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Non-monotonic Reasoning

• Motivation

• Non-monotonic reasoning formalisms

• Closed world reasoning (closed world assumption and predicate

completion)

• Relational databases in FOL as an example
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Example

Imagine the course schedule of a university department available on the

Web. How would you represent all relevant information about who

teaches what course in FOL?

You might have something like:

Teaches(Alex,CS100), T eaches(Bob, P100),

T eaches(Charlie, P200)

Now answer the following question:

• Who is teaching CS100?

The answer to this question is “Alex” as we can see from the above KB.
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Example (cont’d)

Now let us answer the following questions:

• Is Bob teaching CS100?

• Is Alex teaching CS200?

Assuming that the schedule is complete, the answer to both of

these questions is “no” but this is not explicit in the schedule KB!

Here we have a situation where in the absence of information to

the contrary, we assume that Bob is not teaching CS100 and Alex is

not teaching CS200.
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Example (cont’d)

Now assume that we have just learned that Alex teaches the course

CS200 as well.

The KB should now become:

Teaches(Alex,CS100), T eaches(Bob, P100),

T eaches(Charlie, P200), T eaches(Alex,CS200)

Now answer the following question:

• Is Alex teaching CS200?

The answer to this question now is “yes” and it is different than the

answer we got previously.
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Default or Non-monotonic Reasoning

In the previous example we made an assumption in the absence of

information to the contrary, and revised this assumption later

when new knowledge became available.

This is called default or non-monotonic reasoning and cannot be

formalized directly in pure FOL in general.
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Monotonicity of FOL

Theorem. Let KB be a set of FOL formulas and α, β two arbitrary

FOL formulas. If KB |= α then KB ∪ {β} |= α.

The above theorem captures the monotonicity property of FOL.

This property does not help us in the previous example!
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Another Example

Let us now try to represent the following information in FOL:

“Violins have four strings”

How do we represent this information in FOL?

The sentence

(∀x)(V iolin(x)⇒ NoOfStrings(x, 4))

is not entirely appropriate for our example.

The sentence talks about all violins while our sentence is about

prototypical violins.

In other words, the above universally quantified sentence is only an

approximation of reality for the world of violins.
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Example (cont’d)

But let us assume that we will use this universally quantified sentence

to represent the given information.

Now consider the following question:

• How many strings does John’s violin have?

The answer to this question is “four” since this is what the above KB

gives us.
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Example (cont’d)

Now assume that we have just learned that John’s violin has one string

removed.

We should now be able to update the previous KB and in this way

revise our beliefs about John’s violin.

As a result, the answer to the previous question should become “three”

and it is different than the answer we got previously.

This kind of reasoning is again non-monotonic.
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Example (cont’d)

So how do we update the KB?

The sentence

(∀x)(V iolin(x)⇒ NoOfStrings(x, 4))

could be modified to become

(∀x)(V iolin(x) ∧ x 6= V iolinOfJohn⇒ NoOfStrings(x, 4)).

If we adopt this representation, we need to write down an exception

for every atypical violin.

This is usually called the qualification problem in the relevant

literature (since we need to add a number of qualifications to each rule).
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Sources of Default Information

General Statements

• normal: Under typical circumstances, Ps are Qs.

Examples: People work close to where they live. Children enjoy

singing.

• prototypical: The prototypical P is a Q.

Examples: Apples are red. Owls hunt at night.

• statistical: Most Ps are Qs.

Example: The people in the waiting room are growing impatient.
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Sources of Default Information (cont’d)

Lack of Information to the Contrary

• familiarity: If a P was not a Q, you would know it.

Example: No nation has a political leader more than 2.10 metres

tall.

• group confidence: All the known Ps are known (or assumed) to

be Qs.

Example: Natural languages are easy for children to learn.
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Sources of Default Information (cont’d)

Conventional Uses

• conversational: A P is a Q, unless I tell you otherwise.

Example: Being told “The closest gas station is two blocks east”,

the assumed default is that the gas station is open.

• representational: A P is a Q, unless otherwise indicated.

Examples: The speed limit in a city. An open door to an office,

meaning that the occupant can be disturbed.
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Sources of Default Information (cont’d)

Persistence

• inertia: A P is a Q unless something changes it.

Examples: Marital status. The position of objects (within limits).

• time: A P is a Q if it used to be a Q.

Examples: The color of objects. Their sizes.
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Non-monotonic Logics

Non-monotonic reasoning has been studied in detail in AI and various

non-monotonic logics have been invented. Some well-known

approaches to non-monotonic reasoning are:

• Closed world reasoning (e.g., closed world assumption or predicate

completion).

• Circumscription

• Default logic

• Auto-epistemic logic

We will cover only closed world reasoning in this course.
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Closed World Reasoning

Let us consider representing information about a world in FOL using a

vocabulary of constant, function and predicate symbols.

Typically, only a very small percentage of the large number of atomic

sentences that can be formed will be true. A reasonable representation

convention is then the following:

• Give explicitly the sentences that are true.

• Assume the unmentioned atomic sentences false.
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The Closed World Assumption

The closed world assumption (CWA), originally proposed by Ray

Reiter in 1978, is the following:

Let KB be a knowledge base and φ an atomic sentence. If

KB 6|= φ then assume φ to be false.

CWA is a non-monotonic reasoning formalism.
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The CWA More Formally

Let KB be a knowledge base (i.e., a set of FOL formulas).

Let

KB+ = KB ∪ {¬ψ : ψ is an atomic sentence and KB 6|= ψ}.

Then, reasoning under the CWA can be done using a new entailment

relation |=c which is defined as follows:

KB |=c φ iff KB+ |= φ
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Exercise

Apply the CWA to the course schedule KB below:

Teaches(Alex,CS100), T eaches(Bob, P100),

T eaches(Charlie, P200), T eaches(Alex,CS200)
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Problems with the CWA

The CWA can result in inconsistencies. This depends critically on

syntactic features e.g., what formulas we have in the KB.

Example: Let KB be

Prof(John) ∨ Prof(Mary).

Then

KB+ = {Prof(John) ∨ Prof(Mary), ¬Prof(John), ¬Prof(Mary)}

which is inconsistent!

There are extensions of CWA that deal correctly with arbitrary

disjunctions.



Artificial Intelligence M. Koubarakis'

&

$

%

Closed World Reasoning in Relational Databases

Relational databases are essentially simple knowledge bases. Here

we introduce them as a nice example of applying closed word reasoning

concepts such as the CWA presented earlier.

We will discuss how to formalize the well-known concepts of relational

databases in FOL. This formalization will be a good example of the

power of FOL, and we will also get nice and simple examples for

closed world reasoning.

We will introduce some more interesting KR concepts that we have seen

in other parts of the course as well.
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Example

TEACHER

NAME

Alex

Bob

Charlie

COURSE

NUMBER

CS100

CS200

P100

P200

STUDENT

NAME

John

Mary

Pam

Paul
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Example (cont’d)

TEACHES

NAME NUMBER

Alex CS100

Alex CS200

Bob P100

Charlie P200

ENROLLED

NAME NUMBER

John CS100

John P100

Mary CS100

Pam P100

Paul CS200

Paul P200
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FOL and Relational Databases

How can we use concepts of FOL to understand the theory of relational

databases?

Two perspectives have been developed in the literature: the

model-theoretic and the proof-theoretic one.
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The FO language Corresponding to a Database

In both perspectives, for a given database DB, we define a FO

language LDB as follows:

• For each relation R in DB, we have a corresponding predicate

symbol PR of the same arity in LDB .

• For each attribute value v in a relation of DB, we have a

corresponding constant Cv in LDB .

• LDB has no function symbols.

Notation: To avoid complex notation, in the examples we simply use

R and v for the predicates and constants.
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The Model-Theoretic Perspective

The given database DB is considered to be an interpretation IDB of

LDB with the following properties:

• The universe of the interpretation is the set of all values in the

database.

• Each constant Cv is mapped to attribute value v.

• The interpretation of each predicate PR is given by the relation R.
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Queries and Integrity Constraints

The language LDB can be used to write queries and integrity

constraints.

Queries:

x : Teacher(x) ∧ Teaches(x,CS100)

: Teaches(Charlie, CS100)

Integrity Constraints:

(∀x)(Course(x)⇒ (∃y)(Teacher(y) ∧ Teaches(y, x)))

(∀x)(Course(x)⇒ (∃y)(Student(y) ∧ Enrolled(y, x)))
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Queries and Integrity Constraints (cont’d)

Answering a query q is equivalent to determining whether the

interpretation IDB satisfies q.

Verifying that an integrity constraint C holds is equivalent to

determining whether the interpretation IDB satisfies C.

We will not cover the model-theoretic perspective in more detail.
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The Proof-Theoretic Perspective

Let DB be a given database. As in the model-theoretic perspective, we

can define the FO language LDB .

We can now write a FO theory (i.e., a set of FO sentences) TDB

that corresponds to DB.
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Example (for the above database)

Teacher(Alex), T eacher(Bob), T eacher(Charlie),

Course(CS100), Course(CS200), Course(P100), Course(P200),

Student(John), Student(Mary), Student(Pam), Student(Paul),

T eaches(Alex, CS100), T eaches(Alex,CS200),

T eaches(Bob, P100), T eaches(Charlie, P200),

Enrolled(John,CS100), Enrolled(John, P100), Enrolled(Mary,CS100),

Enrolled(Pam,P100), Enrolled(Paul, CS200), Enrolled(Paul, P200)
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Queries and Integrity Constraints

In the proof-theoretic perspective, the language LDB can again be used

to write queries and integrity constraints.

Queries:

x : Teacher(x) ∧ Teaches(x,CS100)

: Teaches(Charlie, CS100)

Integrity Constraints:

(∀x)(Course(x)⇒ (∃y)(Teacher(y) ∧ Teaches(y, x)))

(∀x)(Course(x)⇒ (∃y)(Student(y) ∧ Enrolled(y, x)))
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Queries and Integrity Constraints

But now answering a query q is done by determining whether

TDB |= q i.e., whether q logically follows from TDB . This can be

verified using a proof technique e.g., resolution.

The same is done for checking that an integrity constraint holds.

Let us try it!
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Example

Database:

Teacher(Alex), T eacher(Bob), T eacher(Charlie)

Course(CS100), Course(CS200), Course(P100), Course(P200)

Teaches(Alex, CS100), T eaches(Alex,CS200)

Teaches(Bob, P100), T eaches(Charlie, P200)

Queries:

: Teacher(Alex)

: (∃x)Course(x)

: (∃x, y)(Teacher(x) ∧ Course(y) ∧ Teaches(x, y))

We can use resolution to see that the answer to all of these queries is

“yes”.
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Example (cont’d)

Database:

Teacher(Alex), T eacher(Bob), T eacher(Charlie)

Course(CS100), Course(CS200), Course(P100), Course(P200)

Teaches(Alex, CS100), T eaches(Alex,CS200)

Teaches(Bob, P100), T eaches(Charlie, P200)

Queries:

: Teacher(CS100)

: ¬Teacher(CS100)

The answers to these queries are “no” and “yes” respectively. But

resolution will not help us in this case (try it!). How can we solve this

problem?
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First Solution: CWA

Relational databases silently make the CWA.

If we assume that the above queries are evaluated over T+
DB and define

query answering using |=c, then the above queries have the answers we

would expect.
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Other Queries

Can we handle queries such as the following using the CWA?

: (∀x)(Teacher(x) ∨ Course(x))

: ¬(∃y)Teaches(y, CS999)

Note that both queries essentially involve universal quantifiers.
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What is the Problem?

We are not able to get the answer “yes” for both of the above queries

because T+
DB does not entail the relevant formulas.

For the query

: (∀x)(Teacher(x) ∨ Course(x))

we can easily find a model of T+
DB that includes some domain elements

that are not teachers or courses.

For the query

: ¬(∃y)Teaches(y, CS999)

we can easily find a model of T+
DB that includes a domain element who

teaches CS999.
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The Domain Closure Axiom

If we can express in the knowledge base that the only individuals

are the ones mentioned explicitly in it, then queries with universal

quantifiers can be answered as expected.

This is done by the following domain closure axiom (DCA):

(∀x)(x = C1 ∨ x = C2 ∨ · · · ∨ x = Cn)

where C1, . . . , Cn are all the constants in the KB.
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Example (cont’d)

In the database from the earlier example, the DCA is:

(∀x)(x = Alex ∨ x = Bob ∨ · · · ∨ x = P100 ∨ x = P200)
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Equality Axioms

Since DCA uses equality, we also need the following axioms for equality:

• Reflexivity

(∀x)(x = x)

• Commutativity

(∀x, y)(x = y ⇒ y = x)

• Transitivity

(∀x, y, z)(x = y ∧ y = z ⇒ x = z)

• Substitution of equal terms

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)

(x1 = y1 ∧ · · ·xn = yn ∧ P (x1, . . . , xn)⇒ P (y1, . . . , yn))
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Example (cont’d)

If we now start from

• The knowledge base T+
DB we constructed using CWA

• The DCA

• The above equality axioms

we can answer the above queries using entailment and resolution (try

it!).
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The Unique Names Assumption

If we want to allow queries with equality as well, then we also need to

make the unique names assumption (UNA).

The UNA states that distinct names refer to distinct objects.

This is encoded by

Ci 6= Cj

for all pairs of constants Ci and Cj .

In relational databases (and many knowledge bases), this is a natural

assumption to make.
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Example

Let the KB be:

Teaches(Alex,CS100), T eaches(Bob, P100)

Then the UNA for this KB is:

Alex 6= Bob, CS100 6= P100,

CS100 6= Bob, CS100 6= Alex,

P100 6= Bob, P100 6= Alex
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Predicate Completion

There are various ways of expressing in a single sentence of FOL that

the only objects that satisfy a predicate are those that must do so

given what we have stated explicitly (e.g., there are no other teachers

expect the ones stated etc.).

The simplest of the relevant techniques is predicate completion.

Predicate completion is another closed world reasoning technique that

can be used as an alternative to CWA.
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Predicate Completion (cont’d)

Let us consider the following simple KB:

Teacher(Alex)

This KB can be written equivalently as:

(∀x)(x = Alex⇒ Teacher(x))

The above formula can be taken as the “if” part of the definition for

predicate Teacher.
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Predicate Completion (cont’d)

The assumption that there are no other teachers can now be captured

by writing the “only if” part of the definition:

(∀x)(Teacher(x)⇒ x = Alex)

We can combine both of the above formulas and write:

(∀x)(x = Alex⇔ Teacher(x))
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Predicate Completion (cont’d)

If our KB was

Teacher(Alex), T eacher(Bob)

then the “if” and “only if” forms can be combined as follows:

(∀x)((x = Alex ∨ x = Bob)⇔ Teacher(x))

This is called the completed definition of predicate Teacher.
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Example

Database:

Teacher(Alex), T eacher(Bob), T eacher(Charlie)

Course(CS100), Course(CS200), Course(P100), Course(P200)

Teaches(Alex, CS100), T eaches(Alex,CS200)

Teaches(Bob, P100), T eaches(Charlie, C200)
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Example (cont’d)

Completion:

(∀x)(Teacher(x)⇔ (x = Alex ∨ x = Bob ∨ x = Charlie))

(∀x)(Course(x)⇔ (x = CS100 ∨ x = CS200 ∨ x = P100 ∨ x = P200))

(∀x)(∀y)(Teaches(x, y)⇔ ((x = Alex ∧ y = CS100)∨

(x = Alex ∧ y = CS200) ∨ (x = Bob ∧ y = P100) ∨ (x = Bob ∧ x = P200)))
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Example (cont’d)

We can now use resolution on the above formalization which includes

the completion of the KB, the UNA, the DCA and the

equality axioms to answer any of the queries we mentioned earlier:

: (∃x)(Teacher(x) ∧ Teaches(x,CS200))

: Teacher(CS100)

: ¬Teacher(CS100)

: (∀x)(Teacher(x) ∨ Course(x))

: ¬(∃y)Teaches(y, CS999)
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Predicate Completion for Horn KBs

To apply predicate completion to Horn KBs, the process of producing

the completed definitions of predicates is a little more complicated.

The steps of this process are given below.
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Predicate Completion for Horn KBs (cont’d)

We can write each Horn clause as

(∀y)(Q1 ∧ · · · ∧Qm ⇒ P (t))

where t is an n-tuple (t1, . . . , tn) of terms.

There may be no Qi, in which case the clause is just P (t). The Qi and

t may contain variables, let us say the tuple of variables y.
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Predicate Completion for Horn KBs (cont’d)

The above formula is equivalent to

(∀x)(∀y)(x = t ∧Q1 ∧ · · · ∧Qm ⇒ P (x))

where x is a tuple of new variables not occurring in t or y, and x = t is

an abbreviation for the conjunction

x1 = t1 ∧ · · · ∧ xn = tn.
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Predicate Completion for Horn KBs (cont’d)

Since the variables y now occur only in the antecedent of the

implication, the above is equivalent to:

(∀x)(∃y)(x = t ∧Q1 ∧ · · · ∧Qm ⇒ P (x))
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Predicate Completion for Horn KBs (cont’d)

Let us suppose that we have exactly k clauses for P in our KB. Then

we will transform these clauses as above to arrive at:

(∀x)(E1 ⇒ P (x))

(∀x)(E2 ⇒ P (x))

...

(∀x)(En ⇒ P (x))

or equivalently

(∀x)(E1 ∨ E2 . . . ∨ En ⇒ P (x))

This is the “if” part of the definition of P .
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Predicate Completion for Horn KBs (cont’d)

The “only if” completion of P then is:

(∀x)(P (x)⇒ E1 ∨ E2 . . . ∨ En)

The completed definition of predicate P is:

(∀x)(E1 ∨ E2 . . . ∨ En ⇔ P (x))
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Example

(∀v)(Ostrich(v)⇒ Bird(v))

Bird(Tweety)

Ostrich(Sam)

The above knowledge base KB represents the following information:

All ostriches are birds. Tweety is a bird. Sam is an ostrich.
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Example (cont’d)

The completed definitions for predicates Bird and Ostrich are:

(∀x)((Ostrich(x) ∨ x = Tweety)⇔ Bird(x))

(∀x)(x = Sam⇔ Ostrich(x))
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Negation as Failure

Predicate completion provides the theoretical basis for the semantics of

negation-as-failure in logic programming languages (e.g., Prolog)

proposed by Keith Clarke in 1978.

See the book by Lloyd in the readings for more details.
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Query Answering in Horn KBs

We can start from the completed definitions of predicates, the UNA,

the DCA and the equality axioms, and use resolution to answer queries

such as the ones presented above for the student-course database.

There are special resolution methods for Horn KBs (SLD and SLDNF

resolution) that are more efficient than general resolution. See the book

by Lloyd in the readings for more details.
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Readings

• Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach, Prentice Hall, 2nd edition (2002).

www.cs.berkeley.edu/~russell/aima.html.

Chapter 10.

• Ronald J. Brachman and Hector J. Levesque. Knowledge

Representation and Reasoning. Morgan Kaufmann, 2004.

Chapter 11.

• J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.

Chapter 3.
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Readings (cont’d)

• Ray Reiter. Towards a Logical Reconstruction of Relational

Database Theory. In M. L. Brodie, J. Mylopoulos and J. W.

Schmidt (eds.) On Conceptual Modelling: Perspectives from

Artificial Intelligence, Databases and Programming Languages.

Springer-Verlag, 1984.


