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Πρόλογος 

Ο τόμος αυτός περιλαμβάνει περιλήψεις επιλεγμένων διπλωματικών και 
πτυχιακών εργασιών που εκπονήθηκαν στο Τμήμα Πληροφορικής και 
Τηλεπικοινωνιών του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών 
κατά το διάστημα 01/01/2019 - 31/12/2019. Πρόκειται για τον 17ο τόμο στη σειρά 
αυτή. Στόχος του θεσμού είναι η ενθάρρυνση της δημιουργικής προσπάθειας  
και η προβολή των πρωτότυπων εργασιών των φοιτητών του Τμήματος. 

Η έκδοση αυτή είναι ψηφιακή, έχει δικό της ISSN και αναρτάται στην επίσημη 
ιστοσελίδα του Τμήματος ώστε να έχει μεγάλη προσβασιμότητα.  
Για το στόχο αυτό, σημαντική ήταν η συμβολή της Λήδας Χαλάτση που  
επιμελήθηκε και φέτος την ψηφιακή έκδοση και πέτυχε μια ελκυστική ποιότητα 
παρουσίασης, ενώ βελτίωσε και την ομοιογένεια των κειμένων. 

Η στάθμη των επιλεγμένων εργασιών είναι υψηλή και κάποιες από αυτές έχουν 
είτε δημοσιευθεί είτε υποβληθεί για δημοσίευση. 

Θα θέλαμε να ευχαριστήσουμε τους φοιτητές για το χρόνο που αφιέρωσαν για 
να παρουσιάσουν τη δουλειά τους στα πλαίσια αυτού του θεσμού και να τους  
συγχαρούμε για την ποιότητα των εργασιών τους. Ελπίζουμε η διαδικασία αυτή  
να προσέφερε και στους ίδιους μια εμπειρία που θα τους βοηθήσει στη συνέχεια 
των σπουδών τους ή της επαγγελματικής τους σταδιοδρομίας. 

 

 

 

Η Επιτροπή Ερευνητικών και Αναπτυξιακών Δραστηριοτήτων 

Θ. Θεοχάρης (υπεύθυνος έκδοσης), Η. Μανωλάκος 

Αθήνα, Ιούλιος 2020 
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ABSTRACT 

In this study, we utilize probabilistic topic modeling and machine learning 

methods to develop an efficient pipeline for the representation and 
classification of DNA sequences ab-initio. By treating genomic sequences as 
natural language text, we infer their underlying topics which are formed by 
patterns in their sub-sequences. Subsequently, the genomic sequences are 

projected into a lower-dimensional space according to their topic compositions. 
A preliminary investigation was conducted via a wide experimental evaluation 
on a diverse dataset containing different types of genomic sequences 
originating from key-organisms. The results suggest that topic representations 

can prove beneficial to the classification process as they outperformed 
preceding methods and have been neglected in the literature. 
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1 INTRODUCTION 

DNA can be thought of as a manual containing the genetic instructions 
responsible for all functions in living organisms. A single strand of DNA is a 
biomolecule consisting of many linked smaller components, called nucleotides 
that come in four forms and are depicted with the letters A,T,C and G. Each DNA 

strand is typically represented as a character string containing combinations of 
these four letters. [2] 

In this work, we examined topic-based representations for genomic sequences, 
which employ statistical methods widely used in the field of Natural Language 
Processing. We treated DNA as a natural language, by forming words, topics and 

documents, and we used the information stored in these topics to represent the 
DNA sequences. 

We evaluated the effectiveness of our pipeline in 26 distinct binary classification 
experiments. Intuitively, when a classification is "harder", it means that the 

classes are more similar to each other. In evolutionary biology, the similarity 
between sequences usually reflects their evolutionary distance between the 
organisms. If two organisms' genomes are more similar to each other the 
organisms will be closer related than two organisms' genomic sequences which 
are divergent. As follows, by measuring the classification performance for each 

pair of organisms' genomes, it is theoretically possible to construct the 
phylogenetic history of the organisms. Thus, apart from performing the 
classification experiments and scoring high F-measures, we are also interested 
in understanding the biological driving forces behind the sequences. Even when 

we are only interested in one type of sequence, such as the conserved non-
coding elements, there is value in experimenting on other types of sequences in 
order to develop a broader understanding of the problem. 
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2 RELATED WORK 

2.1 Probabilistic Topic Modeling 

Topics can be viewed as clusters of words that refer to a particular portion of 
reality. A document can refer to one or more distinct topics, which humans can 
often easily distinguish. For example, the words "fishing", "boat", "waves", have 

something in common, they are all affiliated with the sea. We can think of “sea” 
as one topic, which contains these three words. However, topics are not always 
unequivocally defined and there could exist a spectrum of broader or narrower 
topics within a document. 

2.2 Latent Dirichlet Allocation (LDA) 

Topic Models can infer topics by observing the distribution of words across 
documents. This can be accomplished with Latent Dirichlet Allocation (LDA) 
[70,5,4] , a generative statistical model that makes the hypothesis that there 
exists an underlying distribution of words, topics and documents, which 

generated the input text collection. Using probabilistic Topic Model jargon, the 
words of a document are called "observed variables", whereas the variables of 
the topic structure are called "hidden variables". Using an iterative process, the 
model estimates the posterior distribution of the hidden variables given the 
observed variables. However, the vast amount of topic structures that can exist 

result in exponential complexities of computation. For this reason, sampling-

based algorithms have been developed, such as Gibbs sampling (introduced 
below). LDA is an instance of a more general class of models called grade of 
membership or mixed-membership models [15], because each document can 

be composed by multiple topics but the topics are shared between documents. 

2.3 Gibbs Sampling  

In Gibbs sampling [70], a Markov chain (i.e., a sequence of random variables, 
each only dependent on the previous) is constructed, using samples from the 

distribution of hidden variables. The assignment of words to topics is sampled 
iteratively until the Markov chain converges to the target distribution. In the 
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beginning of this procedure, each word is randomly assigned to a topic and in 
each subsequent iteration, the word-topic assignments are re-evaluated, which 
might result in words passing through multiple topics during the process. 

2.4 Genomic Signatures (GS) 

The idea of a 'Genomic Signature' is not a new idea [32]. GS is based on the 
observation that the dinucleotide odds ratios (e.g. 'AT' ratio) tend to be the 
same among organisms of the same species, and closely related organisms have 

substantial more similar dinucleotide ratios than those distantly related. Thus, 
these ratios can be thought to have a 1-to-1 relationship with species' genomes. 
Genomic Signatures consist an effective method of discriminating between 
sequences from different organisms. 

2.5 N-Gram Graph (NGG) 

NGG is a deterministic text classification model, opposed to other probabilistic 
models for text classification such as Hidden Markov Models [1], or Conditional 
Random Fields [13].  The main idea behind NGGs is that the neighborhood 
between sub-sequences in a sequence contains a crucial part of the sequence 

information. [51,19]. NGGs combine the benefits of n-gram flexibility with the 
well-structured representation of directed graphs [19,75]. Every extracted 
sequence from a text can be formed as a n-gram. Furthermore, the relation of 
these n-grams can be reflected using a graph. As follows, any text classification 

task can be reduced to a graph theory and pattern matching problem. 

2.6 Applications to Genomics  

The previous two methods (GS and NGG) were adopted by Polychronopoulos et. 
al [19,51] to investigate the relationships between genomic classes comprising 
of both non-coding and coding elements(exons). These sequences originated 

from key-species belonging in the taxonomic groups: humans, worms and 
insects. Their work has paved the way for this thesis, as their datasets and results 
have functioned as the baseline for our proposed method. 
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3 PROPOSED METHOD 

In this section, we will give a high-level view of the methodology we followed, 
throughout the experiments.  

3.1 Dataset Selection 

Polychronopoulos et. al [52] in their experiments described in the related work 

section, included data from various published and curated collections featuring 
coding and non-coding sequences of the organisms H.sapiens (human), 
D.melanogaster (insect, common fruit-fly) and C.elegans (worm). Because these 
data are heterogeneous, for the purpose of the classification experiments 1.000 
elements were randomly selected from each genomic class. 

Figure 1: Depiction of genomic classes participating in the experiments 

 

3.2 Formulation as a classification problem 

The task consists of combining the sequences originating from two different 
genomic classes into one combined file containing both sets of sequences, and 

then predicting the class from which each sequence originated. Therefore, we 
run 26 different binary classification experiments. Α high-level view of the 
pipeline can be seen in Figure 2. 
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Figure 2:  Proposed pipeline 

3.3 Pre-processing and k-mer decomposition 

Firstly, we eliminate all FASTA headers from the files involved, and we represent 
each sequence participating in the experiment as the vector of its k-mers in 
order to apply natural language processing techniques. The optimal value for k 
was estimated through an algorithm we developed around Zipf’s law which 
originates from the field of computational linguistics. [53] 

The ”Zipf’s” law makes the observation that in a long enough document, about 
50% of the words only occur once. These words are called ”Hapax legomena”. 
This hypothesis has been reinforced in multiple cases, where large corpus of 
documents have been analyzed. Based on this phenomenon, we developed a 

simple algorithm and implemented it in Java(SDK 1.8) for calculating the word 
length 𝑘. The intuition behind our unorthodox approach is to estimate the 𝑘 for 
which the genomic sequences mimic natural language text. 

3.4 Topic Modeling 

Next, we utilize Probabilistic Topic Modeling to infer topics from the corpus of 
the k-mer represented sequences. The next step involves projecting the 
sequences into the lower-dimensional space of their topic compositions based 
on the topics inferred in the previous step. The code for the representation is 
written in Java (JDK=1.8) and the topics inference was performed by MALLET. We 
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ran the experiments multiple times by varying the number of topics, and we 
compared the results through statistical testing. 

3.5 Machine Learning 

Subsequently, we ran multiple classification algorithms which cover a range of 
approaches in machine learning (trees:[Random Forest],Support Vector 
Classifier: [SMO],Neural Networks: [Multi-layer perceptron], Linear models: 
[Naive Bayes], Non-linear models : [Logistic]),  on the topic-representations 

using 10-fold cross-validation. The Java software Weka [25] was used for this 
task. 

3.6 Hypothesis Testing  

Last but not least, we use hypothesis testing, to identify the dominant 
parameters for the representations, as well as the best performing algorithms 

and genomic classes in terms of F-measure. For all statistical testing, R-studio 
was used (version 3.6) . We deploy a set of tests from statistics, which are applied 
sequentially and are the following: 

1. Shapiro-Wilk Normality Check  [59,66] 

2. Kruskal-Wallis non-parametric test 68] 
3. Post-hoc analysis by Nemenyi 48] 

4 RESULTS AND DISCUSSION 

Through the extensive hypothesis testing and parameter tuning that took place, 
we reached some important conclusions on the selection of parameters' values 
for topic modeling. 

4.1 Number of Topics 

It seems that the effect of the number of topics on the classification reaches a 
plateau around 6 topics. After this number, increasing the quantity does not add 



Study of Probabilistic Topic Representations for the Classification of Genomic Elements - Nikolaos P. Gialitsis 

 13 

significant value to the experiments. However, if we value stability of speed, then 
16 topics might be the wisest choice because of the lower overall-variance and 
slightly higher F-measures achieved.  

 

4.2 Word Length 

The length of the 𝑘-mers was inferred both experimentally, through 

classification results, and empirically, through application of Zipf's law (Figure 
3). Both results suggest that 𝑘 = 6 provides a good estimate for classification. 
However, exons are favored in the classification because 𝑘 = 6 in this case is a 

multiple of 3 and is subject to codon bias. 

Figure 3: Results from Zipf's approach 
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4.3 Comparison with previous methods 

We compare the F-measures between our topic representation and the methods 
implemented by Polychronopoulos et.al, consisting of N-gram graphs and 

Genomic Signatures in [51] which were applied on the same dataset as in our 
experiments. For a direct comparison between the methods, we have followed 
the same paradigm which divides the results into three distinct classes of 
experiments, involving the comparisons between: 

1. surrogate DNA sequences 
2. constrained DNA sequences and background surrogates 
3. functional DNA sequences 

and we display the results side-by-side in Figure 4, Figure 5 and Figure 6 for each 
class respectively. Overall, the Topic Model appears to perform considerably 

well, especially in comparisons involving exonic elements. This was to be 
expected, as mentioned before, as a result of codon bias. On the other hand, the 
topic model appears to follow the same ratios with the other methods. For 
example, the comparison between worm UCNEs and surrogates is the lowest-

scoring experiment for both NGG and the Topic Model, and the same stands for 
the highest-scoring experiments of the two methods (worm exons vs human 
exons). It appears that the Topic Model performs especially well when classifying 
sequences originating from the worm or the insect, as well as when a functional 

class is compared with a surrogate class. 
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Figure 4: Comparison between the Topic Model representation and the N-gram graph 
and Genomic Signature methods in terms of F-measure on experiments involving only 

surrogates 

 

Figure 5: Comparison between the Topic Model representation and the N-gram graph 
and Genomic Signature methods in terms of F-measure on experiments involving the 

surrogate’s dataset 
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Figure 6: Comparison between the Topic Model representation and the N-gram graph 

and Genomic Signature methods in terms of F-measure on experiments involving 
elements with known functions 

 

A factor that is important to consider, is that topic-representations do not 
encompass any kind of syntax related to the order of the sub-sequences in a 
sequence. The fact that they performed reasonably well in the various 
experiments involving genomic sequences, is an indicator that the true order of 

nucleotides in a DNA sequence does not play a major role in its functionality. 

Furthermore, running the Topic Model multiple times varying the number of 

topics, can be a good way to capture both close-distance and long-distance 
interactions between the nucleotides. The intuition behind this is that if the 
number of topics is small, each topic will on average, span a larger area of the 

sequence than if the number of topics was very big. This might explain the high 
classification scores achieved in the experiments. 

4.4 Verification with scientific literature 

Chiang et al.in the published work [10] have shown that vertebrate CNEs are 

enriched in the subsequence ”TAATTA”. We set up an experiment in order to 
examine if our model is able to capture this fact, in experiments involving 
vertebrate CNEs. For each comparison file, we ran the Topic Model (T=16, k=6). 
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Then we searched for the word ”TAATTA” in the top 10 most frequent words of 
each one of the 16 topics. The result for this experiment is depicted in Figure 7, 
in a confusion matrix. Thus, the accuracy rate of our model is  (7 + 14 )/26 =

 80.76%. This result suggests that the model truly was able to infer this known 
fact about these genomic sequences automatically without any a-priori 
knowledge. This Is a promising sign that the topic-representation was chosen 
correctly for the types of genomic data that we worked with. 

 

Figure 7: Confusion matrix obtained from model verification according to literature 
 

4.5 Future directions 

Firstly, the topics produced by the Topic Model themselves consist an important 
information source, since by analyzing the sub-strings they contain, we might 
be able to identify new sequential motifs for each genomic class. Furthermore, 

more experiments can be performed on other genomic classes, to assess the 
model’s consistency when ran on different data. Additionally, statistical testing 
can also be applied on the selection fork, which might also influence the overall 
score of the classification. Also, more variations of Topic Models can be tested 

on the data, such as the Hierarchical Topic Models which strive to learn 
hierarchies from data [23]. Lastly, methods could be adopted into the topic-
modeling pipeline which automatically asses the ideal number of topics based 
on the topics’ stability [21]. 
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Autonomic Tackling of Unknown Obstacles in 
Navigation of Robotic Platform 

Nefeli K. Prokopaki Kostopoulou 

ABSTRACT 

The goal of the present thesis is to develop a method for a robotic outdoor 
platform. The robot should discover by itself, based on its sensors and its 
previous knowledge, how to approach an obstacle that stands in front of it, 

whether it is capable of driving over the obstacle or should avoid it. Obstacle 
avoidance ensures the safety and integrity of both the robotic platform and the 
people and objects present in the same space. That is one of the reasons why 
current approaches mainly concentrate on maneuver to avoid obstacles rather 

than yield autonomous systems with the ability to self improve. There is not 
much work done on curiosity-driven exploration, in which there is no explicit goal, 
but the abstract need for the robot to learn a new environment. 

In the current thesis we introduce a system that not only autonomously 

classifies its environment to areas that can or cannot be driven over, but also has 
the capacity for self- improvement. To do so, we use a pre-trained neural 
network for whole scene semantic segmentation. We implement a program that 
accepts as input images extracted from the neural network mentioned above 
and predicts whether the illustrated scenes can be traversed or not. The 

program trains itself and then evaluates its effectiveness. Our results are quite 
satisfactory and the error rate can be explained by the fact that the environment is 
not evenly distributed in obstacles and paths, while at the same time it is not 
always clear which one is dominant. Furthermore, we show that our model can 

be easily optimized with just a few modifications. 
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1 INTRODUCTION 

During the last years the focus of research for robotic applications evolved from 
well structured indoor environments to unstructured outdoor environments. 
With this expansion of interest, it is a crucial prerequisite to reliably classify 
traversable ground in the environment, especially when it comes to truly 

autonomous (or else self-supervised) systems. This topic is typically referred to 
as traversability analysis or obstacle detection [1]. The verb traverse is defined as 
“to pass or move over, along, or through”. Hence traversability refers to the 
affordance of being able to traverse [2]. Failing on this task can cause great 
damage or restrict the robots movement unnecessarily. 

In this thesis we will tackle on how an autonomous mobile robot can improve its 
traversability estimation method in natural environments, meaning not only on 
bare ground-like environment but also on terrain containing vegetation. On 
contrast, we will rule out high-risk applications where a single accident can be 

fatal to the robot like planetary or volcano exploration. We will concentrate in 
everyday practical situations. We will determine how to introduce a learning 
capability to the robot that will enable it to decide for itself the traversability of 
the terrain around it, based on input from its sensors and its experience of 
traveling over similar terrain in the past. We would also like our robot to plan 

further ahead and avoid entering traps that prevent it from reaching its goal. 

2 AUTONOMOUS NAVIGATION 

The goal is for the robot to be able to autonomously navigate in natural 
environments. To do so, we could use a pre-trained neural network in order to 
be able to distinguish traversable from non-traversable terrain. 

For the purposes of this thesis we will basically deal with pre-trained models. By 
borrowing a little story from Gupta [46] we are going to explain why. Imagine 

two people, Mr. Potato and Mr. Athlete. They sign up for soccer training at the 
same time. Neither of them has ever played soccer and the skills like dribbling, 
passing, kicking etc. are new to both of them. Mr. Potato does not move much 
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but Mr. Athlete does. That is the core difference between the two even before 
the training has even started. As you can imagine, the skills Mr. Athlete has 
developed as an athlete (e.g. stamina, speed and even sporting instincts) are 

going to be very useful for learning soccer even though Mr. Athlete has never 
trained for soccer. Mr. Athlete benefits from his pre-training. Mr. Potato on the 
other hand will have to develop all these skills from scratch, something that will 
cost him much more energy and time. 

In this chapter we describe the primary thoughts and the actual strategy on how 
to reach the goal mentioned above. 

2.1. Selecting a convolutional neural network 

Primarily, a neural network is needed in order to convert images that depict the 
environment seen by the robot, to a form more recognizable by it. Ideally, after 

the conversion, all objects would be distinguished from all traversable areas. But 
the idea of finding such a neural network is probably not realistic. Thus, the goal 
for this section is to find a neural network that distinguishes all objects from one 
another. 

 

Object classification, localization, detection 

The first attempt was to use one of the most-well known models from ILSVRC. 

With a little help from the code of Rosebrocke [47] we experimented on pre-

trained VGGNet, ResNet, Inception and Xception. We fed them images and, as 
expected, they returned classification predictions about them. With the 
contribution of ImageNet a list of human-readable labels and the probability 
associated with them was printed. 

Images containing just one object (e.g. soccer ball, couch) led to predictions that 

were satisfactory in their entirety. But being fed with images containing multiple 
objects (e.g. book and glasses) the networks got confused. They gave some 
decent predictions (like envelope or book jacket, in the previous example) but 
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also some that were a little bit off (like lighter or birdhouse), within their top-5 
list. 

Images that contain vegetation, which are of particular interest to us in this work, 

were the worst case scenario. For example, the networks above, after being fed 
with an image of a tree, gave as most likely predictions kinds of seeds like 
lemons. This probably happened because the networks concentrated on the one 
part of the  

whole image that was most recognizable by them. Finding out what the 
predictions with smaller probabilities were, did not help. As the networks kept 
predicting, they got desperate and started giving all sorts of predictions. 

Even though these networks are proven to be great on object classification, when 
it comes to scene recognition there is no trivial way to make them work correctly. 

Similarly, models specialized in object detection like SSD or YOLO, do not seem 
to be able to generalize on scene segmentation issues. As dictated by their 
name, they detect all objects within an image, but ignore the rest of the scene. 

 

Related work 

Many papers have been published regarding robot navigation approaches that 
use already existing deep neural networks, or modify them in order to meet their 

needs. Unfortunately, some of these researchers had not made their code 

publicly available, in order for us to rely on part of their work and extend it with 
our own ideas. And while others kindly released their code online, their networks 
were not trained compatible to the needs of this thesis. 

Some papers considering traversability estimation concentrate on go or no-go 
situations, [17, 48]. They use generative adversarial networks and train them to 

estimate whether the space seen through the given image is traversable or not. 
They are trained in indoor environments, which means that we would have to 
train them from scratch to work in natural outdoor environments. 
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Likewise, Tai et al. [22] further extended the concept of deep neural networks to 
not only perception but also decision-making. Basically, they used a structure 
that fuses several convolutional neural network layers with decision-making 

process, in order to explore an unknown environment. According to the authors, 
in traditional computer vision applica- tions each label of the output represents 
either an object or scene categories. The outputs of their model are control 
commands that show the platform which route to follow. 

Other researchers use neural networks to classify the area in front of the robot 
according to traversability and level of confidence [49, 50]. These neural 
networks assign class la- bels to parts of the input image. Classes which show 
that “only ground or only obstacle is seen in the area”, are of high confidence. 
While the rest inspire lower confidence. These classes are separated to “ground 

and obstacle may be seen”, “obstacle is seen but does not fill the area”, “location 
where an obstacle meets the ground”. 

Some approaches identify only a few class labels to classify the whole image [51, 
52, 53]. While others have as their main goal to find and follow a path [54, 55]. 

The first category usually includes scene labels that can be used in outdoor 
environments (such as sky, road, tree, grass, building), as their title declares. The 
second one, while also being able to recognize such class labels, identifies them 
as obstacles. 

 

Scene segmentation 

So, the aim is on total scene segmentation rather than single or even multiple 
object categorization. Semantically meaningful image understanding is a 
relatively recent topic in computer vision. That explains why, compared to 

recognition, far fewer papers address scene segmentation in neural networks 
[42]. A general semantic segmentation architecture can be broadly thought of as 
an encoder network followed by a decoder network [41]. The encoder is usually a 
pre-trained classification network like VGGNet or ResNet that outputs a feature 

map. The task of the decoder is to semantically project the lower resolution 
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features learned by the encoder, onto the higher resolution (pixel space) to get 
the best closest match to the original input. 

Given a visual scene of, let us say, a living room, a robot equipped with a trained 

convolutional network can accurately predict the scene category. However, to 
freely navigate in the scene and manipulate the objects inside, the robot has far 
more information to digest [44]. It needs to recognize and localize not only the 
objects like sofa, table, and television but also to segment the stuff like floor, wall 

and ceiling for spatial navigation. It probably needs to recognize also object 
parts, e.g. a seat of a chair or a handle of a cup, to allow proper interaction. 

Following the instructions of Le [41], on his guide on how to do semantic 
segmentation using deep learning, we attempted to implement the most 
popular architecture for semantic segmentation, fully convolutional networks. 

We had in mind that the encoder, VGGNet in this case, would be pre-trained, but 
we would have to train the decoder from the beginning on KITTI [56]. But fully 
convolutional networks, at least those trained on KITTI dataset, do semantic 
segmentation only on foreground and ignore the background. In order for us to 

be able to decide terrain traversability, whole scene segmentation is necessary. 

 

Datasets 

Scene parsing, or recognizing and segmenting objects in an image, remains one 

of the key problems in scene understanding [44]. Going beyond the image-level 
recognition, scene parsing requires a much denser annotation of scenes with a 
large set of objects. 

However, the current datasets have limited number of objects, e.g. COCO [45], 
PASCAL VOC [57]. In many cases those objects are not the most common objects 

one encounters in the world like frisbees or baseball bats. Or the datasets only 
cover a limited set of scenes, like urban sceneries, e.g. Cityscapes [58] and KITTI 
[56]. Most of the large-scale datasets typically only contain labels at the image 
level or provide bounding boxes, e.g. ImageNet [31], PASCAL VOC and KITTI. 

ImageNet has the largest set of classes, but contains relatively simple scenes. 
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Compared to the largest annotated datasets COCO and ImageNet, ADE20K [59] 
comprises of much more diverse scenes. 

Finally, existing datasets with pixel-level labels typically provide annotations only 

for a subset of foreground objects, and no background, e.g. PASCAL VOC and 
COCO. That is probably why fully convolutional networks trained on KITTI, as 
mentioned before, do not give class labels to the background pixels. But, 
generally, pixel appearance features al- low to perform well on classifying 

(amorphous) background classes. ADE20K categorizes semantic classes present 
in the scene into three super classes: stuff (sky, road, building, etc), foreground 
objects (car, tree, sofa, etc), and object parts (car wheels and door, people head 
and torso, etc). 

 

Pre-trained models on scene segmentation 

After finding some pre-trained models  we experimented on different algorithms 
and training datasets. The backbone network in all those cases was ResNet. Be 
reminded that successful deep neural network architectures for image level 

classification like AlexNet, VGGNet and ResNet are a natural precursor to, and 
often a direct part, of semantic segmentation architectures. 

The algorithms mentioned previously are the fully convolutional network [43], 
Pyramid Scene Parsing Network (PSP) [60] and DeepLab [61]. All three of them 

when trained on COCO or PASCAL VOC do not perform complete scene semantic 
segmentation. When they are fed with indoor images they recognize only 
foreground objects. No class labels are given to the background pixels. Our 
hypothesis that the part of the image they ignore is the background is further 
intensified by the way outdoor images are handled. Their result on outdoor 

input is a black image. On the contrary, when trained on ADE20K all tree 
networks transact semantic segmentation on the whole scene. The outputs from 
all tree algorithms trained on each of the three datasets are depicted in Figure 
2.1 for outdoor inputs. 
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Many deep learning architectures have been proposed for image segmentation. 
As far as we know, in order to be able to semantically segment the whole image 
we can use any of the three algorithms mentioned above as long as they are 

pre-trained on the ADE20K dataset. But how can we use them to help us 
distinguish traversable from non-traversable terrain? 

 

(a) Original image (b) COCO or VOC 

 

(c) FCN with ADE (d) PSP with ADE (e) DeepLab with ADE 

Figure 2.1: Results given from outdoor input. Fully convolutional network, Pyramid 
scene parsing network and DeepLab trained on COCO, PASCAL VOC and ADE20K 

dataset. 

 

2.2. Estimating traversability 

We implemented a program that when given an image predicts whether the 
illustrated scene is traversable or not. The program trains itself and then 
evaluates its effectiveness. All the input values are images extracted from a 

neural network for whole image semantic segmentation. These images consist 
of colors depicting objects and parts of the scene. Each color is recognized by the 
computer as a triad of numbers representing the amount of red, green and blue 
present to produce the original color. 
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For humans to be able to observe the program’s functionality we keep a default 
correspondence between colors and class labels. Also, to ease comprehension, 
all operations are rounded to the second decimal place. 

During the program training period, it reads previously annotated images. 
These annotations are penetrable region or obstacle. In this thesis, the term 
penetrable will be used interchangeably with the term traversable. The program 
keeps track of how many times each color is found in traversable and how many 

in non-traversable images. So, it can compute the traversability percentage of 
each color. For example, let’s suppose that brown corresponds to “earth”. Brown 
color exists in 70 images from which 56 are traversable and the other 14 non-
traversable. So the traversability percentage of the earth is 

56 × 100 ÷ 70 = 80 

Therefore, the earth (and, consequently, the color brown) has 80% chance of 

being traversable. 

During evaluation we implement two different calculating methods. Both of 
them are responsible for deciding whether the given images are traversable or 
not. Every image with chance of being traversable greater or equal to 50% is 

considered to be traversable (and therefore with chance less that 50% is 
considered to be non-traversable). Let’s take Figure 2.2 and try to explain the 
two methods. For the purpose of this example, we suppose that brown has 80% 
chance of being traversable, as is found to be penetrable 8 times out of the total 

of 10. Green 9 out of 30 (30%) and blue 9 out of 20 (45%). To ease our 

understanding let’s say that brown corresponds to “earth”, green to “tree” and 
blue to “sky”. 
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(a) Original image (b) Image resulting from PSP 

Figure 2.2: Example for explaining the differences between the two calculating 
methods - earth (80% chance of being traversable, found to be penetrable 8 times out 

of the total of 10), tree (30%, 9 out of 30), sky (45%, 9 out of 20) 

 

Intuitively, the difference between the two methods is that the former considers 

all classes as equal, while the latter pays attention to how often a class has been 
seen. More technically: 

1. the first method determines the probability of an image to be penetrable, 
as the average of the traversability percentages for each color contained 
within. Figure 2.2, which contains brown, green and blue, has a probability 

of 51.67% being traversable. 

(80% + 30% + 45%) ÷ 3 = 51.67% 

2. the second method uses the number of times each color was found in 
traversable and in non-traversable images. It assumes that the likelihood 
of an image being traversable is in direct dependence of the number of 

times each color found within, is penetrable. In other words, it specifies 
that the traversability percentage of an image, is the weighted average of 
the traversability percentage of all the colors within it. This time, the 
probability of Figure 2.2 being traversable is 43.33%. 

(8 + 9 + 9) × 100% ÷ (10 + 30 + 20) = 43.33% 

The first method is an obvious way to find the probability of an image being 

penetrable. The second one, however, emphasizes on statistics, in the sense that 
a one-time event may be a coincidence, but the more often it happens the more 
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secure it is to become a rule. In the previous example class earth was found to 
be traversable 8 times out of the total of 10. This means that 2 out of 10 times, it 
was found to be non-traversable. Let’s suppose the first given image containing 

earth was non-traversable. So, the traversability percentage of earth would be 
0%. While the first method will use it as a certainty, the second one will have low 
confidence on it. 

It is known in advance whether the testing images are penetrable. It is trivial to 

discover whether the previously described methods’ decisions are right or 
wrong. In the example above the first method decides that the image is non-
traversable, while the second method determines the opposite. Note that in 
other cases the results of the two methods may concur. 

As we have introduced a program that decides whether the input images are 

traversable or not, we will proceed in the next section to evaluate the 
effectiveness of our approach. 

3 EXPERIMENTAL VALIDATION AND COMPARISON 

We evaluate our machine learning model with a procedure called cross validation 
[62]. It is also known as rotation estimation or out-of-sample testing. Cross 
validation is primarily used in applied machine learning to estimate the skill of a 
machine learning model on unseen data. That is, to use a limited sample in order 

to estimate how the model is expected to perform in general when used to make 
predictions. In a prediction problem, a model is usually given two datasets. First 
a dataset of known data on which training is run (training set). And then a dataset 
of unknown data (or first seen data) against which the model is tested (validation 

set or testing set). The goal of cross validation is to test the model’s ability to 
predict data not used during the training of the model. 

The procedure has a single parameter N that refers to the number of folds that 
a given data sample is to be split into. As such, the procedure is often called N-

fold cross validation. 
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In this thesis our data sample consists of twenty directories containing images. 
Ten of these directories contain 778 traversable images and the other ten include 
945 non- traversable. 

In order to evaluate our model we split our data sample in five folds and perform 
5-fold cross validation. Because we have twenty directories, each fold has an 
equal number of four directories. During each fold we use two traversable and 
two non-traversable directories for testing and the rest for training. In Table 2.1 

one can see the numbers of images used for training and testing for each fold. 

As mentioned before we implemented a program that predicts whether a scene 
is traversable or not. It accepts as input images outputted by a neural network 
for semantic segmentation. Previously we established that the ADE20K dataset 
is the best fit for whole scene semantic segmentation. And that, in theory, any 

of the fully convolutional network (FCN), pyramid scene parsing network (PSP) 
and DeepLab can be used equally effectively. So we run our program with 
images that have emerged by each one of them to check which has the best 
results. 

 

Table 2.1: Number of images for each testing and training set in 5-fold cross 
validation. Total number of images: 778 traversable and 945 non-traversable. 

Fold Traversable images Non-traversable images 

Testing set Training set Testing set Training set 

1 153 625 184 761 

2 169 609 221 724 

3 164 614 225 720 

4 109 669 165 780 

5 183 595 150 795 
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We gave as input to each of the three neural network models the images 
contained in the directories mentioned previously. And then fed our program 
with their outputs. The results of the first calculating method, described in 

Section 2.2 are shown in Table 2.2. And the results of the second method in Table 
2.3. In both tables it is quite obvious that the PSP has clearly better results than 
the other two models, for both individual and global trials. 

 

Table 2.2: 1st calculating method - Percentage of evaluation images whose 
traversability was found correctly. In the second column are the results from images 

derived from the FCN, the third from PSP and the forth from DeepLab. 

Success on 1st calculating method 

Fold with FCN (%) with PSP (%) with DeepLab (%) 

1 57.57 77.45 56.97 

2 65.9 94.36 56.67 

3 66.58 87.15 58.87 

4 84.31 86.86 72.26 

5 75.98 94.89 75.08 

Average 69.3 88.33 63.26 
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Table 2.3: 2nd calculating method - Percentage of evaluation images whose 
traversability was found correctly. In the second column are the results from images 

derived from the FCN, the third from PSP and the fourth from DeepLab. 

Success on 2nd calculating method 

Fold with FCN (%) with PSP (%) with DeepLab (%) 

1 54.6 62.61 54.6 

2 57.69 93.33 56.67 

3 57.84 80.46 58.35 

4 63.5 79.2 60.58 

5 45.05 45.05 45.05 

Average 55.6 72.84 55.02 

 

 

Consequently, we decided to continue our research using the PSP model. In Table 
2.4 we gathered the results from both methods when using data from the PSP 
algorithm. Even though we think that the second calculating method is more 

representative of the overall sample, in this case the first one gives better results. 
That happens probably because the non-traversable images of the training set 
are much more that the traversable ones, as shown in Table 2.1. 
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Table 2.4: PSP - Percentage of testing images whose traversability was found correctly 
with the 1st and the 2nd calculating method. 

PSP trained on ADE20K dataset 

Fold Success with 1st method (%) Success with 2nd method (%) 

1 77.45 62.61 

2 94.36 93.33 

3 87.15 80.46 

4 86.86 79.2 

5 94.89 45.05 

Average 88.33 72.84 

 

 

Therefore, as is obvious, we chose to deepen into the first method of deciding 
on image traversability. In Table 2.5 we describe how the success rates of the 

first method arose. 

• In column 1 each fold is shown. 
• In columns 2 and 3 we give the number of traversable images and the 

percentage of those that were successfully predicted traversable. 
• In columns 3 and 4 the same for non traversable images. 

• Finally, column 5 gives the total success rate of the first method, 
summarizing the results of both traversable and non-traversable images. 
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Table 2.5: PSP 1st method - Number of traversable and non-traversable images for 
each testing set, with their success rate in finding traversability. Observe that the 

success rate for non-traversable images is always 100%, while in traversable images is 
much lower. 

Testing images on 1st method with PSP 

Fold Traversable Non-traversable Average (%) 

Number Success (%) Number Success (%) 

1 153 50.33 184 100 77.45 

2 169 86.98 221 100 94.36 

3 164 69.51 225 100 87.15 

4 109 66.97 165 100 86.86 

5 183 90.71 150 100 94.89 

Average 778 74.16 945 100 88.33 

 

4 CONCLUSIONS AND FUTURE WORK 

In this thesis we concentrated on traversability estimation methods. We 
implemented a program that when given images, predicts whether they are 
traversable or not. These images are extracted from a convolutional neural 

network for total scene semantic segmentation. We chose Pyramid Scene 
Parsing Network (PSP) pre-trained on ADE20K dataset for this purpose, as it 
seemed to have the best results. We fed PSP with images from natural outdoor 
environments, containing vegetation. It resulted with images consist of colors 
depicting objects and parts of the scene. Lastly, we evaluated our 

implementation and explained how the traversable images are more difficult to 
predict than the non-traversable. The main reason for this is that the data 
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sample used for training, consists of many more non-traversable than 
traversable images. That is something we are not able to control because we 
want our system to be autonomous.  

We believe that our contribution has been noteworthy. As said before, it has 
become clear to researchers in robotics that current approaches are yielding 
systems with limited autonomy and ability for self-improvement. We managed 
to create a system that not only autonomously learns the traversability of its 

environment, but also has the capacity to self-improve. With only a few 
modifications our program could be ready to be used on an actual robotic 
platform to explore its surroundings and improve its knowledge of traversability. 
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