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Abstract. Inorder to obtain a solution to a constraint satisfaction prob-
lem, constructive methods iteratively extend a consistent partial assign-
ment until all problem variables are instantiated. If the current partial
assignment is proved to be inconsistent, it is then necessary to backtrack
and perform alternative instantiations. On the other hand, reparative
methods iteratively repair an inconsistent complete assignment until it
becomes consistent. In this research, we investigate an approach which
allows for the combination of constructive and reparative methods, in
the hope of exploiting their intrinsic advantages and circumventing their
shortcomings. Initially, we discuss a general hybrid method called CR
and then proceed to specify its parameters in order to provide a fully
operational search method called CNR. The reparative stage therein is
of particular interest: we employ techniques borrowed from local search
and propose a general cost function for evaluating partial assignments. In
addition, we present experimental results on the open-shop scheduling
problem. The new method is compared against specialized algorithms
and exhibits outstanding performance, yielding solutions of high quality
and even improving the best known solution to a number of instances.
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1 Introduction

A great number of interesting combinatorial problems can be viewed as con-
straint satisfaction problems (CSPs), involving a finite set V' of variables and
a finite set C' of constraints between the variables. Given a CSP, the goal is to
obtain a complete consistent assignment, that is to assign a value to every vari-
able (complete) so that all constraints are satisfied (consistent). Search methods
for obtaining solutions to CSPs can be broadly characterized as constructive or
reparative. Constructive (global) methods iteratively extend a consistent partial
assignment until a consistent complete assignment is obtained. If the current
partial assignment is proved to be inconsistent, it is then necessary to back-
track and explore alternative assignments. On the other hand, reparative (local)
methods iteratively modify an inconsistent complete assignment until a consis-
tent complete assignment is obtained. The methods in each category exhibit
certain features which are, in fact, complementary. In this research, we investi-
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Fig. 1. Constructive methods extend consistent partial assignments or otherwise back-
track. Reparative methods modify inconsistent complete assignments.

gate a framework which allows for the combination of constructive and reparative
methods, in the hope of exploiting their intrinsic advantages and circumventing
their shortcomings. In the generic CR framework we propose, search is performed
in two alternating stages: in the constructive stage a consistent partial assign-
ment is iteratively extended. However, if the current partial assignment is proved
to be inconsistent, backtracking is replaced by a reparative stage, in which the in-
consistent partial assignment is iteratively modified until it becomes consistent.
In order to evaluate the CR framework experimentally, we specify its parameters
and provide a fully operational method called CNR-search. The reparative stage
therein is of particular interest: we employ techniques borrowed from local search
and propose a general cost function for evaluating partial assignments.

The rest of this paper is organized as follows: In Sects. 2 and 3, we exam-
ine constructive and reparative search methods separately, identifying some of
their most characteristic features. In Sect. 4, we discuss the generic CR search
framework. In Sect. 5 we proceed to provide implementations for both the con-
struction and repair operators of the CR framework, thus obtaining a concrete
search algorithm called CNR-search. In Sect. 6, we present experimental results
from the application of CNR to the open-shop scheduling problem. A discussion
regarding these excellent results, as well as the method in general, can be found
in the concluding Sect. 7.

1.1 Related Work

The notion of merging constructive and reparative features into a hybrid search
framework has been investigated in various forms. In some cases, the coupling be-
tween the two approaches is loose: constructive and reparative modules exchange
information but essentially operate independently [1,2]. In other frameworks,
where the integration is of a higher degree, the reparative process employs con-
structive methods in order to (systematically) explore the neighborhood [3,4].
However, our research is more closely related to the approaches described in [5, 6],
where repair operators are applied on partial inconsistent assignments, obtained
by construction. In both cases, the repair operator undoes previous instantia-
tions, essentially performing some form of non-systematic dynamic backtracking.
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Especially in [6], the reparative process is guided by conflict-based heuristics and
is coupled with tabu search. Our general CR framework encompasses such ap-
proaches while not being restricted to a specific repair operator. In CNR-search,
the repair operator does not employ backtracking.

2 Constructive Search

Constructive methods iteratively extend a consistent partial assignment until a
consistent complete assignment is obtained. If the current partial assignment is
proved to be inconsistent, it is then necessary to backtrack and explore alter-
native assignments. The fact that search is performed in the space of partial
assignments is a defining feature. Proving that a particular partial assignment
is inconsistent promptly removes the need to explicitly enumerate all the in-
consistent complete assignments in the subtree below it. Consistency techniques
can be exploited for reasoning about partial assignments and pruning the search
space. On the other hand, operating on partial assignments essentially restricts
the search process to a subset of the search space at any given time. Poor search
decisions can confine the search process to unproductive branches and are com-
putationally expensive to overcome.

All constructive methods can be described using the generic algorithm of
Fig. 2(a). The list L employed therein comprises all partial assignments which
remain to be explored and can potentially be backtracked to, in case the cur-
rent one is proved inconsistent. The use of L allows for a systematic exploration
of the search space and endows constructive methods with completeness: it is
guaranteed that the entire search space will eventually be explored. The extend
function generates possible extensions of the current partial assignment «, re-
turns one of them and inserts the rest into L so that they can be backtracked
to. The backtrack function selects and returns an assignment out of L.

3 Reparative Search

Reparative methods iteratively modify an inconsistent complete assignment un-
til a consistent complete assignment is obtained. Because of the fact that search
is performed exclusively in the space of complete assignments, the features of
reparative methods are complementary to those of constructive ones. The search
process is endowed with flexibility, since it is possible to perform arbitrary leaps
to complete assignments throughout the search space. However, systematic ex-
ploration of the search space and completeness are forsaken, consistency tech-
niques can no longer be exploited and the search process is particularly sensitive
to the existence of local optima.

All reparative methods can be described using the generic algorithm of
Fig. 2(b). The repair function applies a repair operator on assignment « and
returns the resulting modified assignment.
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constructive-search (a) { reparative-search (a) {
L0 while (not solution(a))
while (not solution(a)) { « «repair(a)
if (consistent(a)) return «
o «—extend(a, L) }

else if (L #0)
« «—backtrack(a, L)
else
return no-solution
}

return «

(a) (b)

Fig. 2. General algorithms for (a) constructive and (b) reparative search.

4 Search by Construction and Repair

In this section, we discuss a generic search framework which incorporates both
construction and repair operators. Intuitively, search is to be performed in two
alternating stages:

Constructive Stage. A construction operator is iteratively applied on the cur-
rent consistent partial assignment, extending it until it becomes inconsistent
or until a complete consistent assignment is obtained.

Repair Stage. A repair operator is iteratively applied on the current inconsis-
tent assignment, modifying it until it becomes consistent.

The exploration of the search space using the hybrid Cr-search algorithm, is
depicted in Fig. 3(b), where the alternating search stages are apparent. Search
with CR is performed in the space of both partial and complete assignments. In
the constructive stage, it is possible to employ consistency techniques in order
to prune the search space and discover inconsistencies. The repair operator on
partial assignments allows leaps to distant areas of the search space, overcoming
poor search decisions made during partial assignment construction. The vari-
able domain information maintained in the constructive stage can potentially be
exploited for guiding the reparative stage, as is explained in Sect. 5.

The generic CR algorithm is described in Fig. 3(a). The extend function
is inherited from constructive search and implements the construction operator,
whereas the repair function is a generalized version of the operator encountered
in reparative search which can also be applied on partial assignments. Different
implementations of these abstract functions give rise to different specializations
of the generic CR-search framework. Constructive search itself can be obtained
from CR by using backtracking as the repair operator. Reparative search can
also be obtained from CR by applying the repair operator only on complete
assignments. This means that CR is strictly more general that constructive or
reparative search alone.
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cr-search (a) {
L0
while (not solution(a)) {
if (consistent(a))
«a «—extend(a, L)
else
«a «—repair(a, L)
}

return «

(a)

Fig. 3. Construction-Repair search. (a) The generic search algorithm and (b) an illus-
tration of the manner in which the search tree is traversed.

CNR-extend (o, L) { CNR-repair(a, L) {
v+ hy(a) o — argming e n(a) f()
£ — he(a,v) return consistency(a)
return consistency(a ®y,; £) }

}

(a) (b)

Fig. 4. Implementation of the (a) constructive and (b) reparative stages. Applying the
operator ®,,; on an assignment « instantiates the i-th variable of a.

5 Search by Construction and Neighborhood Repair

In this section, we provide implementations for both the construction and repair
operators of the CR framework, thus obtaining a concrete search algorithm called
CNR-search (construction-neighborhood repair).

5.1 Constructive Stage

The implementation of the extend function in the constructive stage is contained
in Fig. 4(a). The variable ordering heuristic function h, selects an uninstantiated
variable and the value ordering heuristic function hy selects a value out of the
domain of a variable. The selected variable is instantiated with the selected
value and the consistency function is invoked in order to propagate the effects
of the instantiation to the domains of the other variables. Note that in our
implementation, the consistency function implements a modified version of
arc consistency which does not terminate when an inconsistency is detected.
Instead, propagation continues without taking into account any variables with
an empty domain. The remaining domain information is to be exploited during
the reparative stage.

5.2 Reparative Stage

The neighborhood Ng(«) of an assignment « is the set of assignments which
are accessible from « in a single application of the repair operator R. Formally,
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a neighborhood is a mapping Ng : A — 24, where A is the set of all assign-
ments. In the implementation of the repair function in the reparative stage,
the neighborhood of the current partial assignment is computed (given a re-
pair operator R), a member of the neighborhood is selected greedily according
to a cost function f described below and the consistency function is invoked
in order to enforce consistency. Different repair operators give rise to different
neighborhoods.

In CNR there is no restriction imposed on the neighborhood Ng(«) of an
assignment «, which is determined by the repair operator R. There exist general
neighborhoods which are applicable to arbitrary CSPs and are often encountered
in the literature. In this research, the ALTER repair operator has been employed,
yielding a neighborhood N,(«) which contains any assignment obtainable from
a by modifying the value of a single instantiated variable. The domains of all
variables uninstantiated in « are reset to their original domains.

The cost function f : A — R evaluates the partial assignments in a neigh-
borhood in order to guide the reparative process towards consistent partial as-
signments. Therefore, f must evaluate the extent of constraint violation in an
assignment and must be minimized for consistent assignments. Along the same
lines, a well-known function described in [7] returns the number of violated con-
straints but is not directly applicable on partial assignments. We propose that,
given an assignment o = (a1, as,...,a,) where a; is the domain of variable v;,
the cost function evaluating « be:

fl@)=p-fvi €V ]a; =0} - [] max{laj], 1}

v, EV

where o/ = consistency(a), and p a large penalty constant. The first term
pertains to the number of variables with an empty domain. The greater the
number of such variables in an assignment, the more this assignment is penalized.
The second term is a tie-breaker and pertains to the product of domain sizes.
This product reflects the number of complete assignments which are extensions
of a and the greater this number is, the less constrained is the assignment. Recall
from Sect. 5.1 that this function is applicable because we use a modified version
of arc-consistency.

In practice, the neighborhood can be prohibitively large to compute. Its size
can be reduced if a window of w variables is selected and the repair operator
is only applied to them, disallowing any modifications to variables outside the
window. In addition to reducing the size of the neighborhood, using a window
also allows for consistency to be enforced in a more efficient manner. The se-
lection of the window size w is critical: computational performance is improved
as w decreases but the repair operator becomes less effective since a smaller
neighborhood is available. Except for the size of the window, there is also the
issue of which variables to include in it. The simplest method is to order the
variables lexicographically, include w consecutive variables in the window and
slide the window so that it contains a different set of variables in every execution
of the reparative stage. This produces an effect similar to that of tabu search: a
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recently modified variable leaves the window and will not be modified again for a
number of iterations. As a result, it is highly unlikely that the same assignment
is reached more than once or that an infinite loop is entered.

6 Experimental Results on a Scheduling Problem

In this section, we present experimental results from the application of CNR
to open-shop, a scheduling problem. In open-shop, a set of n jobs, each con-
sisting of m tasks, must be processed on a set of m machines. Task 7 of job j
requires processing time ¢;; and must be executed by machine 7. Each machine
can execute one task at a time and no two tasks of the same job can be executed
simultaneously. Our goal is to find a non-preemptive schedule that minimizes the
makespan, that is the finish time of the latest task. For m > 2 non-preemptive
open-shop is NP-hard [8] and problems of very small size still remain unsolved.
This is a problem particularly appropriate for methods utilizing repair operators.

6.1 Application of the Search Method

In the experiments performed with CNR, open-shop is handled as a general CSP
and no problem-specific techniques are employed:

Constructive Stage. In this stage, the variable ordering heuristic selects the
variable with the smallest domain, whereas the value ordering heuristic se-
lects the smallest value in the domain (which is only reasonable when mini-
mizing the makespan). Both ordering heuristics are elementary.

Repair Stage. In this stage, the ALTER neighborhood with first improvement
selection is used. Experiments with alternative neighborhoods have been
performed, although not extensively, since it immediately became apparent
that the ALTER neighborhood is particularly well-suited for the problem at
hand. Due to the large number of values in each domain, only a small number
of randomly selected values is examined for each variable and, in addition, a
sliding variable window of size w = 1 is employed. Experiments with larger
windows showed that the increase in window size hampers computational
performance without improving solution quality.

To minimize the makespan, CNR is coupled with branch-and-bound. After each
run of CNR, a constraint is added which enforces new solutions to be of better
quality, rendering the current assignment infeasible. Search continues by repair-
ing this assignment, which is of good quality and likely to be repaired easily.

Since CNR is not complete, a stopping criterion must be used: in our experi-
ments, the search was interrupted after 120 minutes of computation and only if
the time elapsed after the last improvement exceeded 30 minutes. In some cases
where the best known solution is available, search was interrupted when this
solution was obtained.
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6.2 Experiments
We applied CNR on three sets of benchmark problems from the literature:

— 40 instances by Taillard, contained in [9], with sizes ranging from 4 x 4 to
10 x 10 and known optimal solutions.

— 52 instances by Brucker, contained in [10], with sizes ranging from 3 x 3 to
8 x 8. The optimal solution is not always known but all instances have a
classical lower bound of 1000.

— 80 instances by Guéret & Prins, presented in [11] along with an improved
lower bound for open-shop. These instances are especially designed so that
the proposed bound differs significantly from the classical one.

For these benchmark instances, the quality of the final solutions obtained with
ONR is compared against that of a diverse range of algorithms for open-shop:

— the genetic algorithm GA of Prins [12],

— the decision-repair algorithm TDR of Jussien and Lhomme [6],

— (only for the Taillard instances) two specialized tabu search methods TS-A
and TS-L, of Alcaide et al. [13] and Liaw [14] and

— (only for the Guéret & Prins instances) the improved branch-and-bound
algorithm BB of Guéret & Prins [15].

Experimental results for these algorithms have been published collectively in [6]
(available at http://njussien.e-constraints.net/palm-os.html). Note that
in open-shop scheduling, the quality of the final solution obtained is of primary
interest, regardless of the time required to obtain it. Open-shop is a hard prob-
lem where quality is considered more important than efficiency. Besides, the
execution time of some algorithms strongly depends on the particular instance,
while in some cases it is not reported at all. The two hour limit on the execution
time of CNR is strict, compared to that of most other algorithms.

Results for the Taillard benchmarks are displayed in Table 1. Except for the
10 x 10 instances, the performance of CNR is excellent. Results for the Brucker
benchmarks are displayed in Table 1. Once again CNR exhibits prime perfor-
mance for all sets of instances up to size 7 X 7, whereas for the 8 x 8 instances,
GA is only slightly better.

Results for the Guéret & Prins instances are presented in Table 2 and are
outstanding, since CNR prevails over all other methods in every problem size. In
fact, CNR yields the best solution quality for all instances in the set, except for
a single 9 x 9 instance. Moreover, the solution quality obtained for all instances
of size 10 x 10, is strictly better than that of any other algorithm. Together with
TDR, CNR solves the greatest number of instances to optimality. It is clear that
ONR is particularly well-suited for this series of problems.

The qualitative performance of CNR is also underlined by the fact that it
managed to improve the best known solution for many instances, in both series
with existing open problems. Table 3 shows the number of open problems for
each series as well as the number of improved ones.
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Table 1. Results for the Taillard and Brucker instances. Each column corresponds to
a particular method and contains the average and maximum percent deviation from
the optimum, as well as the number of instances solved to optimality (in parentheses).
In the cases where the optimum is not known, the classical lower bound is used. An
asterisk marks the method(s) exhibiting the best performance across a row.

size TS-A TS-L GA TDR CNR
4x4 — 0/0(10)* 0.31/1.84(8) 0/0(10)* 0/0(10)
5X5H — 0.09/0.93(9) 1.26/3.72(1) 0/0(10)* 0/0(10)*
7Tx7 |0.75/1.71(2) 0.56/1.77(6) 0.41/0.95(4) 0.44/1.92(6) | 0.25/0.95(6)*
10 x 10 | 0.73/1.67(1) 0.29/1.41(6) 0/0(10)* 2.02/3.19(0) | 0.69/2.04(2)

*

3%x3 = 0/0(3)" 0/0(3)" 0/0(3)"
4x4 - - 0/0(9)" 0/0(9)" 0/0(9)*
5x5 - - 0.36/2.07(6)  0/0(9)* 0/0(9)*
6x6 - - 0.92/2.27(3)  0.71/3.5(6) | 0.08/0.76(8)
7x 7 - - 3.82/8.2(4)  4.4/11.5(3) | 3.22/8.2(5)

8x8 - - 3.58/7.5(5)* 4.95/11.8(1) | 3.64/8.2(4)

Table 2. Results for the Guéret & Prins instances. Each column corresponds to a
particular method and contains the number of instances in which the best known
results were obtained (or even improved, in the case of CNR), as well as the number of
instances solved to optimality.

size BB GA TDR CNR

3x3 10/10* 10/10* 10/10* | 10/10*
4 x4 10/10* 10/10* 10/10* | 10/10*
5x5 10/10* 8/8 10/10* | 10/10*
6 x 6 9/7 2/1 10/8* 10/8*
Tx7 3/1 6/3 10/4* 10/4*
8x 8 2/1 2/1 10/4* 10/4*
9x9 1/1 0/0 8/2 9/2*

10 x 10 0/0 0/0 0/0 10/0*

Table 3. For a number of open instances (unknown optimal solution), CNR managed
to improve the best known solution.

Series Open Inst. Improved Inst.
Taillard 0 -
Brucker 8 3
Guéret & Prins 32 12

7 Conclusions

In this work, we describe the general CR framework which allows for the com-
bination of constructive and reparative features into a hybrid abstract search
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method. The most characteristic feature of the CR framework is that a repair
operator is applied on partial (rather than complete) inconsistent assignments,
obtained by construction. Such an approach retains many of the advantages of
both constructive and reparative methods. By specifying some of the abstract
parameters of the CR framework, we obtain a search method called CNR-search.
The main difference between CNR-search and the relevant approaches in [5, 6]
is the nature of the repair operator, which does not perform backtracking. The
extensive experimental results presented Sect. 6 clearly exhibit that CNR-search
can be effective in a hard combinatorial problem such as open-shop, prevailing
even over closely related methods such as TDR.
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