INSTITUTION	NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS						
SCHOOL	SCHOOL OF SCIENCE						
DEPARTMENT	INFORMATICS AND TELECOMMUNICATIONS						
COURSE LEVEL	GRADUATE						
COURSE TITLE	Algorithmic Graph Theory						
COURSE CODE	M101		Semester	2	ECTS	6	
TEACHING HOURS per week	THEORY	4	SEMINAR.	0	LABORATOR	Υ	0
URL	https://eclass.uoa.gr/courses/DI459/						

COURSE CONTENT

- Review of basic notions of Graph Theory.
- Flows
- Matchings and Vertex Covers: structural properties and algorithms.
- Vertex and edge colorings.
- Special graph classes: structural properties, membership testing, faster algorithms for hard problems when input restricted to the classes.
- Treewidth: separators and dynamic programming.
- Parameterized Problems and Algorithmic Techniques.

STUDENT LEARNING OBJECTIVES

Upon successful completion of the course the student will be able to:

- Identify/Describe the structural properties of graphs that are interconnected to the design of graph algorithms, such as, connectivity/separators, planarity, and colorability.
- Describe and apply algorithms on coloring problems, flows, and separability.
- Design algorithms for NP-hard problems by utilizing the structural properties of tree decompositions and Parameterized Algorithmic techniques.
- Prove lower bounds in the time complexity of problems on graphs by utilizing the Exponential Time Hypothesis.

TEACHING AND LEARNING METHODS - ASSESSMENT						
TEACHING METHOD	In Class (Face to Face)					
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES	Learning process supported by the e-class platform (Discussions, Announcements, Task assignments) Email communication					
TEACHING ORGANIZATION						
Describe in detail the way and methods of teaching: Enhanced Lectures, Online Lectures,	Activity	Student Workload (hours)				
Seminars,	Lectures	52				
Tutorial,	Small Individual Exercises	20				

Laboratory,	Project work	38	
Laboratory Exercise,	Individual study	40	
Study & analysis of literature, Practice (Positioning), Interactive teaching,	Total Course	150	
Developing a project,			
Individual / group work Telework (reference to tools) etc.			
Details of the student's study hours for each learning activity			
and hours of non-guided study are shown to ensure that the total workload at the semester corresponds to the ECTS			

ASSESSMENT OF STUDENTS

Description of the assessment process

Assessment Methods, Formative or Concluding, Multiple Choice Test, Quick Response Questions, Test Development Questions, Problem Solving, Written Work, Report / Report, Oral Examination, Public Presentation, Laboratory Work, Other / Other

Fully defined evaluation criteria are mentioned and if and where they are accessible to students.

Assessment methods	Number	Percentage
Exercises	2	20%
Presentation	1	50%
Final work	1	30%

LITERATURE AND STUDY MATERIALS / READING LIST

- Reinhard Diestel. Graph Theory
- J. A. Bondy and U. S. R. Murty. Graph Theory with Applications
- Laszlo Lovasz and Michael D. Plummer. Matching Theory
- Jon Kleinberg and Éva Tardos. Algorithm Design
- Marek Cygan et al. Parameterized Algorithms
- Douglas B. West. Combinatorial Mathematics