
Επιλεγμένες Πτυχιακές και Διπλωματικές Εργασίες

τομος 20
2024

STUDENT BOOK

STUDBOOKSTUDBOOK



Εκδίδεται μία φορά το χρόνο από το:

Τμήμα Πληροφορικής και Τηλεπικοινωνιών  
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, 

Πανεπιστημιούπολη, 15784 Αθήνα 

Επιμέλεια έκδοσης:

Χάρης Θεοχάρης (Καθηγητής), Υπεύθυνος Έκδοσης 
Λήδα Χαλάτση (ΕΤΕΠ), Σύνταξη & Γραφιστική Επιμέλεια

ISSN 
1792-8826

Εικόνα εξωφύλλου και εσωφύλλων: Image by freepik (https://www.freepik.com/), 
AI generated «Abstract art made from 3d geometric shapes»

Copyright © 2024 Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών



 

 

Περιεχόμενα 

 

ΠΡΟΛΟΓΟΣ ___________________________________________________________________________ 4 

RECALL – CONSTRAINED TOPOLOGICAL RELATION DETECTION MODEL IN 
GEOSPATIAL INTERLINKING _______________________________________________________ 6 

John N. Daras 

MACHINE LEARNING SNOWFALL RETRIEVAL ALGORITHMS FOR SATELLITE 
PRECIPITATION ESTIMATES _______________________________________________________ 26 

Ioannis Th. Dravilas 

WIND ENERGY PREDICTION USING  DEEP LEARNING ARCHITECTURES _____ 41 

Georgios K. Floros 

ANALYSIS OF ALPHAFOLD 2 ΑLGORITHM _______________________________________ 57 

Vasiliki L. Pitsilou 

REASONING OVER DESCRIPTION  LOGIC-BASED CONTEXTS WITH 

TRANSFORMERS ____________________________________________________________________ 70 

Angelos Poulis 



 

 4 

Πρόλογος 

Ο τόμος αυτός περιλαμβάνει περιλήψεις επιλεγμένων διπλωματικών και 
πτυχιακών εργασιών που εκπονήθηκαν στο Τμήμα Πληροφορικής και 
Τηλεπικοινωνιών του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών 
κατά το διάστημα 01/01/2023 - 31/12/2023. Πρόκειται για τον 20ο τόμο στη 
σειρά αυτή. Στόχος του θεσμού είναι η ενθάρρυνση της δημιουργικής 
προσπάθειας και η προβολή των πρωτότυπων εργασιών των φοιτητών του 
Τμήματος. 

Η έκδοση αυτή είναι ψηφιακή, έχει δικό της ISSN και αναρτάται στην επίσημη 
ιστοσελίδα του Τμήματος ώστε να έχει μεγάλη προσβασιμότητα.  
Για το στόχο αυτό, σημαντική ήταν η συμβολή της Λήδας Χαλάτση που  
επιμελήθηκε και φέτος την ψηφιακή έκδοση και πέτυχε μια ελκυστική ποιότητα 
παρουσίασης, ενώ βελτίωσε και την ομοιογένεια των κειμένων. 

Η στάθμη των επιλεγμένων εργασιών είναι υψηλή και κάποιες από αυτές έχουν 
είτε δημοσιευθεί είτε υποβληθεί για δημοσίευση. 

Θα θέλαμε να ευχαριστήσουμε τους φοιτητές για το χρόνο που αφιέρωσαν για 
να παρουσιάσουν τη δουλειά τους στα πλαίσια αυτού του θεσμού και να τους  
συγχαρούμε για την ποιότητα των εργασιών τους. Ελπίζουμε η διαδικασία αυτή  
να προσέφερε και στους ίδιους μια εμπειρία που θα τους βοηθήσει στη συνέχεια 
των σπουδών τους ή της επαγγελματικής τους σταδιοδρομίας. 

 

 

 

Αθήνα, Ioύνιος 2024
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Recall – Constrained Topological Relation 
Detection Model in Geospatial Interlinking 

John N. Daras 

 

ABSTRACT 

Geospatial Interlinking in the Linked Open Data (LOD) cloud is crucial for 
connecting diverse datasets, yet faces challenges due to the quadratic time 
complexity and intricate topological relationships. This thesis explores innovative 
methodologies to optimize and enhance the accuracy of geospatial interlinking 

algorithms. The research refers to the Filtering-Verification framework, 
employing Minimum Bounding Rectangles (MBRs) and progressive verification 
techniques to efficiently process candidate geometry pairs. To further refine this 
process, the study relies on Supervised Scheduling approach, utilizing 31 generic 

features and machine learning to distinguish related and non-related geometry 
pairs. Based on it, Supervised Progressive GIA.nt algorithm automates the 
training set creation and classification, outperforming existing methods 
significantly. The goal of this thesis is to adapt Supervised Progressive GIA.nt so 
that its operation terminates as soon as it reaches the recall level specified by the 

user, by a-priori estimating the total number of topologically related pairs in the 
given dataset. To this end, we present the Extrapolation Algorithm, balancing 
computational resources and accuracy, and the Heuristics Algorithm, optimizing 
verification through dynamic termination conditions. A more principled 

approach leverages Kernel Density Estimation (KDE) to infer the total number of 
related geometries from a small random sample. Τhe integration of Kernel 
Density Estimation (KDE) enhances the Supervised Progressive Scheduling 
framework, reducing verifications while maintaining desired recall levels. 

Through rigorous experimentation and comprehensive evaluation, the thesis 
concludes that the KDE approach stands out as the most efficient and accurate 
algorithm. In summary, this study significantly advances the field of geospatial 
interlinking, offering a suite of efficient and precise solutions for interconnecting 
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vast and diverse geospatial datasets. These methodologies not only address the 
challenges posed by the LOD cloud but also pave a way for future research and 
applications in the domain of geospatial data integration and analysis. 

Subject Area: Data Integration  

Keywords: Geospatial Interlinking, Filtering-Verification, DE9IM topological 
relations, Supervised Scheduling, Progressive Verification 

 

ADVISORS 

Manolis Koubarakis, Professor NKUA 
Georgios Papadakis, Post-Doctoral Researcher 

1 INTRODUCTION 

1.1 Introduction to Geospatial Interlinking 

In the 21st-century digital landscape, the integration of geospatial data has 
become pivotal, reshaping our interactions with the world. This fusion of 

geographic information with web technologies has spurred innovation across 
various sectors, from navigation systems to urban planning. Despite the 
abundance of geospatial data online, these sources remain inadequately 
interconnected within the Linked Open Data (LOD) cloud, hindering their 
potential utility. Geospatial interlinking aims to bridge geometric entities across 

diverse data sources within the LOD cloud [19, 21]. This process involves 
identifying geometry pairs 𝑆 × 𝑇 in source and target datasets S and T that share 
topological relationships to establish connections between geometric entities. 

1.2 Challenges in Geospatial Interlinking and Existing Methods 

Geospatial Interlinking confronts two primary challenges: its inherent quadratic 
time complexity and the time-consuming identification of topological 
relationships for each pair of geometries. To mitigate these challenges, 
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Geospatial Interlinking employs the Filtering-Verification framework, which 
efficiently identifies candidate geometry pairs with non-trivial topological 
relations and prioritizes their verification. Progressive methods within this 

framework, such as Supervised Progressive GIA.nt, utilize supervised learning to 
enhance efficiency and accuracy. 

1.3 Proposed Methodologies for Optimizing Geospatial Interlinking 

In this work, we propose methodologies to optimize Geospatial Interlinking, 

aiming to minimize the number of verified pairs required to achieve a user-
defined recall threshold. We introduce explicit and implicit estimation techniques 
to anticipate the total number of topologically related pairs in the input dataset. 
Our research delves into the development of novel algorithms, including the 
Extrapolation Algorithm for efficient assessment of candidate pairs, the 

Heuristics Algorithm family for optimizing the verification process, and the 
integration of Kernel Density Estimation (KDE) to refine the verification process 
and ensure desired recall levels. These methodologies offer streamlined and 
efficient approaches to geospatial data interlinking, balancing precision with 

computational efficiency. 

2 PRELIMINARIES 

2.1 DE9IM topological relations 

In this work, we are interested in geometries that consist of interior, boundary 
and exterior (i.e., all points that are not part of the interior or the boundary). They 
are distinguished into two main types [19]: (i) LineStrings, which constitute one-
dimensional geometries formed by a sequence of points and the line segments 

that connect consecutive points (e.g., g1 and g2 in Figure 3), and (ii) Polygons, 
which in the simple case are two-dimensional geometries formed by a sequence 
of points where the first one coincides with the last one (e.g., g3 and g4 in Figure 
3). 
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A topological relation is described using a 3x3 intersection matrix between the 
interiors, exteriors and boundaries of the two geometries, where 𝑑𝑖𝑚 denotes 
the dimension and ∩ the intersection: 

 

 
 

For two geometries of these types, 𝐴 and 𝐵, the Dimensionally Extended nine-

Intersection Model (DE9IM) [2, 3, 6] defines 10 main topological relations: 

1) 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠(𝐴, 𝐵) suggests that 𝐴 and 𝐵 share at least one point in their 
interior or boundary.  

2) 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝐴, 𝐵) means that 𝐴 lies inside 𝐵 such that only their interiors 
intersect. 

3) 𝑊𝑖𝑡ℎ𝑖𝑛(𝐴, 𝐵) means that A Contains 𝐵.  

4) 𝐶𝑜𝑣𝑒𝑟𝑠(𝐴, 𝐵) indicates that 𝐴 lies inside 𝐵 such that their interiors or their 
boundaries intersect. 

5) 𝐶𝑜𝑣𝑒𝑟𝑒𝑑_𝑏𝑦(𝐴, 𝐵) means that 𝐵 Covers 𝐴.  

6) 𝐸𝑞𝑢𝑎𝑙𝑠(𝐴, 𝐵) means that the interiors of A and 𝐵 intersect, but no point of 
𝐴 intersects the exterior of 𝐵 and vice versa.  

7) 𝑇𝑜𝑢𝑐ℎ𝑒𝑠(𝐴, 𝐵) indicates that the two geometries share at least one point, 

but their interiors do not intersect.  

8) 𝐶𝑟𝑜𝑠𝑠𝑒𝑠(𝐴, 𝐵) indicates that the two geometries share some but not all 
interior points and that the dimension of their intersection is smaller than 
that of at least one of them. 

9) 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐴, 𝐵) differs from 𝐶𝑟𝑜𝑠𝑠𝑒𝑠(𝐴, 𝐵) in that the two geometries have 
the same dimension, and so does their intersection.  

10) 𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡(𝐴, 𝐵) designates that 𝐴 and 𝐵 share no interior or boundary point. 
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However, we omit the Disjoint relation due to its impractical scalability and 
negligible utility in real-world applications, as it can be inferred from the absence 
of other relations. 

The intersection matrix of the preceding predicates is depicted in Figure 1. Each 
predicate is a Boolean representation of the intersection matrix, where each cell 
may be 𝑇𝑟𝑢𝑒 (𝑇), 𝐹𝑎𝑙𝑠𝑒 (𝐹) and any (*). 𝐹 denotes the empty set and 𝑇 
corresponds to the dimension of the intersection (i.e., 𝑇 ↔  𝑑𝑖𝑚(𝐴, 𝐵) 𝜖 {0, 1, 2}). 

 

 

Figure 1: DE-9IM model spatial predicate functions 
 

2.2 Three-Step Approach: Filtering, Scheduling, Verification 

To streamline the process of geospatial interlinking, we adopt a systematic 

approach comprising three essential steps: filtering, scheduling, and verification. 
Filtering involves the swift elimination of irrelevant pairs using Minimum 
Bounding Rectangles (MBRs), which serve as efficient proxies for complex spatial 
structures. Subsequently, scheduling optimizes computational resources by 

organizing remaining pairs for further analysis. Finally, verification ensures the 
accuracy and reliability of identified spatial relationships. 
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Figure 2: Learning-free Progressive Geospatial Interlinking 
 

2.3 MBR for Filtering 

Minimum Bounding Rectangles (MBRs) serve as efficient proxies for complex 
spatial objects [15]. By encapsulating intricate geometries within simple 

rectangles, MBRs expedite the filtering process. Pairs with non-overlapping MBRs 
are automatically identified as non-qualifying, minimizing unnecessary 
comparisons and significantly improving computational, without missing any 
topologically related pairs. 

 

Figure 3: The space tiling approach for four geometries, where g1 is a LineString that 
intersects LineString g2 and touches Polygon g3, which contains Polygon g4. The 
shaded area corresponds to the intersection of the MBRs of g1 and g2. Its top left 

corner is used as a reference point to avoid verifying the same pair more than once 
[17]. 

2.4 Recall-Driven Geospatial Interlinking 

In our pursuit of geospatial interlinking, we adopt a recall-driven approach aimed 
at achieving a specific level of recall while maintaining precision. This strategy 

emphasizes the identification of pairs that satisfy desired topological relations 
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while avoiding the inclusion of irrelevant candidates. By optimizing recall within 
minimal verification time, we strike a delicate balance between accuracy and 
efficiency, ensuring that identified spatial relationships are not only reliable but 

also directly relevant to analytical objectives. 

3 RELATED WORK 

Techniques such as Silk-spatial, RADON, and stLD employ parallel processing to 
efficiently examine candidate pairs within customizable tiles on the Earth's 
surface. These methods refine the process by introducing fine-grained Equigrids, 
deduplication mechanisms, and optimizations like MaskLink to save processing 
time. RADON2 handles multiple topological relations by simultaneously 

extracting all relations from geometry intersection matrices. GIA.nt method 
combines techniques to load smaller datasets into memory for efficient 
processing. Progressive methods prioritize precision over recall, introducing a 
scheduling step to order candidate pairs based on a weighting scheme. 

Progressive GIA.nt globally sorts candidate pairs considering a user-defined 
budget, while Progressive RADON locally sorts pairs within tiles until the budget 
is exhausted. These methods adapt Geospatial Interlinking to applications with 
limited computational resources, transforming it into an approximate process. 

 

Figure 4: The solution space of Geospatial Interlinking algorithms [28] 
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3.1 Progressive GIA.nt  

Progressive GIA.nt’s [17] approach lies in the meticulous prioritization of 
geometry pairs from entire input datasets based on a designated budget BU. 

The process begins by establishing a min-max priority queue, 𝑇𝐶, and 
maintaining essential arrays: flags and frequency. In the Filtering step, the source 
dataset is indexed. The Scheduling step involves assessing each target geometry 
tm, identifying tiles encompassing tm, and evaluating source geometries within 

specific tiles (𝑠𝑛), considering intersections between 𝑠𝑛 and the Minimum 
Bounding Rectangle (𝑀𝐵𝑅) of 𝑡𝑚. The algorithm computes the weight for each 
geometry pair and incorporates pairs surpassing the predefined minimum 
weight threshold into 𝑇𝐶, ensuring that only the top-𝐵𝑈 pairs are retained and 
adjusting the threshold to adapt to the evolving dataset. In the Verification step, 

pairs within 𝑇𝐶 are analytically examined, dissected, and relevant relationships 
extracted from the intersection matrix 𝐼𝑀 into a comprehensive list, 𝐿. 

Progressive GIA.nt and Progressive RADON don't use machine learning for 
Geospatial Interlinking. They stick to a static processing order, except when the 

algorithm presented in [18] is applied. When two geometries 𝑠 and 𝑡 are related, 
their weight 𝑤 is updated using the formula 𝑤′ =  𝑤 × (1 +  𝑞), where 𝑞 tracks 
their relatedness frequency. However, Dynamic Scheduling has a limited scope 
and, thus, we disregard it in this work. 

3.2 Supervised GIA.nt 

SupervisedGIAnt" operates by employing a technique called "Supervised 
Scheduling" [25] instead of the traditional "Scheduling" method, as depicted in 
Figure 2. Supervised Scheduling performs probabilistic binary classification, 
assigning to each candidate pair a probability that is proportional to the 

likelihood that its constituent geometries are topologically related. 

The algorithm starts by calculating the dimensions of grid cells based on specific 
properties of the source dataset's width and height. It then proceeds to index by 
identifying the tiles overlapping with the Minimum Bounding Rectangle (MBR) of 

each source geometry. For training set generation, pair IDs are randomly 
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selected within a specified range. For each target geometry, tiles intersecting 
with its MBR are determined, and source geometries are aggregated into a 
candidate set. Candidate-based features are updated, and pairs are added to a 

random sample for verification. The sampled pairs are shuffled, and then verified 
and classified as topologically related or not. 31 Feature vectors are generated 
for the sampled pairs. The training set is then fed into a chosen algorithm to learn 
the classification model. Iterating over the target dataset involves gathering 

source candidates from intersecting MBR tiles, generating feature vectors, and 

predicting classification probabilities for each pair. Pairs exceeding a certain 
probability threshold are added to a priority queue, with the threshold updated 
if necessary. Verification of top-weighted pairs occurs next, with their topological 
relations added to the set of links. Finally, space and time complexity are 

analyzed, encapsulating various steps such as indexing, training set generation, 
model training, candidate selection, feature vector generation, and verification, 
ultimately leading to the identification of topologically related geometries. 

4 RECALL-CONSTRAINED TOPOLOGICAL RELATION DETECTION 
MODEL 

Our goal in this research endeavor is to strike a delicate balance between 
precision and computational efficiency in identifying topological relations within 
spatial data. It introduces the concept of Recall-Constrained Topological Relation 
Detection (RCTRD), which prioritizes identifying significant relations while 

optimizing computational resources. RCTRD aims to strike a balance between 
accuracy and efficiency by setting a predetermined level of recall, acknowledging 
the practical constraints of large-scale datasets. It outlines the challenges and 
objectives of RCTRD, emphasizing the need for innovative algorithms and 
methodologies to address these challenges effectively. Notably, RCTRD 

addresses the inherent difficulty of not knowing the total number of related pairs 
in input datasets, requiring solutions that either predict this number or leverage 
heuristics to overcome this limitation. 
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4.1 Extrapolation Algorithm 

The core idea of this algorithm is to infer the number of duplicates in the given 
dataset from a random, but representative sample of the candidate pairs. To this 

end, it verifies a limited a limited number of random candidate pairs in order to 
assess the portion of qualifying ones. This portion is then extrapolated to the 
entire set of valid candidate pairs, i.e., source and target geometries with 
intersecting 𝑀𝐵𝑅s. To retain the minimum memory requirements of GIA.nt, this 

can only be accomplished by reading the target geometries from the disk twice: 
once for determining the total number of candidate pairs and selecting a random 
sample and once for verifying the random sample and selecting the top-weighted 
pairs. In this way, this approach doubles the run time of Scheduling in order to 
minimize the run-time of Verification. 

Initially, the algorithm utilizes GIA.nt's method to filter candidate pairs based on 
intersecting Minimum Bounding Rectangles (MBRs). For the sampling phase, the 
algorithm opens a reader to sequentially load target geometries from disk into 
memory. It retrieves source geometries that intersect the MBR(𝑡) for each target 

geometry, incrementing the total number of candidate pairs when such 
intersections occur. After processing all target geometries, the algorithm selects 
𝑁 random pair IDs from [1, 𝑡𝑜𝑡𝑎𝑙𝐶𝑃], where 𝑡𝑜𝑡𝑎𝑙𝐶𝑃 is the total number of 
candidate pairs. Following sampling, the algorithm moves on to scheduling, 

reopening the target dataset reader to commence processing. For each target 
geometry, candidate source geometries are retrieved from the index and 
checked for intersection with the corresponding MBR. Upon identifying a 
candidate pair, the algorithm assigns the next ID and proceeds to verify it. If the 
ID is among the randomly selected ones, the algorithm verifies the pair, 

increments the counter 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑄𝑃, adds topological relations to the output, and 
includes the pair in a main memory hash set 𝑉 to prevent redundant examination. 
Additionally, the algorithm weights all candidate pairs and adds them to a priority 
queue 𝑃𝑄. Finally, Scheduling computes the maximum number of verifications 

that will be carried out during the next step as follows. 

𝑚𝑎𝑥𝑉𝑒𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑟𝑒𝑑 · 
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑄𝑃

𝑁
 · 𝑡𝑜𝑡𝑎𝑙𝐶𝑃 
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where 𝑟𝑒𝑑 ∈ (0, 1) denotes the desired recall level. If 𝑚𝑎𝑥𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 is not zero, 
the algorithm proceeds to verification. In the final verification stage, the 
algorithm iterates over the top-weighted pairs in the priority queue. For each 

pair, the algorithm examines it and adds any topological links to the output if not 
yet verified. If the pair qualifies, the algorithm increments the counter. 
Processing continues until the counter reaches 𝑚𝑎𝑥𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 or the priority 
queue is exhausted, signaling the termination of processing. 

Note that the Algorithm describes the simplest case of the extrapolation 
algorithm, which uses Unsupervised Scheduling, i.e., an unsupervised weighting 
scheme. In case Supervised Scheduling is employed, the sampling stage also 
performs the necessary feature estimations, while using the verified sample of 
geometries as a labelled dataset for training the binary probabilistic classifier. In 

our experiments we used Supervised Scheduling. 

4.2 Heuristics Algorithm 

We now present the simplest family of algorithms that try to exceed the desired 
recall level in an implicit way. To this end, they iterate over all candidate pairs just 

once, placing the top-weighted ones in a priority queue. The priority queue is 
verified in descending weight. After every Verification, a heuristic condition is 
checked to decide whether to terminate the entire processing or not. 

Initially, the same Filtering as Progressive GIA.nt is applied. This is followed by 

the same Scheduling process as Progressive GIA.nt: a reader is opened to read 
the target dataset on the fly. For each target geometry 𝑡, we retrieve the set of 
source geometries, 𝐶𝑆, which are contained in the tiles intersecting 𝑡’s MBR. 𝐶𝑆 is 
filtered to retain only those source geometries that indeed intersect 𝑡’s MBR. The 
retained pairs are weighted according to the given weighting scheme and are 

inserted into the priority queue with the top-weighted pairs, 𝑃𝑄. After closing the 
target dataset reader, the Verification step starts. For the next top-weighted 
candidate pair in 𝑃𝑄, the algorithm computes the intersection matrix of its 
constituent geometries and extracts the ensuing set of topological relations, 𝑙. If 

𝑙 is not empty, the pair is a qualifying one; after merging 𝑙 with the output 𝐿, we 
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examine the predetermined heuristic condition. If the condition is satisfied, the 
algorithm terminates. 

We observe that the performance of the algorithm depends exclusively on the 

heuristic termination condition. To thoroughly test its potential, we came up with 
the following versatile conditions: 

1) Precision Threshold. Verification terminates as soon as precision falls below 
a specific level. The higher the desired recall is, the lower this precision 

threshold should be and vice versa. 

2) Qualifying Distance Threshold. Verification terminates as soon as the 
number of unrelated, but verified pairs that intervene between two 
consecutive qualifying ones exceeds a certain limit. The higher the desired 
recall level is, the larger this threshold should be. 

3) Dynamic Qualifying Distance Threshold. This heuristic converts the above 
static threshold into a dynamic one. Instead of a predetermined distance, 
the number of allowed unrelated Verifications increases as more 
qualifying pairs are detected. The higher the desired recall level is, the 

larger the increment in the distance threshold should be. 

4) Buffered Threshold. This heuristic extends all the above ones with a buffer 
that allows a specific number of violations of the termination condition. 

The drawback of these heuristics is that they are indirectly related to the desired 

recall level. This is because they are independent of any estimation of the actual 
number of qualifying pairs in the given datasets. Yet, this shortcoming can be 
counterbalanced by background knowledge in the form of qualitative estimation 
of the portion of qualifying pairs over the set of candidate pairs, when these 
heuristics are configured by human experts. Note that the Algorithm we 

described assumes an Unsupervised Scheduling step, which corresponds to the 
simplest case. In practice, though, Supervised Scheduling can be used, too. This 
is done by inserting a sampling phase between Filtering and Scheduling, which 
performs the necessary features and builds a random labeled dataset for training 

the binary probabilistic classifier. 
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4.3 KDE Based Algorithm 

This chapter explores a more complex, principled and innovative approach to 
streamline the verification process within the Supervised Progressive Scheduling 

framework. The methodology integrates Kernel Density Estimation (KDE) into the 
existing system. By focusing on probabilistic predictions and estimation 
techniques, this approach aims to significantly reduce the number of verifications 
necessary while ensuring the desired recall level.  

The functionality of this approach begins by implementing filtering and training 
stages, akin to the Supervised Progressive GIA.nt process. The filtering step 
refines the dataset, while the training phase constructs a probabilistic binary 
classification model, laying the foundation for the subsequent steps.  

A subset of candidate geometries is randomly chosen for classification by the pre-

trained classifier. Verification determines the topological relationships for each 
pair, establishing a labeled dataset. This labeled set of instances with 
classification probability and class labels serves as the foundation for training the 
Kernel Density Estimator (KDE). Various KDE models are explored, emphasizing 

different techniques but we omit these details for brevity. The optimal KDE model 
is selected through an evaluation, which estimates the most effective KDE 
approach in the given labeled dataset. Using the trained KDE model, we estimate 
the recall level that corresponds to different classification probabilities. This 

estimation guides the selection of the minimum probability threshold required 
to achieve the desired recall level.  

Subsequently, the probabilistic classifier calculates the probability for each pair 
of candidate geometries i.e., for each pair of geometries with intersecting MBRs. 
Pairs exceeding the minimum probability threshold are subject to verification, 

while the rest are discarded, thus reducing the verification workload significantly.  

More specifically, for each target geometry 𝑡, we retrieve the set of source 
geometries, 𝐶𝑆 which are contained in the tiles intersecting 𝑡’s MBR . 𝐶𝑆 is filtered 
to retain only those source geometries that intersect 𝑡’s MBR. The trained 

probabilistic classifier calculates the probability for each retained pair of 
candidate geometries as in SupervisedGIAnt. Pairs exceeding the minimum 
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probability threshold, which has been determined by the trained KDE model, are 
subject to verification. This step significantly reduces the verification workload.  

After closing the target dataset reader, the Verification step starts. For the next 

candidate pair in 𝑇𝑠, the algorithm computes the intersection matrix of its 
constituent geometries and extracts the ensuing set of topological relations, IM. 
If IM is not empty, the pair is a qualifying one and IM is merged with the output 
LR. After merging IM with the output LR the algorithm terminates as soon as all 

retained pairs in 𝑇𝐶 are verified.  

The integration of Kernel Density Estimation into the Supervised Progressive 
Scheduling framework offers a promising avenue for enhancing efficiency while 
ensuring accuracy. By relying on probabilistic predictions and estimation, the 
algorithm minimizes verifications, making it a valuable tool in geographic 

information systems and spatial data processing 

5 EVALUATION 

Our experiments rely on subsets of publicly available, large-scale, real-world 
datasets that are popular in the literature [7, 17, 24] and involve LineStrings and 
Polygons. Their technical characteristics are presented in Table 1. We observe in 
all cases that the number of qualifying pairs, which is equal to #Intersects, 
accounts for a tiny portion of the Cartesian product between the source and the 

target geometries. This suggests that the overall computational cost can be 
reduced by orders of magnitude in comparison to the brute force approach. 

Table 1: Technical characteristics of the datasets used in our experiments. Note that in 
each dataset, the number of qualifying pairs is equal to #intersects. 
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5.1 Experiment 1: Evaluating the KDE Approach Algorithm and Baseline 
Methods 

This subsection provides a thorough evaluation of the KDE Approach Algorithm 
using various heuristic functions to achieve desired recall levels of 0.3, 0.5, and 

0.7. Heuristic functions explored include Precision Threshold, Qualifying 
Distance, and Dynamic Qualifying Distance. Each heuristic was rigorously tested 
to understand its impact on algorithm performance. We first check our results 
when the user gives the desired recall level 0.5. 

Precision Threshold Heuristic: The Precision Threshold heuristic demonstrated 
balanced behavior. Setting the threshold at 1.0, the algorithm exhibited best 
performance, establishing an equilibrium between recall and precision. Testing 
it with dataset 𝑠2 a precision of 0.5 indicated the best validity of the identified 
pairs, minimizing false positives while ensuring a reasonable recall (of 0.824). 

Qualifying Distance Heuristic: Qualifying distance, as spatial parameter, played a 
crucial role in the algorithm's decision-making process. Experiments revealed 
that a qualifying distance of 100 yielded the most satisfactory results. This 
parameter emphasized the algorithm's sensitivity to spatial proximity. By 

focusing on pairs within a close spatial range, the algorithm efficiently reduced 
irrelevant verifications, optimizing its efficiency. 

Dynamic Qualifying Distance Heuristic: The Dynamic Qualifying Distance heuristic 
introduced adaptability to the evaluation. By coupling a qualifying distance of 10 
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with a dynamic factor of 1.0, the algorithm adjusted its qualifying distance based 
on evolving dataset characteristics. The recall remained consistently high at 
0.819, while precision held at 0.57, reflecting the algorithm's ability to adapt to 

varying dataset densities. 

Additional Experiments: Further evaluations at recall levels of 0.3 and 0.7 revealed 
the algorithm's scalability and adaptability. At lower recall levels, precision-
oriented strategies were observed, while broader search approaches were 

employed at higher recall levels, showcasing the algorithm's ability to balance 
precision and recall. 

5.2 Experiment 2: Evaluating the Extrapolation Algorithm 

This experiment focuses on the performance of the "Extrapolation Algorithm" 
with supervised scheduling under varying conditions, represented by sample 

sizes of 𝑁 = 100, 𝑁 = 1000, and 𝑁 = 10000. 

The algorithm's precision, recall, and computational efficiency were analyzed for 
different sample sizes, highlighting trade-offs and optimal performance. Factors 
such as precision versus recall trade-offs, computational efficiency, and the 

optimal choice of sample size were discussed, with N=10000 demonstrating the 
best balance between accuracy and efficiency. 

5.3 Experiment 3: Comparison of SupervisedGIA.nt and KDE-Based 

Algorithm 

A comparison between SupervisedGIA.nt and the KDE-Based Algorithm revealed 
superior recall and verification efficiency of the latter, making it a promising 
choice for applications where accuracy and computational efficiency are critical. 

5.4 Experimental Analysis: KDE Based Algorithm vs Extrapolation 
Algorithm 

A comparative study favored the KDE-Based Algorithm for its superior 
verification time and memory efficiency, making it a compelling choice for real-
world spatial data processing tasks. 
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This chapter provides a comprehensive evaluation of spatial data processing 
algorithms, highlighting their strengths, weaknesses, and practical implications 
for real-world applications. 

6 CONCLUSIONS AND FUTURE WORKS 

In the realm of spatial data analysis, striking a balance between precision and 

computational efficiency is of paramount importance. This thesis explores 
innovative algorithms in Recall-Constrained Topological Relation Detection, each 
with its unique strengths and limitations. Advantages of the Extrapolation 
Algorithm include the efficient use of computational resources by verifying a 
limited number of random candidate pairs while It also provides a representative 

subset of topological relations within the dataset. The Heuristics Algorithm offers 
high time efficiency by iterating over candidate pairs only once and has versatile 
termination conditions, allowing adaptability to different requirements. The KDE 
Based Algorithm employs a probabilistic approach, balancing precision and 

efficiency by utilizing Kernel Density Estimation while Its customizable thresholds 
and integration with existing frameworks make it a standout choice for real-
world applications. 

Looking ahead, this chapter highlights potential avenues for future research in 
spatial data analysis. Enhanced probabilistic models, dynamic heuristics tailored 

to dataset characteristics, and exploration of real-time applications represent just 
a few promising directions. Additionally, integrating with spatial databases, 
analyzing multi-modal data, and considering ethical implications and biases in 
algorithmic decisions offer fertile ground for exploration. 

By embracing these future directions, we can continue to push the boundaries of 
spatial data analysis, offering more accurate, efficient, and ethically sound 
solutions, paving the way for transformative developments in spatial data 
analysis techniques. 
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ABSTRACT 

Remote sensing of snowfall has been proved to be a significant challenge since 
the start of the satellite era. Several techniques have been applied to satellite 

data, in order to estimate the fraction of frozen precipitation that reaches the 
surface. This thesis aims at investigating the efficacy of different Machine 
Learning (ML), and especially Deep Learning (DL) algorithms, in estimating the 
precipitation phase of NASA's Integrated Multi-satellitE Retrievals for the Global 

Precipitation Measurement (GPM-IMERG). To achieve that, a training phase with 
hourly high-resolution numerical model outputs and in-situ observational data is 
chosen for the period of late-2020 and 2021. Results show that ML and DL models 
can estimate precipitation phase with relatively high accuracy, when compared 

to traditional methods, based on several case studies. The findings suggest that 
ML models offer a promising approach for advancing the nowcasting of snowfall 
and building a long-term archive dataset of IMERG-based snowfall, utilizing 
conventional near real-time data. 
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1 INTRODUCTION 

1.1 Precipitation 

Precipitation is defined as "all liquid or solid phase aqueous particles that 
originate in the atmosphere and fall to the Earth’s surface" [1]. 

1.2 Precipitation Phase 

Deriving the phase of precipitation and distinguishing between its liquid and 
frozen state, is of major importance for human activities, hydrological processes 
and climate change studies [2]. 

Towards this direction, a plethora of techniques is being used today to detect 
snowfall. Some of the most successful methods include using in-situ 

observations, remote sensing through dual-wavelength radars, or using 
numerical weather models [3]. However, none of those approaches has been 
proved fully reliable, while for the most accurate ones, such as the measurements 
from in-situ instruments, the available data are generally sparse or even absent, 

for example in mountainous or sparsely populated areas [2, 4]. The use of 
satellite data to obtain precipitation estimates has been one of the most used 
methods for measuring precipitation so far, giving both satisfactory and 
continuous results with almost no missing values or temporal and spatial gaps 
[5]. 

1.3 Machine Learning 

Rebala et al. (2019) [6] described Machine Learning (ML) as a computer science 
field focusing on enabling computers to learn and improve their performance 
without requiring explicit programming. Traditional programming methods 

involve creating a detailed design and implementing it as a program, but this can 
be challenging for problems like detecting handwritten characters, due to the 
difficulty in designing rules for such variations. 

ML can be applied to various types of problems such as: classification, where data 

are categorized into different classes, like will it rain or snow tomorrow; 
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clustering, where data points are grouped into clusters based on shared 
properties; and regression, which uses historical data to forecast a continuous 
range of values, like temperature. 

The use of Machine Learning in Meteorology has been constantly increasing 
during the last few years (Chase et al. 2022) [7], and is predicted to increase even 
more, as the volume of meteorological data that can be used to train ML models 
grows. 

2 BACKGROUND AND RELATED WORK 

The problem of deriving precipitation phase has been extensively studied before, 
both with conventional and Machine Learning methods. 

2.1 Conventional Methods 

Matsuo et al. in 1981 [8] showed that liquid water content and fall velocity of 
snowflakes, and therefore the depth of the layer below freezing level where 
melting does not occur, were dependent on surface air temperature, relative 

humidity, and snowflake mass. 

Sims and Liu in 2015 [2] developed a parameterization scheme that utilizes 2-m 
temperature, relative humidity, low-level vertical lapse rate, surface skin 
temperature and surface type to calculate the conditional probability of solid 
precipitation to occur. Surface pressure is also used in order to calculate wet-bulb 

temperature (Tw). 

2.2 Machine Learning Methods 

In 2018, Behrangi et al. [4] reported that near-surface air temperature is usually 
used to derive precipitation phase. It was found that relative humidity, wind 

speed and air pressure can also affect the melting of snowflakes and thus more 
variables should be used together with air temperature to determine 
precipitation phase. Even though among all single predictors Tw yields the 
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highest score, the authors concluded that the use of logistic regression to 
combine the previously mentioned variables produces even better results. 

A paper presented at the AGU Fall Meeting 2022 by Bédard-Therrien et al. [9] 

introduced an ML approach for partitioning precipitation phase, using air 
temperature, relative humidity and disdrometer data, along with a Random 
Forest Regression Model. 

3 MATERIALS AND METHODS 

In this study, Machine Learning and especially Deep Learning (DL) algorithms are 
used along with numerical weather data and in-situ observational data to classify 
the phase of precipitation acquired by the Integrated Multi-satellitE Retrievals for 

the Global Precipitation Measurement (GPM-IMERG) operated by the National 
Aeronautics and Space Administration (NASA) [10]. 

3.1 Description of the Acquired Data 

3.1.1 In-situ Observations From Ground Stations 

During the past 15 years, the Institute for Environmental Research and 
Sustainable Development of the National Observatory of Athens (NOA/METEO) 
has established and is currently managing a dense network of automated 
weather stations throughout Greece (NOAAN) [11]. 
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Figure 1: The NOAAN weather stations used, coloured by altitude, and the 
corresponding grids of BOLAM and IMERG over the Attica region 

 

3.1.2 Numerical Weather Model Data 

The National Observatory of Athens also runs the hydrostatic meteorological 
Bologna Limited-Area Model (BOLAM) in operational mode [12]. 

3.1.3 Satellite Precipitation Estimates 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm is designed 

to intercalibrate, combine and interpolate microwave precipitation 
measurements, along with microwave calibrated infrared (IR) satellite 
measurements, precipitation gauge analyses and possibly other precipitation 
estimators, at fine time and space scales worldwide [10]. 

Precipitation phase in IMERG is currently computed diagnostically, based on the 
Liu scheme [2]. The Liu scheme used by NASA calculates the Probability of Liquid 
Precipitation Phase (PLPP) based solely on data from a numerical weather model 
or model analysis, relying on surface wet-bulb temperature values. 



Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas 

 31 

3.2 Creation of a Custom Dataset 

Using NOAAN observations for air temperature, relative humidity and 
atmospheric pressure, BOLAM’s nowcast (namely the first 12 hours after model 

initialization time excluding a spin-up period of 12 hours) and the 1.1°C Tw 
threshold chosen by NASA for IMERG V06 over land as the value corresponding 
to a Probability of Liquid Precipitation Phase equal to 50%, a new dataset is 
created. For each in-situ observation, the new dataset contains information 

about whether conditions were favorable for snowfall according to the surface 
Tw<1.1°C threshold, the corresponding numerical weather model data for the 
nearest grid point, as well as the station metadata such as latitude, longitude and 
altitude. The dataset comprises data collected from 480 locations across Greece, 
covering the time period of late-2020 and 2021. The temporal resolution of the 

dataset is set at 30 minutes, providing detailed and frequent measurements that 
match the temporal resolution of IMERG V06. 

3.3 Machine Learning Models Used 

3.3.1 Random Forest 

Random Forest was first introduced in 2001 and is consisted of many basic 
classifiers in the form of Decision Trees [13]. Each Decision Tree makes a 
prediction, which is completely independent from the decisions of the other 
Decision Trees, and, in classification tasks, the final result is produced by a voting 

procedure, resembling an ensemble technique. 

3.3.2 Gradient Boosting 

Gradient Boosting is a popular ML technique used, among others, in classification 
tasks. It works by creating multiple weak models, which often are Decision Trees, 
and combining them to form a better-performing model. This is usually done by 

building an initial weak model, then a second model aiming to more accurately 
predict the cases where the first one performs poorly, etc. Each new model 
created, targets minimizing the error of the loss function; thus, the gradient of 
the loss function is calculated in every step of the algorithm [14]. 
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3.3.3 Feedforward Neural Network 

Feedforward Neural Networks are the simplest type of artificial neural networks, 
where information moves only in a forward direction, from the input nodes, to 

the hidden nodes and to the output nodes [15]. Here, a multi-layer neural 
network, also called a Multilayer Perceptron is used. A Multilayer Perceptron 
consists of multiple layers of computational units, containing neurons that are 
connected to the neurons of the next layer. These models are trained using back-

propagation, a technique utilized to adjust the weight values of each connection, 
in a way that minimizes the error between predictions and actual values [16]. 

3.4 Training And Testing Process 

3.4.1 Data Splitting and Cross-Validation 

Data are divided into training and testing datasets based solely on station 

locations, using an 80:20 ratio. 

 

Figure 2: The NOAAN weather stations divided into the training and the testing 
dataset, coloured by altitude 

 

For each of the three models described above, the best architecture is 
determined through a 5-fold cross-validation process for hyperparameter 
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tuning, ensuring that data for each station location are exclusively present in only 
one of the training and validation datasets during each iteration. 

Finally, the trained models are tested on the corresponding testing dataset, 

comprising 20% of the initial dataset. 

3.5 Evaluation and Metrics 

The metrics used to evaluate the results of the models are Precision, Recall (also 
called Probability of Detection - POD), F1-score, Critical Success Index (CSI), False 

Alarm Ratio (FAR) and Heidke Skill Score (HSS). 

4 RESULTS 

4.1 Best Hyperparameters 

For each of the Random Forest, Gradient Boosting and Feedforward Neural 
Network models, the best architecture is selected after hyperparameter tuning, 
and is then evaluated on the testing dataset. 

4.2 Feature Importance 

Notably, both Temperature at 2 m and altitude emerge as highly influential 

variables, making appearances in both types of importance metrics. Additionally, 
Temperature and Specific Humidity at the 1000 hPa isobaric surface stand among 
the top three features, completing the groups of the three most important 
contributors. 

4.3 Evaluation on the First Testing Dataset 

The testing dataset used here is the one containing data for late-2020 and 2021 
from 96 station locations in a 30-minute time-step. 
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4.3.1 Machine Learning Models 

The six score metrics were calculated on the testing dataset for all the Random 
Forest, Gradient Boosting and Feedforward Neural Network models, with regard 

to their ability of predicting cases with conditions favorable for snowfall 
(Tw<1.1°C). 
 

Table 4.1: Scores of the 3 ML models for predicting cases with conditions favorable for 
snowfall, evaluated on the first testing dataset. 

Model Precision 
Recall 
(POD) 

F1-
score 

CSI FAR HSS 

Random Forest 0.87 0.72 0.79 0.65 0.13 0.78 

Gradient 

Boosting 
0.87 0.81 0.84 0.72 0.13 0.83 

Feedforward 
Neural Network 

0.85 0.80 0.82 0.70 0.15 0.81 

 

4.3.2 Conventional Methods 

A comparison with traditional precipitation phase derivation techniques is also 
made on the same testing dataset. 

 
Table 4.2: Scores of the 2 conventional methods for predicting cases with conditions 

favorable for snowfall, evaluated on the first testing dataset. 

Model Precision 
Recall 
(POD) 

F1-
score 

CSI FAR HSS 

IMERG V06 
PLPP 

0.61 0.61 0.61 0.44 0.39 0.59 

BOLAM 

nowcast 
0.66 0.81 0.73 0.57 0.34 0.71 
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4.4 Application and Evaluation on 2022 Data 

In this section, a new dataset comprising data from the initial three months of 
2022 is introduced. 

4.4.1 Examples of Application on IMERG Precipitation Estimates 

During the initial three months of 2022, Greece experienced several cold waves 
of varying intensity. To assess the effectiveness of the Gradient Boosting model 
in identifying the precipitation phase during these events, BOLAM nowcast data 

are used as input. The precipitation phase predicted by the model is then utilized 
to mask the corresponding IMERG V06 Early Run uncalibrated precipitation data 
for the same time period. 

4.4.1.1 10th of January 2022 

On January 10th of 2022, a cut-off low in the upper/mid troposphere moved from 

Italy towards the Ionian Sea in Greece. This weather system was accompanied by 
a mild cold air advection from the Balkans towards Northern Greece. As a result 
of these weather conditions, snowfall was expected in the mountains of Mainland 
Greece and in some lower altitude areas of Western Macedonia. 

 

Figure 3: The 24-hour accumulated precipitation from IMERG that fell as snowfall 
during the 10th of January 2022 in Greece, as indicated by the Gradient Boosting 

model. 
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4.4.1.2 24th of January 2022 

On January 24th of 2022, an upper level closed low over the Eastern 
Mediterranean resulted in a significant cold air advection, leading to heavy 
snowfall in the eastern regions of Greece, including Attica and the capital city, 
Athens, as well as the Aegean Islands. 

 

Figure 4: The 24-hour accumulated precipitation from IMERG that fell as snowfall 
during the 24th of January 2022 in Greece, as indicated by the Gradient Boosting 

model. 

5 DISCUSSION 

5.1 Comparison With Previous Work 

Moon et al. in 2020 [17] achieved an HSS of 73% in determining precipitation type 
for snow cases, using ML models trained with short-range forecasts from 
numerical models). The individual HSS values for ECMWF and RDAPS alone were 

comparatively lower at 52% and 55% respectively, while the improved Matsuo 
scheme [18] used operationally at the time by the Korea Meteorological 
Administration (KMA) exhibited an HSS of 71%. 



Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas 

 37 

In 2022, Xiong et al. [19] evaluated IMERG and ERA5 precipitation phase 
partitioning on a global scale, using target data from ground observations. POD 
of snowfall over land was 87% for IMERG and 91% for ERA5. CSI was 67% for 

IMERG and 81% for ERA5, while FAR was 16% for IMERG and 7% for ERA5. 

The Gradient Boosting model used in this study achieved a POD of 81%, CSI of 
72%, HSS of 85% and FAR of 13%. This is a significant improvement compared to 
most of the previously-described methods. 

6 CONCLUSIONS 

During this study an algorithm that is able to identify the precipitation phase of 
IMERG precipitation data was developed, leveraging Machine Learning models 

based on Random Forest and Gradient Boosting, and a Deep Learning model 
employing a Feedforward Neural Network. The 1.1°C wet-bulb temperature was 
used as an upper threshold for solid precipitation to occur over land. The results 
of our analysis indicate that the use of Machine Learning models is a very 

promising approach for estimating precipitation phase. Specifically, it was found 
that 81% of the actual snow-favorable conditions can be identified, while 87% of 
all the predicted snow-favorable conditions are proved correct. Application of the 
best-performing model's output on IMERG precipitation estimates from real-
world cases, also shows that rain-snow partitioning on IMERG data yields 

comprehensive and reliable results. 

The developed model's capability to accurately determine precipitation phase on 
satellite data, holds tremendous potential for near-real-time snowfall 
monitoring, providing valuable insights for emergency responses and aid 

distribution in areas affected by severe weather. Furthermore, this model opens 
up new possibilities for creating a thorough and enduring snowfall dataset, 
significantly enhancing our understanding of hydrological processes, supporting 
various water resource management initiatives and contributing to a deeper 

understanding of climate change impacts.     
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While our study has several strengths, it is not without limitations. For example, 
the wet-bulb temperature threshold applied to distinguish between solid and 
liquid precipitation on in-situ observational data, is not the optimal indicator for 

the actual precipitation phase. It is planned to make use of additional snowfall in-
situ data from NOAAN in order to further evaluate the developed models. 
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1 INTRODUCTION 

Wind energy is one of the fastest growing energy sources in the world. The 
demand is increasing on a yearly basis. Accurate energy prediction is important 
for efficient farm operations. It enables optimal energy generation, it reduces the 
costs because it balances demand and supply and improves the reliability of the 

energy supply since it helps us extract meaningful real-world patterns. Wind 
energy forecasting has been a concern since wind power generation was 
introduced. Forecasting first relied on simple wind measurements. However, 
overtime, more complex models have been developed that consider multiple 
environmental parameters such as temperature, pressure, wind speed, altitude 

to produce more accurate results. Persistence method, numerical weather 
prediction and statistical models such as ARIMA and its variations are some of 
commonly used for that task [1] [2] [3]. Machine learning algorithms such as SVM 
were even used exhibiting reliable performance [4]. Recently, thanks to the 

advancements of technology, neural networks, including deep learning 
techniques, are used to solve such tasks due to their ability to handle large 
amounts of data and model complex relationships between input and output 
variables [5] [6].  In this study we worked on wind energy forecasting using 
several deep learning architectures as predictive models. The task is hour-ahead 

energy prediction provided time-series of 6 hourly – steps. We start off with the 
method of a previous study [7] that helps us build on and test our methods, we 
consider it our foundation paper. Our input data consisted of Weather Research 
Forecasting (WRF) meteorological predictions and our target data consisted of 

wind farm real energy values. We trained separate models for each park’s data, 
with the aim of capturing the unique patterns and characteristics of wind energy 
production at each location. However, we also evaluated the performance of a 
single predictive model for both parks, so we developed a generalized model. All 

in all, this study provides a complete overview of a real energy prediction 
problem using real life energy values. We contributed on improving the pre-
processing pipeline. We carefully selected the criteria to remove noisy outliers 
and inaccurate or incomplete data points at all steps of this process. We also 
contributed on the network architecture, utilizing several state-of-the-art 

attention-based models which is a notable approach on such problems, and 
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comparing them to other established methods. In addition, we contributed by 
providing problem insights through the interpretation of results, leading to 
useful conclusions and suggestions such as the need for a generic multi-park all-

in-one model.  

2 BACKGROUND & RELATED WORK  

Artificial intelligence has taken centre stage in computer science thanks to 
constant advancements in technology and the creation of fast and powerful 
computational systems. Neural networks are a crucial tool in this field as they 
process large amounts of data and solve complex problems. Deep learning, a 
subset of artificial intelligence, utilizes neural network models deploying them 

into deep architectures.  

Models considered state of the art at performing certain tasks include 
Convolutional Neural Networks (CNN) [8] mainly concerned with face recognition, 
natural language processing (NLP) applications, optical character recognition 

(OCR) and image classification. Long – Short term memory networks, [9] a special 
type of recurrent neural networks (RNN), capable of learning “long - term 
dependencies.” They are indented to retain knowledge over time and handle 
sequences of data. Attention mechanism [10] is also a technique used in deep 
learning networks usually applied on LSTM encoder – decoder architectures. Its 

purpose is to emphasise the most relevant parts of the input sequence in a 
flexible manner. It uses three vectors, key and value describes each state of the 
encoder and query typically represents the last hidden state of the decoder. 
Attention is described as defined by the following equations: 

𝐶  =    ∑ 𝑎𝑖 

𝑛

𝑗=1

𝑣𝑗   

Where c represents the context vector for an input sequence  𝑋  =  (𝑥1,  𝑥2,   … ,  𝑥𝑛) 
of length The weight is computed by: 
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𝑎𝑗   =  
exp(𝑒𝑞𝑗 , 𝑘𝑗

)

∑ exp(𝑒𝑞𝑖,𝑘𝑖
)𝑛

𝑖=1

,       𝑒(𝑞, 𝑘) =  
(𝑞)𝑇𝑘

√𝑑𝑘
 

Where 𝑒(𝑞, 𝑘) is the alignment score function, researchers have proposed dot 

product attention while a more recent work [11] proposed it scaled by 1

√𝑑𝑘
, where 

𝑑𝑘 is the dimension of key vector. 

Self – Attention [11] is a method by which we apply the attention mechanism to 
each position of the same sequence. It is described by the following equation: 

Attention(𝑄, 𝐾, 𝑉)  = Softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

where Q, K and V are tables that accumulate the values of query, key, and value 

vectors. 

Positional embeddings are also a method used since attention mechanism does 
not include positional information. Positional embeddings are added to preserve 
information about the order of timesteps. They can be both fixed and learned. 
They are usually aggregated and added to the input data values. Fixed positional 

embeddings proposed on bibliography [11] are described by: 

PE(𝑝𝑜𝑠, 2𝑖)  =   sin (
𝑝𝑜𝑠

𝑛2𝑖   𝑑𝑚𝑜𝑑𝑒𝑙⁄ ),       PE(𝑝𝑜𝑠, 2𝑖  +  1)  =   cos (
𝑝𝑜𝑠

𝑛2𝑖   𝑑𝑚𝑜𝑑𝑒𝑙⁄ ) 

where 𝑝𝑜𝑠 defines the position in the input sequence, 𝑖  is the dimension and 
𝑛 refer to a user defined variable (recommended value is 10.000). Learned 

positional embeddings learn a mapping function through the training process 
[12]. 

As for wind energy farms, wind energy production is strongly associated with 

wind speed. The produced energy increases as wind speed increases. The design 
and operation of a wind turbine requires a certain wind speed range. The limits 
of this range are the cut-in speed and the cut-out speed. Cut in speed is when the 
turbine starts spinning for the first time and generates power. When wind speed 

increases gradually, it surpasses cut-in speed and reaches the maximum limit 
turbine design can support. To avoid the risk of damage on the rotor of the 
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turbine, cut-out speed is activated, which stops the operation with the help of 
suitable auditors [13]. 

3 METHOD 

3.1 Data Pre-processing 

We work with data from two different parks. At first, we discuss the methods we 

used to prepare the target data pre-processing. 

The target data we use, produced from a SCADA system, consists of real energy 
measurements from two different wind energy parks located in central Greece. 
Park A consists of 16 turbines with a total of 12,000 kW total capacity while park 
B consists of 17 turbines with a total of 10,800 kW total capacity. These data faced 

availability issues. Turbines may have not performed at one hundred percent for 
a period due to maintenance or economy reasons. We need to exclude low 
availability points. 

We are provided with real wind speed measurements for 10-minute intervals and 

energy measurements for 15-minute intervals. We adjust them to 1-hour time 
intervals. Then we plot the energy – wind speed diagram (Figure 3.1) where data 
points form a dense curve. To filter out the noise we use several criteria. We use 
line segments where we consider the points outside the curve as outliers and 
possible low availability points. We set a minimum energy value of 400 kW since 

it is possible for turbine blade to be slightly displaced by the wind when park is 
closed and record such low values. We also exclude data points with wind speed 
less than 5 m/s and 25 m/s since they are measured outside of cut-in and cut-off 
speeds. The data curves before and after pre-processing are displayed in Figure 

3.1 and Figure 3.2. 

The input data used in this study consisted of 18 WRF predicted features: X and Y 
components of wind, temperature, and pressure, all at 10, 80 ,100, 120 meters 
height, surface pressure, snow water equivalent and daily total snow and ice. 
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Figure 3.1: Power - Wind plot before 
pre-processing 

Figure 3.2: Power - Wind speed final plot 

 
It was extracted from parameterized WRF models executed on a rectangular 
region covering a large fraction of mainland Greece, provided by the work of our 

foundation paper [7] [14]. The model produces a WRF grid that records weather 
or wind patterns. We get forecasts at every location of the grid with a 1 km 
resolution. Using the specified coordinates (longitude and latitude) of the wind 
parks we obtain the grid for the area of interest from the initial WRF. For each 

point of this grid the 18 WRF predicted features were generated for an hour 
interval. Park A has a 7 x 8 grid, while park B has a 6 x 8 grid. 

In the pre-processing phase the input data was matched with the target data 
using time criteria. For each target label corresponding to a timestamp of t hours 
we saved the WRF predictions for the hours 𝑡, 𝑡 − 1, … , 𝑡 − 5  . As a result, each 

input element forms the following vector shape: 

timesteps × park grid height × park grid width × wrf features 

3.2 Models and components 

Our architecture overview consists of two main components. A feature extractor, 

to identify geographical trends and a temporal model, to capture temporal 
patterns. An architectural overview is displayed in Figure 3.3. The model’s output 
is described by the following relationship: 

𝑦  =  ℎ ∘ 𝑔 ∘ 𝑓(𝑥) 
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Where f represents the feature extractor, g represents the temporal model and 
h is the output MLP. 

 

Figure 3.3: Architectural overview 

3.3 Feature extractors 

As feature extractors we use several methods. Convolutional Neural Networks 

(CNN), which is defined as: 

𝑓 :  ℝ𝐻×𝑊×𝐷 ⟼  ℝ𝐷′ 

where H and W represent the WRF grid’s height and width, and D represents the 
input features dimension. H and W are set to 7 and 8 for park A and 6 and 8 for 
park B.D represents the input features number that is equal to 18 and D′ 

represents output features dimension that is equal to 64.  

Another method we deploy is the mean vector approach. We utilize the mean 18 
WRF features of all the points of the WRF grid instead of using all the feature 
vectors in the grid. 

𝑣⃗ =  
1

𝐻 ⋅ 𝑊
∑ ∑ 𝑣𝑖,𝑗

𝑊

𝑗

𝐻

𝑖

 

Where H and W represent height and width. This results in an output shape of 18 

features for each of our 6 time-steps. 
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Similarly with the mean vector we keep the central 18 WRF features of all the 
points of the WRF grid for each time step. To determine the central point, we use 
the following equation: 

𝑦𝑖⃗⃗⃗ ⃗  =  (𝑙𝑎𝑡𝑖  ,  𝑙𝑜𝑛𝑔𝑖) 

𝜇⃗  =   (
1

𝑁
∑ 𝑙𝑎𝑡𝑘

𝑁

𝑘 =0

 ,  
1

𝑁
∑ 𝑙𝑜𝑛𝑔𝑘

𝑁

𝑘=0

) 

𝐿1(𝑦𝑖⃗⃗⃗ ⃗ ,  𝜇⃗)  =   ∑| 𝑦𝑖 
 𝑗

−  𝜇𝑗|

2

𝑗 =0

 

𝑐(𝑦𝑖⃗⃗⃗ ⃗,  𝜇⃗) = arg𝑖 min L1 ( 𝑦𝑖⃗⃗⃗ ⃗,  𝜇⃗) 

Where 𝑁 represents the number of wind turbines, 𝜇 represents their mean 
coordinates, 𝑦𝑖represents the coordinates of each WRF points and 𝑐 represents 
the index of the central vector. In case of mean and central vector method a 
multi-layer perceptron (MLP) with one hidden layer and output size 64 with a 

ReLU activation function follows. The MLP is described as followed: 

𝑓 :  ℝ𝐷 ⟼  ℝ𝐷′ 

where 𝐷 presents the input’s number of features and 𝐷′ the output features 
number. The purpose of using MLP is to feed our temporal model with extra 
features. The MLP in our method receives 18 input features and outputs 64. 

3.4 Temporal Models 

After extracting the output from feature extractor model, we feed it to our 
temporal model. We use LSTMs. LSTM is defined as: 

𝑔 :  ℝ𝑇×𝐷 ⟼ ℝ𝐷′ 

where T represents the number of time steps, D the number of input features 
and D′ the number of output features. In our method we input 64 features, we 
use an LSTM with a hidden size of 256 nodes followed by a dropout layer of 0.2 

dropout rate. That results in an output shape of 256 features. We also experiment 
with bi-directional LSTMs where the outputs are concatenated. 
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We also experiment with Self-Attention based on the paper [11]. In our method we 
use as key and value dimension the value 64 the same as the features input 
dimension. Our model is defined as: 

𝑔 :  ℝ𝑇×𝐷 ⟼ ℝ𝑇×𝐷′ 

where T represents the number of time steps, D the number of input features and 
D′ the number of output features. The model’s output is computed and added 
back on the input. We flatten the output and end up with 384 final features. 

To create a Transformer Block we extend self-attention adding an MLP with one 

hidden layer and output size 64 and ReLU activation function. Transformer Blocks 
have the same input and output shape, so we flatten input and end up with 384 
output features as a final shape. 

3.5 Extra Components 

Learnable and fixed positional encodings used in other works [11] [15] are used 

to help attention and transformer blocks receive positional information. We 
receive input information, incorporate positional information of the same shape, 
and then forward the output on attention or transformer blocks.  

𝑤  =  𝑃𝐸(𝑡)  +  𝑥,       𝑃𝐸 :  ℝ  →  ℝ𝐷 ,    𝑤 :  ℝ𝑁×𝐷   →  ℝ𝑁×𝐷  , 

x denotes the input data and w represents the final input data after adding 
positional encodings.  

We use Adam as our optimiser, with learning rate 0.001 and batch size is set to 
48. Regarding the validation and test sets we use during training; they are a part 
of the data set that consist of data equally distributed through seasonality. That 

is because we want our network to predict accurate values for all seasons without 
biases. On both parks we select data from the same exact months for validation 
and test set. We have no overlaps. As a loss function during training, we slightly 
modify MAE so that 𝑦𝑖 is in the same range as 𝑦𝑝. To evaluate the test set, Mean 

Normalized Absolute Error (MNAE) is used: 
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MAEcustom= ∑ ⬚
nsamples
i = 1 |

𝑦𝑖 −  min
𝑦

⬚

max
𝑦

⬚
  −  𝑦𝑝|, MNAE =  1

nsamples
  ∑

|𝑦𝑖−𝑦𝑝|

𝑐

nsamples
𝑖=0

 

𝑦𝑖 is the actual energy value and 𝑦𝑝 is the predicted value and 𝑐  is a constant value 

set to 12.000 in our experiments. 

4 RESULTS & DISCUSSION 

First, we test the results of applying our pre-processing method. We compare 
with the previous method of pre-processing. We use min-max normalization and 

CNN + LSTM model. 

Data MNAE Data MNAE 

Old preprocessing 14.1656 ± 0.3885 Old preprocessing 13.3116 ± 0.4404 

Ours 12.3939 ± 0.2880 Ours 13.0028 ± 0.6116 

Table 4.1: Park A Table 4.2: Park B 

 

Significant changes were noticed with the old data compared to the new in both 
parks. In particular, the metric improved on both parks, especially in park A 
(12.3939 compared to 14.1656), but also in park B (13.0028 compared to 13.3116). 
These results highlight the importance of data preprocessing as a critical step in 

the development of accurate and reliable neural network models.  

Second, after some fine – tuning experiments with several normalization and 
output functions we decide we will be using Z-score normalization and sigmoid 
output activation function as it seems like that configuration fits the distribution 

of our data better. Third, we start experimenting with different feature 
extractors.  

Feature extractor MNAE Feature extractor MNAE 

CNN 11.7516 ± 0.3657 CNN 12.6021 ± 0.4108 

Mean vector 12.1674 ± 0.2057 Mean vector 12.4049 ± 0.3539 

Central vector 12.0207 ± 0.2573 Central vector 12.1578 ± 0.0937 
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Table 4.3: Park A Table 4.4: Park B 
 

For park A, we notice central vector performs a bit better than mean vector 
method (12.0207 compared to 12.1674) while CNN gives us the best metric 
(11.7516). Despite that, the results of CNN do not have big differences with the 
other methods. Potentially because the input WRF values are close from one 

point of the grid to another and the spatial patterns the CNN is designed to 
capture are not that significant. For park B, central vector outperformed the other 
methods (12.1578). CNN in that case did not help our model as expected. An 
explanation is, the geographical distance between some points of the grid and 

the location of the turbines created instability. This instability could be because 
the CNN may have difficulty capturing the spatial relationships between these 
distant points. The results of the experiments raise questions about the 
essentiality of CNNs for our problem, as a simpler model achieved similar or even 

better performance. 

Fourth, we are experimenting with different temporal models and positional 
encodings, we are using CNN as feature extractor, Sigmoid output activation with 
z-score normalization and custom mae as a loss function. 

Temporal Model 
Pos. 
encodings 

MNAE park A MNAE park B 

LSTM - 11.7516 ± 0.3657 12.6021 ± 0.4108 

Bi-LSTM - 12.4621 ± 0.5107 12.4230 ± 0.3290 

Attention - 12.2100 ± 0.5640 13.0851 ± 0.3866 

Attention Learnable 11.9796 ± 0.3330 13.0798 ± 0.4014 

Attention Fixed 12.0599 ± 0.3525 12.8692 ± 0.2602 

Transformer Block - 12.2671 ± 0.4067 12.9023 ± 0.6318 

Transformer Block Learnable 11.8685 ± 0.2706 12.5219 ± 0.4044 

Transformer Block Fixed 11.6368 ± 0.2032 12.9150 ± 0.5425 

2 Transformer Block - 11.9848 ± 0.2606 13.1800 ± 0.6846 

2 Transformer Block Learnable 11.9009 ± 0.1874 12.6517 ± 0.3731 

2 Transformer Block Fixed 12.0535 ± 0.3532 12.7696 ± 0.4674 

Table 4.5: Temporal model and pos. encodings experiments for both parks 
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For park A, the best performance was achieved using a Transformer block with 
fixed positional encodings as it outperforms the LSTM (11.6368 compared to 
11.7516). We observe that two stacked transformer blocks compared to one 

slightly improve the metrics (11.9848 compared to 12.2671). Positional encodings 
tend to improve results in both attention and transformer block components. 
Learnable positional encodings help attention (11.9796 compared to 12.2100), 
and fixed positional encodings help single transformer block significantly (11.638 

compared to 12.2671). However, major improvement is not observed when 

combining them with two stacked transformer blocks. Learnable slightly help the 
models (11.9009 compared to 11.9848) while fixed produce slightly worse results 
(12.0535 compared to 11.9009). Similar results are obtained for park B. The best 
metric though is obtained by a bidirectional LSTM (12.4230). Combining 

information from both time directions proved useful for park B, differences are 
not significant though. 

Overall, LSTM architectures and attention-based architectures showed 
comparable performance when used to process and analyse our time-series data. 

That suggests that both architectures can be considered as viable options as 
temporal models in our task. As for positional encodings, our models improved 
with their addition in most of the cases. Comparing learnable and fixed positional 
encodings, we do not observe major differences between them. Learnable 

position encodings thought improved the model in all cases they were used.  

Lastly since parks A and B are 6 km apart, and meteorological WRF predictions 
should be similar for both parks, we combine park data and create an all-in-one 
model. We use the standard CNN + LSTM model. 

 MNAE park A MNAE park B 
Single, A 11.7516 ± 0.3657 - 
Single, B - 12.6021 ± 0.4108 
All-in-one 11.9604 ± 0.3097 11.9030 ± 0.3462 
Table 4.6: All-in-one model comparison 

 

The findings of this experiment are really promising. The metric of park A gets a 

bit worse (11.9604 compared to 11.7516). This has to do with the fact we have 
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different max values on park A and park B. Park A values are capped on 12 kWh 
and park B values are capped on 10.2 kWh. As a result, the all-in-one model misses 
some high values for park A. However, park B benefits a lot (11.9030 compared to 

12.6021) from this merge. That leads us to think that the concept of merging the 
park train data might work if we encode the information of which park data come 
from for our model. This experiment provides us with some interesting views. It 
shows that transfer learning between two nearby parks is a viable option. 

A visualisation of the test set predictions can be seen bellow. In Figure 4.1 we have 
included a visual representation of park A best model’s (CNN + transformer block 
+ fixed pos.encodings) predicted values compared to the actual ground truths. 
We have also included in Figure 4.2 a visual representation of the predictions of 
the model trained with old pre-processing data (Table 4.1). We can observe that 

especially low energy values, but also high energy values are modelled better with 
our best model. 

  

Figure 4.1: Ground truth – Prediction,  
park A 

Figure 4.2: Ground truth–Prediction,  
park A old 

5 CONCLUSIONS & FUTURE WORK 

The first part of our project involved developing a data pre-processing method 
based on our foundation paper [7]. Testing was performed in comparison with 
this paper. The results showed that our proposed method exhibited better 

performance on the same exact test set. These findings indicate the crucial role 
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of efficient pre-processing in such tasks as it made a great impact on the 
performance of our models. 

In the second part we implemented the model architecture. Our model 

architecture consisted of a feature extractor and a temporal model. As feature 
extractors we implemented the CNN, mean vector, and central vector 
approaches. Our results were similar in all cases as in the first park CNN 
performed quite better while in the second park the central vector approach 

outperformed the rest. That raises questions about the essentiality of CNNs for 
our problem as our experiments showed that a simpler approach achieved 
similar or even better performance. For temporal models, we compared LSTM, 
attention, and transformer blocks with the addition of positional encoding. Our 
results showed that attention-based perform comparably and even better than 

LSTM architectures as temporal models. In addition, while no clear preference 
emerged between learnable and fixed positional encodings, their addition to 
attention-based models was beneficial.  

Finally, we built an all-in-one model using data from both wind farms. By 

leveraging data from multiple sources, we achieved partial improvement in 
forecasting accuracy. Certain limitations this study faced is the lack of data, the 
data provided were valuable, but a larger dataset would have provided more 
robust and reliable results. In addition, is worth noting that the data provided 

required denoising. While our method addressed this issue, it remains a 
challenge that requires further exploration. In addition, although the WRF 
provided valuable meteorological features for our input data, it is a forecasting 
model that contains errors. An improvement could be to incorporate real 
meteorological data to model the WRF’s historical prediction errors and 

potentially account for the differences between the predicted and actual 
meteorological values. Additional improvements could involve leveraging aerial 
images of the wind farm to further encode the park’s location and geography. 
This extra signal can provide valuable information about nearby terrain features 

and improve the model’s ability to make accurate predictions. Another approach 
could be the use of unsupervised pre-training tasks (self-supervised learning) 
[16]. By training the model on WRF data from several areas in Greece for a pre-
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training task, the model can learn common patterns and features in the data that 
are relevant to wind energy prediction. 
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ABSTRACT 

AlphaFold 2 [1] has been a revolutionary algorithm in the field of computational 

biology. It made a huge leap in predicting the three-dimensional structure of a 
protein. Predicting the structure of a protein is a problem that has been 
challenging scientists for decades, and its solution is to this day a very desired 
one, as protein structures play a crucial role in understanding the function of 

proteins. And subsequently, understanding the function of proteins plays a 
crucial role in understanding the functions of the human body and its diseases. 

AlphaFold 2, an AI-model built by Google DeepMind [2], is able to accurately 
predict protein structures for a big number of proteins, far outperforming all 
other methods developed before it. But how did it manage such an impressive 

performance in such a difficult problem? This thesis presents the AlphaFold 2 
algorithm after giving some context on proteins and the protein folding problem. 
It also includes an experimental part, where the algorithm is executed and some 
technical details are examined.  

Keywords: protein folding prediction, AlphaFold 2 algorithm, protein folding 
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1 INTRODUCTION 

Proteins are macromolecules that take part in nearly every process in our cells. 
They are constructed inside the cell and perform a large number of different 
tasks like catalyzing chemical reactions (e.g. digestion), transporting nutritional 
components throughout our bodies, attacking foreign objects entering our 

bodies (antibodies), building cell and tissue structures, regulating processes in 
our bodies (protein hormones) and others.  

The building blocks of proteins are smaller molecules called amino acids. To form 
a protein, amino acids attach to each other forming a chain, which then folds to 
shape a 3-D structure (Figure 1). This structure allows a protein to perform the 

task it is responsible for.  

 

Figure 1 

 

The proper folding of proteins into their native state is essential for their normal 
function. However, various factors can disrupt this process, leading to protein 
misfolding. Mutations in the genetic code, as well as environmental factors such 
as temperature or the presence of certain chemicals, can interfere with the 

folding process. When a protein misfolds, it means that it adopts an incorrect 
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three-dimensional structure compared to its native state. This misfolded protein 
may become unstable, lose its functional properties and be unable to carry out 
its intended task effectively. Misfolding can disrupt the protein’s ability to interact 

with other molecules, impair its enzymatic activity, or interfere with its structural 
role. Since proteins play crucial roles in numerous biological processes, the 
consequences of protein misfolding can be severe. 

Knowing a protein’s structure is very important for medical and biological 

research. The structure of nearly 100,000 proteins (compared to the billions of 
known sequences) has been found experimentally [3]. But determining a protein 
structure experimentally is not an easy task: it is expensive and time consuming, 
taking months to years to complete. The scientists’ goal is to be able to determine 
the structure of a protein in the three-dimensional space, given its amino acid 

sequence (Figure 2). This is theoretically possible (Anfinsen, 1972) and if that is 
achieved, scientists will then be able to determine the structure of every protein. 
This is the so-called protein folding problem and what AlphaFold 2 aims to solve 
by using trained deep neural networks, especially Transformers [11], and by 

deploying the self-attention technique. Self-attention is the technique of making 
the network focus only on some parts of the input that seem more useful than 
other input parts in predicting the output. That way, the network extracts more 
meaningful information from the input and outputs a highly accurate prediction. 

 

 

Figure 2 
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2 THE ALPHAFOLD 2 ALGORITHM 

AlphaFold 2 takes a protein amino acid sequence as input and outputs the most 
probable structure of that sequence. The program’s output is a structure for the 
protein in question along with confidence scores (ranging from 0 to 100%) for 
each amino acid. The program is split into two big parts: the feature embedding 

and Evoformer (first part) and the Structure module (second part). In the first 
part, information from other proteins, related to the input one, is highly 
processed and used to build some structures. These structures will then be the 
input to the second part, which will use them to end up in a protein structure. 
The network uses recycling: the outputs of an iteration are used to update the 

input to the next one. The number of iterations is defined in the program.  

AlphaFold 2 widely uses neural networks. To sufficiently train those networks, 
AlphaFold 2 relies on a large amount of protein data. These data can be found by 
searching protein databases. The proteins searched are evolutionarily related to 

the protein in question, meaning they also share common amino acids. Using 
information from proteins with known structures, the model can see how 
evolutionarily related proteins fold and that way extract information about the 
structure in question. Using information from proteins with unknown structures, 
it extracts information by aligning their sequences and finding patterns which 

reveal the proximity of two amino acids in the final protein shape. The last 
information is embodied in a table called MSA table. 

During inference, AlphaFold 2 receives input features from the input protein 
sequence, the MSA table and templates (proteins with similar structures to the 

one we want to predict), and outputs atom coordinates and confidence score per 
amino acid.  

The first part of the algorithm (Figure 3) builds an MSA and pair representation 
out of the MSA table, the input sequence and the templates. The MSA 

representation encodes information of evolutionarily related proteins, while the 
pair representation about the correlation between each pair of amino acids in 
the input sequence. During that part, there is a high information exchange 
between pair and MSA representation, and self-attention methods are used. 
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Figure 3 

 

Then, having acquired the final form of the MSA and pair representations, we use 
them to build a 3-D protein structure out of them. This is done in the second part 

of the algorithm, or the Structure module 

The structure module (Figure 4) takes two of the algorithm first part’s outputs as 
input: the pair representation and the single representation. The single 
representation is the MSA table’s first row and represents the input amino acid 
sequence. A 3-D representation of the protein’s structure is initialized in the 

algorithm. The module consists of 8 layers and in each layer, the single 
representation and the 3-D representation are updated. The processed version 
of the 3-D representation will be the output of the entire algorithm. Updating the 
single representation is needed because this representation will give us 

information on the angles of the 3-D structure. 

In the Structure module, the single representation is updated after self-attention 
is performed on it and after receiving bias from the pair representation. The 
processed single representation is then used, along with the unprocessed one, 

to predict torsion angles (angles between planes formed by atoms of one or two 
amino acids), which are subsequently used to predict the final atom coordinates. 
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For the prediction of confidence, the processed single representation is given as 
input to a trained network, which returns the confidence per amino acid. 

 

Figure 4 

 

Returned by the structure module are the atom coordinates and the confidence 
measure. Lastly, relaxation is performed on the predicted structure. When a 

molecular structure is predicted by a computer program, it may contain 
structural violations, meaning violations that do not appear in natural structures. 
So the structure undergoes a procedure called relaxation in order to resolve as 
many violations as possible. Both the relaxed and unrelaxed versions of the 

protein structure are returned by AlphaFold 2. The structure module’s outputs 
(coordinates and confidence measure) will be organized in a PDB file. A PDB file 
[4] is a file that represents a molecule structure, by assigning coordinates to all 
its atoms.  
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3 RUNNING THE ALGORITHM  

AlphaFold 2 is an open-source software available on GitHub [5], with detailed 
instructions on how to run it. AlphaFold 2 can only be run in inference mode and 
is not available for training or fine-tuning. Running it requires a Linux-running 
machine, around 3 TB of storage space for the full download of protein databases 

and a powerful GPU. For systems with less available memory, there is also the 
option of downloading a reduced version of databases (a database of 17GB will 
be downloaded instead of the full one of 1.8 TB, still leaving the total required 
size to around 1.2 TB). AlphaFold 2 needs a significant amount of time to set up: 
many hours (even a day or more) are required to download the data needed for 

running the algorithm.  

OpenFold [6] is a faithful reproduction of AlphaFold 2 implemented in PyTorch, 
whereas AlphaFold 2 was developed for JAX workflow. OpenFold does give the 
option for training or fine-tuning as opposed to AlphaFold 2, and can be faster in 

inference mode. Still, its setup requires the same resources mentioned for 
AlphaFold 2 (multiple hours of downloading databases as well as storage). In an 
attempt to run the AlphaFold 2 algorithm, we chose to run OpenFold, since it 
would allow us to also experiment with some fine-tuning. We also use Docker. 
Docker [7] is a software that allows a user to perform any installations and runs 

in a secluded environment, called a container. That way, the program will not 
have to interfere with the whole system where the program will be run and allows 
independence, especially in the case of systems used by many people. Docker is 
a simple way of running OpenFold. 

The output of the program is a PDB file. A PDB file can then be used in a 
visualizing software like Chimera [8]. Such software visualizes a structure as 
encoded in a PDB file. The PDB file returned by OpenFold for the MCHU 
Calmodulin protein can be visualized into the following 3-D structure, using 

Chimera 1.16 (Figure 5):  
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Figure 5 

 

OpenFold offers the possibility of running the program in Google Colab  (Figure 
6) [9]. Google Colab is an environment where Jupyter notebooks can be run 

without the use of setting up GPU or CPU, since they are provided by Google. This 
is a pretty simple way of running OpenFold without having to download and run 
it manually. To run OpenFold on Google Colab, simply enter the amino acid 
sequence on the first cell, choose the model you want to use (OpenFold and 

AlphaFold 2 have slight differences) and then run all the cells. This program 
downloads all the databases on the Google cloud environment. The running time 
for an amino acid sequence of 70 amino acids was 40 minutes, including all 
downloads of databases. After being completed, the program downloads a zip 

file containing the PDB file and the predicted error in a JSON file. It also visualizes 
the 3D structure along with its confidence prediction. In the 3D structure, the 
coloring denotes the confidence areas:  
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Figure 6 
 

Lastly, AlphaFold database [12] contains over 214 million protein structures and 
their confidence metrics, as predicted by AlphaFold 2. 

4 RESULTS 

We saw how AlphaFold 2 can be run using OpenFold. All we used was a simple 
computer system running Linux and an 8 GB GPU. Even though we needed a 

large storage space of around 3 TB (which can also be reduced to 1.2 TB as 
mentioned in Chapter 3), it is still impressive that anyone can obtain a protein 
structure estimation, corresponding to an amino acid sequence of their choice 
within minutes, simply by running a program on their computer or on Google 

Colab. Until some years ago, a protein structure could only be obtained 
experimentally by scientists, after months of effort. This demonstrates the power 
of computer science, computer systems and machine learning. In the previous 
chapter, predictions were obtained using trained models. But taking a step 

further, what would happen if someone wanted to fine-tune the model, or even 
train it from scratch, needing even higher resources? AlphaFold 2 does not offer 
the option of training or fine-tuning, probably because they require resources 
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available only within scientific communities. But OpenFold remains an option for 
fine-tuning or training the model. In order to fine-tune the model on a selected 
group of proteins, those proteins first need to be aligned. Alignment will be used 

for the construction of the aforementioned MSA (Multiple Sequence Alignment) 
table. In an alignment procedure, all proteins are aligned based on a model 
protein, in order to find common amino acids with it. Since all proteins have to 
take the role of the model protein (all proteins have to be compared with all 

others), the alignment procedure leads to a high complexity 

The problem is that this step is not that simple. After trying to align a set of 900 
proteins using both alignment scripts, the result was the following 

• For the former, alignment of approximately one protein per day (which 
would result in 900 days of aligning). 

• For the latter, usage of 90% of computer memory on average. This amount 
of mmory consumption prevents others from using the same computer 
machine.  

Alignment running for 3 days consecutively, was killed manually afterwards. This 

method is faster than the previous one. These data show us that it is infeasible 
to run the alignment script in a short amount of time, but one can overcome this 
obstacle by having precomputed alignments available. In that case, alignment of 
proteins is not needed. Besides alignment, we also expect fine-tuning to take a 

long time (at least a few days). The amount of time needed for aligning prevented 
us from fine-tuning the model. Fine-tuning is a much harder task, although not 
infeasible, given that one can invest time and effort in it. But, if alignment could 
become more efficient, many scientific teams or individuals would experiment 
with training and/or fine-tuning, leading to a better understanding of the 

algorithm and even improvement of it.  

At this point, we could not expect the same thing for training or fine-tuning, since 
solving such a problem using machine learning is, by its nature, resource-
intensive and training this model using such a large amount of data could not be 

any faster. AlphaFold 2, even with its weaknesses in terms of resources or time 
needed to train or fine-tune it, is still a very sophisticated algorithm, which using 
state-of-the-art techniques has managed to solve a very important biological 
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problem, at least to a certain extent. But as science, by its nature, aims to solve 
problems (even after having just solved a very important one), scientists will try 
to improve the algorithm’s efficiency and more importantly, obtain even more 

accurate protein structures. 

5 CONCLUSIONS AND FUTURE WORK 

AlphaFold 2 has been able to predict protein structures given their amino acid 
sequence, with a high accuracy for the majority of proteins. The algorithm has 
been considered revolutionary and is indeed remarkable, since it has achieved 
significant advancements in predicting protein structures and thus managed to 
solve the protein folding problem to a large degree. That way, it expanded our 

knowledge on previously unknown protein structures and the molecular world 
and showed how machine learning algorithms can be reliable and powerful tools 
for solving biological problems. Ιt has also given the scientific world new tools 
and ideas on how to tackle specific problems using machine learning techniques, 

opening up new possibilities for scientific research. 

However, we should keep in mind that machine learning algorithms make 
predictions based on data they have been trained on. So one should be careful 
when using a predicted protein structure and not consider it as ground truth, but 
also take into consideration the confidence scores provided with every structure. 

Those confidence scores indicate, as mentioned, the model’s certainty for the 
prediction of each amino acid’s position in the 3-D structure. The scientific 
community will strive for even bigger breakthroughs in the field of structural 
biology. The AlphaFold 2 algorithm has been a precious tool in the hands of 

scientists, which will continue playing a vital role in advancing our knowledge on 
proteins and facilitating various research endeavors.  

What we think for a future project is testing the algorithm’s generalization, using 
the class of membrane proteins. Membrane proteins [10] are proteins existing in 

or interacting with biological membranes. The generalization test can be done by 
fine-tuning OpenFold on the class of membrane proteins and then testing its 
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performance on membrane protein structures. Then test the performance of the 
non-tuned model on the same dataset. Finally, compare the performances of the 
two programs. If the fine-tuned version does not perform much better than the 

non-tuned one, we would conclude that AlphaFold 2 can perform well on 
predicting protein structures it has not been specifically fine-tuned on. Ideally, 
we would expect similar performances for both models, which would mean that 
AlphaFold 2 performs well for all protein classes, without the need for fine-tuning. 

For this project, we will again confront the alignment problem discussed in the 

previous chapter, but we will invest a significant amount of time both in protein 
alignment and fine-tuning of the model, hoping to overcome it. 
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Angelos Poulis 

 

ABSTRACT 

One way that the current state of the art measures the reasoning ability of 
transformer-based models is by evaluating accuracy in downstream tasks like 

logical question answering or proof generation over synthetic contexts 
expressed in natural language. However, all these contexts are in practice very 
simple; in most cases, they are generated from short first-order logic sentences 
with only a few logical operators and quantifiers. In this work, we construct a 

synthetic dataset over the description logic language 𝒜ℒ𝒞𝒬 of 384K examples, 
which increases in two dimensions: i) reasoning depth, and ii) length of 
sentences. We show that the performance of our RoBERTa-based model, DELTA𝑀, 
is marginally affected when the reasoning depth is increased and it is not affected 

at all when the length of the sentences is increasing. We also paraphrase this 
dataset and we observe that when DELTA𝑀 is fine-tuned, it performs equally well 
over the new dataset. Finally, in line with recent research findings, we observe 
that although transformer-based models seem to generalize well in increasing 
reasoning depths, this does not seem to be the case in decreasing reasoning 

depths. 

Keywords: Natural Language Processing, Language Models, Description Logics, 
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1  INTRODUCTION 

Ontological knowledge is usually represented with formalisms based on 
description logic (DL) languages [1]. Description logics are fragments of first-
order logic that can be used in knowledge-based systems to represent a domain 
of interest in a semantically well-defined manner. Their formal apparatus allows 

us to perform reasoning tasks such as consistency checking, deciding whether a 
sentence, or a set of sentences, logically implies another, and answering queries 
over knowledge bases encoded in DL languages. An expressive and decidable DL 
language that, besides the standard Boolean operators, supports also existential, 
universal, and numerical constraints is 𝒜ℒ𝒞𝒬. For instance, one can formally 

express in 𝒜ℒ𝒞𝒬 simple sentences like “Anne is a female” or “Anne is a female and 
a postdoc” or complex sentences such as “If someone is a postdoc then she has a 
Ph.D. degree, she teaches at most two courses and she supervises at least one 
postgraduate student”. As a result of its expressive power, the complexity of 

reasoning in 𝒜ℒ𝒞𝒬 is ExpTime-complete [19]. In this paper, we investigate the 
hypothesis that large language models (LLMs) [3] could be used to carry out 
reasoning tasks in the DL 𝒜ℒ𝒞𝒬. If our hypothesis is correct then this would: i) 
enable the users to perform reasoning tasks (e.g., query answering) over 
ontological knowledge bases using natural language instead of logic language, 

and ii) possibly increase the time efficiency of the reasoning process. Recently, a 
substantial amount of research appeared in the literature investigating the ability 
of LLMs to carry out various reasoning tasks, such as logical question answering 
[2, 4], proof generation [13, 17] or satisfiability checking [12], over synthetic 

contexts expressed in natural language. These contexts are generated from 
propositional logic or selected fragments of first-order logic (FOL) expressed in 
natural language. As the focus is only on the reasoning ability of the models, the 
datasets are generated in such a way that world knowledge that LLMs have 

already learned is isolated. A standard way [2, 17] to achieve this is by performing 
random sampling over a probabilistic context-free grammar (PCFG). The correct 
answers are determined by a logical reasoner and the reasoning ability of the 
models is investigated with respect to the depth of the logical proof.  In certain 
fragments of FOL, transformer-based models seem to have good performance, 

but in more expressive ones the models do not perform equally well [4, 18]. The 
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question that this work seeks to answer is how well a transformer-based model will 
perform reasoning over an expressive DL language, like 𝒜ℒ𝒞𝒬. One question that 
arises here is if the fragment of the formal language is enough to measure the 

reasoning ability of a model. For instance, both synthetic sentences “Anne admires 
Bob” and “If someone admires only people that are cold and not round or kind or that 
love at least one not green person, then they love someone that is cold or that loves 
someone kind” can be expressed formally within 𝒜ℒ𝒞𝒬. Hence, this study asks: If 

the context contains natural language sentences of the latter form, i.e., of high 
linguistic complexity, would the model perform with high accuracy? It is important 
to note that most of the benchmarks available in the literature are generated 
from short sentences whose formal representation contains only a few logical 
operators and quantifiers. We have constructed the dataset DELTA𝐷 (DEscription 

Logics with TrAnsformers) of 384K question-answer examples (context-question-
answer-depth) based on 𝒜ℒ𝒞𝒬, where the question is the statement that we 
check whether it logically follows from the context and answer is “True” (if it 
does), “False” (if it conflicts with the context), “Unknown” (if none of the two). 

DELTA𝐷 increases in complexity in both reasoning depth and breadth of 
sentences. An example of the dataset is presented in Figure 1.  

 

Fig. 5. An example from 𝐃𝐄𝐋𝐓𝐀𝑫 where the context contains long sentences, and the 
true and false sentences are of depth 2. The sentence with answer “unknown” does 

not logically follow from the context. 
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We test the performance of our transformer-based model, DELTA𝑀 on two 
dimensions: i) the minimum reasoning depth required to obtain the answer, and 
ii) the complexity of the natural language sentences appearing in the context. We 

show that the performance of DELTA𝑀 is marginally affected when the reasoning 
depth increases and it is not affected at all when the length of the sentences is 
increasing (accuracy 97.6% in max. reasoning depth and max. length of 
sentence). Hence, DELTA𝑀 generalises well with respect to these two dimensions. 

We, also, tweaked a bit the probabilities of the PCFGs and we noticed that the 
accuracy of the model remained equally good. When DELTA𝐷 is paraphrased, 
then the performance of DELTA𝑀 drops (72.3% zero-shot accuracy). When it is 
fine-tuned on the paraphrased dataset then the accuracy of the model increases 
on both datasets (99.1% accuracy on the paraphrased data and 98.6% on the 

original data, for max depth and length). When we tested the fine-tuned model 
to a new dataset generated with the same process (i.e., from a PCFG grammar 
and then paraphrased), we observed that its generalisation ability improves 
(81.2% zero-shot accuracy). It was recently shown [15, 12, 23, 18, 14] that although 

transformer-based language models may perform well in reasoning tasks, they 
cannot acquire the logical principles governing the reasoning processes 
employed by standard logical reasoners. To further emphasize these results, and 
inspired by [18], we tested how a DELTA model performs on datasets with low 

reasoning depths when it is trained only on data of larger reasoning depths. In 
line with the literature, we observed that the accuracy of the model drops 
significantly to approximately 50%, which shows that, indeed, the model does not 
learn the underpinning reasoning rules but rather it emulates the logical QA task.  

Overall, we make the following contributions: 

1) We provide a large, balanced benchmark of 384K examples. Each example 
contains the context, a question, an answer (true, false, unknown), and the 
minimum reasoning depth required to obtain the answer. Additionally, the 
benchmark contains the respective data in formal form (expressed in 

𝒜ℒ𝒞𝒬) along with the minimum set of rules and facts involved in the 
proving process. This is a significant contribution because: (i) this is the 
first dataset of its kind for a DL, and (ii) building large benchmarks over 
expressive logic languages, like 𝒜ℒ𝒞𝒬, is a challenging task as it requires 
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performing query answering with logic reasoners, a process that can be 
very time-consuming (~ 1 min. for KB with long rules/facts). Both the 
dataset and the code for its generation will be openly available to be used 

by other researchers. 

2) We create the transformer-based model DELTA𝑀 and we show that LLMs 
can perform reasoning over synthetic contexts generated from 𝒜ℒ𝒞𝒬 
sentences.   

3) We show that the performance of LLMs is not affected by the length of the 
sentences. 

4) We confirm recent research findings in that although LLMs may perform 
well in specific reasoning tasks, they have not learned the underpinning 
reasoning rules.   

5) This is the first work in the literature that studies the ability of transformer-
based models to perform reasoning tasks over expressive description logic 
languages.   

2 BACKGROUND ON DESCRIPTION LOGICS 

We can use 𝒜ℒ𝒞𝒬 to represent knowledge about a domain by defining three 
types of entities: individuals (e.g., John), concepts (e.g., Postdoc, i.e., the concept 
describing the entities that are postdocs) and roles (e.g., teaches). Concept 

expressions can be formed using these entities, the Boolean constructors 
conjunction (⊓), disjunction (⊔), negation (¬) and universal (∀), existential (∃), 
numerical (≤, ≥) role restrictions. For instance, one can represent formally all 
entities that “have a Ph.D., teach at most two postgraduate courses and are not 

academics” ( ∃ℎ𝑎𝑠. 𝑃ℎ𝐷 ⊓ ≤ 2 𝑡𝑒𝑎𝑐ℎ𝑒𝑠. 𝑃𝑜𝑠𝑡𝑔𝑟𝐶𝑜𝑢𝑟𝑠𝑒 ⊓ ¬ 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐). Rules in 𝒜ℒ𝒞𝒬 
describe relationships between concept expressions. For example, the fact that 
all postdocs are described by the aforementioned concept expression can be 
represented with the concept inclusion 𝑃𝑜𝑠𝑡𝑑𝑜𝑐 ⊑ ∃ 𝑜𝑤𝑛𝑠 . 𝑃ℎ𝐷 ⊓ ≤

2 𝑡𝑒𝑎𝑐ℎ𝑒𝑠. 𝑃𝑜𝑠𝑡𝑔𝑟𝐶𝑜𝑢𝑟𝑠𝑒 ⊓ ¬ 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐. Facts describe knowledge about named 
individuals, i.e., that are instances of some concept (expression), e.g., John is a 
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Postdoc (𝑃𝑜𝑠𝑡𝑑𝑜𝑐(𝐽𝑜ℎ𝑛)), or how they related, e.g., John teaches Module05 

(𝑡𝑒𝑎𝑐ℎ𝑒𝑠(𝐽𝑜ℎ𝑛, 𝑀𝑜𝑑𝑢𝑙𝑒05)). An 𝒜ℒ𝒞𝒬 knowledge base (KB) is a set of rules and a set 
of facts. The valid expressions in 𝒜ℒ𝒞𝒬 are defined as follows. We start with a 
finite set of individuals, atomic concepts and roles. If 𝐴 is an atomic concept and 
𝑅 is a role,  according to the 𝒜ℒ𝒞𝒬 grammar [1], the concept expressions 𝐶, 𝐷 are 

constructed recursively as follows: 𝐶, 𝐷 ∷= 𝐴 ∣ ⊤ ∣ ⊥ ∣ ¬ 𝐶 ∣ 𝐶 ⊓ 𝐷 ∣ 𝐶 ⊔ 𝐷 ∣ ∀ 𝑅. 𝐶 ∣

∃ 𝑅. 𝐶 ∣ ≥ 𝑛𝑅. 𝐶 ∣ ≤ 𝑛𝑅. 𝐶, where the top concept ⊤ is a special concept with every 
individual as an instance, and the bottom concept ⊥ is the dual of ⊤, i.e., with no 
individuals as instances. In 𝒜ℒ𝒞𝒬 we can construct very complex concept 

expressions such as ∃𝑅1. (𝐶 ⊔ (∀𝑅2. (𝐷 ⊓ ≥ 𝑛 𝑅3. ¬ 𝐹))). A  rule is of the form 𝐶 ⊑

𝐷 and a fact of the form 𝐶(𝑎) or 𝑅(𝑎, 𝑏), where 𝑎, 𝑏 individuals. Using complex 
expressions one can construct very complex rules and facts. We denote with LHS 

(left-hand side) the concept expression that appears on the left of the 
subsumption symbol (⊑) in a rule and with RHS (right-hand side) the concept 
expression that appears on the right. The inferred closure of a KB 𝒦 is the 
minimum set of rules and facts that can be logically inferred from 𝒦. Given a KB 

𝒦 and a rule or a fact 𝑎, 𝑑𝑒𝑝𝑡ℎ(𝑎, 𝒦) denotes the minimum number of rules and 
facts in 𝒦 that can be used to logically deduce that 𝑎 is true or false. Following 
the semantics of DLs, we make the open-world assumption, i.e., missing 
information is treated as unknown. 

3 DATASET GENERATION 

We investigate the ability of transformers to perform logical question answering 
over 𝒜ℒ𝒞𝒬 KBs expressed in natural language with respect to three dimensions: 

i) the minimum depth of inference 𝐷 a logic reasoner would need to answer the 
corresponding query, ii) the linguistic complexity level ℒ of the knowledge 
required to answer the query, iii) paraphrased sentences. Each example in the 
dataset is a quadruple ⟨𝒯, 𝒬, 𝒜, 𝒟⟩,  where 𝒯 is the context containing 𝒜ℒ𝒞𝒬 
axioms expressed in natural language, 𝒬 a rule or fact expressed in natural 

language which forms the question, 𝒜 is the answer which can be either true, false, 
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or unknown, and 𝒟 = depth(𝑞, 𝐾), where 𝑞 is the query expressing formally the 
question 𝒬. The natural language of the dataset is English.  

 

Fig. 6. Data generation pipeline for examples with n-level context and answers of 
minimum inference depth ≤ m 

 

The pipeline for the generation of the dataset is presented in Figure 2. For the 
generation of an example of linguistic complexity level 𝑛 (𝐿 ≤ 𝑛) and number of 

inference steps up to 𝑚 (𝒟 ≤ m), we first generate a small (with maximum 12 
axioms and 14 facts) KB 𝒦 using specially crafted PCFGs for 𝑛-level 𝒜ℒ𝒞𝒬 KBs 
(denoted in Figure 2 with 𝒜ℒ𝒞𝒬 − 𝑛 PCFG). Then, the inferred closure of 𝒦 is 
calculated by using and extending the reasoner HermiT [7], from which we 

calculate the queries. A KB 𝒦 is kept only if it can produce queries with all three 
types of answers at all depths up to 𝑚, otherwise, it is discarded, and a new one 
is generated. Once this process is completed, the generated rules, facts along 
with the original KB 𝒦, are translated into natural language statements and into 

the context 𝒯, respectively, by utilizing a set of natural language templates. 

3.1 KB Generation 

We have defined two different pools of terms, Pool A and Pool B, from which we 
generate 40 datasets (20 from each pool) of 1000 KBs each, of different inference 
depths and axiom lengths. Pool A contains 14 atomic concepts, 5 roles, 8 

individuals, all taken from RuleTaker dataset [2] (in RuleTaker the rules are simple 
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conjunctive implications, where the concept names are named “attributes”, the 
roles “relations” and the individual names “entities”).  Pool B contains 8 atomic 
concepts, 8 roles and 8 individuals. For each pool of terms, we generate four 

types of 𝒜ℒ𝒞𝒬-ℒ KBs (ℒ = 0,1,2,3), based on the number of constructors and 
quantifiers appearing in their axioms. In general, an ℒ KB includes axioms that 
their LHS or RHS contain ℒ Boolean constructors and at most ℒ + 1 quantifiers, 
but also includes simpler axioms of smaller levels.  

For instance, KBs of level ℒ = 0 contain only very simple facts or axioms that do 
not contain any Boolean constructors but can contain one quantifier, such as 
𝐸𝑛𝑡ℎ𝑢𝑠𝑖𝑎𝑠𝑡𝑖𝑐 ⊑ ∃ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠 .  𝐸𝑛𝑡ℎ𝑢𝑠𝑖𝑎𝑠𝑡𝑖𝑐 (translated in NL as “Enthusiastic people 
support someone enthusiastic”), KBs of level ℒ = 1 contain axioms that their LHS 
or RHS can contain up to a single Boolean constructor and up to two quantifiers, 

etc. To keep the KBs processible by the reasoners, the axioms can contain up to 
seven atomic concepts and up to two nested quantifiers (e.g., 
∃𝑙𝑖𝑘𝑒𝑠. (∃𝑙𝑜𝑣𝑒𝑠. (𝐶𝑎𝑡)), which describes the entities that like some entity that loves 

some cat). All KBs are checked with respect to satisfiability and consistency with 
HermiT. In line with [2, 17], each dataset contains questions whose answers have 
minimum depth of inference 𝒟 (𝒟 = 0,1,2,3,5). 

3.2 Query Generation 

For an inference depth 𝐷, a true query (answer=true) 𝑞 is an axiom or fact selected 
from the inferred closure of a consistent 𝒦, such that 𝑑𝑒𝑝𝑡ℎ(𝑞, 𝒦) = 𝒟. An 
unknown query (answer=unknown) is generated by creating a random fact or 

statement (using the corresponding PCFG) such that it does not belong to the 
inferred closure of 𝒦 and is consistent with 𝒦. A false query (answer=false) can 
be generated in three ways:  

• From an inconsistent 𝒦: for every 𝑎 ∈ 𝒦 if 𝒦 ∖ {𝑎} is consistent then 𝑎 is a 
false query over the KB 𝒦 ∖ {𝑎}.  

• From a consistent 𝒦: i) By negating a true query 𝑞 with depth(q, 𝒦) = 𝐷 
(and applying De Morgan's laws). ii) By automatically generating an 
appropriate axiom or fact 𝑎 such that 𝒦 ∪ {𝑎} is inconsistent and 
𝑑𝑒𝑝𝑡ℎ(𝑎, 𝒦) = 𝒟. For instance, suppose that a KB 𝒦1 contains the axioms 
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(∀ 𝑎𝑑𝑚𝑖𝑟𝑒𝑠 . ⊥ )(𝐴𝑛𝑛𝑒) and ∀ 𝑎𝑑𝑚𝑖𝑟𝑒𝑠 . ⊥ ⊑ ∀ 𝑙𝑖𝑘𝑒𝑠 . 𝑄𝑢𝑖𝑒𝑡 which in natural 
language are translated into: “Anne admires none”, “All people that 
admire none like only quiet people”. Then, the fact (∃ 𝑙𝑖𝑘𝑒𝑠 . ¬ 𝑄𝑢𝑖𝑒𝑡 )(𝐴𝑛𝑛𝑒) 

stating that “Anne likes someone who is not quiet” forms a false query for 𝒦.  

The disadvantage of the first approach is that it requires calling the reasoner 
multiple times, a time-consuming process, especially in KBs with long axioms 
(e.g., ℒ=3 KBs). Hence, we used the two latter approaches.    

3.3 Data Translation to NL 

The KBs and queries were translated to NL with the use of templates. The 
templates were created based on the user-friendly Manchester syntax for 𝒜ℒ𝒞𝒬 
[5]. Following this syntax, the intersection (⊓) and union (⊔) operators, are 
translated as “and” and “or”, respectively, the existential (∃) quantifier is 

translated as “someone” or “something” (depending on whether the pool is 
about people or things), the universal (∀) as “only”, and the numerical 
restrictions ≤, ≥ as “at most” and “at least”. Also, we use the word “that” for 
intersections and nested quantifiers. For instance, the fact 

(∃ 𝑙𝑖𝑘𝑒𝑠 . ( ∀ 𝑙𝑖𝑘𝑒𝑠 . 𝐾𝑖𝑛𝑑))( 𝐵𝑜𝑏 ) is translated as “Bob likes someone that likes only 

kind people”. Following the template-based approach suggested by [17], the 

axioms  of the form 𝐶 ⊑ 𝐷 are, roughly, translated into NL in four different ways: 
i) “If 𝐶 then 𝐷”; ii) “People/Things that are 𝐶 are 𝐷”; iii) “All people/things that 
are 𝐶 are 𝐷”; iv) If 𝐶 =  ⊤ and 𝐷 = ∀𝑅. 𝐶′ this is translated as 
“Someone/something can 𝑅 only people/things that are 𝐶′”. A fact 𝐶(𝑎) is 

translated as “𝑎 is 𝐶”. To ensure that the resulting NL sentences are 
grammatically correct we have used a grammar checker 
(https://pypi.org/project/language-tool-python/). 

3.4 The dataset 𝐃𝐄𝐋𝐓𝐀𝑫 

After the generation and the translation of all KBs and queries, examples of the 

same depth and level from both pools are merged. This results in 20 datasets of 
2000 KBs each, with each resulting dataset containing sentences from both 
vocabularies. From each KB we generated three queries (true, false, unknown) 
for each depth (𝒟 = {0,1,2,3,5}), i.e., from each KB we generated 3 × (𝑑 + 1), 𝑑 ∈ 𝒟. 
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So, in total, the dataset contains Σ𝑑∈𝒟3 × (𝑑 + 1) × 2000 × (ℒ𝓂𝒶𝓍 + 1), where 
ℒ𝓂𝒶𝓍 = 3 is the highest of complexity levels.  

3.5 Different Data Distributions 

To check the performance of our model on different data distributions we 
generated new datasets by i) paraphrasing examples from DELTA𝐷, and ii) 
tweaking the PCFGs.  

Paraphrasing examples. We initially used GPT-3 (text-davinci-003 model) and 

we tested the results by using the sentence transformer suggested by [11] with 
cosine similarity checking (t > 85%). However, the paraphrasing process was very 
time-consuming (> 10 seconds/KB) and the resulting data had only a few (~ 20%) 
acceptable alterations from the initial dataset. Hence, by observing the type of 
changes conducted on 730 axioms by GPT-3 we changed, also, the rest of the 

dataset. In particular, we used synonyms and opposites of terms appearing in 
the pools and we changed the tense of the verbs. All these changes were 
performed randomly, resulting in a dataset paraphrased by 83.14 %. So, for 
instance, a paraphrased version of the knowledge base 𝒦1 presented above is 

the following (the paraphrased terms are in italics).  

• “Anne looks up to none.” 

• “If someone does not admire anyone, then they like only silent individuals.” 

• “If someone is fond of only quiet people, then they chase someone.”  

From which it is inferred that “Anne chases someone”. Notice that although the 
KB is of the form 𝐶(𝑎), 𝐶 ⊑ 𝐷, 𝐷 ⊑ 𝐹, and the query is of the form 𝐹(𝑎), this is not 
so obvious in its paraphrased version unless the semantics of the words/phrases 
are taken into account.  

Tweaking PCFGs. We increased the probability of ∀ from 0.33 to 0.70 and the 

probability of the disjunction from 0.50 to 0.80 at ℒ = 3 PCFG. 
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3.6 Statistical Features 

As it is thoroughly discussed by [23], it is impossible to eliminate all statistical 
features that exist in data, besides, some of them inherently exist in logical 

reasoning problems (e.g., due to monotonicity, it is more likely that large KBs will 
produce positive examples). DELTA𝐷 is balanced with respect to the following 
features: i) KB size: From the same KB we extract all three types of questions (true, 
false, unknown); ii) Inference depth: We keep a KB only if it can provide all three 

types of questions with the same inference depth; iii) Formulation of the question: 
The word “not” appears almost equal number of times in true questions (17.47 
%), false questions (17.54 %) and unknown questions (15.54 %); iv) Average length 
in words: True questions 10.85, false questions 9.53, unknown questions 10.35. 

4 EXPERIMENTS 

For all our experiments we use RoBERTa-large, as the results from the literature 
[2, 18] showed that it has the best performance in QA over logical rules expressed 

in natural language. We train RoBERTa-large to predict true/false/unknown (i.e., 
multi-class classification) for each example. A context-question pair is supplied to 
the model as: [CLS] context [SEP] question [SEP]. For evaluation, we measure 
accuracy. The test data has an equal balance of True/False/Unknown answers, 
hence the baseline of random guessing is 33.3%. We use the AdamW optimizer 

[8] using its default values for betas and a weight decay setting of 1𝑒−4. We take 
subsets of DELTA𝐷 as they were formed during the generation process to train 
the model in the following way: The training is first performed per linguistic 
complexity level and then per depth (i.e., first it is trained in all linguistic 

complexity levels at depth 0, then in all complexity levels at depth 1, etc.). Hence, 
the final model DELTA𝑀 has been trained to all depths and all linguistic 
complexity levels. The intermediate models are denoted with DELTA𝑖,𝑗 where 𝑖 

represents the reasoning depth and 𝑗 the complexity level. For instance, the 
model DELTA3,2 has been trained to depths up to 3 and to all complexity levels on 

the previous depths and levels up to 2 on depth 3. DELTA𝑀 = DELTA5,3. For all 
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datasets, we partitioned the data into 70%/10%/20% splits for 
train/validation/test sets.  

Table 1. Accuracy of DELTA models on Test (own), on 𝐃𝟓,𝟑 dataset, and on slices of 𝐃𝟓,𝟑 
per depth.  

 

Table 1 illustrates the performance of RoBERTa-large when trained on up to ℒ ≤

3 linguistic complexity over the various inference depths. For instance, the 
column DELTA0,3 shows the performance of the model trained over all levels in 

depth 0. Test (own) represents the (held out) test set of the dataset that the 
model has been trained on. The D5,3 dataset has questions from all inference 

depths (𝒟 ≤ 5) of all levels (ℒ ≤ 3). “Depth N/A” refers to the unknown questions, 

as these are not provable. 𝒟 = 0 to 𝒟 = 5 represent the subsets of D5,3 that 
correspond only to these depths, e.g., 𝒟 = 3 is the subset of D5,3 containing only 

questions of depth 3.  DELTA models have in general high accuracies but 

decrease as reasoning depths increase. They show improved but plateaued 
generalization on D5,3, up to 𝒟 ≤ 5. Interestingly, DELTA1,3 generalizes better than 

DELTA2,3. DELTA3,3 not only matches the performance of DELTA5,3 on D5,3 but 

scores higher on most slices of D5,3. This is an unexpected behavior of the model, 
as DELTA5,3 has been trained at all depths and all linguistic complexity levels. For 

the first time, the Test (own) score drops below 99% with DELTA5,3. This suggests 

that while DELTA5,3 strives to excel at higher depths (𝒟 = 4, 𝒟 = 5), it may 

compromise its generalization capability at lower depths. 
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Table 2. Accuracy of DELTA models on Test (own) across all levels.  

 

Table 2 demonstrates the performance of the intermediate models and the final 
model when tested on Test (own). For instance, the cell that corresponds to 𝒟 =

0, ℒ = 0 shows the accuracy of the model DELTA0,0. We observe that for depths 

𝒟 = 0 to 𝒟 ≤ 3 the models are robust across levels, but when the depth increases 
to 𝒟 ≤ 5 then increasing lengths affect performance (slightly). 

Table 3. Accuracy of DELTA models on D ≤ 5 across all levels.  

 

Similarly, Table 3 illustrates the performance of the intermediate models DELTA𝑖,𝑗 

on datasets of depth 𝒟 ≤ 5 and level 𝑗. For instance, the cell that corresponds to 
𝒟 = 0, ℒ = 0, shows the accuracy of model DELTA0,0 on data of level 0 and depth 

𝒟 ≤ 5. In practice, this table demonstrates, the progress of the model while 
training. We notice that its performance increases monotonically, except when it 
first sees data of next depths where the performance fluctuates, suggesting the 
different format of the data of larger lengths and smaller depths (e.g., ℒ ≤ 3, 𝒟 ≤

3) compared to small lengths and larger depths (e.g., ℒ = 0, 𝒟 ≤ 5). 

Zero-shot performance on paraphrased dataset. We paraphrased the dataset 
D5,3 based on the methodology described in Section 3.5. The zero-shot accuracy 

of DELTA𝑀 over the paraphrased dataset was 72.3%, while the respective 
accuracy on the original D5,3 was 98.4%. This significant drop can be explained by 

the fact that the patterns of the original dataset have changed.  
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Zero-shot performance on slightly tweaked dataset. We changed the 
probabilities in the PCFG of linguistic complexity level 3 and we generated the 
new dataset DELTA𝑇 (described in Section 3.5) of 1200 examples of up to 

reasoning depth 𝒟 ≤ 5. This tweaking has resulted in sentences with 
0.8/sentence disjunctions and 0.62/sentence universals. The accuracy of 
DELTA𝑀 on the tweaked dataset was 94.5%, hence DELTA𝑀 seems to be robust (<

3% loss) over this new distribution. 

Table 4. The performance of a model trained on questions of only depth 3, over 
datasets of various depths. 

 

Zero-shot performance on smaller depths. We partitioned the dataset to the 
various depths, i.e., we extracted from DELTA𝐷 datasets D𝑖, which contain only 
data of depth 𝑖 (of all levels) and not up to 𝑖. We also trained the model DELTA3 
on 16K examples of only depth 3 in all lengths (ℒ ≤ 3). The results are 

demonstrated in Table 4. We see that the model cannot generalize to decreasing 
depths but generalizes to increasing depths. This implies that the model has not 
learned the underpinning reasoning rules governing the reasoning process.  

Table 5. Accuracy of 𝐏 − 𝐃𝐄𝐋𝐓𝐀𝟑,𝟑, 𝐏 − 𝐃𝐄𝐋𝐓𝐀𝟓,𝟑 models on paraphrased versions of 
Test (own), 𝐃𝟓,𝟑 and slices of 𝐃𝟓,𝟑 per depth.  

 

Performance of 𝐃𝐄𝐋𝐓𝐀𝑴 when fine-tuned to paraphrased data.  We fine-

tuned DELTA𝑀 on the paraphrased versions of datasets of 𝒟 ≤ 3 and 𝒟 ≤ 5 
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(across all levels) of DELTA𝐷 to construct the models P − DELTA3,3, P − DELTA5,3. 

Then, these models were tested over the paraphrased version of Test (own) and 
the paraphrased version of dataset D5,3. As it is shown in Table 5 (for ℒ ≤ 3), fine-

tuning the model on paraphrased datasets significantly improves its 
performance, particularly for 𝒟 = 4, 𝒟 = 5 questions, and boosts its zero-shot 
performance on the original D5,3 dataset. 

Zero-shot performance on a new dataset. We created the dataset “Animals” 

from a new pool of terms that were about animals. As creating a new dataset 
from scratch with the methodology described in Section 3.5 required 
approximately 30 hours for 1000 KBs of 𝒟 ≤ 5 and ℒ ≤ 3, we replaced the terms 
in the original datasets 𝒟 ≤ 3 and 𝒟 ≤ 5 across all length levels with the 
corresponding terms from this pool of terms. After this, we paraphrased the 

resulting dataset. The accuracy of DELTA𝑀 on the paraphrased dataset was 72.3% 
and the accuracy of P − DELTA5,3 was 81.2%. 

5 RELATED WORK 

A survey of the most recent research on the use of transformers for reasoning 

tasks can be found in [22]. One of the first studies in the domain was from [2] 
with RuleTaker, where it was demonstrated the potential of transformers to 
perform logical question answering under CWA by training LLMs on synthetic 
datasets. However, their approach was limited to short expressions of simple 

conjunctive rules. [4], with the FOLIO dataset (1.4K), in the same line with 
RuleTaker, tested the ability of various LLMs for the same reasoning task under 
OWA.  FOLIO was in FOL but without numerical restrictions. The result was that 
RoBERTa performed better than all models, but still the performance was low. 
[17] with the model ProofWriter built on top of T5 transformer [10] and the 

(modified) datasets from RuleTaker showed that LLMs can generate proofs 
(94.8% accuracy for depth 5).  [9] showed that LLMs perform well (up to 90.5%) 
over context generated by propositional logic and a small subset of FOL. [18] 
introduced the much richer synthetic dataset LogicNLI (30K), under OWA for 

diagnosing LLMs behavior. They showed even the best performing model on 
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LogicNLI, RoBERTa, does not learn to reason and cannot generalize to different 
scenarios. [15] generated a very simple dataset (containing a single conjunction) 
for satisfiability checking and showed that models that perform well on hard 

problems do not perform equally well in easier problems, resulting in the 
conclusion that transformers cannot learn the underlying reasoning rules rather 
than they tend to overfit to patterns in the generated data. Also, [23, 18] achieved 
similar results. [14] showed that LLMs are good at producing valid individual 

steps but are struggling when there is more than one path in the proving 
process. Most of the aforementioned benchmarks are composed of short 
sentences. The ones that contain longer sentences (avg. 13 words/sentence) are 
small (≤ 40K), while none of them have examples with numerical restrictions.  

6 CONCLUSION AND FUTURE WORK 

We generated the only large, balanced, synthetic dataset (384K) in the literature 
that targets expressive DLs (namely, 𝒜ℒ𝒞𝒬), enjoys both high expressivity and 

high linguistic complexity and it is publicly available for further understanding of 
the functionality of LLMs. We showed that LLMs can carry out reasoning over 
expressive synthetic datasets with high accuracy. We, also, showed that the 
length of sentences in the context only marginally affects the performance of the 
model. Slight tweaking in the generation process did not affect the model, while 

it performed very well when fine-tuned to paraphrased datasets. In line with the 
recent results in the literature, we showed that our model has not learned the 
underpinning logic rules but can carry out reasoning tasks with high accuracy. As 
future work, we plan to explore the upper limit of the expressivity of the logic 

language that a transformer-based model will be able to perform reasoning 
tasks with high accuracy. 
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