INSTITUTION	NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS					
SCHOOL	SCHOOL OF SCIENCE					
DEPARTMENT	INFORMATICS AND TELECOMMUNICATIONS					
COURSE LEVEL	UNDERGRADUATE					
COURSE TITLE	Computational Complexity					
COURSE CODE	C03		Semester	1	ECTS	6
TEACHING HOURS per week	THEORY	3	SEMINAR.	1	LABORATORY	(0
URL	https://eclass.uoa.gr/courses/DI436/					

COURSE CONTENT

Computability

- Turing Machines (T. M. with multiple tapes, Non-deterministic T. M.)
- Church Turing Thesis

Time Complexity

- Complexity relations between different T. M. models (single-tape, multiple tapes, non-deterministic)
- Time complexity of non-deterministic T. M.
- The complexity classes P, NP, coNP, EXP
- Reductions and completeness, the notion of NP-hardness
- Cook-Levin Theorem
- NP-complete languages
- Pseudopolynomial and strongly NP-complete languages

Space Complexity

- Savitch's Theorem
- The complexity class PSPACE and PSPACE-completeness
- The complexity classes L, NL, EXPSPACE
- NL-completeness

Hierarchy Theorems

- The Time Hierarchy Theorem
- The Space Hierarchy Theorem

STUDENT LEARNING OBJECTIVES

Upon successful completion of the course the student will be able to:

- Define the basic computational complexity classes and describe/present representative problems for each one of them
- Describe the notion of non-deterministic computation and explain the P vs NP problem
- Use techniques that will help them classify problems into computational complexity classes

TEACHING AND LEARNING METHODS - ASSESSMENT		
TEACHING METHOD	In Class (Face to Face)	

USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES

Learning process supported by the e-class platform (Discussions, Announcements, Task assignments)
Email communication

TEACHING ORGANIZATION

Describe in detail the way and methods of teaching: Enhanced Lectures,

Online Lectures,

Seminars.

Tutorial,

Laboratory,

Laboratory Exercise,

Study & analysis of literature,

Practice (Positioning),

Interactive teaching,

Developing a project,

Individual / group work

Telework (reference to tools) etc.

Details of the student's study hours for each learning activity and hours of non-guided study are shown to ensure that the total workload at the semester corresponds to the ECTS

Activity	Student Workload (hours)	
Lectures	52	
Small Individual Exercises	30	
Individual study	68	
Total Course	150	

ASSESSMENT OF STUDENTS

Description of the assessment process

Assessment Methods, Formative or Concluding, Multiple Choice Test, Quick Response Questions, Test Development Questions, Problem Solving, Written Work, Report / Report, Oral Examination, Public Presentation, Laboratory Work, Other / Other

Fully defined evaluation criteria are mentioned and if and where they are accessible to students.

Assessment methods	Number	Percentage
Exercises	2	10% (bonus)
Written examination	1	100%

LITERATURE AND STUDY MATERIALS / READING LIST

- Christos H. Papadimitriou: Computational Complexity, Pearson publications 1993
- Michael Sipser: Introduction to the Theory of Computation, Cengage 2013
- Harry R. Lewis, Christos H. Papadimitriou: Elements of the Theory of Computation, Prentice- Hall 1997
- Michael R. Garey, David S. Johnson: Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman and Company 1979
- Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern Approach, Cambridge University Press 2007
- John E Hopcroft, Rajeev Motwani, Jeffrey D Ullman: Introduction to automata theory, languages, and computation, Addison-Wesley 1979