and C. Fouskakis. Tool assessment.

APPLAUSE Deliverable D.WP3.4, University of Athens,

May 1993.

[9] M. Huhns, editor. Distributed Artificial lntelligence. Pitman,

London, 1987.

[10] Manual for Quintus Prolog Release 3.1, 1991.

[11] SICStus Prolog User's Manual, August 1992.

[12] P. van Hentenryck. ConstraintSatisfaction inLogicProgram-
ruing. The M1T Press, Cambridge, Massachusetts, 1989.

414

