
Επιλεγμένες Πτυχιακές και Διπλωματικές Εργασίες

τομος 20
2024

STUDENT BOOK

STUDBOOKSTUDBOOK

Εκδίδεται μία φορά το χρόνο από το:

Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών,

Πανεπιστημιούπολη, 15784 Αθήνα

Επιμέλεια έκδοσης:

Χάρης Θεοχάρης (Καθηγητής), Υπεύθυνος Έκδοσης
Λήδα Χαλάτση (ΕΤΕΠ), Σύνταξη & Γραφιστική Επιμέλεια

ISSN
1792-8826

Εικόνα εξωφύλλου και εσωφύλλων: Image by freepik (https://www.freepik.com/),
AI generated «Abstract art made from 3d geometric shapes»

Copyright © 2024 Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Περιεχόμενα

ΠΡΟΛΟΓΟΣ ___ 4

RECALL – CONSTRAINED TOPOLOGICAL RELATION DETECTION MODEL IN
GEOSPATIAL INTERLINKING ___ 6

John N. Daras

MACHINE LEARNING SNOWFALL RETRIEVAL ALGORITHMS FOR SATELLITE
PRECIPITATION ESTIMATES ___ 26

Ioannis Th. Dravilas

WIND ENERGY PREDICTION USING DEEP LEARNING ARCHITECTURES _____ 41

Georgios K. Floros

ANALYSIS OF ALPHAFOLD 2 ΑLGORITHM _______________________________________ 57

Vasiliki L. Pitsilou

REASONING OVER DESCRIPTION LOGIC-BASED CONTEXTS WITH

TRANSFORMERS __ 70

Angelos Poulis

 4

Πρόλογος

Ο τόμος αυτός περιλαμβάνει περιλήψεις επιλεγμένων διπλωματικών και
πτυχιακών εργασιών που εκπονήθηκαν στο Τμήμα Πληροφορικής και
Τηλεπικοινωνιών του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών
κατά το διάστημα 01/01/2023 - 31/12/2023. Πρόκειται για τον 20ο τόμο στη
σειρά αυτή. Στόχος του θεσμού είναι η ενθάρρυνση της δημιουργικής
προσπάθειας και η προβολή των πρωτότυπων εργασιών των φοιτητών του
Τμήματος.

Η έκδοση αυτή είναι ψηφιακή, έχει δικό της ISSN και αναρτάται στην επίσημη
ιστοσελίδα του Τμήματος ώστε να έχει μεγάλη προσβασιμότητα.
Για το στόχο αυτό, σημαντική ήταν η συμβολή της Λήδας Χαλάτση που
επιμελήθηκε και φέτος την ψηφιακή έκδοση και πέτυχε μια ελκυστική ποιότητα
παρουσίασης, ενώ βελτίωσε και την ομοιογένεια των κειμένων.

Η στάθμη των επιλεγμένων εργασιών είναι υψηλή και κάποιες από αυτές έχουν
είτε δημοσιευθεί είτε υποβληθεί για δημοσίευση.

Θα θέλαμε να ευχαριστήσουμε τους φοιτητές για το χρόνο που αφιέρωσαν για
να παρουσιάσουν τη δουλειά τους στα πλαίσια αυτού του θεσμού και να τους
συγχαρούμε για την ποιότητα των εργασιών τους. Ελπίζουμε η διαδικασία αυτή
να προσέφερε και στους ίδιους μια εμπειρία που θα τους βοηθήσει στη συνέχεια
των σπουδών τους ή της επαγγελματικής τους σταδιοδρομίας.

Αθήνα, Ioύνιος 2024

 5

 Πτυχιακές Εργασίες

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 6

Recall – Constrained Topological Relation
Detection Model in Geospatial Interlinking

John N. Daras

ABSTRACT

Geospatial Interlinking in the Linked Open Data (LOD) cloud is crucial for
connecting diverse datasets, yet faces challenges due to the quadratic time
complexity and intricate topological relationships. This thesis explores innovative
methodologies to optimize and enhance the accuracy of geospatial interlinking

algorithms. The research refers to the Filtering-Verification framework,
employing Minimum Bounding Rectangles (MBRs) and progressive verification
techniques to efficiently process candidate geometry pairs. To further refine this
process, the study relies on Supervised Scheduling approach, utilizing 31 generic

features and machine learning to distinguish related and non-related geometry
pairs. Based on it, Supervised Progressive GIA.nt algorithm automates the
training set creation and classification, outperforming existing methods
significantly. The goal of this thesis is to adapt Supervised Progressive GIA.nt so
that its operation terminates as soon as it reaches the recall level specified by the

user, by a-priori estimating the total number of topologically related pairs in the
given dataset. To this end, we present the Extrapolation Algorithm, balancing
computational resources and accuracy, and the Heuristics Algorithm, optimizing
verification through dynamic termination conditions. A more principled

approach leverages Kernel Density Estimation (KDE) to infer the total number of
related geometries from a small random sample. Τhe integration of Kernel
Density Estimation (KDE) enhances the Supervised Progressive Scheduling
framework, reducing verifications while maintaining desired recall levels.

Through rigorous experimentation and comprehensive evaluation, the thesis
concludes that the KDE approach stands out as the most efficient and accurate
algorithm. In summary, this study significantly advances the field of geospatial
interlinking, offering a suite of efficient and precise solutions for interconnecting

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 7

vast and diverse geospatial datasets. These methodologies not only address the
challenges posed by the LOD cloud but also pave a way for future research and
applications in the domain of geospatial data integration and analysis.

Subject Area: Data Integration

Keywords: Geospatial Interlinking, Filtering-Verification, DE9IM topological
relations, Supervised Scheduling, Progressive Verification

ADVISORS

Manolis Koubarakis, Professor NKUA
Georgios Papadakis, Post-Doctoral Researcher

1 INTRODUCTION

1.1 Introduction to Geospatial Interlinking

In the 21st-century digital landscape, the integration of geospatial data has
become pivotal, reshaping our interactions with the world. This fusion of

geographic information with web technologies has spurred innovation across
various sectors, from navigation systems to urban planning. Despite the
abundance of geospatial data online, these sources remain inadequately
interconnected within the Linked Open Data (LOD) cloud, hindering their
potential utility. Geospatial interlinking aims to bridge geometric entities across

diverse data sources within the LOD cloud [19, 21]. This process involves
identifying geometry pairs 𝑆 × 𝑇 in source and target datasets S and T that share
topological relationships to establish connections between geometric entities.

1.2 Challenges in Geospatial Interlinking and Existing Methods

Geospatial Interlinking confronts two primary challenges: its inherent quadratic
time complexity and the time-consuming identification of topological
relationships for each pair of geometries. To mitigate these challenges,

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 8

Geospatial Interlinking employs the Filtering-Verification framework, which
efficiently identifies candidate geometry pairs with non-trivial topological
relations and prioritizes their verification. Progressive methods within this

framework, such as Supervised Progressive GIA.nt, utilize supervised learning to
enhance efficiency and accuracy.

1.3 Proposed Methodologies for Optimizing Geospatial Interlinking

In this work, we propose methodologies to optimize Geospatial Interlinking,

aiming to minimize the number of verified pairs required to achieve a user-
defined recall threshold. We introduce explicit and implicit estimation techniques
to anticipate the total number of topologically related pairs in the input dataset.
Our research delves into the development of novel algorithms, including the
Extrapolation Algorithm for efficient assessment of candidate pairs, the

Heuristics Algorithm family for optimizing the verification process, and the
integration of Kernel Density Estimation (KDE) to refine the verification process
and ensure desired recall levels. These methodologies offer streamlined and
efficient approaches to geospatial data interlinking, balancing precision with

computational efficiency.

2 PRELIMINARIES

2.1 DE9IM topological relations

In this work, we are interested in geometries that consist of interior, boundary
and exterior (i.e., all points that are not part of the interior or the boundary). They
are distinguished into two main types [19]: (i) LineStrings, which constitute one-
dimensional geometries formed by a sequence of points and the line segments

that connect consecutive points (e.g., g1 and g2 in Figure 3), and (ii) Polygons,
which in the simple case are two-dimensional geometries formed by a sequence
of points where the first one coincides with the last one (e.g., g3 and g4 in Figure
3).

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 9

A topological relation is described using a 3x3 intersection matrix between the
interiors, exteriors and boundaries of the two geometries, where 𝑑𝑖𝑚 denotes
the dimension and ∩ the intersection:

For two geometries of these types, 𝐴 and 𝐵, the Dimensionally Extended nine-

Intersection Model (DE9IM) [2, 3, 6] defines 10 main topological relations:

1) 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠(𝐴, 𝐵) suggests that 𝐴 and 𝐵 share at least one point in their
interior or boundary.

2) 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝐴, 𝐵) means that 𝐴 lies inside 𝐵 such that only their interiors
intersect.

3) 𝑊𝑖𝑡ℎ𝑖𝑛(𝐴, 𝐵) means that A Contains 𝐵.

4) 𝐶𝑜𝑣𝑒𝑟𝑠(𝐴, 𝐵) indicates that 𝐴 lies inside 𝐵 such that their interiors or their
boundaries intersect.

5) 𝐶𝑜𝑣𝑒𝑟𝑒𝑑_𝑏𝑦(𝐴, 𝐵) means that 𝐵 Covers 𝐴.

6) 𝐸𝑞𝑢𝑎𝑙𝑠(𝐴, 𝐵) means that the interiors of A and 𝐵 intersect, but no point of
𝐴 intersects the exterior of 𝐵 and vice versa.

7) 𝑇𝑜𝑢𝑐ℎ𝑒𝑠(𝐴, 𝐵) indicates that the two geometries share at least one point,

but their interiors do not intersect.

8) 𝐶𝑟𝑜𝑠𝑠𝑒𝑠(𝐴, 𝐵) indicates that the two geometries share some but not all
interior points and that the dimension of their intersection is smaller than
that of at least one of them.

9) 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐴, 𝐵) differs from 𝐶𝑟𝑜𝑠𝑠𝑒𝑠(𝐴, 𝐵) in that the two geometries have
the same dimension, and so does their intersection.

10) 𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡(𝐴, 𝐵) designates that 𝐴 and 𝐵 share no interior or boundary point.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 10

However, we omit the Disjoint relation due to its impractical scalability and
negligible utility in real-world applications, as it can be inferred from the absence
of other relations.

The intersection matrix of the preceding predicates is depicted in Figure 1. Each
predicate is a Boolean representation of the intersection matrix, where each cell
may be 𝑇𝑟𝑢𝑒 (𝑇), 𝐹𝑎𝑙𝑠𝑒 (𝐹) and any (*). 𝐹 denotes the empty set and 𝑇
corresponds to the dimension of the intersection (i.e., 𝑇 ↔ 𝑑𝑖𝑚(𝐴, 𝐵) 𝜖 {0, 1, 2}).

Figure 1: DE-9IM model spatial predicate functions

2.2 Three-Step Approach: Filtering, Scheduling, Verification

To streamline the process of geospatial interlinking, we adopt a systematic

approach comprising three essential steps: filtering, scheduling, and verification.
Filtering involves the swift elimination of irrelevant pairs using Minimum
Bounding Rectangles (MBRs), which serve as efficient proxies for complex spatial
structures. Subsequently, scheduling optimizes computational resources by

organizing remaining pairs for further analysis. Finally, verification ensures the
accuracy and reliability of identified spatial relationships.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 11

Figure 2: Learning-free Progressive Geospatial Interlinking

2.3 MBR for Filtering

Minimum Bounding Rectangles (MBRs) serve as efficient proxies for complex
spatial objects [15]. By encapsulating intricate geometries within simple

rectangles, MBRs expedite the filtering process. Pairs with non-overlapping MBRs
are automatically identified as non-qualifying, minimizing unnecessary
comparisons and significantly improving computational, without missing any
topologically related pairs.

Figure 3: The space tiling approach for four geometries, where g1 is a LineString that
intersects LineString g2 and touches Polygon g3, which contains Polygon g4. The
shaded area corresponds to the intersection of the MBRs of g1 and g2. Its top left

corner is used as a reference point to avoid verifying the same pair more than once
[17].

2.4 Recall-Driven Geospatial Interlinking

In our pursuit of geospatial interlinking, we adopt a recall-driven approach aimed
at achieving a specific level of recall while maintaining precision. This strategy

emphasizes the identification of pairs that satisfy desired topological relations

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 12

while avoiding the inclusion of irrelevant candidates. By optimizing recall within
minimal verification time, we strike a delicate balance between accuracy and
efficiency, ensuring that identified spatial relationships are not only reliable but

also directly relevant to analytical objectives.

3 RELATED WORK

Techniques such as Silk-spatial, RADON, and stLD employ parallel processing to
efficiently examine candidate pairs within customizable tiles on the Earth's
surface. These methods refine the process by introducing fine-grained Equigrids,
deduplication mechanisms, and optimizations like MaskLink to save processing
time. RADON2 handles multiple topological relations by simultaneously

extracting all relations from geometry intersection matrices. GIA.nt method
combines techniques to load smaller datasets into memory for efficient
processing. Progressive methods prioritize precision over recall, introducing a
scheduling step to order candidate pairs based on a weighting scheme.

Progressive GIA.nt globally sorts candidate pairs considering a user-defined
budget, while Progressive RADON locally sorts pairs within tiles until the budget
is exhausted. These methods adapt Geospatial Interlinking to applications with
limited computational resources, transforming it into an approximate process.

Figure 4: The solution space of Geospatial Interlinking algorithms [28]

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 13

3.1 Progressive GIA.nt

Progressive GIA.nt’s [17] approach lies in the meticulous prioritization of
geometry pairs from entire input datasets based on a designated budget BU.

The process begins by establishing a min-max priority queue, 𝑇𝐶, and
maintaining essential arrays: flags and frequency. In the Filtering step, the source
dataset is indexed. The Scheduling step involves assessing each target geometry
tm, identifying tiles encompassing tm, and evaluating source geometries within

specific tiles (𝑠𝑛), considering intersections between 𝑠𝑛 and the Minimum
Bounding Rectangle (𝑀𝐵𝑅) of 𝑡𝑚. The algorithm computes the weight for each
geometry pair and incorporates pairs surpassing the predefined minimum
weight threshold into 𝑇𝐶, ensuring that only the top-𝐵𝑈 pairs are retained and
adjusting the threshold to adapt to the evolving dataset. In the Verification step,

pairs within 𝑇𝐶 are analytically examined, dissected, and relevant relationships
extracted from the intersection matrix 𝐼𝑀 into a comprehensive list, 𝐿.

Progressive GIA.nt and Progressive RADON don't use machine learning for
Geospatial Interlinking. They stick to a static processing order, except when the

algorithm presented in [18] is applied. When two geometries 𝑠 and 𝑡 are related,
their weight 𝑤 is updated using the formula 𝑤′ = 𝑤 × (1 + 𝑞), where 𝑞 tracks
their relatedness frequency. However, Dynamic Scheduling has a limited scope
and, thus, we disregard it in this work.

3.2 Supervised GIA.nt

SupervisedGIAnt" operates by employing a technique called "Supervised
Scheduling" [25] instead of the traditional "Scheduling" method, as depicted in
Figure 2. Supervised Scheduling performs probabilistic binary classification,
assigning to each candidate pair a probability that is proportional to the

likelihood that its constituent geometries are topologically related.

The algorithm starts by calculating the dimensions of grid cells based on specific
properties of the source dataset's width and height. It then proceeds to index by
identifying the tiles overlapping with the Minimum Bounding Rectangle (MBR) of

each source geometry. For training set generation, pair IDs are randomly

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 14

selected within a specified range. For each target geometry, tiles intersecting
with its MBR are determined, and source geometries are aggregated into a
candidate set. Candidate-based features are updated, and pairs are added to a

random sample for verification. The sampled pairs are shuffled, and then verified
and classified as topologically related or not. 31 Feature vectors are generated
for the sampled pairs. The training set is then fed into a chosen algorithm to learn
the classification model. Iterating over the target dataset involves gathering

source candidates from intersecting MBR tiles, generating feature vectors, and

predicting classification probabilities for each pair. Pairs exceeding a certain
probability threshold are added to a priority queue, with the threshold updated
if necessary. Verification of top-weighted pairs occurs next, with their topological
relations added to the set of links. Finally, space and time complexity are

analyzed, encapsulating various steps such as indexing, training set generation,
model training, candidate selection, feature vector generation, and verification,
ultimately leading to the identification of topologically related geometries.

4 RECALL-CONSTRAINED TOPOLOGICAL RELATION DETECTION
MODEL

Our goal in this research endeavor is to strike a delicate balance between
precision and computational efficiency in identifying topological relations within
spatial data. It introduces the concept of Recall-Constrained Topological Relation
Detection (RCTRD), which prioritizes identifying significant relations while

optimizing computational resources. RCTRD aims to strike a balance between
accuracy and efficiency by setting a predetermined level of recall, acknowledging
the practical constraints of large-scale datasets. It outlines the challenges and
objectives of RCTRD, emphasizing the need for innovative algorithms and
methodologies to address these challenges effectively. Notably, RCTRD

addresses the inherent difficulty of not knowing the total number of related pairs
in input datasets, requiring solutions that either predict this number or leverage
heuristics to overcome this limitation.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 15

4.1 Extrapolation Algorithm

The core idea of this algorithm is to infer the number of duplicates in the given
dataset from a random, but representative sample of the candidate pairs. To this

end, it verifies a limited a limited number of random candidate pairs in order to
assess the portion of qualifying ones. This portion is then extrapolated to the
entire set of valid candidate pairs, i.e., source and target geometries with
intersecting 𝑀𝐵𝑅s. To retain the minimum memory requirements of GIA.nt, this

can only be accomplished by reading the target geometries from the disk twice:
once for determining the total number of candidate pairs and selecting a random
sample and once for verifying the random sample and selecting the top-weighted
pairs. In this way, this approach doubles the run time of Scheduling in order to
minimize the run-time of Verification.

Initially, the algorithm utilizes GIA.nt's method to filter candidate pairs based on
intersecting Minimum Bounding Rectangles (MBRs). For the sampling phase, the
algorithm opens a reader to sequentially load target geometries from disk into
memory. It retrieves source geometries that intersect the MBR(𝑡) for each target

geometry, incrementing the total number of candidate pairs when such
intersections occur. After processing all target geometries, the algorithm selects
𝑁 random pair IDs from [1, 𝑡𝑜𝑡𝑎𝑙𝐶𝑃], where 𝑡𝑜𝑡𝑎𝑙𝐶𝑃 is the total number of
candidate pairs. Following sampling, the algorithm moves on to scheduling,

reopening the target dataset reader to commence processing. For each target
geometry, candidate source geometries are retrieved from the index and
checked for intersection with the corresponding MBR. Upon identifying a
candidate pair, the algorithm assigns the next ID and proceeds to verify it. If the
ID is among the randomly selected ones, the algorithm verifies the pair,

increments the counter 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑄𝑃, adds topological relations to the output, and
includes the pair in a main memory hash set 𝑉 to prevent redundant examination.
Additionally, the algorithm weights all candidate pairs and adds them to a priority
queue 𝑃𝑄. Finally, Scheduling computes the maximum number of verifications

that will be carried out during the next step as follows.

𝑚𝑎𝑥𝑉𝑒𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑟𝑒𝑑 ·
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑄𝑃

𝑁
 · 𝑡𝑜𝑡𝑎𝑙𝐶𝑃

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 16

where 𝑟𝑒𝑑 ∈ (0, 1) denotes the desired recall level. If 𝑚𝑎𝑥𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 is not zero,
the algorithm proceeds to verification. In the final verification stage, the
algorithm iterates over the top-weighted pairs in the priority queue. For each

pair, the algorithm examines it and adds any topological links to the output if not
yet verified. If the pair qualifies, the algorithm increments the counter.
Processing continues until the counter reaches 𝑚𝑎𝑥𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 or the priority
queue is exhausted, signaling the termination of processing.

Note that the Algorithm describes the simplest case of the extrapolation
algorithm, which uses Unsupervised Scheduling, i.e., an unsupervised weighting
scheme. In case Supervised Scheduling is employed, the sampling stage also
performs the necessary feature estimations, while using the verified sample of
geometries as a labelled dataset for training the binary probabilistic classifier. In

our experiments we used Supervised Scheduling.

4.2 Heuristics Algorithm

We now present the simplest family of algorithms that try to exceed the desired
recall level in an implicit way. To this end, they iterate over all candidate pairs just

once, placing the top-weighted ones in a priority queue. The priority queue is
verified in descending weight. After every Verification, a heuristic condition is
checked to decide whether to terminate the entire processing or not.

Initially, the same Filtering as Progressive GIA.nt is applied. This is followed by

the same Scheduling process as Progressive GIA.nt: a reader is opened to read
the target dataset on the fly. For each target geometry 𝑡, we retrieve the set of
source geometries, 𝐶𝑆, which are contained in the tiles intersecting 𝑡’s MBR. 𝐶𝑆 is
filtered to retain only those source geometries that indeed intersect 𝑡’s MBR. The
retained pairs are weighted according to the given weighting scheme and are

inserted into the priority queue with the top-weighted pairs, 𝑃𝑄. After closing the
target dataset reader, the Verification step starts. For the next top-weighted
candidate pair in 𝑃𝑄, the algorithm computes the intersection matrix of its
constituent geometries and extracts the ensuing set of topological relations, 𝑙. If

𝑙 is not empty, the pair is a qualifying one; after merging 𝑙 with the output 𝐿, we

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 17

examine the predetermined heuristic condition. If the condition is satisfied, the
algorithm terminates.

We observe that the performance of the algorithm depends exclusively on the

heuristic termination condition. To thoroughly test its potential, we came up with
the following versatile conditions:

1) Precision Threshold. Verification terminates as soon as precision falls below
a specific level. The higher the desired recall is, the lower this precision

threshold should be and vice versa.

2) Qualifying Distance Threshold. Verification terminates as soon as the
number of unrelated, but verified pairs that intervene between two
consecutive qualifying ones exceeds a certain limit. The higher the desired
recall level is, the larger this threshold should be.

3) Dynamic Qualifying Distance Threshold. This heuristic converts the above
static threshold into a dynamic one. Instead of a predetermined distance,
the number of allowed unrelated Verifications increases as more
qualifying pairs are detected. The higher the desired recall level is, the

larger the increment in the distance threshold should be.

4) Buffered Threshold. This heuristic extends all the above ones with a buffer
that allows a specific number of violations of the termination condition.

The drawback of these heuristics is that they are indirectly related to the desired

recall level. This is because they are independent of any estimation of the actual
number of qualifying pairs in the given datasets. Yet, this shortcoming can be
counterbalanced by background knowledge in the form of qualitative estimation
of the portion of qualifying pairs over the set of candidate pairs, when these
heuristics are configured by human experts. Note that the Algorithm we

described assumes an Unsupervised Scheduling step, which corresponds to the
simplest case. In practice, though, Supervised Scheduling can be used, too. This
is done by inserting a sampling phase between Filtering and Scheduling, which
performs the necessary features and builds a random labeled dataset for training

the binary probabilistic classifier.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 18

4.3 KDE Based Algorithm

This chapter explores a more complex, principled and innovative approach to
streamline the verification process within the Supervised Progressive Scheduling

framework. The methodology integrates Kernel Density Estimation (KDE) into the
existing system. By focusing on probabilistic predictions and estimation
techniques, this approach aims to significantly reduce the number of verifications
necessary while ensuring the desired recall level.

The functionality of this approach begins by implementing filtering and training
stages, akin to the Supervised Progressive GIA.nt process. The filtering step
refines the dataset, while the training phase constructs a probabilistic binary
classification model, laying the foundation for the subsequent steps.

A subset of candidate geometries is randomly chosen for classification by the pre-

trained classifier. Verification determines the topological relationships for each
pair, establishing a labeled dataset. This labeled set of instances with
classification probability and class labels serves as the foundation for training the
Kernel Density Estimator (KDE). Various KDE models are explored, emphasizing

different techniques but we omit these details for brevity. The optimal KDE model
is selected through an evaluation, which estimates the most effective KDE
approach in the given labeled dataset. Using the trained KDE model, we estimate
the recall level that corresponds to different classification probabilities. This

estimation guides the selection of the minimum probability threshold required
to achieve the desired recall level.

Subsequently, the probabilistic classifier calculates the probability for each pair
of candidate geometries i.e., for each pair of geometries with intersecting MBRs.
Pairs exceeding the minimum probability threshold are subject to verification,

while the rest are discarded, thus reducing the verification workload significantly.

More specifically, for each target geometry 𝑡, we retrieve the set of source
geometries, 𝐶𝑆 which are contained in the tiles intersecting 𝑡’s MBR . 𝐶𝑆 is filtered
to retain only those source geometries that intersect 𝑡’s MBR. The trained

probabilistic classifier calculates the probability for each retained pair of
candidate geometries as in SupervisedGIAnt. Pairs exceeding the minimum

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 19

probability threshold, which has been determined by the trained KDE model, are
subject to verification. This step significantly reduces the verification workload.

After closing the target dataset reader, the Verification step starts. For the next

candidate pair in 𝑇𝑠, the algorithm computes the intersection matrix of its
constituent geometries and extracts the ensuing set of topological relations, IM.
If IM is not empty, the pair is a qualifying one and IM is merged with the output
LR. After merging IM with the output LR the algorithm terminates as soon as all

retained pairs in 𝑇𝐶 are verified.

The integration of Kernel Density Estimation into the Supervised Progressive
Scheduling framework offers a promising avenue for enhancing efficiency while
ensuring accuracy. By relying on probabilistic predictions and estimation, the
algorithm minimizes verifications, making it a valuable tool in geographic

information systems and spatial data processing

5 EVALUATION

Our experiments rely on subsets of publicly available, large-scale, real-world
datasets that are popular in the literature [7, 17, 24] and involve LineStrings and
Polygons. Their technical characteristics are presented in Table 1. We observe in
all cases that the number of qualifying pairs, which is equal to #Intersects,
accounts for a tiny portion of the Cartesian product between the source and the

target geometries. This suggests that the overall computational cost can be
reduced by orders of magnitude in comparison to the brute force approach.

Table 1: Technical characteristics of the datasets used in our experiments. Note that in
each dataset, the number of qualifying pairs is equal to #intersects.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 20

5.1 Experiment 1: Evaluating the KDE Approach Algorithm and Baseline
Methods

This subsection provides a thorough evaluation of the KDE Approach Algorithm
using various heuristic functions to achieve desired recall levels of 0.3, 0.5, and

0.7. Heuristic functions explored include Precision Threshold, Qualifying
Distance, and Dynamic Qualifying Distance. Each heuristic was rigorously tested
to understand its impact on algorithm performance. We first check our results
when the user gives the desired recall level 0.5.

Precision Threshold Heuristic: The Precision Threshold heuristic demonstrated
balanced behavior. Setting the threshold at 1.0, the algorithm exhibited best
performance, establishing an equilibrium between recall and precision. Testing
it with dataset 𝑠2 a precision of 0.5 indicated the best validity of the identified
pairs, minimizing false positives while ensuring a reasonable recall (of 0.824).

Qualifying Distance Heuristic: Qualifying distance, as spatial parameter, played a
crucial role in the algorithm's decision-making process. Experiments revealed
that a qualifying distance of 100 yielded the most satisfactory results. This
parameter emphasized the algorithm's sensitivity to spatial proximity. By

focusing on pairs within a close spatial range, the algorithm efficiently reduced
irrelevant verifications, optimizing its efficiency.

Dynamic Qualifying Distance Heuristic: The Dynamic Qualifying Distance heuristic
introduced adaptability to the evaluation. By coupling a qualifying distance of 10

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 21

with a dynamic factor of 1.0, the algorithm adjusted its qualifying distance based
on evolving dataset characteristics. The recall remained consistently high at
0.819, while precision held at 0.57, reflecting the algorithm's ability to adapt to

varying dataset densities.

Additional Experiments: Further evaluations at recall levels of 0.3 and 0.7 revealed
the algorithm's scalability and adaptability. At lower recall levels, precision-
oriented strategies were observed, while broader search approaches were

employed at higher recall levels, showcasing the algorithm's ability to balance
precision and recall.

5.2 Experiment 2: Evaluating the Extrapolation Algorithm

This experiment focuses on the performance of the "Extrapolation Algorithm"
with supervised scheduling under varying conditions, represented by sample

sizes of 𝑁 = 100, 𝑁 = 1000, and 𝑁 = 10000.

The algorithm's precision, recall, and computational efficiency were analyzed for
different sample sizes, highlighting trade-offs and optimal performance. Factors
such as precision versus recall trade-offs, computational efficiency, and the

optimal choice of sample size were discussed, with N=10000 demonstrating the
best balance between accuracy and efficiency.

5.3 Experiment 3: Comparison of SupervisedGIA.nt and KDE-Based

Algorithm

A comparison between SupervisedGIA.nt and the KDE-Based Algorithm revealed
superior recall and verification efficiency of the latter, making it a promising
choice for applications where accuracy and computational efficiency are critical.

5.4 Experimental Analysis: KDE Based Algorithm vs Extrapolation
Algorithm

A comparative study favored the KDE-Based Algorithm for its superior
verification time and memory efficiency, making it a compelling choice for real-
world spatial data processing tasks.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 22

This chapter provides a comprehensive evaluation of spatial data processing
algorithms, highlighting their strengths, weaknesses, and practical implications
for real-world applications.

6 CONCLUSIONS AND FUTURE WORKS

In the realm of spatial data analysis, striking a balance between precision and

computational efficiency is of paramount importance. This thesis explores
innovative algorithms in Recall-Constrained Topological Relation Detection, each
with its unique strengths and limitations. Advantages of the Extrapolation
Algorithm include the efficient use of computational resources by verifying a
limited number of random candidate pairs while It also provides a representative

subset of topological relations within the dataset. The Heuristics Algorithm offers
high time efficiency by iterating over candidate pairs only once and has versatile
termination conditions, allowing adaptability to different requirements. The KDE
Based Algorithm employs a probabilistic approach, balancing precision and

efficiency by utilizing Kernel Density Estimation while Its customizable thresholds
and integration with existing frameworks make it a standout choice for real-
world applications.

Looking ahead, this chapter highlights potential avenues for future research in
spatial data analysis. Enhanced probabilistic models, dynamic heuristics tailored

to dataset characteristics, and exploration of real-time applications represent just
a few promising directions. Additionally, integrating with spatial databases,
analyzing multi-modal data, and considering ethical implications and biases in
algorithmic decisions offer fertile ground for exploration.

By embracing these future directions, we can continue to push the boundaries of
spatial data analysis, offering more accurate, efficient, and ethically sound
solutions, paving the way for transformative developments in spatial data
analysis techniques.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 23

REFERENCES

[1] Abdullah Fathi Ahmed, Mohamed Ahmed Sherif, and Axel-Cyrille Ngonga
Ngomo. 2018. RADON2 - a buffered-intersection matrix computing

approach to accelerate link discovery over geo-spatial RDF knowledge
bases. In OAEI.

[2] Edward P. F. Chan and Jimmy N. H. Ng. 1997. A General and Efficient
Implementation of Geometric Operators and Predicates. In SSD, Vol. 1262.

69–93.

[3] Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. 1993. A Small
Set of Formal Topological Relationships Suitable for End-User Interaction. In
SSD.

[4] Eliseo Clementini, Jayant Sharma, and Max J. Egenhofer. 1994. Modelling

topological spatial relations: Strategies for query processing. Comput.
Graph. (1994).

[5] Alishiba Dsouza et al. 2021. WorldKG: A World-Scale Geographic Knowledge
Graph. In CIKM. 4475–4484.

[6] Max J Egenhofer and Robert D Franzosa. 1991. Point-set topological spatial
relations. International Journal of Geographical Information System 5, 2
(1991).

[7] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A

MapReduce framework for spatial data. In ICDE. 1352–1363.

[8] Eibe Frank, Mark Hall, and Ian Witten. 2016. The WEKA Workbench. Online
Appendix for” Data Mining: Practical Machine Learning Tools and
Techniques.
https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf

[9] Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and
Techniques, 3rd edition. Morgan Kaufmann.

[10] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard
Weikum. 2013. YAGO2: A spatially and temporally enhanced knowledge

base from Wikipedia. Artif. Intell. 194 (2013), 28 61.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 24

[11] Krzysztof Janowicz et al. 2022. Know, Know Where, Knowwheregraph: A
Densely Connected, Cross-Domain Knowledge Graph and Geo-Enrichment
Service Stack for Applications in Environmental Intelligence. AI Mag. 43, 1

(2022), 30–39.

[12] Nikolaos Karalis, Georgios Mandilaras, and Manolis Koubarakis. 2019.
Extending the YAGO2 Knowledge Graph with Precise Geospatial Knowledge.
In ISWC.

[13] Oje Kwon and Ki-Joune Li. 2011. Progressive spatial join for polygon data
stream. In SIGSPATIAL. 389–392.

[14] Rushi Longadge and Snehalata Dongre. 2013. Class Imbalance Problem in
Data Mining Review. CoRR abs/1305.1707 (2013).

[15] Nikos Mamoulis. 2011. Spatial data management. Synthesis Lectures on

Data Management 3, 6 (2011), 1–149.

[16] Axel-Cyrille Ngonga Ngomo. 2013. ORCHID - Reduction-Ratio-Optimal
Computation of Geo-spatial Distances for Link Discovery. In ISWC. 395–410.

[17] George Papadakis, Georgios Mandilaras, Nikos Mamoulis, and Manolis

Koubarakis. 2021. Progressive, Holistic Geospatial Interlinking. In WWW.

[18] George Papadakis, George Mandilaras, Nikos Mamoulis, and Manolis
Koubarakis. 2022. Static and dynamic progressive geospatial interlinking.
ACM Transactions on Spatial Algorithms and Systems (TSAS) 8, 2 (2022), 1–

41.

[19] Georgios M. Santipantakis, Apostolos Glenis, Christos Doulkeridis, Akrivi
Vlachou, and George A. Vouros. 2019. stLD: towards a spatio-temporal link
discovery framework. In SBD@SIGMOD. 4:1–4:6.

[20] Peter Sbarski and Sam Kroonenburg. 2017. Serverless architectures on AWS:

with examples using Aws Lambda. Simon and Schuster.

[21] Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, and Axel-Cyrille
Ngonga Ngomo. 2017. Radon - Rapid Discovery of Topological Relations. In
AAAI. 175–181.

Recall – Constrained Topological Relation Detection Model in Geospatial Interlinking - John N. Daras

 25

[22] Panayiotis Smeros and Manolis Koubarakis. 2016. Discovering Spatial and
Temporal Links among RDF Data. In Workshop on Linked Data on the Web,
LDOW.

[23] Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee. 2006. Progressive
Spatial Join. In SSDBM. 353–358.

[24] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis
Terrovitis. 2019. Parallel In-Memory Evaluation of Spatial Joins. In

SIGSPATIAL. 516–519.

[25] Maria Despoina Siampou, George Papadakis, Nikos Mamoulis, and Manolis
Koubarakis. 2023. Supervised Scheduling for Geospatial Interlinking. In The
31st ACM International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’23), November 13-16, 2023, Hamburg, Germany. ACM,

New York, NY, USA, 12 pages.

[26] Manolis Koubarakis (Editor), 2023. GEOSPATIAL DATA SCIENCE: A HANDS-
ON APPROACH FOR BUILDING GEOSPATIAL APPLICATIONS USING LINKED
DATA TECHNOLOGIES, 1st Edition. Publisher: Association for Computing

Machinery.

[27] George Papadakis. 2023. Interlinking Geospatial Data Sources. In
GEOSPATIAL DATA SCIENCE: A HANDS-ON APPROACH FOR BUILDING
GEOSPATIAL APPLICATIONS USING LINKED DATA TECHNOLOGIES, 1st

Edition. Publisher: Association for Computing Machinery. 161-184,
https://doi.org/10.1145/

[28] Marios Papamichalopoulos, George Papadakis, George Mandilaras, Maria
Despoina Siampou, Nikos Mamoulis, Manolis Koubarakis. 2022. Three-
dimensional Geospatial Interlinking with JedAI-spatial. In CoRR, Vol.

abs/2205.01905, https://doi.org/10.48550/

https://doi.org/10.1145/
https://doi.org/10.48550/

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 26

Machine Learning Snowfall Retrieval Algorithms
for Satellite Precipitation Estimates

Ioannis Th. Dravilas

ABSTRACT

Remote sensing of snowfall has been proved to be a significant challenge since
the start of the satellite era. Several techniques have been applied to satellite

data, in order to estimate the fraction of frozen precipitation that reaches the
surface. This thesis aims at investigating the efficacy of different Machine
Learning (ML), and especially Deep Learning (DL) algorithms, in estimating the
precipitation phase of NASA's Integrated Multi-satellitE Retrievals for the Global

Precipitation Measurement (GPM-IMERG). To achieve that, a training phase with
hourly high-resolution numerical model outputs and in-situ observational data is
chosen for the period of late-2020 and 2021. Results show that ML and DL models
can estimate precipitation phase with relatively high accuracy, when compared

to traditional methods, based on several case studies. The findings suggest that
ML models offer a promising approach for advancing the nowcasting of snowfall
and building a long-term archive dataset of IMERG-based snowfall, utilizing
conventional near real-time data.

ADVISOR

Manolis Koubarakis, Professor NKUA

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 27

1 INTRODUCTION

1.1 Precipitation

Precipitation is defined as "all liquid or solid phase aqueous particles that
originate in the atmosphere and fall to the Earth’s surface" [1].

1.2 Precipitation Phase

Deriving the phase of precipitation and distinguishing between its liquid and
frozen state, is of major importance for human activities, hydrological processes
and climate change studies [2].

Towards this direction, a plethora of techniques is being used today to detect
snowfall. Some of the most successful methods include using in-situ

observations, remote sensing through dual-wavelength radars, or using
numerical weather models [3]. However, none of those approaches has been
proved fully reliable, while for the most accurate ones, such as the measurements
from in-situ instruments, the available data are generally sparse or even absent,

for example in mountainous or sparsely populated areas [2, 4]. The use of
satellite data to obtain precipitation estimates has been one of the most used
methods for measuring precipitation so far, giving both satisfactory and
continuous results with almost no missing values or temporal and spatial gaps
[5].

1.3 Machine Learning

Rebala et al. (2019) [6] described Machine Learning (ML) as a computer science
field focusing on enabling computers to learn and improve their performance
without requiring explicit programming. Traditional programming methods

involve creating a detailed design and implementing it as a program, but this can
be challenging for problems like detecting handwritten characters, due to the
difficulty in designing rules for such variations.

ML can be applied to various types of problems such as: classification, where data

are categorized into different classes, like will it rain or snow tomorrow;

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 28

clustering, where data points are grouped into clusters based on shared
properties; and regression, which uses historical data to forecast a continuous
range of values, like temperature.

The use of Machine Learning in Meteorology has been constantly increasing
during the last few years (Chase et al. 2022) [7], and is predicted to increase even
more, as the volume of meteorological data that can be used to train ML models
grows.

2 BACKGROUND AND RELATED WORK

The problem of deriving precipitation phase has been extensively studied before,
both with conventional and Machine Learning methods.

2.1 Conventional Methods

Matsuo et al. in 1981 [8] showed that liquid water content and fall velocity of
snowflakes, and therefore the depth of the layer below freezing level where
melting does not occur, were dependent on surface air temperature, relative

humidity, and snowflake mass.

Sims and Liu in 2015 [2] developed a parameterization scheme that utilizes 2-m
temperature, relative humidity, low-level vertical lapse rate, surface skin
temperature and surface type to calculate the conditional probability of solid
precipitation to occur. Surface pressure is also used in order to calculate wet-bulb

temperature (Tw).

2.2 Machine Learning Methods

In 2018, Behrangi et al. [4] reported that near-surface air temperature is usually
used to derive precipitation phase. It was found that relative humidity, wind

speed and air pressure can also affect the melting of snowflakes and thus more
variables should be used together with air temperature to determine
precipitation phase. Even though among all single predictors Tw yields the

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 29

highest score, the authors concluded that the use of logistic regression to
combine the previously mentioned variables produces even better results.

A paper presented at the AGU Fall Meeting 2022 by Bédard-Therrien et al. [9]

introduced an ML approach for partitioning precipitation phase, using air
temperature, relative humidity and disdrometer data, along with a Random
Forest Regression Model.

3 MATERIALS AND METHODS

In this study, Machine Learning and especially Deep Learning (DL) algorithms are
used along with numerical weather data and in-situ observational data to classify
the phase of precipitation acquired by the Integrated Multi-satellitE Retrievals for

the Global Precipitation Measurement (GPM-IMERG) operated by the National
Aeronautics and Space Administration (NASA) [10].

3.1 Description of the Acquired Data

3.1.1 In-situ Observations From Ground Stations

During the past 15 years, the Institute for Environmental Research and
Sustainable Development of the National Observatory of Athens (NOA/METEO)
has established and is currently managing a dense network of automated
weather stations throughout Greece (NOAAN) [11].

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 30

Figure 1: The NOAAN weather stations used, coloured by altitude, and the
corresponding grids of BOLAM and IMERG over the Attica region

3.1.2 Numerical Weather Model Data

The National Observatory of Athens also runs the hydrostatic meteorological
Bologna Limited-Area Model (BOLAM) in operational mode [12].

3.1.3 Satellite Precipitation Estimates

The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm is designed

to intercalibrate, combine and interpolate microwave precipitation
measurements, along with microwave calibrated infrared (IR) satellite
measurements, precipitation gauge analyses and possibly other precipitation
estimators, at fine time and space scales worldwide [10].

Precipitation phase in IMERG is currently computed diagnostically, based on the
Liu scheme [2]. The Liu scheme used by NASA calculates the Probability of Liquid
Precipitation Phase (PLPP) based solely on data from a numerical weather model
or model analysis, relying on surface wet-bulb temperature values.

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 31

3.2 Creation of a Custom Dataset

Using NOAAN observations for air temperature, relative humidity and
atmospheric pressure, BOLAM’s nowcast (namely the first 12 hours after model

initialization time excluding a spin-up period of 12 hours) and the 1.1°C Tw
threshold chosen by NASA for IMERG V06 over land as the value corresponding
to a Probability of Liquid Precipitation Phase equal to 50%, a new dataset is
created. For each in-situ observation, the new dataset contains information

about whether conditions were favorable for snowfall according to the surface
Tw<1.1°C threshold, the corresponding numerical weather model data for the
nearest grid point, as well as the station metadata such as latitude, longitude and
altitude. The dataset comprises data collected from 480 locations across Greece,
covering the time period of late-2020 and 2021. The temporal resolution of the

dataset is set at 30 minutes, providing detailed and frequent measurements that
match the temporal resolution of IMERG V06.

3.3 Machine Learning Models Used

3.3.1 Random Forest

Random Forest was first introduced in 2001 and is consisted of many basic
classifiers in the form of Decision Trees [13]. Each Decision Tree makes a
prediction, which is completely independent from the decisions of the other
Decision Trees, and, in classification tasks, the final result is produced by a voting

procedure, resembling an ensemble technique.

3.3.2 Gradient Boosting

Gradient Boosting is a popular ML technique used, among others, in classification
tasks. It works by creating multiple weak models, which often are Decision Trees,
and combining them to form a better-performing model. This is usually done by

building an initial weak model, then a second model aiming to more accurately
predict the cases where the first one performs poorly, etc. Each new model
created, targets minimizing the error of the loss function; thus, the gradient of
the loss function is calculated in every step of the algorithm [14].

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 32

3.3.3 Feedforward Neural Network

Feedforward Neural Networks are the simplest type of artificial neural networks,
where information moves only in a forward direction, from the input nodes, to

the hidden nodes and to the output nodes [15]. Here, a multi-layer neural
network, also called a Multilayer Perceptron is used. A Multilayer Perceptron
consists of multiple layers of computational units, containing neurons that are
connected to the neurons of the next layer. These models are trained using back-

propagation, a technique utilized to adjust the weight values of each connection,
in a way that minimizes the error between predictions and actual values [16].

3.4 Training And Testing Process

3.4.1 Data Splitting and Cross-Validation

Data are divided into training and testing datasets based solely on station

locations, using an 80:20 ratio.

Figure 2: The NOAAN weather stations divided into the training and the testing
dataset, coloured by altitude

For each of the three models described above, the best architecture is
determined through a 5-fold cross-validation process for hyperparameter

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 33

tuning, ensuring that data for each station location are exclusively present in only
one of the training and validation datasets during each iteration.

Finally, the trained models are tested on the corresponding testing dataset,

comprising 20% of the initial dataset.

3.5 Evaluation and Metrics

The metrics used to evaluate the results of the models are Precision, Recall (also
called Probability of Detection - POD), F1-score, Critical Success Index (CSI), False

Alarm Ratio (FAR) and Heidke Skill Score (HSS).

4 RESULTS

4.1 Best Hyperparameters

For each of the Random Forest, Gradient Boosting and Feedforward Neural
Network models, the best architecture is selected after hyperparameter tuning,
and is then evaluated on the testing dataset.

4.2 Feature Importance

Notably, both Temperature at 2 m and altitude emerge as highly influential

variables, making appearances in both types of importance metrics. Additionally,
Temperature and Specific Humidity at the 1000 hPa isobaric surface stand among
the top three features, completing the groups of the three most important
contributors.

4.3 Evaluation on the First Testing Dataset

The testing dataset used here is the one containing data for late-2020 and 2021
from 96 station locations in a 30-minute time-step.

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 34

4.3.1 Machine Learning Models

The six score metrics were calculated on the testing dataset for all the Random
Forest, Gradient Boosting and Feedforward Neural Network models, with regard

to their ability of predicting cases with conditions favorable for snowfall
(Tw<1.1°C).

Table 4.1: Scores of the 3 ML models for predicting cases with conditions favorable for
snowfall, evaluated on the first testing dataset.

Model Precision
Recall
(POD)

F1-
score

CSI FAR HSS

Random Forest 0.87 0.72 0.79 0.65 0.13 0.78

Gradient

Boosting
0.87 0.81 0.84 0.72 0.13 0.83

Feedforward
Neural Network

0.85 0.80 0.82 0.70 0.15 0.81

4.3.2 Conventional Methods

A comparison with traditional precipitation phase derivation techniques is also
made on the same testing dataset.

Table 4.2: Scores of the 2 conventional methods for predicting cases with conditions

favorable for snowfall, evaluated on the first testing dataset.

Model Precision
Recall
(POD)

F1-
score

CSI FAR HSS

IMERG V06
PLPP

0.61 0.61 0.61 0.44 0.39 0.59

BOLAM

nowcast
0.66 0.81 0.73 0.57 0.34 0.71

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 35

4.4 Application and Evaluation on 2022 Data

In this section, a new dataset comprising data from the initial three months of
2022 is introduced.

4.4.1 Examples of Application on IMERG Precipitation Estimates

During the initial three months of 2022, Greece experienced several cold waves
of varying intensity. To assess the effectiveness of the Gradient Boosting model
in identifying the precipitation phase during these events, BOLAM nowcast data

are used as input. The precipitation phase predicted by the model is then utilized
to mask the corresponding IMERG V06 Early Run uncalibrated precipitation data
for the same time period.

4.4.1.1 10th of January 2022

On January 10th of 2022, a cut-off low in the upper/mid troposphere moved from

Italy towards the Ionian Sea in Greece. This weather system was accompanied by
a mild cold air advection from the Balkans towards Northern Greece. As a result
of these weather conditions, snowfall was expected in the mountains of Mainland
Greece and in some lower altitude areas of Western Macedonia.

Figure 3: The 24-hour accumulated precipitation from IMERG that fell as snowfall
during the 10th of January 2022 in Greece, as indicated by the Gradient Boosting

model.

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 36

4.4.1.2 24th of January 2022

On January 24th of 2022, an upper level closed low over the Eastern
Mediterranean resulted in a significant cold air advection, leading to heavy
snowfall in the eastern regions of Greece, including Attica and the capital city,
Athens, as well as the Aegean Islands.

Figure 4: The 24-hour accumulated precipitation from IMERG that fell as snowfall
during the 24th of January 2022 in Greece, as indicated by the Gradient Boosting

model.

5 DISCUSSION

5.1 Comparison With Previous Work

Moon et al. in 2020 [17] achieved an HSS of 73% in determining precipitation type
for snow cases, using ML models trained with short-range forecasts from
numerical models). The individual HSS values for ECMWF and RDAPS alone were

comparatively lower at 52% and 55% respectively, while the improved Matsuo
scheme [18] used operationally at the time by the Korea Meteorological
Administration (KMA) exhibited an HSS of 71%.

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 37

In 2022, Xiong et al. [19] evaluated IMERG and ERA5 precipitation phase
partitioning on a global scale, using target data from ground observations. POD
of snowfall over land was 87% for IMERG and 91% for ERA5. CSI was 67% for

IMERG and 81% for ERA5, while FAR was 16% for IMERG and 7% for ERA5.

The Gradient Boosting model used in this study achieved a POD of 81%, CSI of
72%, HSS of 85% and FAR of 13%. This is a significant improvement compared to
most of the previously-described methods.

6 CONCLUSIONS

During this study an algorithm that is able to identify the precipitation phase of
IMERG precipitation data was developed, leveraging Machine Learning models

based on Random Forest and Gradient Boosting, and a Deep Learning model
employing a Feedforward Neural Network. The 1.1°C wet-bulb temperature was
used as an upper threshold for solid precipitation to occur over land. The results
of our analysis indicate that the use of Machine Learning models is a very

promising approach for estimating precipitation phase. Specifically, it was found
that 81% of the actual snow-favorable conditions can be identified, while 87% of
all the predicted snow-favorable conditions are proved correct. Application of the
best-performing model's output on IMERG precipitation estimates from real-
world cases, also shows that rain-snow partitioning on IMERG data yields

comprehensive and reliable results.

The developed model's capability to accurately determine precipitation phase on
satellite data, holds tremendous potential for near-real-time snowfall
monitoring, providing valuable insights for emergency responses and aid

distribution in areas affected by severe weather. Furthermore, this model opens
up new possibilities for creating a thorough and enduring snowfall dataset,
significantly enhancing our understanding of hydrological processes, supporting
various water resource management initiatives and contributing to a deeper

understanding of climate change impacts.

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 38

While our study has several strengths, it is not without limitations. For example,
the wet-bulb temperature threshold applied to distinguish between solid and
liquid precipitation on in-situ observational data, is not the optimal indicator for

the actual precipitation phase. It is planned to make use of additional snowfall in-
situ data from NOAAN in order to further evaluate the developed models.

REFERENCES

[1] S. Michaelides, V. Levizzani, E. Anagnostou, P. Bauer, T. Kasparis, and J. Lane,
“Precipitation: Measurement, remote sensing, climatology and modeling,”
Atmospheric Research, vol. 94, no. 4, pp. 512–533, Dec. 2009.

[2] E. M. Sims and G. Liu, “A Parameterization of the Probability of Snow–Rain
Transition,” Journal of Hydrometeorology, vol. 16, no. 4, pp. 1466–1477, Jul.

2015.

[3] L. Liao, R. Meneghini, T. Iguchi, and A. Detwiler, “Use of Dual-Wavelength
Radar for Snow Parameter Estimates,” Journal of Atmospheric and Oceanic
Technology, vol. 22, no. 10, pp. 1494–1506, Oct. 2005

[4] A. Behrangi, X. Yin, S. Rajagopal, D. Stampoulis, and H. Ye, “On
distinguishing snowfall from rainfall using near-surface atmospheric
information: Comparative analysis, uncertainties and hydrologic
importance,” Quarterly Journal of the Royal Meteorological Society, vol. 144,

no. S1, pp. 89–102, Aug. 2018

[5] R. K. Pradhan, Y. Markonis, M. R. V. Godoy, A. Villalba-Pradas, K. M.
Andreadis, E. I. Nikolopoulos, S. M. Papalexiou, A. Rahim, F. J. Tapiador, and
M. Hanel, “Review of GPM IMERG performance: A global perspective,”
Remote Sensing of Environment, vol. 268, p. 112754, Jan. 2022.

[6] G. Rebala, A. Ravi, and S. Churiwala, “Machine Learning Definition and
Basics,” in An Introduction to Machine Learning. Springer International
Publishing, 2019, pp. 1–17.

[7] R. J. Chase, D. R. Harrison, A. Burke, G. M. Lackmann, and A. McGovern, “A

Machine Learning Tutorial for Operational Meteorology. Part I: Traditional

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 39

Machine Learning,” Weather and Forecasting, vol. 37, no. 8, pp. 1509–1529,
Aug. 2022

[8] T. Matsuo and Y. Sasyo, “Melting of Snowflakes below Freezing Level in the

Atmosphere,” Journal of the Meteorological Society of Japan. Ser. II, vol. 59,
no. 1, pp. 10–25, 1981.

[9] D. Nadeau, “Operational Partitioning of Precipitation Phase Using Machine
Learning —

ui.adsabs.harvard.edu,”https://ui.adsabs.harvard.edu/abs/2022AGUFM.H2
2J..06B/abstract, [Accessed 01-08-2023].

[10] G. Huffman, E. Stocker, D. Bolvin, E. Nelkin, and J. Tan, “GPM IMERG Early
Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06,” 2019, [Accessed
01-08-2023].

[11] K. Lagouvardos, V. Kotroni, A. Bezes, I. Koletsis, T. Kopania, S. Lykoudis, N.
Mazarakis, K. Papagiannaki, and S. Vougioukas, “The automatic weather
stations NOANN network of the National Observatory of Athens: operation
and database,” Geoscience Data Journal, vol. 4, no. 1, pp. 4–16, Apr. 2017.

[12] K. Lagouvardos, V. Kotroni, A. Koussis, H. Feidas, A. Buzzi, and P. Malguzzi,
“The Meteorological Model BOLAM at the National Observatory of Athens:
Assessment of Two-Year Operational Use,” Journal of Applied Meteorology
and Climatology, vol. 42, no. 11, pp. 1667–1678, Nov. 2003.

[13] A. Parmar, R. Katariya, and V. Patel, “A Review on Random Forest: An
Ensemble Classifier,” in International Conference on Intelligent Data
Communication Technologies and Internet of Things (ICICI) 2018. Springer
International Publishing, Dec. 2018, pp. 758–763.

[14] J. H. Friedman, “Greedy function approximation: A gradient boosting

machine.” The Annals of Statistics, vol. 29, no. 5, Oct. 2001.

[15] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer feed-
forward neural networks,” Chemometrics and Intelligent Laboratory
Systems, vol. 39, no. 1, pp. 43–62, Nov. 1997.

[16] E. B. Baum, “On the capabilities of multilayer perceptrons,” Journal of
Complexity, vol. 4, no. 3, pp. 193–215, Sep. 1988

Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates - Ioannis Th. Dravilas

 40

[17] S. H. Moon and Y. H. Kim, “An improved forecast of precipitation type using
correlation-based feature selection and multinomial logistic regression,”
Atmospheric Research, vol. 240, p. 104928, Aug. 2020.

[18] S. M. Lee, S. U. Han, H. Y. Won, J. C. Ha, Y. H. Lee, J. H. Lee, and J. C. Park, “A
Method for the Discrimination of Precipitation Type Using Thickness and
Improved Matsuo’s Scheme over South Korea,” Atmosphere, vol. 24, no. 2,
pp. 151–158, Jun. 2014.

[19] W. Xiong, G. Tang, T. Wang, Z. Ma, and W. Wan, “Evaluation of IMERG and
ERA5 Precipitation-Phase Partitioning on the Global Scale,” Water, vol. 14,
no. 7, p. 1122, Mar. 2022.

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 41

Wind Energy Prediction Using
Deep Learning Architectures

Georgios K. Floros

ABSTRACT

This thesis investigates wind energy prediction using deep learning
architectures. For that purpose, we are utilizing data from Weather Research
Forecasting (WRF) model and real wind-energy measurements from two distinct
wind energy parks. The pre-processing process is thoroughly outlined, followed

by experiments with feature extractor models such as Convolutional Neural
Networks (CNN), feature extractor techniques such as the mean vector approach
and the central vector approach, along with Long Short-Term Memory (LSTM),
Attention and Transformer Blocks as temporal models. Results exhibit the need

of efficient data pre-processing for optimal performance of models. They also
show that methods containing Attention mechanism as a temporal model
perform comparably, even better at some cases than LSTM. Furthermore, this
study raises questions about the need of using CNN as a feature extractor, at this
problem, in some cases. It also suggests that transfer learning between nearby

wind energy parks is a promising approach of countering limited amounts of
data and can be applied for new parks where we lack data.

Keywords: Deep Learning, Machine Learning, Wind Energy Prediction, Neural
Network, Attention, Transformer Encoder, WRF

ADVISOR

Ioannis Emiris, Professor NKUA

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 42

1 INTRODUCTION

Wind energy is one of the fastest growing energy sources in the world. The
demand is increasing on a yearly basis. Accurate energy prediction is important
for efficient farm operations. It enables optimal energy generation, it reduces the
costs because it balances demand and supply and improves the reliability of the

energy supply since it helps us extract meaningful real-world patterns. Wind
energy forecasting has been a concern since wind power generation was
introduced. Forecasting first relied on simple wind measurements. However,
overtime, more complex models have been developed that consider multiple
environmental parameters such as temperature, pressure, wind speed, altitude

to produce more accurate results. Persistence method, numerical weather
prediction and statistical models such as ARIMA and its variations are some of
commonly used for that task [1] [2] [3]. Machine learning algorithms such as SVM
were even used exhibiting reliable performance [4]. Recently, thanks to the

advancements of technology, neural networks, including deep learning
techniques, are used to solve such tasks due to their ability to handle large
amounts of data and model complex relationships between input and output
variables [5] [6]. In this study we worked on wind energy forecasting using
several deep learning architectures as predictive models. The task is hour-ahead

energy prediction provided time-series of 6 hourly – steps. We start off with the
method of a previous study [7] that helps us build on and test our methods, we
consider it our foundation paper. Our input data consisted of Weather Research
Forecasting (WRF) meteorological predictions and our target data consisted of

wind farm real energy values. We trained separate models for each park’s data,
with the aim of capturing the unique patterns and characteristics of wind energy
production at each location. However, we also evaluated the performance of a
single predictive model for both parks, so we developed a generalized model. All

in all, this study provides a complete overview of a real energy prediction
problem using real life energy values. We contributed on improving the pre-
processing pipeline. We carefully selected the criteria to remove noisy outliers
and inaccurate or incomplete data points at all steps of this process. We also
contributed on the network architecture, utilizing several state-of-the-art

attention-based models which is a notable approach on such problems, and

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 43

comparing them to other established methods. In addition, we contributed by
providing problem insights through the interpretation of results, leading to
useful conclusions and suggestions such as the need for a generic multi-park all-

in-one model.

2 BACKGROUND & RELATED WORK

Artificial intelligence has taken centre stage in computer science thanks to
constant advancements in technology and the creation of fast and powerful
computational systems. Neural networks are a crucial tool in this field as they
process large amounts of data and solve complex problems. Deep learning, a
subset of artificial intelligence, utilizes neural network models deploying them

into deep architectures.

Models considered state of the art at performing certain tasks include
Convolutional Neural Networks (CNN) [8] mainly concerned with face recognition,
natural language processing (NLP) applications, optical character recognition

(OCR) and image classification. Long – Short term memory networks, [9] a special
type of recurrent neural networks (RNN), capable of learning “long - term
dependencies.” They are indented to retain knowledge over time and handle
sequences of data. Attention mechanism [10] is also a technique used in deep
learning networks usually applied on LSTM encoder – decoder architectures. Its

purpose is to emphasise the most relevant parts of the input sequence in a
flexible manner. It uses three vectors, key and value describes each state of the
encoder and query typically represents the last hidden state of the decoder.
Attention is described as defined by the following equations:

𝐶  =    ∑ 𝑎𝑖 

𝑛

𝑗=1

𝑣𝑗  

Where c represents the context vector for an input sequence 𝑋  =  (𝑥1,  𝑥2,   … ,  𝑥𝑛)
of length The weight is computed by:

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 44

𝑎𝑗   =  
exp(𝑒𝑞𝑗 , 𝑘𝑗

)

∑ exp(𝑒𝑞𝑖,𝑘𝑖
)𝑛

𝑖=1

, 𝑒(𝑞, 𝑘) =  
(𝑞)𝑇𝑘

√𝑑𝑘

Where 𝑒(𝑞, 𝑘) is the alignment score function, researchers have proposed dot

product attention while a more recent work [11] proposed it scaled by 1

√𝑑𝑘
, where

𝑑𝑘 is the dimension of key vector.

Self – Attention [11] is a method by which we apply the attention mechanism to
each position of the same sequence. It is described by the following equation:

Attention(𝑄, 𝐾, 𝑉)  = Softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉

where Q, K and V are tables that accumulate the values of query, key, and value

vectors.

Positional embeddings are also a method used since attention mechanism does
not include positional information. Positional embeddings are added to preserve
information about the order of timesteps. They can be both fixed and learned.
They are usually aggregated and added to the input data values. Fixed positional

embeddings proposed on bibliography [11] are described by:

PE(𝑝𝑜𝑠, 2𝑖)  =   sin (
𝑝𝑜𝑠

𝑛2𝑖   𝑑𝑚𝑜𝑑𝑒𝑙⁄), PE(𝑝𝑜𝑠, 2𝑖  +  1)  =   cos (
𝑝𝑜𝑠

𝑛2𝑖   𝑑𝑚𝑜𝑑𝑒𝑙⁄)

where 𝑝𝑜𝑠 defines the position in the input sequence, 𝑖 is the dimension and
𝑛 refer to a user defined variable (recommended value is 10.000). Learned

positional embeddings learn a mapping function through the training process
[12].

As for wind energy farms, wind energy production is strongly associated with

wind speed. The produced energy increases as wind speed increases. The design
and operation of a wind turbine requires a certain wind speed range. The limits
of this range are the cut-in speed and the cut-out speed. Cut in speed is when the
turbine starts spinning for the first time and generates power. When wind speed

increases gradually, it surpasses cut-in speed and reaches the maximum limit
turbine design can support. To avoid the risk of damage on the rotor of the

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 45

turbine, cut-out speed is activated, which stops the operation with the help of
suitable auditors [13].

3 METHOD

3.1 Data Pre-processing

We work with data from two different parks. At first, we discuss the methods we

used to prepare the target data pre-processing.

The target data we use, produced from a SCADA system, consists of real energy
measurements from two different wind energy parks located in central Greece.
Park A consists of 16 turbines with a total of 12,000 kW total capacity while park
B consists of 17 turbines with a total of 10,800 kW total capacity. These data faced

availability issues. Turbines may have not performed at one hundred percent for
a period due to maintenance or economy reasons. We need to exclude low
availability points.

We are provided with real wind speed measurements for 10-minute intervals and

energy measurements for 15-minute intervals. We adjust them to 1-hour time
intervals. Then we plot the energy – wind speed diagram (Figure 3.1) where data
points form a dense curve. To filter out the noise we use several criteria. We use
line segments where we consider the points outside the curve as outliers and
possible low availability points. We set a minimum energy value of 400 kW since

it is possible for turbine blade to be slightly displaced by the wind when park is
closed and record such low values. We also exclude data points with wind speed
less than 5 m/s and 25 m/s since they are measured outside of cut-in and cut-off
speeds. The data curves before and after pre-processing are displayed in Figure

3.1 and Figure 3.2.

The input data used in this study consisted of 18 WRF predicted features: X and Y
components of wind, temperature, and pressure, all at 10, 80 ,100, 120 meters
height, surface pressure, snow water equivalent and daily total snow and ice.

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 46

Figure 3.1: Power - Wind plot before
pre-processing

Figure 3.2: Power - Wind speed final plot

It was extracted from parameterized WRF models executed on a rectangular
region covering a large fraction of mainland Greece, provided by the work of our

foundation paper [7] [14]. The model produces a WRF grid that records weather
or wind patterns. We get forecasts at every location of the grid with a 1 km
resolution. Using the specified coordinates (longitude and latitude) of the wind
parks we obtain the grid for the area of interest from the initial WRF. For each

point of this grid the 18 WRF predicted features were generated for an hour
interval. Park A has a 7 x 8 grid, while park B has a 6 x 8 grid.

In the pre-processing phase the input data was matched with the target data
using time criteria. For each target label corresponding to a timestamp of t hours
we saved the WRF predictions for the hours 𝑡, 𝑡 − 1, … , 𝑡 − 5 . As a result, each

input element forms the following vector shape:

timesteps × park grid height × park grid width × wrf features

3.2 Models and components

Our architecture overview consists of two main components. A feature extractor,

to identify geographical trends and a temporal model, to capture temporal
patterns. An architectural overview is displayed in Figure 3.3. The model’s output
is described by the following relationship:

𝑦  =  ℎ ∘ 𝑔 ∘ 𝑓(𝑥)

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 47

Where f represents the feature extractor, g represents the temporal model and
h is the output MLP.

Figure 3.3: Architectural overview

3.3 Feature extractors

As feature extractors we use several methods. Convolutional Neural Networks

(CNN), which is defined as:

𝑓 :  ℝ𝐻×𝑊×𝐷 ⟼  ℝ𝐷′

where H and W represent the WRF grid’s height and width, and D represents the
input features dimension. H and W are set to 7 and 8 for park A and 6 and 8 for
park B.D represents the input features number that is equal to 18 and D′

represents output features dimension that is equal to 64.

Another method we deploy is the mean vector approach. We utilize the mean 18
WRF features of all the points of the WRF grid instead of using all the feature
vectors in the grid.

𝑣⃗ =  
1

𝐻 ⋅ 𝑊
∑ ∑ 𝑣𝑖,𝑗

𝑊

𝑗

𝐻

𝑖

Where H and W represent height and width. This results in an output shape of 18

features for each of our 6 time-steps.

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 48

Similarly with the mean vector we keep the central 18 WRF features of all the
points of the WRF grid for each time step. To determine the central point, we use
the following equation:

𝑦𝑖⃗⃗⃗ ⃗  =  (𝑙𝑎𝑡𝑖  ,  𝑙𝑜𝑛𝑔𝑖)

𝜇⃗  =   (
1

𝑁
∑ 𝑙𝑎𝑡𝑘

𝑁

𝑘 =0

 ,  
1

𝑁
∑ 𝑙𝑜𝑛𝑔𝑘

𝑁

𝑘=0

)

𝐿1(𝑦𝑖⃗⃗⃗ ⃗ ,  𝜇⃗)  =   ∑| 𝑦𝑖 
 𝑗

−  𝜇𝑗|

2

𝑗 =0

𝑐(𝑦𝑖⃗⃗⃗ ⃗,  𝜇⃗) = arg𝑖 min L1 ( 𝑦𝑖⃗⃗⃗ ⃗,  𝜇⃗)

Where 𝑁 represents the number of wind turbines, 𝜇 represents their mean
coordinates, 𝑦𝑖represents the coordinates of each WRF points and 𝑐 represents
the index of the central vector. In case of mean and central vector method a
multi-layer perceptron (MLP) with one hidden layer and output size 64 with a

ReLU activation function follows. The MLP is described as followed:

𝑓 :  ℝ𝐷 ⟼  ℝ𝐷′

where 𝐷 presents the input’s number of features and 𝐷′ the output features
number. The purpose of using MLP is to feed our temporal model with extra
features. The MLP in our method receives 18 input features and outputs 64.

3.4 Temporal Models

After extracting the output from feature extractor model, we feed it to our
temporal model. We use LSTMs. LSTM is defined as:

𝑔 :  ℝ𝑇×𝐷 ⟼ ℝ𝐷′

where T represents the number of time steps, D the number of input features
and D′ the number of output features. In our method we input 64 features, we
use an LSTM with a hidden size of 256 nodes followed by a dropout layer of 0.2

dropout rate. That results in an output shape of 256 features. We also experiment
with bi-directional LSTMs where the outputs are concatenated.

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 49

We also experiment with Self-Attention based on the paper [11]. In our method we
use as key and value dimension the value 64 the same as the features input
dimension. Our model is defined as:

𝑔 :  ℝ𝑇×𝐷 ⟼ ℝ𝑇×𝐷′

where T represents the number of time steps, D the number of input features and
D′ the number of output features. The model’s output is computed and added
back on the input. We flatten the output and end up with 384 final features.

To create a Transformer Block we extend self-attention adding an MLP with one

hidden layer and output size 64 and ReLU activation function. Transformer Blocks
have the same input and output shape, so we flatten input and end up with 384
output features as a final shape.

3.5 Extra Components

Learnable and fixed positional encodings used in other works [11] [15] are used

to help attention and transformer blocks receive positional information. We
receive input information, incorporate positional information of the same shape,
and then forward the output on attention or transformer blocks.

𝑤  =  𝑃𝐸(𝑡)  +  𝑥, 𝑃𝐸 :  ℝ  →  ℝ𝐷 , 𝑤 :  ℝ𝑁×𝐷   →  ℝ𝑁×𝐷 ,

x denotes the input data and w represents the final input data after adding
positional encodings.

We use Adam as our optimiser, with learning rate 0.001 and batch size is set to
48. Regarding the validation and test sets we use during training; they are a part
of the data set that consist of data equally distributed through seasonality. That

is because we want our network to predict accurate values for all seasons without
biases. On both parks we select data from the same exact months for validation
and test set. We have no overlaps. As a loss function during training, we slightly
modify MAE so that 𝑦𝑖 is in the same range as 𝑦𝑝. To evaluate the test set, Mean

Normalized Absolute Error (MNAE) is used:

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 50

MAEcustom= ∑ ⬚
nsamples
i = 1 |

𝑦𝑖 −  min
𝑦

⬚

max
𝑦

⬚
  −  𝑦𝑝|, MNAE =  1

nsamples
  ∑

|𝑦𝑖−𝑦𝑝|

𝑐

nsamples
𝑖=0

𝑦𝑖 is the actual energy value and 𝑦𝑝 is the predicted value and 𝑐 is a constant value

set to 12.000 in our experiments.

4 RESULTS & DISCUSSION

First, we test the results of applying our pre-processing method. We compare
with the previous method of pre-processing. We use min-max normalization and

CNN + LSTM model.

Data MNAE Data MNAE

Old preprocessing 14.1656 ± 0.3885 Old preprocessing 13.3116 ± 0.4404

Ours 12.3939 ± 0.2880 Ours 13.0028 ± 0.6116

Table 4.1: Park A Table 4.2: Park B

Significant changes were noticed with the old data compared to the new in both
parks. In particular, the metric improved on both parks, especially in park A
(12.3939 compared to 14.1656), but also in park B (13.0028 compared to 13.3116).
These results highlight the importance of data preprocessing as a critical step in

the development of accurate and reliable neural network models.

Second, after some fine – tuning experiments with several normalization and
output functions we decide we will be using Z-score normalization and sigmoid
output activation function as it seems like that configuration fits the distribution

of our data better. Third, we start experimenting with different feature
extractors.

Feature extractor MNAE Feature extractor MNAE

CNN 11.7516 ± 0.3657 CNN 12.6021 ± 0.4108

Mean vector 12.1674 ± 0.2057 Mean vector 12.4049 ± 0.3539

Central vector 12.0207 ± 0.2573 Central vector 12.1578 ± 0.0937

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 51

Table 4.3: Park A Table 4.4: Park B

For park A, we notice central vector performs a bit better than mean vector
method (12.0207 compared to 12.1674) while CNN gives us the best metric
(11.7516). Despite that, the results of CNN do not have big differences with the
other methods. Potentially because the input WRF values are close from one

point of the grid to another and the spatial patterns the CNN is designed to
capture are not that significant. For park B, central vector outperformed the other
methods (12.1578). CNN in that case did not help our model as expected. An
explanation is, the geographical distance between some points of the grid and

the location of the turbines created instability. This instability could be because
the CNN may have difficulty capturing the spatial relationships between these
distant points. The results of the experiments raise questions about the
essentiality of CNNs for our problem, as a simpler model achieved similar or even

better performance.

Fourth, we are experimenting with different temporal models and positional
encodings, we are using CNN as feature extractor, Sigmoid output activation with
z-score normalization and custom mae as a loss function.

Temporal Model
Pos.
encodings

MNAE park A MNAE park B

LSTM - 11.7516 ± 0.3657 12.6021 ± 0.4108

Bi-LSTM - 12.4621 ± 0.5107 12.4230 ± 0.3290

Attention - 12.2100 ± 0.5640 13.0851 ± 0.3866

Attention Learnable 11.9796 ± 0.3330 13.0798 ± 0.4014

Attention Fixed 12.0599 ± 0.3525 12.8692 ± 0.2602

Transformer Block - 12.2671 ± 0.4067 12.9023 ± 0.6318

Transformer Block Learnable 11.8685 ± 0.2706 12.5219 ± 0.4044

Transformer Block Fixed 11.6368 ± 0.2032 12.9150 ± 0.5425

2 Transformer Block - 11.9848 ± 0.2606 13.1800 ± 0.6846

2 Transformer Block Learnable 11.9009 ± 0.1874 12.6517 ± 0.3731

2 Transformer Block Fixed 12.0535 ± 0.3532 12.7696 ± 0.4674

Table 4.5: Temporal model and pos. encodings experiments for both parks

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 52

For park A, the best performance was achieved using a Transformer block with
fixed positional encodings as it outperforms the LSTM (11.6368 compared to
11.7516). We observe that two stacked transformer blocks compared to one

slightly improve the metrics (11.9848 compared to 12.2671). Positional encodings
tend to improve results in both attention and transformer block components.
Learnable positional encodings help attention (11.9796 compared to 12.2100),
and fixed positional encodings help single transformer block significantly (11.638

compared to 12.2671). However, major improvement is not observed when

combining them with two stacked transformer blocks. Learnable slightly help the
models (11.9009 compared to 11.9848) while fixed produce slightly worse results
(12.0535 compared to 11.9009). Similar results are obtained for park B. The best
metric though is obtained by a bidirectional LSTM (12.4230). Combining

information from both time directions proved useful for park B, differences are
not significant though.

Overall, LSTM architectures and attention-based architectures showed
comparable performance when used to process and analyse our time-series data.

That suggests that both architectures can be considered as viable options as
temporal models in our task. As for positional encodings, our models improved
with their addition in most of the cases. Comparing learnable and fixed positional
encodings, we do not observe major differences between them. Learnable

position encodings thought improved the model in all cases they were used.

Lastly since parks A and B are 6 km apart, and meteorological WRF predictions
should be similar for both parks, we combine park data and create an all-in-one
model. We use the standard CNN + LSTM model.

 MNAE park A MNAE park B
Single, A 11.7516 ± 0.3657 -
Single, B - 12.6021 ± 0.4108
All-in-one 11.9604 ± 0.3097 11.9030 ± 0.3462
Table 4.6: All-in-one model comparison

The findings of this experiment are really promising. The metric of park A gets a

bit worse (11.9604 compared to 11.7516). This has to do with the fact we have

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 53

different max values on park A and park B. Park A values are capped on 12 kWh
and park B values are capped on 10.2 kWh. As a result, the all-in-one model misses
some high values for park A. However, park B benefits a lot (11.9030 compared to

12.6021) from this merge. That leads us to think that the concept of merging the
park train data might work if we encode the information of which park data come
from for our model. This experiment provides us with some interesting views. It
shows that transfer learning between two nearby parks is a viable option.

A visualisation of the test set predictions can be seen bellow. In Figure 4.1 we have
included a visual representation of park A best model’s (CNN + transformer block
+ fixed pos.encodings) predicted values compared to the actual ground truths.
We have also included in Figure 4.2 a visual representation of the predictions of
the model trained with old pre-processing data (Table 4.1). We can observe that

especially low energy values, but also high energy values are modelled better with
our best model.

Figure 4.1: Ground truth – Prediction,
park A

Figure 4.2: Ground truth–Prediction,
park A old

5 CONCLUSIONS & FUTURE WORK

The first part of our project involved developing a data pre-processing method
based on our foundation paper [7]. Testing was performed in comparison with
this paper. The results showed that our proposed method exhibited better

performance on the same exact test set. These findings indicate the crucial role

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 54

of efficient pre-processing in such tasks as it made a great impact on the
performance of our models.

In the second part we implemented the model architecture. Our model

architecture consisted of a feature extractor and a temporal model. As feature
extractors we implemented the CNN, mean vector, and central vector
approaches. Our results were similar in all cases as in the first park CNN
performed quite better while in the second park the central vector approach

outperformed the rest. That raises questions about the essentiality of CNNs for
our problem as our experiments showed that a simpler approach achieved
similar or even better performance. For temporal models, we compared LSTM,
attention, and transformer blocks with the addition of positional encoding. Our
results showed that attention-based perform comparably and even better than

LSTM architectures as temporal models. In addition, while no clear preference
emerged between learnable and fixed positional encodings, their addition to
attention-based models was beneficial.

Finally, we built an all-in-one model using data from both wind farms. By

leveraging data from multiple sources, we achieved partial improvement in
forecasting accuracy. Certain limitations this study faced is the lack of data, the
data provided were valuable, but a larger dataset would have provided more
robust and reliable results. In addition, is worth noting that the data provided

required denoising. While our method addressed this issue, it remains a
challenge that requires further exploration. In addition, although the WRF
provided valuable meteorological features for our input data, it is a forecasting
model that contains errors. An improvement could be to incorporate real
meteorological data to model the WRF’s historical prediction errors and

potentially account for the differences between the predicted and actual
meteorological values. Additional improvements could involve leveraging aerial
images of the wind farm to further encode the park’s location and geography.
This extra signal can provide valuable information about nearby terrain features

and improve the model’s ability to make accurate predictions. Another approach
could be the use of unsupervised pre-training tasks (self-supervised learning)
[16]. By training the model on WRF data from several areas in Greece for a pre-

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 55

training task, the model can learn common patterns and features in the data that
are relevant to wind energy prediction.

REFERENCES

[1] Milligan, M. R., et al. (2003). Statistical wind power forecasting models:
Results for U.S. wind farms: Preprint.

[2] Almoataz Youssef, A. (2012). Short term wind power forecasting using

autoregressive integrated moving average modelling. Proceedings of the
15th International Middle East Power Systems Conference.

[3] Kavasseri, R. G., & Seetharaman, K. (2009). Day-ahead wind speed
forecasting using f-ARIMA models. Renewable Energy, 34(5), 1388–1393.

[4] Mohandes, M. A., et al. (2004). Support vector machines for wind speed

prediction. Renewable Energy, 29(6), 939–947.

[5] Li, G., & Shi, J. (2010). On comparing three artificial neural networks for wind
speed forecasting. Applied Energy, 87(7), 2313–2320.

[6] Moustris, K. P., et al. (2016). 24-h ahead wind speed prediction for the

optimum operation of hybrid power stations with the use of artificial neural
networks. In Perspectives on Atmospheric Sciences (pp. 409–414).

[7] Christoforou, E., Emiris, et al. (2021). Spatio-temporal deep learning for day-

ahead wind speed forecasting relying on WRF predictions. Energy Systems,

14(2), 473–493.

[8] O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural
networks.

[9] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780.

[10] Bahdanau, D., et al. (2014). Neural machine translation by jointly learning to
align and translate

[11] Vaswani, A., et al. (2017). Attention is all you need.

[12] Gehring, J., et al. (2017). Convolutional sequence to sequence learning.

Wind Energy Prediction Using Deep Learning Architectures - Georgios K. Floros

 56

[13] Cole, S. (2021). TheRoundup. https://theroundup.org/wind-turbine-power-
curve/

[14] Research team of A. Anastasiou and I. Z. Emiris “WRF model

parameterization and adaptation of mainland Greece, with final feature
extraction”

[15] Devlin, J., et al. (2018). BERT: Pre-training of deep bidirectional transformers
for language understanding.

[16] Erhan, D., et al. Why does unsupervised pre-training help deep learning?
Journal of Machine Learning Research,

https://theroundup.org/wind-turbine-power-curve/
https://theroundup.org/wind-turbine-power-curve/

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 57

Analysis of AlphaFold 2 Αlgorithm

Vasiliki L. Pitsilou

ABSTRACT

AlphaFold 2 [1] has been a revolutionary algorithm in the field of computational

biology. It made a huge leap in predicting the three-dimensional structure of a
protein. Predicting the structure of a protein is a problem that has been
challenging scientists for decades, and its solution is to this day a very desired
one, as protein structures play a crucial role in understanding the function of

proteins. And subsequently, understanding the function of proteins plays a
crucial role in understanding the functions of the human body and its diseases.

AlphaFold 2, an AI-model built by Google DeepMind [2], is able to accurately
predict protein structures for a big number of proteins, far outperforming all
other methods developed before it. But how did it manage such an impressive

performance in such a difficult problem? This thesis presents the AlphaFold 2
algorithm after giving some context on proteins and the protein folding problem.
It also includes an experimental part, where the algorithm is executed and some
technical details are examined.

Keywords: protein folding prediction, AlphaFold 2 algorithm, protein folding
problem, machine learning, deep learning

ADVISORS

Ioannis Emiris, Professor NKUA

Andreas Zamanos, MSc
Georgios-Alexis Ioannakis, PhD

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 58

1 INTRODUCTION

Proteins are macromolecules that take part in nearly every process in our cells.
They are constructed inside the cell and perform a large number of different
tasks like catalyzing chemical reactions (e.g. digestion), transporting nutritional
components throughout our bodies, attacking foreign objects entering our

bodies (antibodies), building cell and tissue structures, regulating processes in
our bodies (protein hormones) and others.

The building blocks of proteins are smaller molecules called amino acids. To form
a protein, amino acids attach to each other forming a chain, which then folds to
shape a 3-D structure (Figure 1). This structure allows a protein to perform the

task it is responsible for.

Figure 1

The proper folding of proteins into their native state is essential for their normal
function. However, various factors can disrupt this process, leading to protein
misfolding. Mutations in the genetic code, as well as environmental factors such
as temperature or the presence of certain chemicals, can interfere with the

folding process. When a protein misfolds, it means that it adopts an incorrect

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 59

three-dimensional structure compared to its native state. This misfolded protein
may become unstable, lose its functional properties and be unable to carry out
its intended task effectively. Misfolding can disrupt the protein’s ability to interact

with other molecules, impair its enzymatic activity, or interfere with its structural
role. Since proteins play crucial roles in numerous biological processes, the
consequences of protein misfolding can be severe.

Knowing a protein’s structure is very important for medical and biological

research. The structure of nearly 100,000 proteins (compared to the billions of
known sequences) has been found experimentally [3]. But determining a protein
structure experimentally is not an easy task: it is expensive and time consuming,
taking months to years to complete. The scientists’ goal is to be able to determine
the structure of a protein in the three-dimensional space, given its amino acid

sequence (Figure 2). This is theoretically possible (Anfinsen, 1972) and if that is
achieved, scientists will then be able to determine the structure of every protein.
This is the so-called protein folding problem and what AlphaFold 2 aims to solve
by using trained deep neural networks, especially Transformers [11], and by

deploying the self-attention technique. Self-attention is the technique of making
the network focus only on some parts of the input that seem more useful than
other input parts in predicting the output. That way, the network extracts more
meaningful information from the input and outputs a highly accurate prediction.

Figure 2

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 60

2 THE ALPHAFOLD 2 ALGORITHM

AlphaFold 2 takes a protein amino acid sequence as input and outputs the most
probable structure of that sequence. The program’s output is a structure for the
protein in question along with confidence scores (ranging from 0 to 100%) for
each amino acid. The program is split into two big parts: the feature embedding

and Evoformer (first part) and the Structure module (second part). In the first
part, information from other proteins, related to the input one, is highly
processed and used to build some structures. These structures will then be the
input to the second part, which will use them to end up in a protein structure.
The network uses recycling: the outputs of an iteration are used to update the

input to the next one. The number of iterations is defined in the program.

AlphaFold 2 widely uses neural networks. To sufficiently train those networks,
AlphaFold 2 relies on a large amount of protein data. These data can be found by
searching protein databases. The proteins searched are evolutionarily related to

the protein in question, meaning they also share common amino acids. Using
information from proteins with known structures, the model can see how
evolutionarily related proteins fold and that way extract information about the
structure in question. Using information from proteins with unknown structures,
it extracts information by aligning their sequences and finding patterns which

reveal the proximity of two amino acids in the final protein shape. The last
information is embodied in a table called MSA table.

During inference, AlphaFold 2 receives input features from the input protein
sequence, the MSA table and templates (proteins with similar structures to the

one we want to predict), and outputs atom coordinates and confidence score per
amino acid.

The first part of the algorithm (Figure 3) builds an MSA and pair representation
out of the MSA table, the input sequence and the templates. The MSA

representation encodes information of evolutionarily related proteins, while the
pair representation about the correlation between each pair of amino acids in
the input sequence. During that part, there is a high information exchange
between pair and MSA representation, and self-attention methods are used.

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 61

Figure 3

Then, having acquired the final form of the MSA and pair representations, we use
them to build a 3-D protein structure out of them. This is done in the second part

of the algorithm, or the Structure module

The structure module (Figure 4) takes two of the algorithm first part’s outputs as
input: the pair representation and the single representation. The single
representation is the MSA table’s first row and represents the input amino acid
sequence. A 3-D representation of the protein’s structure is initialized in the

algorithm. The module consists of 8 layers and in each layer, the single
representation and the 3-D representation are updated. The processed version
of the 3-D representation will be the output of the entire algorithm. Updating the
single representation is needed because this representation will give us

information on the angles of the 3-D structure.

In the Structure module, the single representation is updated after self-attention
is performed on it and after receiving bias from the pair representation. The
processed single representation is then used, along with the unprocessed one,

to predict torsion angles (angles between planes formed by atoms of one or two
amino acids), which are subsequently used to predict the final atom coordinates.

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 62

For the prediction of confidence, the processed single representation is given as
input to a trained network, which returns the confidence per amino acid.

Figure 4

Returned by the structure module are the atom coordinates and the confidence
measure. Lastly, relaxation is performed on the predicted structure. When a

molecular structure is predicted by a computer program, it may contain
structural violations, meaning violations that do not appear in natural structures.
So the structure undergoes a procedure called relaxation in order to resolve as
many violations as possible. Both the relaxed and unrelaxed versions of the

protein structure are returned by AlphaFold 2. The structure module’s outputs
(coordinates and confidence measure) will be organized in a PDB file. A PDB file
[4] is a file that represents a molecule structure, by assigning coordinates to all
its atoms.

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 63

3 RUNNING THE ALGORITHM

AlphaFold 2 is an open-source software available on GitHub [5], with detailed
instructions on how to run it. AlphaFold 2 can only be run in inference mode and
is not available for training or fine-tuning. Running it requires a Linux-running
machine, around 3 TB of storage space for the full download of protein databases

and a powerful GPU. For systems with less available memory, there is also the
option of downloading a reduced version of databases (a database of 17GB will
be downloaded instead of the full one of 1.8 TB, still leaving the total required
size to around 1.2 TB). AlphaFold 2 needs a significant amount of time to set up:
many hours (even a day or more) are required to download the data needed for

running the algorithm.

OpenFold [6] is a faithful reproduction of AlphaFold 2 implemented in PyTorch,
whereas AlphaFold 2 was developed for JAX workflow. OpenFold does give the
option for training or fine-tuning as opposed to AlphaFold 2, and can be faster in

inference mode. Still, its setup requires the same resources mentioned for
AlphaFold 2 (multiple hours of downloading databases as well as storage). In an
attempt to run the AlphaFold 2 algorithm, we chose to run OpenFold, since it
would allow us to also experiment with some fine-tuning. We also use Docker.
Docker [7] is a software that allows a user to perform any installations and runs

in a secluded environment, called a container. That way, the program will not
have to interfere with the whole system where the program will be run and allows
independence, especially in the case of systems used by many people. Docker is
a simple way of running OpenFold.

The output of the program is a PDB file. A PDB file can then be used in a
visualizing software like Chimera [8]. Such software visualizes a structure as
encoded in a PDB file. The PDB file returned by OpenFold for the MCHU
Calmodulin protein can be visualized into the following 3-D structure, using

Chimera 1.16 (Figure 5):

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 64

Figure 5

OpenFold offers the possibility of running the program in Google Colab (Figure
6) [9]. Google Colab is an environment where Jupyter notebooks can be run

without the use of setting up GPU or CPU, since they are provided by Google. This
is a pretty simple way of running OpenFold without having to download and run
it manually. To run OpenFold on Google Colab, simply enter the amino acid
sequence on the first cell, choose the model you want to use (OpenFold and

AlphaFold 2 have slight differences) and then run all the cells. This program
downloads all the databases on the Google cloud environment. The running time
for an amino acid sequence of 70 amino acids was 40 minutes, including all
downloads of databases. After being completed, the program downloads a zip

file containing the PDB file and the predicted error in a JSON file. It also visualizes
the 3D structure along with its confidence prediction. In the 3D structure, the
coloring denotes the confidence areas:

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 65

Figure 6

Lastly, AlphaFold database [12] contains over 214 million protein structures and
their confidence metrics, as predicted by AlphaFold 2.

4 RESULTS

We saw how AlphaFold 2 can be run using OpenFold. All we used was a simple
computer system running Linux and an 8 GB GPU. Even though we needed a

large storage space of around 3 TB (which can also be reduced to 1.2 TB as
mentioned in Chapter 3), it is still impressive that anyone can obtain a protein
structure estimation, corresponding to an amino acid sequence of their choice
within minutes, simply by running a program on their computer or on Google

Colab. Until some years ago, a protein structure could only be obtained
experimentally by scientists, after months of effort. This demonstrates the power
of computer science, computer systems and machine learning. In the previous
chapter, predictions were obtained using trained models. But taking a step

further, what would happen if someone wanted to fine-tune the model, or even
train it from scratch, needing even higher resources? AlphaFold 2 does not offer
the option of training or fine-tuning, probably because they require resources

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 66

available only within scientific communities. But OpenFold remains an option for
fine-tuning or training the model. In order to fine-tune the model on a selected
group of proteins, those proteins first need to be aligned. Alignment will be used

for the construction of the aforementioned MSA (Multiple Sequence Alignment)
table. In an alignment procedure, all proteins are aligned based on a model
protein, in order to find common amino acids with it. Since all proteins have to
take the role of the model protein (all proteins have to be compared with all

others), the alignment procedure leads to a high complexity

The problem is that this step is not that simple. After trying to align a set of 900
proteins using both alignment scripts, the result was the following

• For the former, alignment of approximately one protein per day (which
would result in 900 days of aligning).

• For the latter, usage of 90% of computer memory on average. This amount
of mmory consumption prevents others from using the same computer
machine.

Alignment running for 3 days consecutively, was killed manually afterwards. This

method is faster than the previous one. These data show us that it is infeasible
to run the alignment script in a short amount of time, but one can overcome this
obstacle by having precomputed alignments available. In that case, alignment of
proteins is not needed. Besides alignment, we also expect fine-tuning to take a

long time (at least a few days). The amount of time needed for aligning prevented
us from fine-tuning the model. Fine-tuning is a much harder task, although not
infeasible, given that one can invest time and effort in it. But, if alignment could
become more efficient, many scientific teams or individuals would experiment
with training and/or fine-tuning, leading to a better understanding of the

algorithm and even improvement of it.

At this point, we could not expect the same thing for training or fine-tuning, since
solving such a problem using machine learning is, by its nature, resource-
intensive and training this model using such a large amount of data could not be

any faster. AlphaFold 2, even with its weaknesses in terms of resources or time
needed to train or fine-tune it, is still a very sophisticated algorithm, which using
state-of-the-art techniques has managed to solve a very important biological

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 67

problem, at least to a certain extent. But as science, by its nature, aims to solve
problems (even after having just solved a very important one), scientists will try
to improve the algorithm’s efficiency and more importantly, obtain even more

accurate protein structures.

5 CONCLUSIONS AND FUTURE WORK

AlphaFold 2 has been able to predict protein structures given their amino acid
sequence, with a high accuracy for the majority of proteins. The algorithm has
been considered revolutionary and is indeed remarkable, since it has achieved
significant advancements in predicting protein structures and thus managed to
solve the protein folding problem to a large degree. That way, it expanded our

knowledge on previously unknown protein structures and the molecular world
and showed how machine learning algorithms can be reliable and powerful tools
for solving biological problems. Ιt has also given the scientific world new tools
and ideas on how to tackle specific problems using machine learning techniques,

opening up new possibilities for scientific research.

However, we should keep in mind that machine learning algorithms make
predictions based on data they have been trained on. So one should be careful
when using a predicted protein structure and not consider it as ground truth, but
also take into consideration the confidence scores provided with every structure.

Those confidence scores indicate, as mentioned, the model’s certainty for the
prediction of each amino acid’s position in the 3-D structure. The scientific
community will strive for even bigger breakthroughs in the field of structural
biology. The AlphaFold 2 algorithm has been a precious tool in the hands of

scientists, which will continue playing a vital role in advancing our knowledge on
proteins and facilitating various research endeavors.

What we think for a future project is testing the algorithm’s generalization, using
the class of membrane proteins. Membrane proteins [10] are proteins existing in

or interacting with biological membranes. The generalization test can be done by
fine-tuning OpenFold on the class of membrane proteins and then testing its

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 68

performance on membrane protein structures. Then test the performance of the
non-tuned model on the same dataset. Finally, compare the performances of the
two programs. If the fine-tuned version does not perform much better than the

non-tuned one, we would conclude that AlphaFold 2 can perform well on
predicting protein structures it has not been specifically fine-tuned on. Ideally,
we would expect similar performances for both models, which would mean that
AlphaFold 2 performs well for all protein classes, without the need for fine-tuning.

For this project, we will again confront the alignment problem discussed in the

previous chapter, but we will invest a significant amount of time both in protein
alignment and fine-tuning of the model, hoping to overcome it.

REFERENCES

[1] Alphafold. https://www.deepmind.com/research/highlighted-
research/alphafold. Accessed: 2023-06-29.

[2] Google deepmind. https://www.deepmind.com/. Accessed: 2023-06-29.

[3] John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael

Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,
Augustin Zídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A
A Kohl, Andy Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav
Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David A.

Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina
Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol
Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis
Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596:583 – 589, 2021.

[4] Protein data bank (file format) - wikipedia.
https://en.wikipedia.org/wiki/Protein_Data_Bank_(file_format). Accessed:
2023-06-27.

[5] Github - deepmind/alphafold: Open source code for alphafold.

https://github.com/deepmind/alphafold. Accessed: 2023-06-20.

Analysis of AlphaFold 2 Αlgorithm - Vasiliki L. Pitsilou

 69

[6] Openfold: A faithful but trainable pytorch reproduction of deepmind’s
alphafold 2. https://github.com/aqlaboratory/openfold. Accessed: 2023-06-
20.

[7] Docker: Accelerated, containerized application development. docker.com.
Accessed: 2023-06-20.

[8] Ucsf chimera home page. https://www.cgl.ucsf.edu/chimera/. Accessed:
2023-06-21

[9] Openfold.ipynb - colaboratory.
https://colab.research.google.com/github/aqlaboratory/
openfold/blob/main/notebooks/OpenFold.ipynb. Accessed: 2023-06-21.

[10] Membrane protein. https://en.wikipedia.org/wiki/Membrane_protein.
Accessed: 2023-06-17.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. 2017.

[12] https://www.alphafold.ebi.ac.uk/

https://www.alphafold.ebi.ac.uk/

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 70

Reasoning Over Description
Logic-based Contexts with Transformers

Angelos Poulis

ABSTRACT

One way that the current state of the art measures the reasoning ability of
transformer-based models is by evaluating accuracy in downstream tasks like

logical question answering or proof generation over synthetic contexts
expressed in natural language. However, all these contexts are in practice very
simple; in most cases, they are generated from short first-order logic sentences
with only a few logical operators and quantifiers. In this work, we construct a

synthetic dataset over the description logic language 𝒜ℒ𝒞𝒬 of 384K examples,
which increases in two dimensions: i) reasoning depth, and ii) length of
sentences. We show that the performance of our RoBERTa-based model, DELTA𝑀,
is marginally affected when the reasoning depth is increased and it is not affected

at all when the length of the sentences is increasing. We also paraphrase this
dataset and we observe that when DELTA𝑀 is fine-tuned, it performs equally well
over the new dataset. Finally, in line with recent research findings, we observe
that although transformer-based models seem to generalize well in increasing
reasoning depths, this does not seem to be the case in decreasing reasoning

depths.

Keywords: Natural Language Processing, Language Models, Description Logics,
Knowledge Bases, Logical Reasoning.

ADVISORS

Manolis Koubarakis, Professor NKUA
Eleni Tsalapati, Postdoctoral Researcher

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 71

1 INTRODUCTION

Ontological knowledge is usually represented with formalisms based on
description logic (DL) languages [1]. Description logics are fragments of first-
order logic that can be used in knowledge-based systems to represent a domain
of interest in a semantically well-defined manner. Their formal apparatus allows

us to perform reasoning tasks such as consistency checking, deciding whether a
sentence, or a set of sentences, logically implies another, and answering queries
over knowledge bases encoded in DL languages. An expressive and decidable DL
language that, besides the standard Boolean operators, supports also existential,
universal, and numerical constraints is 𝒜ℒ𝒞𝒬. For instance, one can formally

express in 𝒜ℒ𝒞𝒬 simple sentences like “Anne is a female” or “Anne is a female and
a postdoc” or complex sentences such as “If someone is a postdoc then she has a
Ph.D. degree, she teaches at most two courses and she supervises at least one
postgraduate student”. As a result of its expressive power, the complexity of

reasoning in 𝒜ℒ𝒞𝒬 is ExpTime-complete [19]. In this paper, we investigate the
hypothesis that large language models (LLMs) [3] could be used to carry out
reasoning tasks in the DL 𝒜ℒ𝒞𝒬. If our hypothesis is correct then this would: i)
enable the users to perform reasoning tasks (e.g., query answering) over
ontological knowledge bases using natural language instead of logic language,

and ii) possibly increase the time efficiency of the reasoning process. Recently, a
substantial amount of research appeared in the literature investigating the ability
of LLMs to carry out various reasoning tasks, such as logical question answering
[2, 4], proof generation [13, 17] or satisfiability checking [12], over synthetic

contexts expressed in natural language. These contexts are generated from
propositional logic or selected fragments of first-order logic (FOL) expressed in
natural language. As the focus is only on the reasoning ability of the models, the
datasets are generated in such a way that world knowledge that LLMs have

already learned is isolated. A standard way [2, 17] to achieve this is by performing
random sampling over a probabilistic context-free grammar (PCFG). The correct
answers are determined by a logical reasoner and the reasoning ability of the
models is investigated with respect to the depth of the logical proof. In certain
fragments of FOL, transformer-based models seem to have good performance,

but in more expressive ones the models do not perform equally well [4, 18]. The

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 72

question that this work seeks to answer is how well a transformer-based model will
perform reasoning over an expressive DL language, like 𝒜ℒ𝒞𝒬. One question that
arises here is if the fragment of the formal language is enough to measure the

reasoning ability of a model. For instance, both synthetic sentences “Anne admires
Bob” and “If someone admires only people that are cold and not round or kind or that
love at least one not green person, then they love someone that is cold or that loves
someone kind” can be expressed formally within 𝒜ℒ𝒞𝒬. Hence, this study asks: If

the context contains natural language sentences of the latter form, i.e., of high
linguistic complexity, would the model perform with high accuracy? It is important
to note that most of the benchmarks available in the literature are generated
from short sentences whose formal representation contains only a few logical
operators and quantifiers. We have constructed the dataset DELTA𝐷 (DEscription

Logics with TrAnsformers) of 384K question-answer examples (context-question-
answer-depth) based on 𝒜ℒ𝒞𝒬, where the question is the statement that we
check whether it logically follows from the context and answer is “True” (if it
does), “False” (if it conflicts with the context), “Unknown” (if none of the two).

DELTA𝐷 increases in complexity in both reasoning depth and breadth of
sentences. An example of the dataset is presented in Figure 1.

Fig. 5. An example from 𝐃𝐄𝐋𝐓𝐀𝑫 where the context contains long sentences, and the
true and false sentences are of depth 2. The sentence with answer “unknown” does

not logically follow from the context.

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 73

We test the performance of our transformer-based model, DELTA𝑀 on two
dimensions: i) the minimum reasoning depth required to obtain the answer, and
ii) the complexity of the natural language sentences appearing in the context. We

show that the performance of DELTA𝑀 is marginally affected when the reasoning
depth increases and it is not affected at all when the length of the sentences is
increasing (accuracy 97.6% in max. reasoning depth and max. length of
sentence). Hence, DELTA𝑀 generalises well with respect to these two dimensions.

We, also, tweaked a bit the probabilities of the PCFGs and we noticed that the
accuracy of the model remained equally good. When DELTA𝐷 is paraphrased,
then the performance of DELTA𝑀 drops (72.3% zero-shot accuracy). When it is
fine-tuned on the paraphrased dataset then the accuracy of the model increases
on both datasets (99.1% accuracy on the paraphrased data and 98.6% on the

original data, for max depth and length). When we tested the fine-tuned model
to a new dataset generated with the same process (i.e., from a PCFG grammar
and then paraphrased), we observed that its generalisation ability improves
(81.2% zero-shot accuracy). It was recently shown [15, 12, 23, 18, 14] that although

transformer-based language models may perform well in reasoning tasks, they
cannot acquire the logical principles governing the reasoning processes
employed by standard logical reasoners. To further emphasize these results, and
inspired by [18], we tested how a DELTA model performs on datasets with low

reasoning depths when it is trained only on data of larger reasoning depths. In
line with the literature, we observed that the accuracy of the model drops
significantly to approximately 50%, which shows that, indeed, the model does not
learn the underpinning reasoning rules but rather it emulates the logical QA task.

Overall, we make the following contributions:

1) We provide a large, balanced benchmark of 384K examples. Each example
contains the context, a question, an answer (true, false, unknown), and the
minimum reasoning depth required to obtain the answer. Additionally, the
benchmark contains the respective data in formal form (expressed in

𝒜ℒ𝒞𝒬) along with the minimum set of rules and facts involved in the
proving process. This is a significant contribution because: (i) this is the
first dataset of its kind for a DL, and (ii) building large benchmarks over
expressive logic languages, like 𝒜ℒ𝒞𝒬, is a challenging task as it requires

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 74

performing query answering with logic reasoners, a process that can be
very time-consuming (~ 1 min. for KB with long rules/facts). Both the
dataset and the code for its generation will be openly available to be used

by other researchers.

2) We create the transformer-based model DELTA𝑀 and we show that LLMs
can perform reasoning over synthetic contexts generated from 𝒜ℒ𝒞𝒬
sentences.

3) We show that the performance of LLMs is not affected by the length of the
sentences.

4) We confirm recent research findings in that although LLMs may perform
well in specific reasoning tasks, they have not learned the underpinning
reasoning rules.

5) This is the first work in the literature that studies the ability of transformer-
based models to perform reasoning tasks over expressive description logic
languages.

2 BACKGROUND ON DESCRIPTION LOGICS

We can use 𝒜ℒ𝒞𝒬 to represent knowledge about a domain by defining three
types of entities: individuals (e.g., John), concepts (e.g., Postdoc, i.e., the concept
describing the entities that are postdocs) and roles (e.g., teaches). Concept

expressions can be formed using these entities, the Boolean constructors
conjunction (⊓), disjunction (⊔), negation (¬) and universal (∀), existential (∃),
numerical (≤, ≥) role restrictions. For instance, one can represent formally all
entities that “have a Ph.D., teach at most two postgraduate courses and are not

academics” (∃ℎ𝑎𝑠. 𝑃ℎ𝐷 ⊓ ≤ 2 𝑡𝑒𝑎𝑐ℎ𝑒𝑠. 𝑃𝑜𝑠𝑡𝑔𝑟𝐶𝑜𝑢𝑟𝑠𝑒 ⊓ ¬ 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐). Rules in 𝒜ℒ𝒞𝒬
describe relationships between concept expressions. For example, the fact that
all postdocs are described by the aforementioned concept expression can be
represented with the concept inclusion 𝑃𝑜𝑠𝑡𝑑𝑜𝑐 ⊑ ∃ 𝑜𝑤𝑛𝑠 . 𝑃ℎ𝐷 ⊓ ≤

2 𝑡𝑒𝑎𝑐ℎ𝑒𝑠. 𝑃𝑜𝑠𝑡𝑔𝑟𝐶𝑜𝑢𝑟𝑠𝑒 ⊓ ¬ 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐. Facts describe knowledge about named
individuals, i.e., that are instances of some concept (expression), e.g., John is a

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 75

Postdoc (𝑃𝑜𝑠𝑡𝑑𝑜𝑐(𝐽𝑜ℎ𝑛)), or how they related, e.g., John teaches Module05

(𝑡𝑒𝑎𝑐ℎ𝑒𝑠(𝐽𝑜ℎ𝑛, 𝑀𝑜𝑑𝑢𝑙𝑒05)). An 𝒜ℒ𝒞𝒬 knowledge base (KB) is a set of rules and a set
of facts. The valid expressions in 𝒜ℒ𝒞𝒬 are defined as follows. We start with a
finite set of individuals, atomic concepts and roles. If 𝐴 is an atomic concept and
𝑅 is a role, according to the 𝒜ℒ𝒞𝒬 grammar [1], the concept expressions 𝐶, 𝐷 are

constructed recursively as follows: 𝐶, 𝐷 ∷= 𝐴 ∣ ⊤ ∣ ⊥ ∣ ¬ 𝐶 ∣ 𝐶 ⊓ 𝐷 ∣ 𝐶 ⊔ 𝐷 ∣ ∀ 𝑅. 𝐶 ∣

∃ 𝑅. 𝐶 ∣ ≥ 𝑛𝑅. 𝐶 ∣ ≤ 𝑛𝑅. 𝐶, where the top concept ⊤ is a special concept with every
individual as an instance, and the bottom concept ⊥ is the dual of ⊤, i.e., with no
individuals as instances. In 𝒜ℒ𝒞𝒬 we can construct very complex concept

expressions such as ∃𝑅1. (𝐶 ⊔ (∀𝑅2. (𝐷 ⊓ ≥ 𝑛 𝑅3. ¬ 𝐹))). A rule is of the form 𝐶 ⊑

𝐷 and a fact of the form 𝐶(𝑎) or 𝑅(𝑎, 𝑏), where 𝑎, 𝑏 individuals. Using complex
expressions one can construct very complex rules and facts. We denote with LHS

(left-hand side) the concept expression that appears on the left of the
subsumption symbol (⊑) in a rule and with RHS (right-hand side) the concept
expression that appears on the right. The inferred closure of a KB 𝒦 is the
minimum set of rules and facts that can be logically inferred from 𝒦. Given a KB

𝒦 and a rule or a fact 𝑎, 𝑑𝑒𝑝𝑡ℎ(𝑎, 𝒦) denotes the minimum number of rules and
facts in 𝒦 that can be used to logically deduce that 𝑎 is true or false. Following
the semantics of DLs, we make the open-world assumption, i.e., missing
information is treated as unknown.

3 DATASET GENERATION

We investigate the ability of transformers to perform logical question answering
over 𝒜ℒ𝒞𝒬 KBs expressed in natural language with respect to three dimensions:

i) the minimum depth of inference 𝐷 a logic reasoner would need to answer the
corresponding query, ii) the linguistic complexity level ℒ of the knowledge
required to answer the query, iii) paraphrased sentences. Each example in the
dataset is a quadruple ⟨𝒯, 𝒬, 𝒜, 𝒟⟩, where 𝒯 is the context containing 𝒜ℒ𝒞𝒬
axioms expressed in natural language, 𝒬 a rule or fact expressed in natural

language which forms the question, 𝒜 is the answer which can be either true, false,

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 76

or unknown, and 𝒟 = depth(𝑞, 𝐾), where 𝑞 is the query expressing formally the
question 𝒬. The natural language of the dataset is English.

Fig. 6. Data generation pipeline for examples with n-level context and answers of
minimum inference depth ≤ m

The pipeline for the generation of the dataset is presented in Figure 2. For the
generation of an example of linguistic complexity level 𝑛 (𝐿 ≤ 𝑛) and number of

inference steps up to 𝑚 (𝒟 ≤ m), we first generate a small (with maximum 12
axioms and 14 facts) KB 𝒦 using specially crafted PCFGs for 𝑛-level 𝒜ℒ𝒞𝒬 KBs
(denoted in Figure 2 with 𝒜ℒ𝒞𝒬 − 𝑛 PCFG). Then, the inferred closure of 𝒦 is
calculated by using and extending the reasoner HermiT [7], from which we

calculate the queries. A KB 𝒦 is kept only if it can produce queries with all three
types of answers at all depths up to 𝑚, otherwise, it is discarded, and a new one
is generated. Once this process is completed, the generated rules, facts along
with the original KB 𝒦, are translated into natural language statements and into

the context 𝒯, respectively, by utilizing a set of natural language templates.

3.1 KB Generation

We have defined two different pools of terms, Pool A and Pool B, from which we
generate 40 datasets (20 from each pool) of 1000 KBs each, of different inference
depths and axiom lengths. Pool A contains 14 atomic concepts, 5 roles, 8

individuals, all taken from RuleTaker dataset [2] (in RuleTaker the rules are simple

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 77

conjunctive implications, where the concept names are named “attributes”, the
roles “relations” and the individual names “entities”). Pool B contains 8 atomic
concepts, 8 roles and 8 individuals. For each pool of terms, we generate four

types of 𝒜ℒ𝒞𝒬-ℒ KBs (ℒ = 0,1,2,3), based on the number of constructors and
quantifiers appearing in their axioms. In general, an ℒ KB includes axioms that
their LHS or RHS contain ℒ Boolean constructors and at most ℒ + 1 quantifiers,
but also includes simpler axioms of smaller levels.

For instance, KBs of level ℒ = 0 contain only very simple facts or axioms that do
not contain any Boolean constructors but can contain one quantifier, such as
𝐸𝑛𝑡ℎ𝑢𝑠𝑖𝑎𝑠𝑡𝑖𝑐 ⊑ ∃ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠 . 𝐸𝑛𝑡ℎ𝑢𝑠𝑖𝑎𝑠𝑡𝑖𝑐 (translated in NL as “Enthusiastic people
support someone enthusiastic”), KBs of level ℒ = 1 contain axioms that their LHS
or RHS can contain up to a single Boolean constructor and up to two quantifiers,

etc. To keep the KBs processible by the reasoners, the axioms can contain up to
seven atomic concepts and up to two nested quantifiers (e.g.,
∃𝑙𝑖𝑘𝑒𝑠. (∃𝑙𝑜𝑣𝑒𝑠. (𝐶𝑎𝑡)), which describes the entities that like some entity that loves

some cat). All KBs are checked with respect to satisfiability and consistency with
HermiT. In line with [2, 17], each dataset contains questions whose answers have
minimum depth of inference 𝒟 (𝒟 = 0,1,2,3,5).

3.2 Query Generation

For an inference depth 𝐷, a true query (answer=true) 𝑞 is an axiom or fact selected
from the inferred closure of a consistent 𝒦, such that 𝑑𝑒𝑝𝑡ℎ(𝑞, 𝒦) = 𝒟. An
unknown query (answer=unknown) is generated by creating a random fact or

statement (using the corresponding PCFG) such that it does not belong to the
inferred closure of 𝒦 and is consistent with 𝒦. A false query (answer=false) can
be generated in three ways:

• From an inconsistent 𝒦: for every 𝑎 ∈ 𝒦 if 𝒦 ∖ {𝑎} is consistent then 𝑎 is a
false query over the KB 𝒦 ∖ {𝑎}.

• From a consistent 𝒦: i) By negating a true query 𝑞 with depth(q, 𝒦) = 𝐷
(and applying De Morgan's laws). ii) By automatically generating an
appropriate axiom or fact 𝑎 such that 𝒦 ∪ {𝑎} is inconsistent and
𝑑𝑒𝑝𝑡ℎ(𝑎, 𝒦) = 𝒟. For instance, suppose that a KB 𝒦1 contains the axioms

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 78

(∀ 𝑎𝑑𝑚𝑖𝑟𝑒𝑠 . ⊥)(𝐴𝑛𝑛𝑒) and ∀ 𝑎𝑑𝑚𝑖𝑟𝑒𝑠 . ⊥ ⊑ ∀ 𝑙𝑖𝑘𝑒𝑠 . 𝑄𝑢𝑖𝑒𝑡 which in natural
language are translated into: “Anne admires none”, “All people that
admire none like only quiet people”. Then, the fact (∃ 𝑙𝑖𝑘𝑒𝑠 . ¬ 𝑄𝑢𝑖𝑒𝑡)(𝐴𝑛𝑛𝑒)

stating that “Anne likes someone who is not quiet” forms a false query for 𝒦.

The disadvantage of the first approach is that it requires calling the reasoner
multiple times, a time-consuming process, especially in KBs with long axioms
(e.g., ℒ=3 KBs). Hence, we used the two latter approaches.

3.3 Data Translation to NL

The KBs and queries were translated to NL with the use of templates. The
templates were created based on the user-friendly Manchester syntax for 𝒜ℒ𝒞𝒬
[5]. Following this syntax, the intersection (⊓) and union (⊔) operators, are
translated as “and” and “or”, respectively, the existential (∃) quantifier is

translated as “someone” or “something” (depending on whether the pool is
about people or things), the universal (∀) as “only”, and the numerical
restrictions ≤, ≥ as “at most” and “at least”. Also, we use the word “that” for
intersections and nested quantifiers. For instance, the fact

(∃ 𝑙𝑖𝑘𝑒𝑠 . (∀ 𝑙𝑖𝑘𝑒𝑠 . 𝐾𝑖𝑛𝑑))(𝐵𝑜𝑏) is translated as “Bob likes someone that likes only

kind people”. Following the template-based approach suggested by [17], the

axioms of the form 𝐶 ⊑ 𝐷 are, roughly, translated into NL in four different ways:
i) “If 𝐶 then 𝐷”; ii) “People/Things that are 𝐶 are 𝐷”; iii) “All people/things that
are 𝐶 are 𝐷”; iv) If 𝐶 = ⊤ and 𝐷 = ∀𝑅. 𝐶′ this is translated as
“Someone/something can 𝑅 only people/things that are 𝐶′”. A fact 𝐶(𝑎) is

translated as “𝑎 is 𝐶”. To ensure that the resulting NL sentences are
grammatically correct we have used a grammar checker
(https://pypi.org/project/language-tool-python/).

3.4 The dataset 𝐃𝐄𝐋𝐓𝐀𝑫

After the generation and the translation of all KBs and queries, examples of the

same depth and level from both pools are merged. This results in 20 datasets of
2000 KBs each, with each resulting dataset containing sentences from both
vocabularies. From each KB we generated three queries (true, false, unknown)
for each depth (𝒟 = {0,1,2,3,5}), i.e., from each KB we generated 3 × (𝑑 + 1), 𝑑 ∈ 𝒟.

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 79

So, in total, the dataset contains Σ𝑑∈𝒟3 × (𝑑 + 1) × 2000 × (ℒ𝓂𝒶𝓍 + 1), where
ℒ𝓂𝒶𝓍 = 3 is the highest of complexity levels.

3.5 Different Data Distributions

To check the performance of our model on different data distributions we
generated new datasets by i) paraphrasing examples from DELTA𝐷, and ii)
tweaking the PCFGs.

Paraphrasing examples. We initially used GPT-3 (text-davinci-003 model) and

we tested the results by using the sentence transformer suggested by [11] with
cosine similarity checking (t > 85%). However, the paraphrasing process was very
time-consuming (> 10 seconds/KB) and the resulting data had only a few (~ 20%)
acceptable alterations from the initial dataset. Hence, by observing the type of
changes conducted on 730 axioms by GPT-3 we changed, also, the rest of the

dataset. In particular, we used synonyms and opposites of terms appearing in
the pools and we changed the tense of the verbs. All these changes were
performed randomly, resulting in a dataset paraphrased by 83.14 %. So, for
instance, a paraphrased version of the knowledge base 𝒦1 presented above is

the following (the paraphrased terms are in italics).

• “Anne looks up to none.”

• “If someone does not admire anyone, then they like only silent individuals.”

• “If someone is fond of only quiet people, then they chase someone.”

From which it is inferred that “Anne chases someone”. Notice that although the
KB is of the form 𝐶(𝑎), 𝐶 ⊑ 𝐷, 𝐷 ⊑ 𝐹, and the query is of the form 𝐹(𝑎), this is not
so obvious in its paraphrased version unless the semantics of the words/phrases
are taken into account.

Tweaking PCFGs. We increased the probability of ∀ from 0.33 to 0.70 and the

probability of the disjunction from 0.50 to 0.80 at ℒ = 3 PCFG.

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 80

3.6 Statistical Features

As it is thoroughly discussed by [23], it is impossible to eliminate all statistical
features that exist in data, besides, some of them inherently exist in logical

reasoning problems (e.g., due to monotonicity, it is more likely that large KBs will
produce positive examples). DELTA𝐷 is balanced with respect to the following
features: i) KB size: From the same KB we extract all three types of questions (true,
false, unknown); ii) Inference depth: We keep a KB only if it can provide all three

types of questions with the same inference depth; iii) Formulation of the question:
The word “not” appears almost equal number of times in true questions (17.47
%), false questions (17.54 %) and unknown questions (15.54 %); iv) Average length
in words: True questions 10.85, false questions 9.53, unknown questions 10.35.

4 EXPERIMENTS

For all our experiments we use RoBERTa-large, as the results from the literature
[2, 18] showed that it has the best performance in QA over logical rules expressed

in natural language. We train RoBERTa-large to predict true/false/unknown (i.e.,
multi-class classification) for each example. A context-question pair is supplied to
the model as: [CLS] context [SEP] question [SEP]. For evaluation, we measure
accuracy. The test data has an equal balance of True/False/Unknown answers,
hence the baseline of random guessing is 33.3%. We use the AdamW optimizer

[8] using its default values for betas and a weight decay setting of 1𝑒−4. We take
subsets of DELTA𝐷 as they were formed during the generation process to train
the model in the following way: The training is first performed per linguistic
complexity level and then per depth (i.e., first it is trained in all linguistic

complexity levels at depth 0, then in all complexity levels at depth 1, etc.). Hence,
the final model DELTA𝑀 has been trained to all depths and all linguistic
complexity levels. The intermediate models are denoted with DELTA𝑖,𝑗 where 𝑖

represents the reasoning depth and 𝑗 the complexity level. For instance, the
model DELTA3,2 has been trained to depths up to 3 and to all complexity levels on

the previous depths and levels up to 2 on depth 3. DELTA𝑀 = DELTA5,3. For all

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 81

datasets, we partitioned the data into 70%/10%/20% splits for
train/validation/test sets.

Table 1. Accuracy of DELTA models on Test (own), on 𝐃𝟓,𝟑 dataset, and on slices of 𝐃𝟓,𝟑
per depth.

Table 1 illustrates the performance of RoBERTa-large when trained on up to ℒ ≤

3 linguistic complexity over the various inference depths. For instance, the
column DELTA0,3 shows the performance of the model trained over all levels in

depth 0. Test (own) represents the (held out) test set of the dataset that the
model has been trained on. The D5,3 dataset has questions from all inference

depths (𝒟 ≤ 5) of all levels (ℒ ≤ 3). “Depth N/A” refers to the unknown questions,

as these are not provable. 𝒟 = 0 to 𝒟 = 5 represent the subsets of D5,3 that
correspond only to these depths, e.g., 𝒟 = 3 is the subset of D5,3 containing only

questions of depth 3. DELTA models have in general high accuracies but

decrease as reasoning depths increase. They show improved but plateaued
generalization on D5,3, up to 𝒟 ≤ 5. Interestingly, DELTA1,3 generalizes better than

DELTA2,3. DELTA3,3 not only matches the performance of DELTA5,3 on D5,3 but

scores higher on most slices of D5,3. This is an unexpected behavior of the model,
as DELTA5,3 has been trained at all depths and all linguistic complexity levels. For

the first time, the Test (own) score drops below 99% with DELTA5,3. This suggests

that while DELTA5,3 strives to excel at higher depths (𝒟 = 4, 𝒟 = 5), it may

compromise its generalization capability at lower depths.

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 82

Table 2. Accuracy of DELTA models on Test (own) across all levels.

Table 2 demonstrates the performance of the intermediate models and the final
model when tested on Test (own). For instance, the cell that corresponds to 𝒟 =

0, ℒ = 0 shows the accuracy of the model DELTA0,0. We observe that for depths

𝒟 = 0 to 𝒟 ≤ 3 the models are robust across levels, but when the depth increases
to 𝒟 ≤ 5 then increasing lengths affect performance (slightly).

Table 3. Accuracy of DELTA models on D ≤ 5 across all levels.

Similarly, Table 3 illustrates the performance of the intermediate models DELTA𝑖,𝑗

on datasets of depth 𝒟 ≤ 5 and level 𝑗. For instance, the cell that corresponds to
𝒟 = 0, ℒ = 0, shows the accuracy of model DELTA0,0 on data of level 0 and depth

𝒟 ≤ 5. In practice, this table demonstrates, the progress of the model while
training. We notice that its performance increases monotonically, except when it
first sees data of next depths where the performance fluctuates, suggesting the
different format of the data of larger lengths and smaller depths (e.g., ℒ ≤ 3, 𝒟 ≤

3) compared to small lengths and larger depths (e.g., ℒ = 0, 𝒟 ≤ 5).

Zero-shot performance on paraphrased dataset. We paraphrased the dataset
D5,3 based on the methodology described in Section 3.5. The zero-shot accuracy

of DELTA𝑀 over the paraphrased dataset was 72.3%, while the respective
accuracy on the original D5,3 was 98.4%. This significant drop can be explained by

the fact that the patterns of the original dataset have changed.

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 83

Zero-shot performance on slightly tweaked dataset. We changed the
probabilities in the PCFG of linguistic complexity level 3 and we generated the
new dataset DELTA𝑇 (described in Section 3.5) of 1200 examples of up to

reasoning depth 𝒟 ≤ 5. This tweaking has resulted in sentences with
0.8/sentence disjunctions and 0.62/sentence universals. The accuracy of
DELTA𝑀 on the tweaked dataset was 94.5%, hence DELTA𝑀 seems to be robust (<

3% loss) over this new distribution.

Table 4. The performance of a model trained on questions of only depth 3, over
datasets of various depths.

Zero-shot performance on smaller depths. We partitioned the dataset to the
various depths, i.e., we extracted from DELTA𝐷 datasets D𝑖, which contain only
data of depth 𝑖 (of all levels) and not up to 𝑖. We also trained the model DELTA3
on 16K examples of only depth 3 in all lengths (ℒ ≤ 3). The results are

demonstrated in Table 4. We see that the model cannot generalize to decreasing
depths but generalizes to increasing depths. This implies that the model has not
learned the underpinning reasoning rules governing the reasoning process.

Table 5. Accuracy of 𝐏 − 𝐃𝐄𝐋𝐓𝐀𝟑,𝟑, 𝐏 − 𝐃𝐄𝐋𝐓𝐀𝟓,𝟑 models on paraphrased versions of
Test (own), 𝐃𝟓,𝟑 and slices of 𝐃𝟓,𝟑 per depth.

Performance of 𝐃𝐄𝐋𝐓𝐀𝑴 when fine-tuned to paraphrased data. We fine-

tuned DELTA𝑀 on the paraphrased versions of datasets of 𝒟 ≤ 3 and 𝒟 ≤ 5

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 84

(across all levels) of DELTA𝐷 to construct the models P − DELTA3,3, P − DELTA5,3.

Then, these models were tested over the paraphrased version of Test (own) and
the paraphrased version of dataset D5,3. As it is shown in Table 5 (for ℒ ≤ 3), fine-

tuning the model on paraphrased datasets significantly improves its
performance, particularly for 𝒟 = 4, 𝒟 = 5 questions, and boosts its zero-shot
performance on the original D5,3 dataset.

Zero-shot performance on a new dataset. We created the dataset “Animals”

from a new pool of terms that were about animals. As creating a new dataset
from scratch with the methodology described in Section 3.5 required
approximately 30 hours for 1000 KBs of 𝒟 ≤ 5 and ℒ ≤ 3, we replaced the terms
in the original datasets 𝒟 ≤ 3 and 𝒟 ≤ 5 across all length levels with the
corresponding terms from this pool of terms. After this, we paraphrased the

resulting dataset. The accuracy of DELTA𝑀 on the paraphrased dataset was 72.3%
and the accuracy of P − DELTA5,3 was 81.2%.

5 RELATED WORK

A survey of the most recent research on the use of transformers for reasoning

tasks can be found in [22]. One of the first studies in the domain was from [2]
with RuleTaker, where it was demonstrated the potential of transformers to
perform logical question answering under CWA by training LLMs on synthetic
datasets. However, their approach was limited to short expressions of simple

conjunctive rules. [4], with the FOLIO dataset (1.4K), in the same line with
RuleTaker, tested the ability of various LLMs for the same reasoning task under
OWA. FOLIO was in FOL but without numerical restrictions. The result was that
RoBERTa performed better than all models, but still the performance was low.
[17] with the model ProofWriter built on top of T5 transformer [10] and the

(modified) datasets from RuleTaker showed that LLMs can generate proofs
(94.8% accuracy for depth 5). [9] showed that LLMs perform well (up to 90.5%)
over context generated by propositional logic and a small subset of FOL. [18]
introduced the much richer synthetic dataset LogicNLI (30K), under OWA for

diagnosing LLMs behavior. They showed even the best performing model on

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 85

LogicNLI, RoBERTa, does not learn to reason and cannot generalize to different
scenarios. [15] generated a very simple dataset (containing a single conjunction)
for satisfiability checking and showed that models that perform well on hard

problems do not perform equally well in easier problems, resulting in the
conclusion that transformers cannot learn the underlying reasoning rules rather
than they tend to overfit to patterns in the generated data. Also, [23, 18] achieved
similar results. [14] showed that LLMs are good at producing valid individual

steps but are struggling when there is more than one path in the proving
process. Most of the aforementioned benchmarks are composed of short
sentences. The ones that contain longer sentences (avg. 13 words/sentence) are
small (≤ 40K), while none of them have examples with numerical restrictions.

6 CONCLUSION AND FUTURE WORK

We generated the only large, balanced, synthetic dataset (384K) in the literature
that targets expressive DLs (namely, 𝒜ℒ𝒞𝒬), enjoys both high expressivity and

high linguistic complexity and it is publicly available for further understanding of
the functionality of LLMs. We showed that LLMs can carry out reasoning over
expressive synthetic datasets with high accuracy. We, also, showed that the
length of sentences in the context only marginally affects the performance of the
model. Slight tweaking in the generation process did not affect the model, while

it performed very well when fine-tuned to paraphrased datasets. In line with the
recent results in the literature, we showed that our model has not learned the
underpinning logic rules but can carry out reasoning tasks with high accuracy. As
future work, we plan to explore the upper limit of the expressivity of the logic

language that a transformer-based model will be able to perform reasoning
tasks with high accuracy.

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 86

REFERENCES

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. 2003. The Description Logic Handbook:

Theory, Implementation, and Applications. Cambridge University Press.

[2] Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020. Transformers as soft
reasoners over language. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pages 3882–3890.

ijcai.org.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computational Linguistics.

[4] Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke
Benson, Lucy Sun, Eka- terina Zubova, Yujie Qiao, Matthew Burtell, David

Peng, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, Ansong Ni,
Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq Joty, Alexander R.
Fabbri, Wojciech Kryscinski, Xi Victoria Lin, Caiming Xiong, and Dragomir
Radev. 2022. Folio: Natural language reasoning with first-order logic.

[5] Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector, Robert
Stevens, and Hai Wang. 2006. The manchester OWL syntax. In Proceedings
of the OWLED*06 Workshop on OWL: Experiences and Directions, Athens,
Georgia, USA, November 10-11, 2006, volume 216 of CEUR Workshop
Proceedings. CEUR-WS.org.

[6] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. 2008. Laconic and precise
justifications in OWL. In The Semantic Web - ISWC 2008, 7th International
Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-30,
2008. Proceedings, volume 5318 of Lecture Notes in Computer Science, pages

323–338. Springer.

[7] Ian Horrocks, Boris Motik, and Zhe Wang. 2012. The hermit OWL reasoner.
In Proceedings of the 1st International Workshop on OWL Reasoner Evaluation

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 87

(ORE-2012), Manchester, UK, July 1st, 2012, volume 858 of CEUR Workshop
Proceedings. CEUR-WS.org.

[8] Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay

regularization.

[9] Santiago Ontañón, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. 2022.
Logicinference: A new dataset for teaching logical inference to seq2seq
models. CoRR, abs/2203.15099.

[10] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res., 21:140:1–140:67.

[11] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence

embeddings using siamese bert-networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics.

[12] Kyle Richardson and Ashish Sabharwal. 2022. Pushing the limits of rule

reasoning in transformers through natural language satisfiability. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI

2022 Virtual Event, February 22 - March 1, 2022, pages 11209–11219. AAAI
Press.

[13] Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava, and Mohit Bansal.
2020. PRover: Proof generation for interpretable reasoning over rules. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 122–136, Online. Association for Computational
Linguistics.

[14] Abulhair Saparov and He He. 2022. Language models are greedy reasoners:
A systematic formal analysis of chain-of-thought. CoRR, abs/2210.01240.

[15] Viktor Schlegel, Kamen V. Pavlov, and Ian PrattHartmann. 2022. Can
transformers reason in fragments of natural language? In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing,

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 88

EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages
11184–11199. Association for Computational Linguistics.

[16] Thomas Wolf Philipp Schmid Zachary Mueller Sourab Mangrulkar Sylvain

Gugger, Lysandre Debut. 2022. Accelerate: Training and inference at scale
made simple, efficient and adaptable. https:
//github.com/huggingface/accelerate.

[17] Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021. Proofwriter:

Generating implications, proofs, and abductive statements over natural
language. In Findings of the Association for Computational Linguistics:
ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of
Findings of ACL, pages 3621–3634. Association for Computational Linguistics.

[18] Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao, Hao He, and Yaohui Jin.

2021. Diagnosing the first-order logical reasoning ability through logicnli. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 3738–3747. Association for Computational

Linguistics.

[19] Stephan Tobies. 2000. The complexity of reasoning with cardinality
restrictions and nominals in expressive description logics. J. Artif. Intell. Res.,
12:199– 217.

[20] Jason Weston, Antoine Bordes, Sumit Chopra, and Tomás Mikolov. 2016.
Towards ai-complete question answering: A set of prerequisite toy tasks. In
4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[21] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement

Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-

of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System

Reasoning Over Description Logic-based Contexts with Transformers - Angelos Poulis

 89

Demonstrations, pages 38–45, Online. Association for Computational
Linguistics.

[22] Zonglin Yang, Xinya Du, Rui Mao, Jinjie Ni, and Erik Cambria. 2023. Logical

reasoning over natural language as knowledge representation: A survey.
CoRR, abs/2303.12023.

[23] Honghua Zhang, Liunian Harold Li, Tao Meng, Kai Wei Chang, and Guy Van
den Broeck. 2022. On the paradox of learning to reason from data. CoRR,

abs/2205.11502.

	studbook2024cover
	studbook2024

