EMNIAECMENEZ

NTYXIAKEZ & AINAQMATIKEZ
EPMAZIEZ

EAAHNIKH AHMOKPATIA

Edvikov kou Kanodictplakov
Movemctnuiov Adnvev

2XOAH OETIKQON EINIXTHMON
TMHMA ITAHPO®OPIKHX & THAEIIIKOINQNIQN

EMNIANEFMENE2
ATYXIAKES & AINAQMATIKE:

EPTA2IE2

Ekbidetal pia dpopd To XpOvo amo Tto:

TuApa MAnpodopikAg Kot TRAETLKOWVWVLWV
EOvikAv kot KarodiotpLakov Naveniotipiov ABnvwy,

NoavenotnuioUntoAn, 15784 AGrva

Emiuéleia ékboong:
Eritpornt) EpsuvnTikwv Kot Avamntu§Lakwy ApactnpLloTATWV
0. @=oxapnc (umevBuvocg €kdoong), KaBnyntig, Tunpa NAnpodoptkig kat THAEMKOWWVLWY
H. MavwAdkoc, KaBnyntig, Tunua NMAnpodoptkg kol TNAETILKOWV WVLWV

TpapLotikn emiEAsLa - ETUEAELQ KELUEVWYV:

E. DAwptLdg, TuRpa MAnpodopikng kot TAAETUKOWWVLWY

ISSN 1792-8826

Copyright© 2018, Turpa MAnpodoptkrg kot ThAemKowwviwy, EBviko kat Kanodiotplako Maveniotriputo ABnvwv

Mepiexopeva

NMpoAoyog

YAotroinon lNevikeupévou MoAAatrAaciaopou Fpdgou oe
Kdpta Mpagikwyv

EudyyeAog N. NikoAdTTOUAOG

An SDN QoE Monitoring Framework for VolP and video
applications

Maria-Evgenia |. Xezonaki

Algorithms, Hashing, Parallel processing, and the
Nearest Neighbor problem in High Dimensions

Georgios C. Samaras

Graphity: Out-of-core graph multiplications

Stamatis Christoforidis

9

23

35

49

NMpoéAoyog

O topo¢ autog meplhappavel epAPELS EMAEYUEVWY SUTAWHOTIKWY KOL TITUXLAKWV
gepyaclwv 1mou ekmovnBnkav oto TuRpa MAnpodoplkAg kat TNAEMKOWWVLWY TOU
EBvikoU kat Kamodiotplakou Mavemiotnuiov ABnvwy katd to didotnua 01/01/2017 -
31/12/2017. NMpokettal ylo Tov 150 TOpo ot olpd autr. ZTdXoG Tou Beopou glval n
evBappuvon TG OnNUOUPYLKAG TpoomABelag Kal n TPOoBOAN Twv MPWIOTUTTWV
EPyacLwV Twv ¢oltntwy tou TUAUATOoC.

H ékdoon autni eivatr Pndlakq kat €xel 6ikd tng ISSN. Avaptdtal otnv emionun
lotooeAida tou TUAMOTOG KoL €TOL, €KTOC amd Tn Melwon tng damdvng Katd Tnv
TpéXouoa meplodo OLKOVOULKNG KPLoNg, €XEL KOl HEYaAUTEPN MpooPacipotnta. Mo to
oTOX0 QUTO, oNUAVTIKA ATav N cupBoAn tou K. Eudyyelou OAwpld mou empueAndnke
d€tog NV Pnodlakn £€kdoon Kol METUXE PLAL EAKUCTLKN TIOLOTNTA TTOPOUCLOONG, EVW
BeATiwoE KOL TNV OLOLOYEVELD TWV KELUEVWV.

H otdBun twv emAeypévwy gpyooitwV ivatl uPnAR Kol KATIOLEG Ao QUTEG £XOUV ElTE
dnuooteuBel eite unmoBAnBel yia Snuocisvon.

Oa BéAape vo EUXAPLOTHOOUUE TOUC POLTNTEC YLa TO XPOVO TIou adlEpwoaV yla va
mapouactdocouv T SOUAELA TOUC oOTa TAQIOW OUTOU Tou BeopoU Kol va Toug
OUYXQPOULE YLt TNV TOLOTNTA TWV gpyactwv touq. EAntiloupe n dwadikaoia auth va
npooédepPe Kal oTOUC iSloug pLa epmelpia mou Ba toug BonOrosL 0TN CUVEXELA TWV
OTIOUS WV TOUC | TNG EMAYYEALOTLKAG TOUG oTtadlodpopiag.

H Emutponny EpeuvnTikwy Kot Avamtuélakwy ApaotnpLloThTwy
0. Oeoxapnc (urmevBuvog €kdoong), H. MavwAdakog

ABnva, lovviog 2018

il K |
e

m. __._

YAoTtroinon Nevikeupévou
NMoAAatTAaociaouou Mpdou oe Kapta
Mpagikwyv

EudyyeAog N. NikoAdTTOUAOG (Vgnikolop@di.uoa.gr)

MepiAnyn

H aApatwdng TexvoAoyikh €CEAIEN TWV KAPTWYV ypa@IKWV Ta TeEAeuTaia xpdvia, n
oX€0n KOOTOUG TTPOG ETTECEPYQOTIKN 10XU KOBWG Kal N €10aywyr] MOVTEAWV
TTPOYPAUMATIONOU YEVIKOU OKOTTOU OE QUTEG, TIG KABIOTOUV €AKUCTIKN €TTIAOYN
yila mTAnBwpa e@apuoywyv. O1 KAPTEG YPOPIKWV HAG TTPOCPEPOUV HAdIKN
TTapaAAnAia Kal CUVETTWG MEYAAN €TTe€epyaoTiKh 10XU. Z€ QUTA TNV Epyaaia
QOXOAOUUOOTE ME ETTECEPYOOIA YPAPWY OE€ KAPTEG YPAPIKWY. ZUYKEKPIMEVA
UAOTTOIOUE TO WOVTEAO TOU YEVIKEUPEVOU TTOAAATTAQOCIQOPOU YPAPWY HE TO
OTTOI0 MPTTOPOUME va ek@pAooupe evdlapépovta TTPoBARuaTra o€ dedopéva
YPAQWV OTTWG €ival n eupeon Twv @iAwv Twv @QIAwv KABe XpAOTN €vOg
KOIVWVIKOU OIKTUOU. AE€iXVOUUE TTWG PTTOPOUME VO EKPETAAAEUTOUNE Tn HAlIKA
TTapaAAnAia, avadAoya pe TIG IB10TNTEG KABE KOUBOU TOU YPAPOU, TTPOKEIUEVOU VA
eNAXIOTOTTOINCOUNE TOV XPOVOo €ekTEAeoNnG. lMapouoidloupe pia véa uPpIOIKA
TTPOCEYYION TAgIVOUNONG MIKPWYV TTIIVAKWY O KAPTEG YPOQPIKWY. 2Tn OUVEXEIQ
MEéoa aTTOd €va OUVOAO ATTO TTEIPANATA PE YPAPOUG HE DIOPOPETIKES IDIOTNTES
dcixvoupe OTI n UAOTTOINON O€ KAPTA YPAQPIKWYV Egival ypnyopotepn OTIG
TTEPITITWOEIG ATTO MIO OE ETTECEPYAOTH YEVIKOU OKOTTOU KOl WE XAMNAOTEPO
KOOTOG UAIKOU. TEAOG TTAPOUCIACOUNE €V OUVTOUIO OXETIKEG EPYQTIEG OE KAPTEG
YPOPIKWVY TOOO O€ ETTECEPYATIA YPAPWY OGO KAl KAAOIKWY TEAEOTWYV BACEWV.

AESeig-KA&1814: MoAAatTAaciaoudg Mpdewy, Kapta IMpagikwy, BeATioTotToinon,
Madikn MapaAAnAia

EmiIBAéTTWV
lwavvng lwavvidng, Kadnyntig (tuiua NMAnpogopikng kai TnA/viwv EKTA)

1. EIZArQrH

O1 ypagol arroteAouvTtal ammd KOUPOUG KAl AKPEG TTOU TOUG OuvdEéouv, TOOO Ol
KOUBOI 600 Kal Ol OKPEG PTTOPET va £XOUV KATTOIA TIUF, Ol KYEG PTTOPEI va gival
KATeuBuvoueveg 1 OxI. AtToTeAOUV Tn PaCIKr PovTeEAOTTOINON OEdOUEVWV VIO
TTPOBAAPATA TTOU €KTEIVOVTAl O€ €va €UpU OUVOAO aTTO TTEPIOXEG OTTWG
KOIVWVIKA Kal odika Oiktua, T10 Aladiktuo, Tn PioAoyia k.a. Metd ammd
ETECEPYATia TOUG PTTOPOUMPE va €CAYOUUE XPNAOIUNO CUPTTEPACHOTA OTTWG TN
ouvTONOTEPN OladpOour HETAEU dUO onueiwv OTO XAPTN 1 T oxéon PeETagu duo
I0TO0€AidwY oT1o Aladiktuo. Mag evdlagépel Aoimtév va PTTOPOUME va
ETTECEPYAOTOUNE QTTOOOTIKA Kal ypriyopa €vav ypago. ATTO Tn @uUon Toug Ol
ypa®ol ouvABbwg €xouv Kakn TotmikdTNTa (locality) kal akavovioTn popery, cuyxva
uUTTapXouV Aiyol TTOAU dnuo@IAeig kKOPPBoI Kal TTOAAOI AiyOTEPO dNUOYIAEIG. AUTA
gival xapakTnpIoTIKG TTou OUOKOAEUOUV TNV aTTODOTIKN EKTEAECT aAyOPIOuWY o€
oedopéva ypagwy Kail yia Tov AOyo auTo atraiTouv 101K METAXEIPION.

Me 10 povTéAO TOU yeviKeupEvou TTOAAaTTAaCIacpoU ypdaewy (M), TTou Ba pag
ATTaoXOANOEl OTnN TTAPOUCA EPYAOia, MTTOPOUPE VA POVTEAOTTOINOOUWE
evola@épovTta TTPoBARPaTa OTTWG, €0UpeCn TWV QIAWV TwWV QiIAwv KABe xprRoTn
EVOG KOIVWVIKOU OIKTUOU, METPIKEG OMOIOTNTOG Kal GAAa. [llpokeiyévou va
emTayxUvoupe Tnv ektéAeon Tou MM Ba xpnoiyotroifooupe €CEIDIKEUPEVO UAIKO
KOl OUYKEKPIPEVA KAPTEG Ypa@IKwy. O ouvelIoQopés TNG epyaciag eival (a) o
KaBopIiopog kal n uAotroinon evog TAGvou ekTéAeong ITIM pe atmodoTIKA
aglomroinon Twv TOpwV TNG KAPTAG ypagikwyv (B) TTapouciacn uIag vEQG
TTPOCEYYIONG TAEIVOUNONG MIKPWV TTIIVAKWY 0€ KAPTA YPOQPIKWY TTOU KPiBnke
aATTOPAITATO Va avaTrTUEoupE Kai (Y) Eva oUVOAO aTTd TTEIPAPATA TTOU agloAoyouv
TIG TTPONYOUNEVEG CUVEIOPOPEG.

2. TENIKEYMENOZ NOAAATIAAZIAZMOZ NPA®QN

‘EOTW OTI avatrapioToupe évav ypago G pe xpron Trivaka yeirviaong (adjacency
matrix). O Tivakag yeirviaong ival €vag Tmivakag 2 dlaoTdoswyv, oTo KeAi (i, j)
QAVTIOTOIXICOUUE TIG IDIOTNTEG TNG OKUNAG TOU YPAPOU aTTO TOV KOUBO | 0TOV KOUBOo
j (i, j). OpiCoupe 10 povTéAo Twv [evikeupévwy MoAAatTAacioopwy Mpdewy
(M) yevikevovtag TN TTPAEN Tou KAQOGIKOU TTOAAaTTAaCIaopoU mvakwy G-G
ME avTikatdoTaon TG mTPAaéng Tou TTOAAQTTAQCIAoPOU Kal TnG TTPOoBeoNng UE
TeEAEOTEC ouvévwong (concatenation — CON) kai ouvBeong (aggregation —
AGQG). 0] TEAEOTNG rmr ° opileTal wg:
G oG = G2 6mov Gf = AGGRZy (Gik CON Gy;).

Mpagn Zuvévwong. H Tpdgn TG ouvévwong, TIPAYUATOTIOIEITAI ME HIO
dladikaoia évwaong (join), evwvel KABE el0epXOPEVN KU evOg KOPPBOU ¢ he KABe
eCepxOMEVN QKPR TOu OnuioupywvTtag pia véa akur. ‘ETol, av (s, ¢) Mia
€10ePXOPEVN Kal (C, t) pIa €CEPXOMEVN OKMN TOU KOPBOU € n TTPAgN NG €vwong

10

mapdyel pia véa akupn (s, t). Katd 1t mpAag¢n ¢ €vwong MPITOPOUMPE va
epapuoooupe Evav TeAeoTH évwong (“con” operator) opi{opevo atrd Tov XprRoTn
(User Defined Function — UDF). O 1eAeotig Ba tmapayel m 1y (label) tng
Kalvoupylog OKPNAG PE BAoN TIC APXIKEG OKWEG TWV OKUWV TTOU €vwonkav,
MTTOPEI yIo TTapAdelyua va gival 70 PEYIOTO, TO €AAXIOTO, O MECOG OPOG, TO
dbpolioua KOK.

Mpan Zovleong. H Tpdgn Tng ouvBeong, TTPAYUATOTTOIEITE PE Pia diadikaoia
opadoTroinong (group by), opadoTrolei TIG AKPES PE KOIVO KOUPBO a@eTnpiag Kal
TTPoopIoHoU. Katd Tn opadoTtroinon, EQapuoleTal 0 opICOPEVOS ATTO TOV XPAOTN
TeEAEOTNG oUvBeong (“agg” operator) TTou KaBopilel TNV TIUR TNG OKWAG TTOU
TIPOKUTITEl JETA TNV opadoTroinon. O TEAEOTNG PTTOPE va gival, OTTWG Kal OTNV
TTPALN TNG OUVEVWONG, TO MEYIOTO, TO EAAXIOTO, O HECOG OPOG, TO ABPOICHA KOK.

Mapadeiypa TMpoBARparog M. Ocwpoupe KaTeuBuvouevo TOV YPAPO
KOIVWVIKOU OIKTUOU (ZXAua 1) hE TOUG KOUBOUG va avatrapioTolVv XProTeG Kal
TIG AKMEG VA avaTTAPIOTOUV OXEOEIS «OKOAOUBEI». @EAOUUE VO ATTAVTIOOUWNE OTO
epwTtnua «lloioug xprioteg akoAouBouv o1 akdAouBol KABE xprjoTn Kal PHECW
TTOOWV BIAPOPETIKWYV PovoTraTiwy;» AnAadn yia Ttov xpriotn 0 n amdvrnon eivai
OTI: AKoAoubei Tov xprotn 3 pé€ow €vOg POVOTTIATIOU, TOV XPRoTn 5 péow evog
MOVOTTATIOU, TOV XPNOTN 6 NECW 2 PHOVOTTATIWV (MECW TwV XPNOTWV 2 Kal 3) Kal
TOoV XPAOTN 7 pEOow 3 povotTaTiwV (MEow Twv Xpnotwy 2, 3 kal 4). Me xprion
TWV TEAEOTWV «TiTroTa» (Nil) yia con kai «uéTpnon» (count) yia agg UTTopPoUlE va
QTTAVT)OOUME TN OUYKEKPIYEVN €pwTNON ME éva ouotnua tTou uAotrolei IMMI.
Etriong ptopoulv va utroAoyioToUv epwTAPATa OTTWG €UPECNG OUVTOPOTEPOU
povoTraTtiou atrd OAoug Toug KOWPBOUG TTPOG OAOUG Toug GAAOUG Tou ypPAgPou
(Multiple Source Shortest Path — MSSP) pe akoAouBia atrd TTOANATTAQCIOCUOUG
GoGeo...oG.

2 o5
v 3 $6
1)]

4) 7

ZxAua 1. Napdadeiypa ypdeou.

3. ENEZEPTrAZIA TPA®OY

Oa TTapPOUCIACOUE CUVOTITIKA, HECA ATTO €va TTAPAdEIYUA, TO TTAAVO EKTEAEONG
M oe emegepyaoTtn) yevikou okotrou CPU. Me Bdon autd Ba cuvexioouue pe
v GPU uAotroinon.

Emlupunté AtrotéAeocpa. MNa tov ypd@o oto ZxAUa 1 TO ATTOTEAECUA TNG
TPWTNG ®dong, dnAadn Tou join, civai: [0: {5,6,7,6,7,7, 3}, 1: {6, 7}, 2, 3, 4, 5,
6, 7: {}]. AnAadni, o kKOuPog 0 £xel eEEPXOUEVES QKUES TTPOG TOUG KOUPBoUS 5, 6, 7,

11

6, 7, 7 ka1 3, 0 KOUPOG 1 TTPOg TOug 6 Kal 7 evw Ol UTTOAOITTOI KOJPBOI BV EXOuvV
eCEPXOMEVEG AKUEG PETA TN TTPAEN TNG £vwong (Apa dev UTTAPXOUV OKUEG ME 2
BApata yia autoug Toug KOuPoug). 210 XXAMa 2 (AploTepd) @aivovtal ol
eCEPXOMEVEG OKUEG TTOU TTPOKUTITOUV yia Tov KOPBo 0. X1n deUTtepn @dAon, Tn
@aon Tou group by, TpokUTITOUV Ta Bdpn Twv akpwv: [0: {3:1, 5:1, 6:2, 7:3}, 1:
{6:1, 7:1}, 2, 3,4, 5, 6, 7:{}]. AnAadn, n akun (0, 5) €xel Bapog 1, n akun (0, 6)
EXEl BAPOG 2 KOK. ZT0 ZXAMO 2 (Be€Id) @aivovTal Ol £EEPXOUEVES OKUEG UE T
Bdpn 1TOU TTPOKUTITOUV YIa TOV KOUBO 0. TeAIKA TO €MOUUNTO aTTOTEAECUAQ Eival:
yla K&Be kKOuPo agetnpiag, £vag trivakag pe Ceuyn apiBuwy. O TTpwTog apiBudg
uTTOONAWVEI TOV KOPPBO TTPoOoPIoHOU Kal 0 OEUTEPOC TO BAPOS TNG AKUAG.

ZxApa 2. O1 aKpéG TTou TTPOKUTITOUV yio TOov KOpBo 0 petd Tn Tpdén tng évwong
(apioTepd) Kail HETA TN TTPAEN TNG opadotroinong, He Ta Bdapn Toug (Se§id).

Baoiké TMAdvo EkTéAeong. 21n mapdypoa@o auth Oa Treplypdyoupe Tn
dladikacia utroAoyiopou Tou TN e oeiplokd TpoTTO. 2€ auth TN dladikacia Ba
BaCIOTOUNE OTN CUVEXEIQ VIO VA TTEPIYPAYOUNE TOV AVTIOTOIXO aAYOPIBUO yia TN
KapTa ypa@ikwyv. Ag Bewpriooupe Kai TTaAI Tov ypd@o oT1o ZxAna 1. OéAoupe va
Bpoupue TOoug XPROTEG TTOU aKOAoUBoUV, o1 XProTeS TToU akoAouBEi o xproTtng 0
Kal TTO0a dIAPOPETIKA POVOTTATIO 0dnyouv ekei. MNMpokeiuévou var emITaxuveei n
dladikaoia Ba KAvoupe TN TTPAEN TNG OMAdOTToINONG TauTOXPOovVa HWE TN TTPAEN
NG €évwong He oTadlakd TpotTo (incrementally). OpiCoupe €vav TTivaka
opadoTtroinong peyEBoug 600 Kal To TTANBOG Twv KOUBWYV Tou ypd@ou Kal ToV
apxikotroioupe pe 0. E&epeuvolpe kdBe eEepxdpevn akul Tou kouBou 0 Tou
YPA®POU Pag Kal TIG ECEPXOMEVEG AKMEG TWV KOUPWYV TTOU KATAANYOUV OI TTPWTEG.
‘ETO1 apXIKA ETTIOKETITOMAOTE TOV KOPPO 1 péow NG akung (0, 1) kal atmo ekei
ToVv KOPBOo 3 péow NG akpng (1, 3). O kdpPog 3 cival Evag KOPPBOG TTOU AvrKEl
OTO QTTOTEAECHO MAG a®OU TOV Ouvaviiooue oto OeguTtepo Prpa, 6Oa
EVNUEPWOOUNE TN Béon 3 TOU TTiVOKA EKTEAWVTAG TN TTPAEN TNG opadoTroinong
(MéTpnon) kal dpa Ba au¢fooupe Katd 1 Tn TIMA Tou KEAIOU. ZuvexiCouue Tnv idia
dladikagia yia TIG UTTOAOITTEG £CEPXOMEVES OKMEG TOU KOUBou 0. ATTO Tnv akpun
(0, 2) Ba emoke@TOUNE TOUG KOMPBOUG 5, 6 kal 7 K.0.K. TeAik&d o Trivakag
opadoTtroinong Ba @T1doel oTn popYn TTou PAETTOUME OTO OEi WEPOG Tou [ivaka
1. 2Tn @Aon auTh €XEl UTTOAOYIOTEI TO ATTOTEAEOUA TNG OPODOTIOINONG KAl APKE(
MIa TTPOCTTEAACN TOU TTIVOKA YyIa va TTPOKUWEl TO TEAIKO atroTéAeopa. TeAIKA
TIPOKUTITEI TO ATTOTEAEOUA OTTWG oToV [ivaka 1.

12

‘Evag TeTpIpguévog TpOTTOC TTapaAAnAoTroinong Tou Trapatmdvw TTAAGvou gival va
Bewpriooupe TTOANOUG apxIKOUG evEPYOUS KOUPBOUGS Kal va avaBéooupe 1 KOUBOo
o€ 1 vAiua, autd onuaivel 61 Ba XpelaoTouue TTOAAOUG TTivakeg ouadoTroinong,
évav yia Kade vrpa. TéEAOG va ava@Eépouue OTI OTn CUYKEKPIPEVN TTPOCEYYION
éva TTpOBANua ammdédoong TToU CUVAVTAME E€ival N TTPOCTIEAQCN TOU TTivakd
opadotroinong Otav autdg €ivalr apaidg. Oa TTPOTIHOUCOUE Vva PNV
TTpooTTEAdoOUNE KABOAOU TIG KeEVEG BE0EIC. YTTAPYXOUV KATAAANAEG TEXVIKEG Ol
oTToieg &e@euyouv aTrd TO TIAQIOIO TNG OUYKEKPIPMEVNG €pyaciag OAAG
XPNOIJOTToIoUVTal OTA TEAIKA TTEIPAUATA.

o 1 2 3 4 5 6 7
ojojoj1j012]3

Mivakag 1: TeAIkA kardoTaon TTivaka opadorroinong.

3.1 YAomoinon GPU

@a Treplypdyoupe TN dladikacia uttoAoyiopou Tou TN oTn KAPTA YPAPIKWYV.
Otcwpoupe OTI 0 yPAPog Xwpdel va armmodnkeutei oOAOKANpog pe T CSR popen
eVTOG TNG MVAUNG TNG KAPTOGS YPAPIKWY. O TTEPIOPIOPOS QUTOG OGS aTTayopEUEl
va eTTECEPYAOTOUNE TTOAU peydAoug ypdgous. OTTwG avagEépaue 0To KEQAAaQIO 3
Ol KAPTEG YPAPIKWYV Eival ETTECEPYQOTEG TTOU TTPOCPEPOUV HalIKA TTapaAAnAia,
yla va TIG a&IOTToIN0El N EQapPoy Hag Ba TTPETTEl va eKUETAAAEUETAI XIANIAOES
vApaTta Tautoxpova. H Baoikr) mTpocéyyion Tou KAvaue OTn TTponyouuEvn
Tapaypa®o atraitei O(N*T) pvAun Opwg, etredry otn GPU 10 TMARBOG TWwv
vnuatwy (T) gival TTOAU geyaAo Kal n pvriun Tepiopiouévn, N Auon autr dev gival
EQIKTNA. TN TTPOCEYYIOT TTOU KAVOUUE OTN OUVEXEIO JETAPEPOUNE TN TTaPaAAnAia
evidg Tou evepyoU KOuPou. 'ETol éxoupe €vav evepyd KOUBO KABeE oTiyu oTn
KAPTO YPOQIKWY KAl KAT €ETTEKTOON €vav TTivaKa opadotroinong Kal TTOAAG
VIMOTA TTOU TOV EVAPEPWVOUV Kal TTAPAYOUV TO TEAIKO ATTOTEAECUA.

NMAavo EktéAeong oe GPU. Oa avabéoouue oe kdBe block amd vAuara pia
e€epXOMEVN OKUN TOU KOPBOU ageTnpiag Kal o€ KABE vhpa atro pia eEepXOPEVN
OKMR Tou evdidueoou KOuBou. Evw 6Aa padi Ta vAuata Ba evnuEPWVOUV TOV
TTivaka opadotroinong. Oetwpolpe Kal AN Tov ypAdgo OT0 Zxnua 1
ammobnkeupévo oTn pvAun TNG Képtag pe T CSR poper. Otcwpolpe evepyod
KOupo Tov 0. Ag Bewpriooupe OTI €xoupe 4 blocks pe 4 viipata 1o KaBEva. g
TPWTN @Aon 6Aa Ta vAparta kabe block Ba diafdoouv 1o onueio amd To OTToIo0
EEKIVOUV Ol £CepXOMEVEG OKUEG TOU KOPPBou O oTov Trivaka Twv akpwyv (Edges)
Kal Ba diaBdocel amd pia egepxopevn aku Tou KOuPou kABe block. OTToTE TO
block 0 diaBader Tnv akun (0, 1), To block 1 Tnv akun (0, 2), To block 2 TNV akun
(0, 3) ka1 1o block 3 Tnv akun (0, 4).

13

ZxAua 3. AvdBeon blocks o€ e§epxOpeveg aKpéG, KGBe Xpwpa ocupBOAilel Eva SIaPOPETIKO
block amé vipara

21N ouvéxela kaBe block Ba emoTpéwel otov Trivaka Offsets TTpokeiyévou va
AvVaYVWPIOoEl TIG £CEPXOUEVEG OKUEC TOUu KOPPBou TTou €xel kataAngel. ‘ETol 1o
block 1 1ToU £xe1 avaAdBer Tnv akun (0, 2) 6a diaBdoel T B€on 2 kai Tn Béon 3
Tou Trivaka offsets a1rdé 10 CSR yia va Bpel 0TI 01 €GEPXOPEVES AKUES TOU KOUBoU
2 gekivouv oTn Béon 5 Tou Tivaka Edges kai gival 3. ZTn cuvéxela Ba peivouv
evepyd Ta 3 ammo Ta 4 vipaTta Tou block 1 a@ou 0 KOUPOG 2 £xel 3 £CEPXOUEVES
OKMEG, auTd Ta 3 viuaTta Ba diaBAacouyv TIG AKPEG ATTO TOV AVTIOTOIXO TTiVAKA Kal
Ba avakaAuywouv OTI KaTaArlyouv oTou KOuBoug 5, 6 kal 7. Tnv idia diadikacia
akoAouBouv kai Ta uttéloitta blocks yia dIOQOPETIKOUG KOUPBOUG. 2TO ZXNHa 3
BAETTOUNE TIC TTEPIOXES TOU YPAPOU TTou €xel avaAdaBel kabe block. K&be xpwpa
oupBoAiICel kal éva dlagopeTikd block, To block 1 gival To0 paupo xpwua. To block
3 (kOkkIvo) dlaBader Tnv e¢epxoOpevn akun (0, 4), BAETTEI OTI 0 KOPPOG 4 £xel pIa
eCepxopevn akur, agnvel 1 vijua evepyo 10 oTToio Ba Tnv egepxdpevn akun (O,
7). ®uoikd av Ta blocks eival AiydTepa atrd TIG £EEPXOPEVEG OKUEG TOU APXIKOU
KOuBou N ta VAPaTa AlyOTEPO ATTO TIG €CEPXOMEVEG OKWEG TOU €VOIAUECOU
KOuBou T6TE aTTAG ouveyiCouv €TTAVAANTITIKA TN TTapATTAvw diadikaacia.

Otav €éva vAua avakaAuTiTel évav KOPBO TTPoopPIoUOU TTPOXWPAElI OTNnV
dladIKaoia evnUEPWONG TOU TTiVAKO OhadOoTToinongG. MNupvwvtag oto TTapadeyud
MOg OAa Ta vijparta €xouv diaBdcel TOug KOUBOUG TTPOOPICHOU KOl HETAPEPOVTAI
oTnVv avTioToixn 8€on Tou TTivaKa OPadoTToinong, To vrijua Tou KiTpivou block
Tael 0N Béon 3, Ta VAPATA TOU JAUpou OTIG BECEIC 5, 6 KAl 7 KOK. € QUTEG TIG
Béo€ig Ba KAvouv pia TTPAEN ATOMIKAG TTPOCOE0NG YE TO 1 WOTE VA UTTOAOYIOTEN
10 atrotéAeopa. H ouvdaptnon atouikig mpodoBeong (atomicAdd) utrooTtnpiceTal
até) CUDA.

2€ AUTO TO ONMEIO €XOUME EVNUEPWOElI TTAPWG TOV TTiVOKA OPAdOTTOINONG
TPETTEl QWG VA PETOPEPOUUE TO ATTOTEAEOUA OTOV Trivaka €EOO0U HE TNV
emMBuuNTA popery. Mia TTpootyyion gival va TTPooTTEAdOOUNE, TTApAAAnAa, 2
QOpPEG TOV TTIVOKA YIO va TO TTETUXOUPE auTd. 210 ZXAPa 4 KkdBe Xpwua
QVTIOTOIXEI O€ €va vAua, o TTivakag (a) €ivalr o Trivakag opadoTtroinong, oTov
mivaka (b) kaBe vApa abpoilel To TTARBOG Twv PN PNdEVIKWY TIMWYVY Tou (a) TTou
TOU QVTIOTOIXOUV, TO MTTAE KaI TO KiTPIVO Viua €xouv atrd 1 aTToTEAECUA VW TO
TpAcivo 2. 21n ouvéxela utroloyiletal 1o Prefix Sum, tou Ttrivaka (b) otov
mivaka (c). O Trivakag (c) €xel Twpa TIG TINES TTOU deixvouv TToIEG BECEIC TOU
TTivaka €000U UTTOPEI va xpnoigoTroinoel kabe vApa. H diadikaoia auth yiverai

14

yla va JTTopouv OAQ Ta VAPATA va PETAPEPOUV TAUTOXPOVA TO OTTOTEAECHQ
XWPIC va xpeldleTal KATTIOI0OG CUYXPOVIOWOG METALU TOUG. 2Tn OUVEXEID T
vipara dlaoxiCouv kal TGNl TOV Trivaka opadoTtroinong, autr 1n @opd
META@EPOUV TA aTTOTEAEOUATA OTOV TTivaka ££0dou (d). H Tapatrdvw diadikaoia
EQAPMOLETAI YEVIKA O€ AVTIOTOIXO TTPOBAAUOTA O€ KAPTES YPAPIKWY [6]. ZTn OIKA
MOg TTePITITWOoN dev DOUAEUElI KOAG OTNV TTOAU ouvnBIouévn TTEPITITWON OTTOU O
Tivakag opadoTToinong €ival OXETIKA apaldg KaBwg TTPETTEI va TOV dIATPECOUUE
OAOKANPO Kal va TIPOCTTEPACOUME TTOAAG UNOEVIKA OToIXeEia TTOU Ogv
OUVEIOQPEPOUV OTO OTTOTEAEO Q.

0 1 2 3 4 5 6 7

ZxAua 4. AlaSIKaoia PJETAPOPAG TOU ATTOTEAECHATOG AT TOV Trivaka opadoTtroinong (a)
oTov Tivaka £§65ou (d).

MpoTeivoupe pia SIOQOPETIKA TTPOCEYYION TTOU EKPETAAAEUETAI TO YEYOVOG OTI N
TTPALN TNG ATOMIKAG TTPOCBEONG ETTICTPEPEI TN TTPONYOUUEVN TIMA TTOU EiXE TO
avTioToixo KeAi. 'ETol 6Tav katrolo vAua d&l 011 aAAAel TN TIPA Tou KeAIOU aTTd
MNOEV o€ éva atroBnkevel oTn Koivr) pvAun (shared memory) Tn Béon Tou KeAIOU
Tou AAAage, yia va TO KAvel autd apkei évag deikTng yia kade block trou eival
KOIVOG PETALU TwV VNUATWYV £vOg block kal dgixvel oTnv €TTOUEVN dIABE0IUN BEon
yla eyypa®r atmmoteAéopatog. AuTOG O OeiXTNG EVNMEPWVETOI HE ATOMIKN
mP6obeon amd KABe vAua TToU BEAEl va ypAwel €va OTTOTEAEONA OTN KOIVN
MVAMN. MOAIG yepioel n koivl pvAPn 6Aa T1a vAuarta tou block ouvepyadovrai
WOTE VO PETaQePOEi TO atToTéAeopa OTOV TTivaka £€600u. Kal ekei UTTApPYXEl Evag
OEIKTNG TTOU EVNUEPWVETAI PE QTOMIKN TTPO0BEoN, autdg OuWG Eival KoIvVOg yia
OAa Ta blocks, dapa Bpioketar oTn KUPIA WVAPN Kal €ivalr o apyd va Tov
TIPOOTTEAQOOUNE KAl VA TOV EVNUEPWOOUNE, YI' AUTO €AAXIOTOTTOIOUME TNG
EVNUEPWOEIG TOU PEOW TNG XPAONG TNG KOIVAG UVvAPNG. Me auTtdv Tov TPOTIO
METAQPEPOUNE TOUG KOUPBOUG Ol OTTOI0I £X0UV TOUAAXIOTOV €va QTTOTEAEOUA OTOV
mivaka €¢O60ou. Toug PETAQEPOUUE OUWG TIPIV OAOKANPwOEei n diadikacia
eCEPEUVNONG TOU YPAPOU Apa eV £XOUME Kal TN TEAIKN TIUR TOUG. ApKei duwg
Mia attAf TTpooTréAaon oTov TTivaka €£60ou oTo TEAOG, O1Tou dlaBdlouue Toug
KOUBOUG TTPOOPICHOU TTOU €XOUV YPa@TEN €Kl (Kal dpa £Xouv ATTOTEAEOUA) Kal
TTaipvouue TN TENIKN TIUR TOug aTtrd Tov TTivaka opadoTtroinong (Tov OTroio To
MNOeviCoupe yia va eKTEAEOTEN N ETTOPEVN €TTAVAANWN).

15

0 1 2 3 4 5 6 7
|D’0]D’1]a|1ilz|3i Aggregation Array
tttt

n- I -- Shared Memory

| (3-) | (5,-) | (6,-) | (7.-) | {~~) |0utputArrav

ZxAUa 5. MeTa@opd amoTeAEOPATOG HE XPAON TNG KOIVAG UVAUNG.

2710 ZXAHa 5 BAETTOUuE TN d10dIKACIQ TTOU TTEPIYPAWAE YIa TO TTAPADEIYUA HOG.
O Trivakag opadoTroinong evnUEPWVETAl aTTO Ta VAUOTA Kal KABe vrua TTou
aAAGlel TN TIA Tou KeAIoU atmd undév o€ éva ypdeel Tn dielBuvon Tou KeAIoU
TToU AAAage oTn Koivr] uvAun Tou block Tou. OTTOTE TO POVABIKO VIUa TTOU AVIKEI
oTo KiTpivo block GAAage Tn TP Tou KeAiou 3 atrd pNdEv O€ €va Kal Eypaye oTn
KOIVAy uvriun Tou KiTpivou block 10 avayvwplioTikd Tou KOuRou (3). IMNa 10 KeAi 6
QaiveTal 0TI CUVAYWVIOTNKAV TA VAMOTA OTTO TO JAUPO Kal To TTpAcivo block kal
atr’ OTI QaiveTal KATAPEPE TO VAPA Tou TTPAcIvou block va aAAdgel Tn Tipn atrd
pMNOEv o€ €va dpa autd Ba ypdwel oTn KOIVA TOU UVAUN TO avayvVwPIOTIKO TOu
KOuBou (6). Z1n ouvéxeia (katé Tn dIAPKEIA TG EKTEAEONG O€ TTEPITITWON TTOU
YEMIOEI n Koivy VAN KaTTolou block) o1 k6upor 3, 5, 6 kal 7 yeTaPEPOVTAl OTOV
Tivaka €¢6dou Kal YEvel hia attAf TTpooTTEAACN 0€ auTov, HOAIG OAOKANPWOEI N
d10dIKaoia evnUEPWONG TOU TTiVAKA OPAdOTTOINONG, WOTE VA TTAPOUE TIG TEAIKEG
TIMEG aTTO AUTOV KAl VA TIG JETAPEPOUNE OTOV TTivaKa £€6O0U.

Akpaigg TepimmTwoelg uhotroinong GPU. H Texvikh pou YOAIG TTEpIYPAYAlE,
OTTwG Ba douue Kal oTa TTEIPAUATA, €ival ApKETA KOAR yia TIG TTEPIOCOTEPES
TTEPITITWOEIG AAAG UoTEPE Aiyo OTav Ta atroTeEAEoATA gival TTOANG, 6Tav dnAadr)
0 Trivakag opadoTroinong €ival TTUKVOG. TOTe iowg agidel va eKTEAECOUME TO
TIAGVO TTOU TTEPIYPAWAME OTNV ApxXn TNG TTOPAYPA®OU. ZNPAVTIKOTEPO OPWG
MEIOVEKTNMO €XEI OTAV TA ATTOTEAEOMOATA €ival eEQAIPETIKA Aiya. AUTO TTPAKTIKA
oupBaivel 6Tav 0 KOUPBOG aQeTnPiag Kal oI KOUPBOI PE TOUG OTTOIOUG CUVOEETAI
EXOUV AiYEG £CEPXOUEVEG OKMEG.

lNa Toug KOPPoUG Pe Aiya atroTeAEoPOTA N AUCHN TTOU TTPOTEIVOUME €ival ApKETA
OI0QOPETIKA aTTd Tn TTPONYoUEVN, KatapxAv 0ev Ba XpNOIUOTIOINOOUUE TTiVOKO
opadoTroinong peyEBoug 600 Kal oI KOUPoI Tou ypd@ou aAAd Ba éxel puéyebog
0600 TO TAvw OpPI0 TWV ATTOTEAECUATWY TTOU TTEPIMEVOUUE (BnAadr MIKPO).
2UVETTWG UTTOPOUME va eKTEAEOOUNE TTOAAOUG evepyoUus KOUPBOUG TauToxpova,
OUYKeKpIPEva Ba avaBéooupe évav evepyd KOPPBO o€ kABe block kal Ba £xoupe
EVEPYOUG KOUPBoUG iooug pe To TTANBOG Twv blocks pag. To TpwTto PEPOG TOU
TIAGVOU eKTEAEONG €ival iDIO PE EKEIVO TWV UTTOAOITTWY KOPPBWYV PE TN dlagopd OTI
TO avaoAapBavel €va povo block kal dev evnuepwVEl Twv TTivaka opadoTtroinong
utToAoyiCovTag To ATToTEAEOUA oTadIakd. AvTiBeTa, atmmoBnkevel KABE KOUPBO TTOU
ouvavTdel aveEdpTNTA TOU AV €ival TTPWTN YOPd TTou Tov cuvavta r Ox1. ‘ETol yia
TOoV yPd®o atrd 1o ZXAPa 1 Kal ye evepyd KOUPOo 10 0 TTaAI, TTPOKUTITEI O TTIVAKAG
opadotroinong: [3, 5, 6, 7, 6, 7, 7]. MNMapatnpoupe 6T 0 KOUPBOG 6 utTdpxel 2

16

QOPEG KABWG TOV EXOUME ETTIOKEQPTEI HEOW TOu KOUBou 2 kal 3, 0 KOuPog 7
UTTAPXEl 3 POPEC HEOW TwV KOPPBWYV 2, 3 Kal 4 evw ol KOuPBol 3 kal 5 atd yia
@opd. MNMpokeiuévou va UTTOAOYIOOUUE TO QTTOTEAEOUA APKEI va TALIVOUNOOUE
TOV TTiVAKQ Kal va ToV TTPOCTTEAGCOUNE HIa QOpd KpaTWwVTaS £€vav abpoloTh yia
TO TTOOEG POPEG CUVAVTAUE TOV D10 apIBPO. Mia KAAOIKR) TEXVIKA UTTOAOYIOUOU
Tou Group By o€ Bdoeig dedopéEvwy.

Tagivopnon Mikpwyv Mivakwv otn GPU. O1 101a1TepOTNTEG TOU TTPORAANATOG
Mag eival OTI Ol TTIVOKEG TTPETTEI VA TagIvounBouv evidg Tou block tTou €xouv
TTapayOei kal, 6TTwg Ba douue oTa TTEIPAPATA, Eival JIKPOI JEV OAAG OXI OPKETA
MIKPOI yIa va Xwpave oTn Kpuer PvAun evog block éttwg utroBéTouv oTo [7]. Mia
KABIEPWMEVN TEXVIKN VIO TAEIVOUNOT TTOAU PIKPWYV TTIVAKWY O€ KAPTEG YPAPIKWV
gival Ta diktua Tagivéunong 6mmwg 1o bitonic sorting network [8]. To bitonic sort
pag divel oTaBePO apIBUO CUYKPIOEWY, CUYKEKPIPMEVEG OUYKPIOEIG TTOU TTPETTEI
va yivouv o€ KaBe Brpa (mx. 10 BAMa 1 1O OoTOIXEiO O pEe TO 1, TO 2 e TO 3
KOK..), €X&l XaunAf TToAutrAokoTNTa O(n * log?(n)) Kal utropei va ulotroinOei
TTapdAANAa Kal atrodoTIKA. Av €XOUuE IKavo aplBud atrd vAuata, dnAadr éool
Kal oI apiBuoi Tou BEAoupE va Tagivouriooupe n TapdAANAn TToAuttAokOTNTa (N
10 TTapdAAnAa Briuata TTou Ba ekTeAeaTolV) gival 0 (log?(n)).

Ta peEIOVEKTAUATA TTOU cuvavTaue gival dUo. Katapyrv, To TTANB0G Twv apiBuwy
TTou B€Aoupe va TaIVOUROOoUUE TTPETTEI va gival duvaun Tou 2, dnAadn Tng
MopPAG n = 2% . AIQQOpeTIKA TIpETTEl va TTpooBéooupe Katrolo padding.
Xpelagovtal atroKAEIOTIKA Kal JOVO yIa va Yivouv Ol OUYKpPIioeIG. AuTO o€ évav
mivaka pe 2100 otoixeia onuaivel o011 Ba TpétTel va TTpocBécoupe 4096 —
2100 = 1996 oToixeia padding, oxedov va OITTAacIGoOoUPE TNV €i0000 Hag
onAadr. To deutepo TPOPANUa eivar 611 TO bitonic network SouAeUel TTOAU
atrodOoTIKG OTaV OAa T OTOIXEIA BpiokovTal 0T Kolvr] uvhun Tou block, av dev
Xwpave OUwG, oTa TeAeuTaia PrpaTa TTPETTEI VO YiVOUV OUYKPIOEIS HETAEU
OTOIXEIWV TTOU QTTéXOUV TTOAU OTn PvAMn ouTtd odnyei o€ uYn aTTodoTIKN
TTpooTréAacn TG pvAuNG. MNa va &emepdooupe Ta TTAPATTAVW TTPOPRAAuaTa
TTpoTeivouue pia uBpIdIKA TTpoatyyion OTTwWG Kal oTo [6]. O@a xwpioouue TOV
TTivaka TTou BEAOUPE va TAEIVOUAOOUNE OE MIKPOTEPA PEPN TTOU va XWPAVE OTN
KOIVI) WVAMN Kal va €xouv TTARBOG OTOIXEIWV TNV POop@rG n = 2* €101 ApKei va
TTpoocBécoupe padding POVO yia TO TEAEUTAIO PEPOG TO OTTOIO Ba £xel OPWG TTOAU
MIKPOTEPO HEYEBOG. Oa TagIivournoouue autd Ta uépn Pe Tn HEBodO Tou bitonic
network OTTWG Kal OTO [6]. 2ZTN OUVEXEIQ OPKE VA OUYXWVEUOOUUE TOUG
Ta&IVOUNUEVOUG TTIVAKES. @a TO KAVOUWE HE BEVTPIKO TPOTTO ava 2 TTapdAAnAa
ME Xprion Tou povoTraTtiou cuyxwveuong [9] [10].

17

4. NEIPAMATIKH AZIOANOIMHzH

2T0 KEQPAAaio auTtd Ba aflohoyooupe TTEIpaPaTIKA TNV uAoTtroinon tou MM o€
GPU. AgiCel va onueiwBei 611 n CPU uAoTtroinon €xel €Tiong apKeETEG BEATIWOEIG
ME KuplOTEPN OTI oUTe o€ eKkeivn TIpooTTeAalvoupe OAo TOvV TTivaka
opadoTroinong. O lMivakag 2 TTapouciddel Toug ypd@oug TToU XpnolhoTToInénkav
yla Tn TTeipapaTikn agloAdynon. Mag evdia@épel 7600 10 PEyeBOG Toug 600 Kal TO
TTANBog Twv amoTteAeopdtwy Tou Trapdyouv. O1 Arabic kar GSH av
ammoBnkeutolv wg CSR kataAauBdavouv Trepimou 2.5GB o kabévag evwy Ta
atmmoteAéopara tou GSH petd T TTPAEN TNG opadoTtroinong Trepitrou 4TB. Ol
ypd@ol auToi atroTeAOUV €va AVTITTPOCWTTEUTIKO Otiyua e OIAPOPETIKA
XOPAKTNPIOTIKA £TC1 WOTE VA AGIOAOYOOUNE TNV UAOTTOINGT] YagG.

Live Journal | Hollywood | Arabic GSH
#Nodes 4.8 x 10° 2.1%10° 22.7 x10% | 30.8 % 10°
#Edges 69 x 10° 229 = 10° 639 x10% | 602 * 10°
#Join Results 5.9 x 10° 242 % 10° 145 % 10% | 1.6 % 1012

Mivakag 2. O1 Fpd@ol TTou Xpnoigotroinénkav.

MNa ta meipdpara oe CPU eixape otn didBeon pag évag utroloyiotrh e Intel
Xeon E5-2630v4 (2.2-3.1GHz 10core/20threads) kai 128GB RAM. H uAoTtroinon
oe GPU é€yive oe pia GTX1060 6GB ¢ Nvidia evwy otn did6son pag yia tn
TENIKR} oUyKpion eixaue kal pia GTX1070 8GB.

Emidpaon Opiou Mikpwv KOopBwyv. 210 ZxAua 7 BAETTOUPE OTOV OPICOVTIO
agova Tn TIUA TOU Opiou HETAEU MIKPWV Kal PeyAAwv KOUPwv o€ TTARB0G
ATTOTEAEOUATWY. 2TOV KABETO Ggova Tov XPOVO €KTEAEONG, Ol OTAAEG deixvouv
TOV OUVOAIKO XPOVO €KTEAEONG KABWG Kal TO TTOOOCTO TTOU dATTavAaTal OF
MIKPOUG Kail peoaioug KOpBoug. Ommwg eival avapevouevo 600 augdvouue To
Opl10 TOOO PEYAAUTEPO TTOOOCOTO TOU XPOvou KataAapBdvouv ol pikpoi KéuBol o€
oX€0n ME TOoUug peyaAoug evw BAETTOUNE OTI OTAV TO Oplo gival oTo 4096 €xoupe
TO KOAUTEPO XPOVO. H xpon Twv PIKPpWV KOPPBWYV KPIivETAI aTTaPaiTNTN.

Changing Small-Medium Limit at Arabic

150
100

w1
o O

0 1024 2048 4096 8192 16384 32768

Execution Time (sec)

Small Medium Big

IxAua 7. ETidpaon opiou MIKpWYV Kal eoaiwv KOPBWY oTov ypd@o Arabic.

18

AgloAoynon YBpi1dikAg Taivopnong. 210 2xAua 8 PBAéTTouue TO OUVOAIKO
XPOVO €KTEAEONG YIO TOUG MIKPOUG KOUBoug pe xprion bitonic kar uBpidikAg
Tagivounong. H koivl pvAun €xel pubuioTei €101 woTe va xwpdel 1024 oToixeia
OUVETTWG Yia 6pio ewg 1024 kai otnv uBpidikr) AUon ekTeAeiTe pdvo bitonic sort
oTn Koiviy pvnun. MNapatnpouue OTI €Kei Kal TTEPA n UBPIBIKA Tagivounon €ivai
ypnyopoTtepn. Av TTapatnpriooupde JOVO Tov XpOvo Tng Tagivounong n diagopd
METALU TwV TagIVOUROEwWV Yia TTivakeg péxpl 4096 otoixeia givar 30%!

Arabic pikpot kopBot

‘oi\b 0(-\\9 ‘O(\b o‘;\g ‘0{\6 o&c \o{\b o‘.\\g ‘0(\z> 0(-\\9 ‘0{\6 o‘.\\(‘
J] JY J J]

Execution Time (sec)

512 1024 2048 4096 8096 16384

Join Sort Aggregation

ZxAua 8. Zuykpion upp1dikAg Tagivounong ue bitonic sort.

20yKpion pe uhotroinon o CPU. TéAog, ouykpivouue Tnv uhotroinon oe GPU
pe ekeivn oe CPU pe d1a@opeTikO apiBud armd vAuata yia va Ogi§oupue TTwg
KAIHakwvEl n ulotroinon oe CPU. Mg kitpivo xpwua BAETTOUPE TOV XPOVO
ekTéAeong oe CPU evw yia TN GPU €xoupe xwpioel ye PTTAE TOV XPOVO YIO TOUG
MIKPOUG KOUBOUG, PE KOKKIVO YIO TOUG PECQIOUG KAl PE YKPI VIO TOUG PEYAAOUG.
Maparnpouue 0TI oToug YpAoug ue Aiya atroteAéouarta, n CPU éxel TTapouoia
(Livedournal) 4 kai Aiyo kaAUtepa (Arabic) atmmoteAéopaTta amd TIG KAPTES
YPOQPIKWYV. ZTouG ypdgoug upe TTOAAG atroteAéoparta, Hollywood kai GSH ol
GPUs, «kepdifouv 1 CPU. Akéua kai n o aduvaun GTX1060 cival
YPNYOPOTEPN ATTO TOV ETTECEPYATTH) PE XPON OAWV TWV VNUATWV.

19

LiveJournal Hollywood

Execution Time (sec)
Execution Time (Sec)

Q Q CJ < S
Q‘ob 6\0 z’b&) Qjo& e,& \9@ \9/\ eb e%b Q?b
RS SEEPN <F PPN AN

6 S © © o

3> ~ Vv

Small ® Medium mBig mCPU Small Medium mBig = CPU

i GSH
Arabic

3000
2000
1000

C
N B O
[ejoNoloNe]

O ¥ ¥ Ky
f\‘p’g /\‘\‘\’Q &S &
© © x o

Execution Time (sec

Execution Time (sec)

Small Medium Big mCPU Small Medium Big mCPU

xnua 9. Zuykpion CPU-GPU pe xprRon Twv LiveJournal, Hollywood, Arabic, GSH.
5. ZYMIMNEPAZMATA

2¢ auty Tnv epyacia ueAetnoape TO TPOPANUa Twv [evikeupévwy
MoAAatmAaciaopwy Fpaewv (MMM oe kapteg ypagikwy. lNapoucidoaue TIG
IDIAITEPOTNTEG TOU TTPOYPANPATIOPNOU OTO TTPOYPAPUaTIOTIKO TTepIBdAAov CUDA
NG Nvidia, €idape 10 TTAGvO ekTéAeong Tou ITIM pe TTapaAAnAia evidég Tou
evepyou KOUBoU KaBwg Kal pia uBpIdikA Tagivounon mmou ouvduddel bitonic sort
KAl TO WOVOTTATI OUyXWwveuong yia TTapdAAnAn Ta&ivounon TToAAwV pecaiou
peyEBouG TTivakeg o€ KApTES Ypagikwy. Ooov agpopd Tov M €idaue 611 N KApTQ
YPOQPIKWYV Kal N uAotroinon pe rapaAAnAia eviog Tou evepyou KOUPBou gival TTOAU
KaArl TTpocéyyion Otav O YypA@Qog €xel KOPPOUG pe TTOAAG aTToTEAECUATA.
AvTiBeTa o€ KOUPBOUG pE Aiya atmmoTeAéopaTa n TTPOCEYYION HE TN Tagivounon
BonBdasl pev apkeTd Ouwg dev gival ypnyopdtepn atmmod pia uhotroinon o CPU
auTtd €ival aVOPEVOUEVO KOBWG N TTPOCEYYIoN PE TAgIVOUNON £XEl MEYOAUTEPN
TTOAUTTAOKOTNTA. TMap’ OAa auTd o1 Xpovol ekTEAeoNG av AdBoupe uttéYiv Kai TO
KOOTOG TOU UAIKOU €ival apkeTd Kahoi. Mia uBpidikry AUon pe aglotroinon 1600
Tng CPU 600 kai Tng GPU Ba Atav akoéua kaAutepn. Or1 106ée¢ 1600 TOU
povoTraTiou Tagivounong 6co kal Tou bitonic sort Atav nén yvwotég. Eivai
TTPWTN QOPA OUWG, €€ 6OWV YVWPICOUNE, TTOU XPENOIUOTTIOIEITAI O CUVOUACUOG
Twv OU0 peBOdwv. Eidaue 611 €xel TTOAU KaAd atroteAéouarta yia Tagivounon
MIKPWV TTIVAKWYV TTOU eV XWPAVE OTN KOIVI] UVAMN.

6. ANAOOPEZ

[1] G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, |. Horn, N. Leiser, and G.
Czajkowski, "Pregel: a system for large-scale graph processing," in Proceedings of the

20

2010 International Conference on Management of Data, pp 135-146, New York, NY,
USA, 2010.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd, "The pagerank citation ranking: Bringing
order to the web," Stanford InfoLab, , November 1999.

[3] "CUDA," [Online]. Available: https://en.wikipedia.org/wiki/CUDA.

[4] "Programming Guide :: CUDA Toolkit Documentation.,” [Online]. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction.

[5] "Race condition," [Online]. Available: https://en.wikipedia.org/wiki/Race_condition.

[6] Bingsheng He , Ke Yang, Rui Fang, Mian Lu , Naga Govindaraju , Qiong Luo , Pedro
Sander, "Relational joins on graphics processors," in International Conference on
Management of Data, SIGMOD, Vancouver, Canada, 2008.

[7] Muaaz Awan and Fahad Saeed, "GPU-ArraySort: A parallel, in-place algorithm for
sorting large number of arrays.," in 45th International Conference on Parallel
Processing Workshops (ICPPW), 2016.

[8] "Bitonic sorter," [Online]. Available: https://en.wikipedia.org/wiki/Bitonic_sorter.

[9] Odeh, S., Green, O., Mwassi, Z., Shmueli, O., & Birk, Y., "Merge path-parallel merging
made simple," in Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International (pp. 1611-1618). IEEE..

[10] Green, O., McColl, R., & Bader, D. A., "GPU merge path: a GPU merging algorithm," in
Proceedings of the 26th ACM international conference on Supercomputing (pp. 331-
340). ACM..

[11] Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., & Muthukrishnan, S. , "One ftrillion
edges: Graph processing at facebook-scale.," in Proceedings of the VLDB Endowment,
8(12), 1804-1815., 2015.

[12]"Apache Giraph," [Online]. Available: http://giraph.apache.org/.

[13] Gharaibeh, T. Reza, E. Santos-Neto, L. B. Costa, S. Sal-linen, and M. Ripeanu,
"Efficient large-scale graph processing on hybrid cpu and gpu systems,"
arXiv:1312.3018, 2014.

[14]1Kim, M. S., An, K., Park, H., Seo, H., & Kim, J., "GTS: A fast and scalable graph
processing method based on streaming topology to GPUs.," in In Proceedings of the
2016 International Conference on Management of Data (pp. 447-461). ACM., 2016.

21

22

An SDN QoE Monitoring Framework for VolP
and video applications

Maria-Evgenia |. Xezonaki (mxezonaki@di.uoa.gr, me.xezonaki@gmail.com)

ABSTRACT

This diploma thesis aims at presenting SDN technology, reviewing existing
research in the field of QoE on SDN networks and then developing an SDN
application that monitors and preserves the QoE for VolP and video
applications. More specifically, the developed SDN QoE Monitoring Framework
(SQMF) periodically monitors various network parameters on the VolP/video
packets transmission path, based on which it calculates the QoE. If it is found
that the result is less than a predefined threshold, the framework changes the
transmission path, and thus the QoE recovers.

Keywords: Software-Defined Networks, Quality of Experience, VolP, video,
Monitoring, SDN Controller, OpenDaylight, OpenFlow, Mininet.

Advisors

Lazaros Merakos, Professor (University of Athens)

1. INTRODUCTION

For many years, the Information and Communication Technologies (ICTs) have
been representing highly profitable business areas with continuous
developments of technologies, devices and services in order to serve all types
of users [1]. Undoubtedly, the communications and computer networking sector
is one of the most crucial elements in the global ICT strategy, underpinning
many other industries. It is one of the fastest growing and most dynamic sectors
worldwide, allowing for the interconnection between either individual persons or
institutions, companies, businesses, industries and in general every kind of
functional departments worldwide [2]. Lately, a drive for changing the
conventional networking architecture and moving towards new networking
paradigms is beginning to show. This trend can be explained by the limitations
imposed by the current networking state, which is characterized by static
architecture and complex devices, as well as to the emerging needs of next
generation networks. To this end, there is an emerging need for an alternative
networking approach to effectively face these challenges.

23

2. SOFTWARE-DEFINED NETWORKING

Software Defined Networking (SDN) is an emerging networking paradigm that
promises to address the challenges occurring from the current networking state
and the predictions for its future evolution. SDN breaks the vertical integration
by separating the network’s control logic (the control plane) from the underlying
routers and switches that forward the traffic (the data plane), using an open
standard protocol for the communication between them [3]. OpenFlow (OF) is
the most-well known such protocol, used for this thesis. With the separation of
the control and data planes, the function of control element no longer executes
in the switches but rather in a logically centralized controller with a global view
of the entire network [4]. The most well-known open source SDN Controller is
OpenDaylight (ODL), which supports OF and is also used for this thesis. The
network switches become simple forwarding devices routing the ftraffic
according to rules set to them by the control plane. SDN’s high-level
architecture is illustrated below. It consists of:

e The infrastructure layer, which contains the network elements e.g.
switches, routers

e The control layer, which contains the centralized entity with control on
network elements

e The applications layer, which contains the applications with control on
resources.

Network Application(s)
U Open northbound API

Controller Platiorm_

1 / 5 1
{] Open southbound API

1 T

Figure 1 : The SDN high-level architecture

The OF protocol enables the control plane to define forwarding rules for the
network devices of the data plane. Each OF switch has one or more flow tables,
and each flow tables contains flow rules. A flow rule is a packet handling
instruction and contains:

24

e Match fields : Fields to match against packets

e Priority : Field to match the precedence of the flow rule

e Counters : increased by one when a packet is matched

e Instructions : modification of the action set or pipeline processing
e Cookie : Data value handled and selected by the controller

An incoming packet matches a flow rule, if the values in the packet match fields
match those specified in the flow rule. An example flow rule is given below:

Instructions

cookie=0x2b000000000000f6, table=0, priority=2, udp,in_port=3, actions=output:2

H_/

Match fields

The lookup process starts in the first table and ends either with a match in one
of the tables of the pipeline or with a miss (when no rule is found for that
packet). A packet matches a flow table entry if the values in the packet match
fields, used for the lookup, match those specified in the flow entry. Each packet
is matched against the table and only the highest priority entry that matches the
packet must be selected. In case of a successful match, the action(s) specified
in the rule are executed. If there is no matching rule in the flow tables, the
packet is either dropped or an OpenFlow message containing the packet
header is sent to the controller for processing. The controller calculates the
action the network element should take with regard to the packet and
communicates it. Furthermore, the controller can specify a flow rule and send it
to the network element(s). This way, all following packets of the flow are treated
the same way by the network, and the controller does not need to be involved
any longer. The controller can also introduce new flow rules or modify existing
ones without being triggered by an incoming packet.

Moreover, every flow table must support a table-miss flow entry to process table
misses. This flow entry defines how to handle packets that are not matched
against other flow entries in the flow table. As a result, such packets may be
sent to the controller, be dropped or be directed to a subsequent table. If such a
table-miss entry does not exist, by default, packets unmatched by flow entries
are discarded [5].

25

3. QUALITY OF EXPERIENCE

As in all networks, the importance of taking care of user satisfaction with service
provisioning in SDNs has been realized. Content providers are immensely
interested in ensuring a high degree of satisfaction for their end-users.
Understanding and measuring quality of communication services and
underlying networks from an end-user perspective has attracted increased
attention over the course of the last decade.

Networks try to support the requirements based on Quality of Service (QoS)
parameters, such as throughput, latency and jitter. However, the performance of
a specific application cannot be determined by simply relying on QoS metrics. A
growing awareness of the scientific community that technology-centric QoS
concept is not powerful enough to cover every relevant performance aspect of a
given application or service has been witnessed [6]. Network level metrics
traditionally used by network administrators are not adequate to indicate how
satisfied a user is with his experience. In addition, research shows that there is
not always a direct or deterministic correlation of the impact of the network-level
metrics to the users’ satisfaction.

Thus, the evaluation of network applications should be based on user-centric
metrics that provide a better indication of the satisfaction of the end-users and
define the Quality of Experience (QoE) [7], [8]. QoS measurement is most of the
time not related to a customer, but to the media or network itself. On the
contrary, QoOE takes into consideration the end-to-end connection and
applications that are currently running over that network connection and how
multimedia elements are satisfying or meeting the end user's requirements.

In order to have an exact and unified measure of the QOE in various
applications, several QoE models were developed. Below are presented two
QoE models, one for VolP and one for video applications, which are used in the
context of this thesis.

a) The ITU-T G.107 E-model for VolP

Based on this model, the QoE for VolP applicatlons is given by the following
relationship:

1 ifR<0
MOS = {1+ 0.035R + R(R — 60)(100 -R)7 *10™® if 0 < R < 100
0 if R > 100

where:
R =94.2 -0.024d — 0.11(d — 177.3)H(d —177.3) — 11 — 401In(1 + 10p)

0, x<0
H(x):{l, x=0

and d stands for delay, p for packet loss [9].

26

b) The ITU-T G.1070 E-model for video

Based on this model, the QoE for video applications is given by the following
relationship:

Vq =1+ Icoding * [transmission

where:

(In(Frv)—In(0f1))?
Icoding = lofr x e 2DFrv?

_ Pplv
Itransmission = e Dpplv

All the factors can be estimated if the following are known:

e Fr, (video frame rate)
e Br, (video bit rate)
e Ppl, (video packet loss rate) [10].

4. THE SDN QoE MONITORING FRAMEWORK

This thesis develops the SDN QoE Monitoring Framework (SQMF), an SDN
framework implemented in order to overcome situations where the QoE can
face degradation in an SDN network, and preserve the QoE in VolP and video
applications. This is achieved by using an SDN Controller and implementing
extra functionality on top of it in order to change the traffic’s transmission path to
an alternative one, when QoE falls below a specified threshold.

The SDN Controller used for the current thesis is version Boron SR1 of ODL.
The project was developed in Ubuntu 14.04 OS using Java 8 JDK, Maven 3.3.9
and IntelliJ IDE and extended the SDN Controller functionality by implementing
an extra SDN module, named sgmf . The network topology used for validation
and experiments was created using Mininet network emulator and is depicted
below.

Ingres 52 b Se 5 %5 57 Egress
witch = = _~ S = <
-:;,} { -:-‘,[{-.\;,,} -3‘.‘_. {-‘"‘hl -:;,_I switch
= .
S
W A

Figure 2 : The topology used for SQMF

27

The approach used in order to ensure that the QoE remains in satisfactory
levels is the periodical link monitoring and QoE estimation based on their
statistics. In particular, the application computes the shortest path between the
source and destination hosts, which will be the main transmission path, as well
as the second shortest path (if exists) which will assist as a failover path. Then,
rules are inserted to forward the traffic to the main path. Afterwards, the QoE
monitoring process starts; the SDN controller periodically collects statistics from
the switches (different statistics for each application type) and uses them to
compute the QoOE level. If the estimated value is lower than a specified
threshold, then appropriate rules are inserted to redirect traffic to the failover
path.

The collected statistics according to the streamed application type are:

e For VoIP applications, the delay and packet loss are necessary, in order
to be able to use the G.107 E-model.

o Each time the SDN controller needs to measure the delay, it
creates a packet with a specific source MAC address -
00:00:00:00:00:09 in particular — and sends it on behalf of each
switch of the path (except for the egress switch) to the output
interface, so that the next switch of the path receives it. Each
switch (except for the ingress switch, as it has no previous switch
to receive a packet from) is configured with an appropriate flow
rule to forward to the Controller any packet with the specific MAC
address. The difference between the time that a switch receives a
packet and the time that the previous switch had sent the packet
is the delay of a particular link. The addition of all the path links’
delays results in the path delay. Each switch is configured with a
rule of the following format:

priority=1000,dl_src=00:00:00:00:00:09 actions=CONTROLLER:65535

o In order to compute the packet loss rate, and given that VolP
traffic generates UDP packets, the SDN controller periodically
monitors the number of UDP packets sent from the sender (h1)
and the number of UDP packets received by the receiver (h2) and
computes their difference divided by the number of sent packets.
To achieve packet loss monitoring, the ingress and the egress
switches are configured appropriately so as to forward to the
Controller — apart from the predefined output interface to the next
node - any UDP packet they receive (the ingress receives UDP
packets from the sender host and the egress from the previous
path node). In its turn, the Controller counts the path’s total
incoming and outgoing UDP packets and is able to determine the

28

packet loss. The ingress and the egress switch are configured
with rules of the following format:

priority=1000,udp,in_port=x actions=CONTROLLER:65535,output:y

For example, the appropriate rules for s and sg of Figure 2 : The
topology used for SQMF are:

s1 : priority=1000,udp,in_port=1 actions=CONTROLLER:65535,output:3
sg : priority=1000,udp,in_port=3 actions=CONTROLLER:65535,output:2

e For video applications, the bit rate, frame rate and packet loss are
necessary, in order to use the G.1070 E-model.

o In order to compute the bit rate , the command
ffmpeg —i [VIDEO_PATH] -hide_banner

is executed through the Java code and the output is parsed until
the bit rate value is accessed.

o In order to compute the frame rate , the command
ffmpeg —i [VIDEO_PATH] -hide_banner

is executed through the Java code and the output is parsed until
the frame rate value is accessed.

o The packet loss is computed in the same way as for VolP
applications.

For both approaches, the implemented delay and packet loss computation
methods are based on the OpenNetMon framework, proposed in [11].

5. SQMF EVALUATION

The current subchapter conducts a proof-of-concept evaluation of SQMF
through graphical representations that compare the network’s behavior with and
without the SQMF functionality in the event of a link failure, i.e. comparing the
default forwarding with the QoE-based forwarding when a link failure occurs.
The experiments were conducted both on VolP and video traffic cases.

A. In order to evaluate the SQMF functionality for VolP applications, VolP
traffic was generated from h1 to h 2 for 105 seconds . The traffic was
generated using a traffic generator tool named D-ITG. The parameters
used for the current experiment are shown in the table below.

29

Table 1: Parameters used for VoIP traffic generation

Packets per second 50
VolP codec G.729.2

Traffic generation duration S [EE-TT-

As a first case, the QoE monitoring — based forwarding functionality did
not take place and therefore the packets kept being forwarded to the
main path as initially configured when a link failure occurred. This caused
total packet loss after the link failure. Then, the same experiment was
carried out using the SQMF functionality. In this case, the controller
efficiently changed the transmission path when the link failure occurred,
as it detected QOE levels below the predefined threshold, by configuring
the packets to be forwarded to the failover path, so the overall packet
losses were much lower.

By illustrating the results of the two cases, with and without QoE
monitoring, in the same graphical representation, it is obvious that QoE
monitoring-based forwarding performs much better than the default
forwarding to a configured main path. The figure below shows that QoE
monitoring-based forwarding achieves much lower packet losses when a
link failure occurs, managing to recover immediately after a small period
of packet loss detection, in contrast to the default case where all the
packets are lost after the link failure.

Packet losses due to link failure with and without
SQMF for VolIP traffic generation

Without SQMF

— — WithSQMF

Packet Loss (%)
o
o™
—

5 10 15 20 25 30 35 40 a5 50 55 60 65 70 75 B0 35 90 85 100105

Time (sec)

Figure 3: Packet losses with and without SQM for VolIP traffic

Therefore, the QoE Monitoring-based forwarding preserves the total QoE
and keeps it at high levels even after the link failure, whereas in the

30

default case the QoE faces a permanent degradation after the failure, as
depicted in the figure below.

MOS due to link failure with and without
SQMF for VoIP traffic generation

it TS TUUS SN wEmm S SIS oS-

35 ',
g 3
3, . ’ QoE without SQME
>
g 2 — - — = Qof with 5QMF
i5
1

0 + ' — . P — '
S 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105

Time (sec)
Figure 4: QoE with and without SQMF for VolIP traffic

B. In order to evaluate the SQMF functionality for video applications, video
traffic was generated from h1 to h 2 for 105 seconds. The traffic was
generated using VLC player. The video parameters used for the current
experiment are depicted in the table below.

Table 2: Parameters used for VolIP traffic generation

Frame rate 23.98 frames/sec
Bit rate 1679000 bits/sec
Video codec H264
Video format VGA (640x480)
Video key frame interval 1

As a first case, the SQMF functionality did not take place and therefore
the packets kept being forwarded to the main path as initially configured
when a link failure occurred. This caused total packet loss after the link
failure. Then, the same experiment was carried out using the SQMF
functionality. In this case, the controller monitored periodically the QoE
and when the QoE was detected to be lower than the threshold, due to
the link failure, it efficiently changed the transmission path by configuring
the packets to be forwarded to the backup path, so the packet losses
were much lower and of smaller duration.

By illustrating the results of the two cases, with and without QoE
monitoring, in the same graphical representation, it is obvious that QoE

31

monitoring-based forwarding performs much better for video applications
than the default forwarding to a configured main path.

The figure below shows that QoE monitoring-based forwarding achieves
much lower packet losses when a link failure occurs, managing to
recover immediately after a small period of packet loss detection, in
contrast to the default case where all the packets are lost after the link
failure.

Packet losses due to link failure with and without
SQMF for Video Streaming

Without SOMF

— W\ ith SOQMF

Packet Loss (%)
o
o

5 10 15 20 25 30 35 30 45 50 55 60 65 70 75 80 B85 S0 95 100105

Time [sec)

Figure 5: Packet losses with and without SQM for video traffic

Therefore, the QoE monitoring-based forwarding preserves the total QoE
and keeps it at high levels even after the link failure, whereas in the
default case the QoE faces a permanent degradation after the failure, as
depicted in the figure below.

32

Video Quality due to link failure with and without
SQMF for Video Streaming

w

a5 /__——._..-—_._

/
/

w n a

QoE without SOMF

— QoE with 5QMF

Vg Value

"~
= U N

n

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 B0 B85 90 95 100105

Time (sec)

Figure 6: QoE with and without SQM for video traffic

6. REFERENCES

[1] L. Serensen, K. Skouby, “Visions and research directions for the Wireless World”, July
2009, pp. 5-9.

[2] C. Wang et al.,, “Cellular Architecture and Key Technologies for 5G Wireless
Communication Networks”, IEEE Communications Magazine, February 2014.

[3] S. Ramakrishnan and X. Zhu, “An SDN Based Approach To Measuring And Optimizing
ABR Video Quality Of Experience”, Cisco Systems, 2014.

[4] W. Hsu et al., “The Implementation of a QoS/QoE Mapping and Adjusting Application in
software-defined networks”, 2 nd International Conference on Intelligent Green Building
and Smart Grid (IGBSG), 2016.

[5] Z. T. MaoTopdkng, “MéBodol efouaioddtnong yia déopeuon mTopwv ot Euoun —
Mpoypappuatfdueva - Aiktua (Software-Defined-Networks)”, May 2014.

[6] R. Schatz et al., “From Packets to People: Quality of Experience as a New
Measurement Challenge” , Lecture Notes in Computer Science, Springer, pp. 219-263.

[71 A. Farshad et al., “Leveraging SDN to Provide an In-network QoE Measurement
Framework”, IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), May 2015.

[8] M. Jarschel et al., “SDN-based Application-Aware Networking on the Example of
YouTube Video Streaming”, 2 nd European Workshop on Software Defined Networks
(EWSDN), September 2013.

[9] R. G. Cole and J. H. Rosenbluth, “Voice over IP Performance Monitoring”, ACM
SIGCOMM Computer Communication Review, Volume 31, Issue 2, pp. 9 — 24, April
2001.

[I0]INTERNATIONAL TELECOMMUNICATIONS UNION, TELECOMMUNICATIONS
STANDARDIZATION SECTOR, “Opinion model for video-telephony applications”,
https://www.itu.int/rec/T-REC-G.1070 , July 2012.

[11]N. L. M. van Adrichem et al., “OpenNetMon: Network monitoring in OpenFlow Software-
Defined Networks”, IEEE Network Operations and Management Symposium (NOMS),
May 2014.

33

34

Algorithms, Hashing, Parallel processing,
and the Nearest Neighbor problem in High
Dimensions

Georgios C. Samaras (gsamaras@di.uoa.gr)

ABSTRACT

The c-approximate Near Neighbor decision problem in high-dimensional spaces
has been mainly addressed by Locality Sensitive Hashing (LSH). While, in
practice, it is important to ensure linear space usage, most previous work in this
regime focuses on the case that c exceeds 1 by a constant term. We present a
simple data structure using linear space and sublinear query time for any c>1:
given an LSH family of functions for some metric space, we randomly project
points to vertices of the Hamming cube in dimension <logn, where n is the
number of input points. The search algorithm projects the query, then examines
points which are assigned to nearby vertices on the cube. We report on several
experiments with synthetic and real datasets in dimension <1000 and , and
compare against the state-of-the-art LSH-based library FALCONN: our
algorithm and implementation are significantly simpler, with comparable
performance in terms of query time and storage for one of the LSH families
used by FALCONN, whereas our code is orders of magnitude faster than brute
force.

Keywords: Near Neighbor, high dimension, linear storage, sublinear query,
random projection, implementation, machine learning

Advisors
loannis Z. Emiris, Professor, Dimitrios Gounopoulos, Professor, Panagiotis
Stamatopoulos, Assistant Professor

1. INTRODUCTION

The problem of Approximate Nearest Neighbor search is fundamental in
machine learning: one has to preprocess a dataset so as to answer proximity
queries efficiently, for a given query object. We focus on Euclidean or other
metric spaces, when the dimension is high. Typically one supposes dimension

d>logn, where n denotes the number of input data; in fact, dimension is an

35

input parameter, so we need to address the curse of dimensionality. Due to
known reductions, e.g. HIM12, one may focus on designing an efficient data
structure for the Approximate Near Neighbor (ANN) problem instead of directly
solving the Approximate Nearest Neighbor problem. The former is a decision
problem, whose output may contain a witness point (as in Definition 1), whereas
the latter is an optimization question. The (1+¢,r)-ANN problem, where c=1+¢, is
defined as follows.

Definition 1 (Approximate Near Neighbor problem) Let be a metric space.
Given PEM, and reals r>0 and €>0, build a data structure s.t. for any query geM,
there is an algorithm performing as follows:

« if s.t., then return any point p'eP s.t. ,

» if VpeP, , then report “no”.

An important approach for such problems today is Locality Sensitive Hashing
(LSH). It has been designed precisely for problems in general dimension. The
LSH method is based on the idea of using hash functions enhanced with the
property that it is more probable to map nearby points to the same bucket.

Definition 2 Let reals and . We call a family F of hash functions -sensitive for a
metric space M if, for any x, yeM, and h distributed uniformly in F, it holds:

* dm(x,y) s rq1 = Pr[h(x) = h(y)] 2 pq

* dm(xy) 22 = Prih(x) = h(y)] = p2.

Let us survey previous work, focusing on methods whose complexity has
polynomial, often even linear, dependence on the dimension. LSH was
introduced in IM98; HIM12 and yields data structures with query time and
space . Since then, the optimal value of the LSH exponent, p<1, has been
extensively studied for several interesting metrics, such as and . In a series of
papers IM98; DI0O4; MNPO7; AI08; OWZ11, it has been established that the
optimal value for the Euclidean metric is , and that for the Hamming distance is
o=1/cxo(1).

In contrast to the definition above, which concerns data-independent LSH,
quite recently the focus has been shifted to data-dependent LSH. In the latter
case, the algorithms exploit the fact that every dataset has some structure and
consequently this approach yields better bounds for the LSH exponent.
Specifically, in AR15 they showed that p=1/(2c—-1) for the distance and for the
distance.

The data-dependent algorithms, though better in theory, are quite
challenging in practice. In AILRS15, they present an efficient implementation of
one part of AR15. Another attempt towards practicality for a data-dependent
algorithm was recently made in ARN17, where they presented a new approach
based on LSH forests. Typically though, data-independent algorithms, such as
the one proposed in this work, yield better results in practice than data-
dependent algorithms.

36

For practical applications, an equally important parameter is memory usage.
Most of the previous work in the (near) linear space regime focuses on the case
that c is greater than 1 by a constant term. When c approaches 1, these
methods become trivial in the sense that query time becomes linear in n. One
such LSH-based approach Pan06 offers query time proportional to , which is
sublinear in n only for large enough c>1. Improvements on practical aspects of
the above result leaded to the novel multi-probe scheme for LSH Ch07. Two
noteworthy exceptions are the recently accepted papers ALRW17 and Christ17,
where they achieve near-linear space and sublinear query time, even for .

Another line of work that achieves linear space and sublinear query time for
the Approximate Nearest Neighbor problem is based on random projections to
drastically lower-dimensional spaces, where one can simply search using tree-
based methods, such as BBD-trees AEP15; AEP16. This method relies on a
projection extending the type of projections typically based on the Johnson-
Lindenstrauss lemma. The new projection only ensures that an approximate
nearest neighbor in the original space can be found among the preimages of k
approximate nearest neighbors in the projection. From the practical perspective,
similar ideas have been employed in SWQZL14. Random projections which
preserve the relative order of points have been also considered in LM16.

In this paper, we specify a random projection from any space endowed with
an LSH-able metric, to the vertices of the Hamming hypercube of dimension
logn, , where n is the number of input points. Random projections which map
points from a high dimensional Hamming space to lower dimensional Hamming
space have been already used in the ANN context KOROO. The projected space
contains strings which serve as keys for buckets containing the input points.
The query algorithm simply projects the query point, then examines points
which are assigned to the same or nearby vertices on the Hamming cube.

Our strategy resembles the multi-probe approach in the sense that after
locating the query, we start searching in "nearby" buckets. However, in our
case, nearby buckets are simply the ones which are close to each other with
respect to the Hamming distance of their keys, whereas in the multi-probe case,
the nearby buckets are the ones with high probability of success for a given
query. Computing which are the right buckets to explore in the multi-probe
approach is potentially harder than in our case.

The random projection in our algorithm relies on the existence of an LSH
family for the input metric. We study standard LSH families for and , for which

we achieve query time where , €€(0,1]. The constants appearing in & vary with

the LSH family, but it holds that >0 for any €>0. The space and preprocessing
time are both linear for constant probability of success, which is important in
practical applications.

We illustrate our approach with an open-source implementation, and report
on a series of experiments with n up to and d up to 1000, where results are
very encouraging. It is evident that our algorithm is 8.5-80 times faster than
brute force search, depending on the difficulty of the dataset. Moreover, we
handle a real dataset of images represented in 960 dimensions with a query
time of less than 128 msec on average. We test our implementation with
synthetic and real image datasets, and we compare against FALCONN, an
LSH-based library AILRS15, for which we use a "multi-probe" setting of

37

parameters. For SIFT, MNIST and GIST image datasets, we achieve
comparable performance in terms of memory usage and query time for one of
the two LSH families used by FALCONN. Our software outperforms FALCONN
when it uses the other LSH family.

The rest of the paper is structured as follows. The next section states our
main algorithmic and complexity results for the (c,r)-ANN problem in the
Euclidean and Manhattan metrics. In Section 3, we discuss our implementation,
and in Section 4, we present our experimental results. We conclude with open
questions.

2. DTA STRUCTURES

This section introduces our main data structure, and the corresponding
algorithmic tools. We start our presentation with an idea applicable to any metric
admitting an LSH-based construction, aka LSH-able metric. Then, we study
some classical LSH families which are also simple to implement.

The algorithmic idea is to apply a random projection from any LSH-able
metric to the Hamming hypercube. Given an LSH family of functions for some
metric space, we uniformly select d' hash functions, where d' is specified later.
The nonempty buckets defined by any hash function are randomly mapped to
{0,1}, with equal probability for each bit. Thus, points are projected to the
Hamming cube of dimension d'. Thus, we obtain binary strings serving as keys
for buckets containing the input points. The query algorithm projects a given
point, and tests points assigned to the same or nearby vertices on the
hypercube. To achieve the desired complexities, it suffices to choose d'=logn. In
Algorithms 1 and 2, we present the preprocessing and query algorithms.

The main lemma below describes the general ANN data structure whose
complexity and performance depends on the LSH family that we assume is
available. The proof details the data structure construction.

Lemma 3 (Main) Given a -sensitive hash family F for some metric and input
dataset PSM, there exists a data structure for the (c,r)-ANN problem with space
O(dn), time preprocessing O(dn), and query time , where

- |
8= 8(py,pp) = L B

where e denotes the basis of the natural logarithm, and H(-) is the binary
entropy function. The bounds hold assuming that computing and computing the
hash function cost O(d). Given some query geM, the building process succeeds
with constant probability.

Discussion on parameters.

We set the dimension d'=logn (which denotes the binary logarithm), since it minimizes
the expected number of candidates under the linear space restriction. We note that it is
possible to set d'<logn and still have sublinear query time. This choice of d' is
interesting in practical applications since it improves space requirement. The number of
candidate points is set to for the purposes of Lemma 3 and under worst case
assumptions on the input. In practice, this should be a user-defined parameter and
hence it is denoted by the parameter StopSearch in Algorithm 2.

38

Algorithm 1 Dolphinn: Preprocessing (data structure)

input Metric (M, d), radius > 0, approximation fac-

tor ¢ > 1, LSH family F' = F(c,r), data set P C M,
parameter d’.
Initialize empty hashtable 7.
fori=1tod do

Sample h; € F u.a.r.

for each x € h;(P) do

Flip a fair coin and assign the result to f;(x).

end for

end for

Forallp € P, f(p) = (f1(h1(p)),- - -, fa(ha'(p)))-
For all p € P, add p to the bucket of 7" with key f(p).

Algorithm 2 Dolphinn: Query Algorithm

input Metric (M, dnq), LSH family F, data set P C M,
parameter d’, integer StopSearch, query ¢. (We assume
that this algorithm has access to the ANN data structure
created in Algorithm 1)

output Point p € P or "no”
fori = 1tod do

if fi(hi(q)) is not defined in Algorithm I then
Flip a fair coin and assign the result to f;(h;(q)).
else
Compute f;(hi(q)).
end if
end for
i=0
for each x in f(P) s.t. ||z — f(g)|[1 <05-d - (1 —pq)
do
for each point p inside the bucket with key z do
if dp(p.q) < c-rthen
return p.
end if
P41 +1
if i > StopSearch then
return "no”.
end if
end for
end for
return "no”

39

2.1 The L2 case

In this subsection, we consider the (c,r)-ANN problem when the dataset
consists of n points , the query is , and the distance is the Euclidean metric.

We may assume, without loss of generality, that r=1, since we can uniformly
scale . We shall consider two LSH families, for which we obtain slightly different
results. The first is based on projecting points to random lines, and it is the
algorithm used in our implementation, see Section 3. The second family relies
on reducing the Euclidean problem to points on the sphere, and then
partitioning the sphere with random hyperplanes.

2.1.1 Project on random lines

Let p, q two points in and n the distance between them. Let w>0 be a real
parameter, and let t be a random number distributed uniformly in the interval
[0,w]. In DI04, they present the following LSH family. For , consider the random
function

h(p) = 1225, p, v R, (1)

where v is a vector randomly distributed with the d-dimensional normal
distribution. This function describes the projection on a random line, where the
parameter t represents the random shift and the parameter w the discretization
of the line. For this LSH family, the probability of collision is

w 2 t2 t
amw) = [,_, \/Z__m]exp(_ ﬁ)(l —dt.

Lemma 4 Given a set of n points , there exists a data structure for the (c,r)-ANN
problem under the Euclidean metric, requiring space O(dn), time preprocessing
O(dn), and query time , where

§ > 0.03(c — 1)2.

Given some query point , the building process succeeds with constant
probability.

2.1.2 Hyperplane LSH

This section reduces the Euclidean ANN to an instance of ANN for which the
points lie on a unit sphere. The latter admits an LSH scheme based on
partitioning the space by randomly selected halfspaces.

In Euclidean space , let us assume that the dimension is d=O(logn-loglogn),

since one can project points a la Johnson-Lindenstrauss DG02, and preserve
pairwise distances up to multiplicative factors of 1+o(1). Then, we partition
using a randomly shifted grid, with cell edge of length . Any two points for which
lie in the same cell with constant probability. Let us focus on the set of points
lying inside one cell. This set of points has diameter bounded by . Now, a
reduction of Val15, reduces the problem to an instance of ANN for which all
points lie on a unit sphere , and the search radius is roughly . These steps have
been also used in ALRW17, as a data-independent reduction to the spherical
instance.

40

Let us now consider the LSH family introduced in Cha02. Given n unit
vectors, we define, for each, hash function h(q)=sign(q,v), where v is a random

unit vector. Obviously, , where ©(p,q) denotes the angle formed by the vectors .
Instead of directly using the family of Cha02, we employ its amplified version,

obtained by concatenating k=1/r' functions h(:), each chosen independently and

uniformly at random from the underlying family. The amplified function g(-) shall
be fully defined in the proof below. This procedure leads to the following.

d
Lemma 5 Given a set of n points P € R , there exists a data structure for the

(c,r)-ANN problem under the Euclidean metric, requiring space O(dn), time

1-6 0.91
preprocessing O(dn), and query time O(dn +n), where

§>0.05- (S92

Given some query , the building process succeeds with constant probability.

The data structure of Lemma 5 provides slightly better query time than that of
Lemma 4, when c is small enough.

2.2 The L1 case

In this section, we study the (c,r)-ANN problem under the metric. The dataset
consists again of n points and the query point is.
For this case, let us consider the following LSH family, introduced in Al06. A
point p is hashed as follows:
h(p) = (1222, (222, [Py,

w w w

where is a point in P, w=ar, and the are drawn uniformly at random from
[0,...,w). Buckets correspond to cells of a randomly shifted grid.
Now, in order to obtain a better lower bound, we employ an amplified hash

function, defined by concatenation of k=a functions h(-) chosen uniformly at
random from the above family.

d
Lemma 6 Given a set of n points P € R , there exists a data structure for the

(c,r)-ANN problem under the metric, requiring space O(dn), time preprocessing
1-6 0.91
O(dn), and query time O(dn +n), where

c—1
6 = 0.05 - (T)Z'

Given some query point , the building process succeeds with constant
probability.

41

3. IMPLEMENTATION

This section discusses our C++ library, named Dolphinn which is available
online . The project is open source, under the BSD 2-clause license. The code
has been compiled with g++ 4.9 compiler, with the O3 optimization flag enabled.
Important implementation issues are discussed here, focusing on efficiency.

Our implementation is based on the algorithm from Subsection 2.1.1 and
supports similarity search under the Euclidean metric. We denote by F the LSH
family introduced above (see also Data et al.,, 2004), based on projection on
random lines, see Subsection 2.1.1. The data structure to which the points are
mapped is called Hypercube.

Parameters.

Our implementation provides several parameters to allow the user to fully
customize the data structure and search algorithm, such as:

d'" The dimension of the Hypercube to which the points are going to be
mapped. The larger this parameter, the faster the query time, since it
leads to a finer mapping of the points. However, this speedup comes with
increased memory consumption and build time.

StopSearch Maximum number of points to be checked during search
phase. The greater this parameter, the more accurate results will be
produced, at the cost of an increasing query time.

r Itis provided by the user as input. The algorithm checks whether a point
lies within a radius r from the query point.

M, O,W Specify the hash function h from LSH family F, by Equation 1. In
particular, p,0 specify the random vector under the Normal Distribution ,
which is multiplied by the point vector, whereas w is the “window" size of
the line partition.

Configuration.

Despite the simple parameter set, we employ default values for all parameters
(except r), which are shown to make Dolphinn run efficiently and accurately for
several datasets. Moreover, the whole configuration is designed for an one-
threaded application. However, it would be interesting to modify it and take
advantage of the huge parallel potential of Dolphinn.

Hypercube.

The Hypercube data structure contains all the necessary information, so that it
can efficiently hash a query on arrival, by using two hash tables, that indicate
the statistical choices made upon build and the index of every associated
original point. Moreover, another hashtable is constructed, which maps the
vertices of the Hypercube to their assigned original points. This hierarchy
provides space and time efficiency, and is very natural to code, because of the
simplicity of the algorithm.

Miscellaneous.

Parallel processing is able to give a boost in Dolphinn’s performance, both in
the preprocessing and the search phase, while we managed to minimize thread

42

communication and balance every thread’s workload. Efficient distance
computation is important, since in high dimensions this operation is very time
consuming. Bit manipulation and caching were also very important, since
hashing was faster by employing certain relative design choices. Selecting
between recursive or iterative schemes for certain tasks provided additional
speedup for Dolphinn.

4. EXPERIMENTAL RESULTS

This section presents our experimental results and comparisons on a number of
synthetic and real datasets. We also analyze our findings.

All experiments are conducted on a processor at 3 GHzx4 with 8 GB. We
compare with the state-of-the-art LSH-based FALCONN library, and the
straightforward brute force approach. We examine build and search times, as
well as memory consumption. FALCONN implements two LSH families in 4,748
C++ lines of code, while Dolphinn implements one LSH family in 716 lines. In
particular, FALCONN implements the Hyperplane LSH family Charikar 2002
and the Cross-Polytope LSH family Andoni et al., 2015, which are both
designed for cosine similarity search. However, this is known to be sufficient in
the Euclidean distance case, assuming that the dataset is isotropic. Notice that
such assumptions are not required in our method.

Datasets.

We use 5 datasets of varying dimensionality and cardinality. To test special
topologies, two sets, Klein bottle and Sphere, which are synthetic. We generate
points on a Klein bottle and on a sphere embedded in , then add to each
coordinate zero-mean Gaussian noise of standard deviation 0.05 and 0.1
respectively. In both cases, queries are nearly equidistant to all points, implying
high miss rates. In particular, queries are constructed as follows: pick a point
from the point set uniformly at random and, following a Normal Distribution
N(0,1), add a small random quantity to every coordinate. A query is chosen to
lie within the fixed radius 1 with a probability of 50%.

The other three datasets, MNIST, SIFT and GIST are presented in JeDS11,
and are very common in computer vision, image processing, and machine
learning. SIFT is a 128-dimensional vector that describes a local image patch
by histograms of local gradient orientations. MNIST contains vectors of 784
dimensions, that are 28x28 image patches of handwritten digits. There is a set
of 60k vectors, plus an additional set of 10k vectors that we use as queries.
GIST is a 960-dimensional vector that describes globally an entire image. SIFT
and GIST datasets each contain one million vectors and an additional set for
queries, of cardinality for SIFT and 1000 for GIST. Small SIFT is also
examined, with vectors and 100 queries.

For the synthetic datasets, we solve the ANN problem with a fixed radius of 1
and we compare to brute force, since FALCONN does not provide a method for
the ANN problem as this is defined in Definition 1. For the image datasets, we
find all near neighbors within a fixed radius of 1, by modifying our algorithm in
order not to stop when it finds a point that lies within the given radius, but to
continue until it reports all points inside the fixed radius, or reach the threshold
of points to be checked. This objective is also supported by FALCONN.

43

Moreover, we tune the number of probes for multiprobe LSH used by
FALCONN. For a fair comparison, both implementations are configured in a
way that yields the same accuracy and memory consumption.

Preprocessing.

The preprocessing time of Dolphinn has a linear dependence in n and d, as
expected, which is shown in Tables 1 and 2. Moreover, Dolphinn is observed to
be competitive with FALCONN when employing the Cross-Polytope family, but
slower than FALCONN for the Hyperplane LSH family. Table 3 shows
representative experiments. We use different values for the number of hash-
bits, i.e. the number of bits per key (in our case d'). Note that any normalization
and/or centering of the point set, which is a requirement for FALCONN in order
to make the pointset more isotropic, is not taken into account when counting
runtimes.

Let us explain this performance. The main issue behind the larger building
times is the use of two hash tables which simulate the two random functions,
one which maps points to keys in and one which maps keys in to keys in .
Using an LSH family which directly maps points to would require only one
hashtable, but such an LSH family does not always exist. Nevertheless, it is
probable that the two random functions may be implemented more efficiently.

Search and Memory.

We conduct experiments on our synthetic datasets while keeping n or d fixed, in
order to illustrate how our algorithm’s complexity scales in practice. The Sphere
dataset is easier than the Klein bottle, which explains the reduced accuracy, as
well as the dramatic decrease of speedup (w.r.t. brute force), since more points
are likely to lie within a fixed radius of 1, than in the Klein bottle. In general, our
algorithm is significantly faster than brute force as expected (especially since
the latter is not optimized), and scales well, namely sublinearly in n and linearly
in d, as shown in Tables 1 and 2.

Moreover, we report query times between FALCONN and Dolphinn on the
image datasets; small SIFT, SIFT, MNIST and GIST, for equal accuracy and
memory consumption. Dolphinn outperforms the cross-polytope LSH
implementation of FALCONN and it has comparable performance with the
Hyperplane LSH implementation, as shown in Figure 1.

Table 1: Sphere dataset: build, Dolphinn search, and brute force, when varying
one of n,d.

n d build (sec) search (usec) brute f. (sec)

10° 128 0.053 62.37 0.006
10° 256 0.092 152.3 0.012
10° 512 0.168 257.1 0.025

44

| 1 0.34
GIST . 1013
= o013
(= .
z [2.95-10-3
S MNIST |6.19 - 104
2 |5.10—4
~ 0
g [11.47-102
> SIFT Ho-10-3
g’ Bo.10-3
= | 2.49- 104
Small SIFT |8.6-10-5
|9.10-5
0 0.1 0.2 0.3

Query Time (sec)

= Dolphinn = FALCONN (H) = FALCONN (C)

Figure 1. Query time (sec) for 3 implementations: Dolphinn,
FALCONN for Hyperplane LSH family, FALCONN for Cross-

polytope LSH family.

n d build (sec) search (usec) brute f. (sec)

10° 800 0.255 374.1 0.039
10° 1024 0.321 499.6 0.050
10? 512 0.0002 1.001 7.5E-05
10° 512 0.0016 4.924 0.0004
10* 512 0.0169 4772 0.0049
10° 512 0.1683 477.0 0.0499
10° 512 1.6800 2529 0.2492

45

Table 2: Klein bottle dataset: build, Dolphinn search, and brute force when
varying one of n,d.

n d build (sec) search (sec) brutef. (s)

10° 128 0.053 0.0009 0.0061
10° 256 0.091 0.0029 0.0147
10° 512 0.168 0.0031 0.0254
10° 800 0.259 0.0056 0.0425
10° 1024 0.321 0.0061 0.0513
10° 512 0.0003 1E-05 7E-05
10" 512 0.0016 4E-05 0.0004
10° 512 0.0169 0.0004 0.0049
10° 512 0.1679 0.0051 0.0501
10° 512 1.6816 0.0252 0.2497

Table 3: Build time (sec) for 3 representative datasets; d' is the Hypercube dimension in
Dolphinn, or the number of hashbitsin FALCONN. We report on: FALCONN with the
cross-polytope LSH family (F (c¢)), FALCONN with the Hyperplane family (F (h)),

Dolphinn (D).

small SIFT SIFT GIST
d 4 16 8 16 8
Fc 0.01 0.02 1.33 2.62 8.44
Fh 0.00 0.00 0.44 0.72 247
D 0.02 0.05 1.49 3.33 7.98

46

5. CONCLUSION

We have designed a conceptually simple method for a fast and compact
approach to Near Neighbor queries, and have tested it experimentally. This
offers a competitive approach to Approximate Nearest Neighbor search.

Our method is optimal in space, with sublinear query time for any constant
approximation factor c¢c>1. The algorithm randomly projects points to the
Hamming hypercube. The query algorithm simply projects the query point, then
examines points which are assigned to the same or nearby vertices on the
hypercube. We have analyzed the query time for the Euclidean and Manhattan
metrics.

We have focused only on data-independent methods for ANN, while data-
dependent methods achieve better guarantees in theory. Hence, designing a
practical data-dependent variant of our method will be a challenging step.
Moreover, since our implementation easily extends to other LSH families, it
would be interesting to implement and conduct experiments for other metrics.

6. REFERENCES

1. Anagnostopoulos, E., Emiris, I.Z., and Psarros, I. Ran- domized embeddings with slack, and high-
dimensional approximate nearest neighbor. CoRR, abs/1412.1683, 2014-2016.

2. Anagnostopoulos, E., Emiris, I. Z., and Psarros, |. Low- quality dimension reduction and high-
dimensional approximate nearest neighbor. In Proc. 31st International Symp. on Computational
Geometry (SoCG), pp. 436— 450, 2015. doi: 10.4230/LIPlcs.SOCG.2015.

3. Andoni, A. and Indyk, P. Efficient algorithms for substring near neighbor problem. In Proc. 17th
Annual ACM- SIAM Symposium on Discrete Algorithms (SODA), pp. 1203-1212, 2006.

4. Andoni, A. and Indyk, P. Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. Commun. ACM, 51(1):117-122, 2008.

5. Andoni, A. and Razenshteyn, |. Optimal data-dependent hashing for approximate near
neighbors. In Proc. 47th ACM Symp. Theory of Computing, STOC'15, 2015.

6. Andoni, A,, Indyk, P., Laarhoven, T., Razenshteyn, I.P., and Schmidt, L. Practical and optimal LSH
for angular dis- tance. In Advances Neural Information Proc. Systems 28: Annual Conf. Neural
Information Processing Sys- tems, pp. 1225-1233, 2015.

7. Charikar, M. Similarity estimation techniques from round- ing algorithms. In Proc. 34th Annual
ACM Sympo- sium on Theory of Computing, 2002, Montre al, Que’bec, Canada, pp. 380-388,
2002.

8. Dasgupta, S. and Gupta, A. An elementary proof of a the- orem of Johnson and Lindenstrauss.
Random Struct. Al- gorithms, 22(1):60-65, 2003.

9. Har-Peled, S., Indyk, P., and Motwani, R. Approximate nearest neighbor: Towards removing the
curse of dimen- sionality. Theory of Computing, 8(1):321-350, 2012.

10. Indyk, P. and Motwani, R. Approximate nearest neigh- bors: Towards removing the curse of
dimensionality. In Proc. 30th Annual ACM Symp. Theory of Computing, STOC'98.

11. Jegou, H., Douze, M., and Schmid, C. Product quantiza- tion for nearest neighbor search. IEEE
Trans. Pattern Analysis & Machine Intell., 33(1):117-128, 2011.

12. Panigrahy, R. Entropy based nearest neighbor search in high dimensions. In Proc. 17th Annual
ACM-SIAM Symp. Discrete Algorithms, SODA’06.

13. Sun, Y., Wang, W., Qin, J., Zhang, Y., and Lin, X. Srs: Solving c-approximate nearest neighbor
queries in high dimensional euclidean space with a tiny index. Proc. VLDB Endow., 8(1):1-12,
September 2014.

14. Valiant, G. Finding correlations in subquadratic time, with applications to learning parities and
the closest pair prob- lem. J. ACM, 62(2):13, 2015.

47

48

Graphity: Out-of-core graph multiplications

Stamatis Christoforidis {stachris@di.uoa.gr}
ABSTRACT

In this work, we deal with generalized graph multiplications (GGM). The model
of generalized graph multiplications can express interesting problems. In
particular, we present an out-of-core technique that can perform multiple
iterations consecutively while managing graphs whose original and / or
generated data may not fit into the main memory of a computational node. This
technique performs essentially actions on edge data and generates new
knowledge through the creation of new edges in the original graph. Then we
present Graphity, a prototype system that implements this basic technique and
discuss on the challenges we faced during its implementation. Furthermore, we
model various problems in known systems based on the Think-Like-a-Vertex
model, as well as on relational database systems and compare them
experimentally with Graphity. The experimental results show a significant
increase in performance compared to existing approaches, while also
highlighting the suitability of our approach especially at edge problems.

Keywords: Graph multiplication, Data storage, Query optimization

Advisors

Yannis loannidis, Professor, Manos Karvounis, PhD candidate
1. INTRODUCTION

Graphs are a very interesting structure in the IT field. Graphs can represent
data from different branches, such as social, biological networks, road networks
etc. However, this versatile ability to represent different kind of data means that
graphs require special treatment depending on their characteristics and
attributes. For example, metrics such as the number of in/out degree, the
diameter, node centrality, etc., affect directly the performance of graph
processing systems. In addition, graphs are by nature the structure that in
general have no traversal locality, while scaling across multiple machines
introduces many issues of synchronization issues, graph partitioning, and
effective paralleling. In recent years, the Think-like-a-vertex (TLAV) model
presented in Pregel [1] have emerged over different architectures, such as
distributed systems, shared memory systems, disc based systems, and GPUs.

In the Generalized Graph Multiplications (GGMs) model, many interesting
problems can be modeled like friend-of-friend discovery, similarity metrics,

49

common neighbors, etc. In this model, such problems can be expressed in a
natural way, but they can also be efficiently calculated with appropriate design
principles.

The main contributions of this research are the following: (a) the definition of an
execution plan that executes Generalized Graphs Multiplications, while
supporting multiple consecutive multiplications; (b) an out-of-core system
implementation that applies the above techniques and support graphs, where
the initial graph data or the results don’t fit necessarily into the main memory
and the disk is used as secondary storage medium; (c) a set of experiments
verifying the suitability of this approach, compared to systems that implement
the same problem in the TLAV model and relational database systems.

The rest of the text is structured as follows: Chapter 2 defines the basic
properties and operations of the GGM model. In Chapter 3 we analyze the
proposed plan for executing out-of-core GGMs. In Chapter 4 we compare
Graphity experimentally with other existing systems. Then, in Chapter 5, we
describe related work around models and systems that can model GGM
problems and finally, in Chapter 6, we conclude the survey.

2. GENERALIZED GRAPH MULTIPLICATIONS

2.1 Definition

In Generalized Graph Multiplication (GGM) model, given a graph G, we
generalize its adjacency matrix in such a way that each element of (i,j) (i-line, j-
column) is mapped to the properties of the edge (i,j). In addition, the GGM
substitutes the operators of multiplication and addition during the execution of
multiplication, replacing the latter with the CON and AGG operators by the user.
The following definition defines GGM mathematically o as:

G oG = G*,where G{; = AGGR=; (G CON Gy;)

2.2 Basic operations

In GGM, there are two basic operations which performed in multiplication, the
join operation and the groupby operation.

Join operation. The join operation joins the graph edges which connect graph
nodes that are two hops away in graph, in order to create a new one. During the
join operation, a UDF operator called "con" (Figure 1, left) is applied. This
operator determines the label of the new edge that will be produced taking into
account the labels of the starting edges involved in the join operation. Any edge
produced during the join operation is called join result.

50

s@ -@ @t s’ 5 ~@t

lein |3 lagg

operation operation

@ @t @ P @t
I = Con(|1,|2) = agg“l;'z:h)

Fig. 7. Example of join operation where the edges (s,c,|,) and (c,t,l;) produce the new edge (s,t,con(ly,l2))
and agg operation where the edges{ (sit,l1), (St,l2), (St.,l3)}
produce the new edge (s;t,agg(l1,12,13))

Groupby operation. The groupby operation takes as input edges with the
same ends (s,t) produced by the join operation and groups them into a single
edge. During grouping, the UDF operator called "agg" is applied and determines
the value of the grouped edge based on the labels of the edges involved in the
groupby operation (Figure 1, right). Any groupby result is referred as groupby or
agg result.

Figure 2 shows an example of a graph where the join and groupby operations
are applied.

results of join
(0,5)(0,5)(0,3)(0,6)
(1,5)(1,6](1,6)

(2,5)(2,6)

results of groupby
(0,5,count:2)(1,5,count:1)
(0,3,count:1)(1,6,count:2)
(0,6,count:1)(2,5,count:1)
(2,6,count:1)

Fig. 8. Example graph and results of join and groupby operations;
the groupby operation uses count as agg UDF

2.3 GGM problems

Below are presented some realistic problems that are expressed as GGMs.

Friend — of — Friend: G o G, where {, +} — {nil,count} . The purpose of the
problem is given as a node k, the identification of "friend of friend", that is, the
set of nodes that are 2 hops in the graph. In the above definition, changing the
operator "+" to the operator "nil" implies that no UDF operator is applied during
the con operation.

Common neighbors: G o GT, where {*, +} - {nil,count} . The above expression
counts the common neighbors for each pair of nodes in the graph.

Trusts in 3 hops: G o G o G, where {*, +} — {nil, count}. With the above expression,
we calculate the number of nodes that each node trusts in the graph within
three hops away.

51

3. EXECUTION PLAN

In this chapter, we will describe the input data format and then we will analyze
an execution plan that supports the execution of one or more consecutive
GGMs as described in Algorithm 1. The basic stages of the execution plan are
four: 1) load the next source partition, 2) stream all target partitions, 3) estimate
the results for each source-target partition pair and 4) store the new results. The
above procedure is repeated until all source partitions are processed. Next, we
will discuss the main advantages of this execution plan.

Algorithm 1l: GGM execution plan

For each source partition s

Load partition s at memory

Create inverted-index on partition s’ data

For each target partition t
Load asynchronously partition t at memory
For each node t; in target partition t
Execute join and groupby operation
Store results at disk

3.1 Graph Preprocessing

First of all, let's consider as input a directed graph that is represented as an
adjacency list with the following form:

[NoledgecounQJ(eOrVO)r(el'Vl):"-(ekka)L

[Nlledgecountll(eo'vo)' (el;Vl); (em'Vm)]'
where N;: a graph node, edgecount; the out degree of node N; , ey, vy: the
edge’s target node, followed by the edge’s label. The label of an edge can have
arbitrary size, but is constant for all edges in the graph during an execution.
Then, we store the graph twice in the disk, one where the edges are sorted at
the source node (s field), and another one where the edges are sorted at the
target node (t field).

3.2 Run Execution Plan

Once the initial graph is sorted, it begins the in-memory graph loading process.
First of all, there are two buffers; the first one is used to load segments of the
graph sorted at edges’ source nodes, these segments are called source
partitions. The second buffer, is used to load segments of the graph sorted at
edges’ target nodes respectively. The latest segments are called target
partitions.

Load source partition. The buffer that handles source partitions works as
follows: Uses a small-sized buffer to read edges from the file asynchronously.

52

Fetching edges is interrupted when either of the following conditions ceases to
apply. a) Total PageSize data have been loaded, and therefore there is no
space available in the buffer. b) Data corresponding to k nodes have been
loaded. Moreover, the maximum number of distinct nodes that can participate in
a source partition should be determined before execution.

As a source partition is loaded, an inverted index is built at the target field of the
edge. Figure 3 shows the index creation process. The index is a N-sized array
(since the other edge end, can be any node of the graph) and each cell i
indicates the position in the source partition buffer where the edges of node with
id i begin. In order to create the inverted index, the edges of the current source
partition must be scanned twice. During first scan, we count for each node in
the target field how many edges in the source field are expected to come
across. The second time, the edges are placed in the appropriate position in the
source partition buffer, based on the counts calculated at the 1st scan. At this
point, an index is created in the target field of edges for the current source
partition, which will be used then in the join operation.

Source Partitions Inverted indexof Partition i

{so. €0} G ™ % Target Partitions
o) o [|s] feo,to}
A Stream edges Partition 0
Partition i {5, 6.} G B {Ch t'02)}
fs1,61} 6 1 s N
= 3 1
{s1,¢:} c L ﬂ {cs, ts}
2 . {cw, ts} Partition 2
{se, 1o}) feu, ts}
- {Ske1s €30} % 1 %
[2 2 .
el N Y c.. {5t} Pnitenm

Fig. 9. Inverted index creation at source partition (left); target partition streaming (right)

Load target partition. Loading target partitions is much simpler. In particular,
edges are loaded asynchronously as much as the target partition buffer’s
capacity and then the buffer is ready for use.

At this point, it is worth noting that when loading edges in either source or target
partition, any node’s edges must be included in the same partition. For that
reason, any source partition must have size at least equal with the maximum
out-degree of the graph and any target partition must have size at least equal
with the maximum in-degree of the graph respectively.

Compute results. As the nodes t of a target partition are loaded, they are
assigned to groups to be processed by the available threads. Each thread
calculates the results produced by the node that executes the join and after the
groupby operation. The produced results of each node t are stored locally in an
array called groupby array.

53

Souree Parttion | Target Partition |

S/ N\e © —®
lf N == i)
Ta\lo oo »
\ . /.'/,._//

Fig. 10. Example of source and target partitions on which will be applied the execution plan

At this point, we will outline in a small example the procedure, in order to
estimate the final results. First, suppose that we are processing the edges of the
source and target partitions as shown at Figure 4. The inverted index of source
partition i that it will be created appears at Figure 5; the target nodes with id 2
and 3 respectively are also assigned to a different executor. Then each node
will execute the join operation.

Join Operation. The edges of the executing node are joined with those of the
current source partition using the inverted index. While joining the edges, the
operator "con" is applied to the edge values. The produced edge is stored
locally at the thread. Figure 5 shows the results of the join operation that each
executor produces locally.

Source Partition, Inverted index
Executorl

o 23] {1,2}

0 { 10,2} Join Operation results: {0.2), {0.2), (L2} (2.2} (3.2)
(18,2}
{ 43,2}

4

—{o] | SRk
18 n Executor2

{03}
{253}
{ 63,3}

Join Operation results: (2.3}, (3.3}, (1,3}

25

Fig. 11. Estimating join results locally at executors

Groupby Operation. It is crucial for the efficient execution of operations that
groupby operation to be executed rapidly. Groupby operation, needs two K-
sized arrays, where K is the maximum number of nodes that we process in a
single source partition. The 1st array is used as an index, while the 2nd (called
groupby array) is used to store the new results.

For example, let node t produce a new edge (s,v), where s is the edge node
destination and v the value of the new edge. Firstly, we access the cell with
index s at the index array and the latest returns the location of the edge data
(s, v) at the groupby array. With this technique, each join result with just two
random accesses, one in each array performs the groupby operation. This
technique is much faster than using other structures such as hashmaps, etc.,

54

especially when the set of data to be aggregated is quite large. In addition, all
produced results of a specific node are placed side by side in the groupby array,
which helps to efficiently transfer them latter from main-memory to disk. Figure
6 illustrates the structures used by the executors for the groupby operation, as
well as the status of groupby arrays that have stored the final results for target
nodes 2 and 3. Groupby arrays results are now ready for transport to the disk.

Executor 1 Join results: {0,2), {0.2). {1.2}. (2.2}, (3.2} Executor 2 Join results: (1.3}, (3.3}, (1.3}

‘ 2

[e]~]=]e]
I 4

Index array

2
0~
LSS PE
31,

Agg result edges

Fig. 12. Executing groupby locally at executors

At the moment, an edge is produced by the join operation, it is grouped with the
existing edge with the same ends (if already existed) by applying the operator
"agg" and thereby composing the new value of edge with ends (si,tj). Otherwise,
it is placed in a new cell in the groupby array.

3.3 Execution plan advantages

This execution plan is suitable for performing out-of-core GGMs for three main
reasons.

Source Partition0 Target Partition 0

Target Partion 1

Source Partition,, 4 Target Partition,,

Fig. 13. Dividetheinitia graph at two source and target partitions

Produced results are final. As we have already mentioned, the source
partitions are sorted into the source edge field, while the target partitions are
sorted into the target edge field, respectively. Therefore, when joining a source
partition with a target partition, the final results that will result for an edge (s,t)
will eventually be the final, since it is impossible for any next partitions join, to
produce some new edge (s,t), since the initial partitions are sorted.

Execution plan supports natively multiple iterations. The generated data of
each output partition, which are produced during the GGM have the following

55

two properties. a) All edges are grouped on target field, b) all source fields of
the results edges are a subset of all nodes s, originated from the initial source
partition.

With respect to the first property, a thread processes all the edges of target
node, so it is possible to write all edges having a common end t in adjacent
positions in the output partition. This is important, because in each subsequent
iteration after the first one, since the edges are already grouped in the target
field, the inverted index at the source partition is essentially ready, and only one
pass is needed to map the target nodes in the index array.

P“’d“““::"" =5 NexSource Partition
1ta)

P : (Saty
roduces: I:‘ =5 WexSource Parition1
(5.t)

Produces: (S,%) ==% NexSource Partition 2

A &
&—a. \
- ~ Peodhacns: |2—-'~!J =3 NextSource Partition3
(Suts)

Fig. 14. The estimated results are the source partitions in the next iteration

The division of the initial problem into sub-problems may improve
performance. In graphs with a large number of nodes, we have noticed that
there are many cache misses in the CPU during the groupby operation. This is
because when the number of nodes is large enough, random accessing in both
to index and the groupby array accesses a wide range of memory addresses
that are not cached and eventually cache misses are created. For that reason,
processing smaller source partitions from the total number of nodes and thus
limiting the range of arrays during the groupby operation generally improves the
performance of the cache. Of course, splitting into smaller source partitions
means increasing the passes in the graph to estimate all the results.

Identifying the point where the improvement in the performance of the groupby
operation in relation to the overheads added by the multiple passes over the
graph ultimately achieves better performance when performing one or more
GGMs is a complex process and is an interesting research direction.

To reinforce this argument, we cite the result of an experiment below.

Execution time - FoF

1000 880.63
== hollywood

750
500
241.39

2:;1:3 12 167.11

fime(s)

0 -
1 10

target partitions

Fig. 15. Chart of the effect at runtime of dividing the problem into smaller

56

In this experiment, we ran the friend-of-friend problem and compared the total
run time of one graph multiplication by dividing the original problem into
1,10,100 and 1,000 sub-problems, practically limiting the maximum number of
nodes participating in a source partition. In addition, operations related to disk
reads are simulated by in memory calls to show the "net" gain from the groupby
operation. As can be seen in Figure 9, for a small number of passes in the
graph, better performance is achieved. However, when the number of passes
begins to rise considerably, then the extra cost of the overheads added by the
additional graph passes is far greater than the profit due to fewer caches
misses in the groupby operation.

4. SYSTEM EVALUATION

In this chapter, we will experimentally analyze the performance of Graphity.
More specifically, we compare the proposed execution plan that implements
Graphity, compared to other TLAV model systems and a relational database in
the friend-of-friend problem. The following table (Table 1) shows the graphs
characteristics used in the experiments. as the number of join and aggregate
results produced at 2hops.

Table 3. Graph Datasets

Graph Nodes Edges Join/Agg results
count 2 hops
amazon 7 % 105 5% 10° 4 %107 /2107
roadNet-CA 1.9 x 10° 5% 10° 107 /107
in 1.4 % 108 107 10° /2 % 108
frwiki 1.3 x 10° 3 %107 5x%10° /3% 10°
hollywood 2% 10° 2 %108 2%101 /4 %107

The experiments conducted on a machine that has the following specifications:

e Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-62-generic)

e 2x10 cores - Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
e 144 GB RAM - 2133MHZ, DDR4

e 2TB - Hard Disk - RAID 1

4.1 Comparing to TLAV systems

Initially, we decided to compare the proposed execution plan for GGMs with the
TLAV model to the friend-of-friend problem, described in Section 2.3. We chose
the open source systems Graphchi [9] and X-Stream [10], which are two good
representatives that execute TLAV model problems, while they run on a single-

57

node like Graphity and support out-of-core processing. Graphchi uses a
traditional vertex centric approach and uses an innovative technique to reduce
random access to disk called "Parallel Sliding Windows". X-Stream instead
uses an edge-centric approach, which is implemented using streams called
"Streaming Partitions" and can scale efficiently.

Both in Graphchi and X-Stream we used the provided application programming
interface (API) to implement the friend-of-friend problem. Regarding the
modeling of the problem, we considered that there is a defined set of active
nodes, for which we count the number of friends of their friends. Once the
computations for this set of nodes are over, then the next set of nodes is
scheduled and this process is repeated until the results of all nodes are
estimated. In fact, the whole computation is performed in multiple batch
processing groups.

In order to execute the computation, each node of the graph must reserve
memory proportional to the number of the nodes b participating in the
computation. Therefore, if we wanted to calculate all the results in a single
batch, then each node would store information for all other nodes and
eventually the total required memory would be O(N?). Since this memory size is
too large, computations must be performed on smaller groups of nodes in order
fit to the available memory.

4.2 Comparing to RDBMS systems

In this case, we will calculate the same problem compared to a relational
database. Generally, relational databases are general purpose and therefore do
not have optimized data structures for graph operations. However, the fact that
we execute join and group by operations on independent sets (set operations)
is a classic relation model use-case. We chose SQLite' as the representative,
which is widely used and has competitive execution times compared to other
open source databases. The query we executed in SQLite is the following:

insert into results

select g1.edge_from, count(distinct g2.edge_to)
from graph g1, graph g2

where g1.edge_to = g2.edge_from

group by g1.edge_from;

The experiments were conducted on a Docker virtual machine with total 8GB of
RAM, 8 physical cores on the same processor and Ubuntu 16.04 LTS operating

system. We have run all the experiments within the virtual machine so that the
operating system behaves like it has as available memory, only the portion of it

' sqQlLite, https://lwww.sqlite.org

58

that we have defined, so that it manages the system pages correctly, and also
determine which specific cores will be used.

The following diagram (Figure 10) shows the execution of the friend-of-friend
problem. Graphity is far faster than other systems, which is mainly due to the
suitability of its execution plan, as well as to the efficient implementation of the
two basic operations of the join and groupby. As far as X-Stream and Graphchi
are concerned, they do not perform well, because they process only a few
thousand nodes in a batch and thus, they have to perform too many iterations to
estimate the results of all the nodes. In addition, each individual batch, doesn'’t

have any great workload particularly, and these systems cannot scale efficiently
in most cases.

Estimate FoF Count

1000

| 3474) 3159
1079
800
482
205 188
100
78
| I
;] I
amazon roadnet-CA n frwiki
Graph

B graphity W sglite x-stream [graphchi

Time (s) logscale

Fig. 16. Execution time fof problem.
5. RELATED WORK

The Think-like-a-vertex model is the most widely used model for large scale
graph processing and is used to solve known graph problems. Pregel [1] is a
procedural expression of the Think-like-a-vertex model and introduces an
application programming interface (API) for application development through a
messaging mechanism. Pregel as a computational model has been applied to
different architectures such as distributed, in-memory systems, GPUs, and so
on. A typical example of using the Pregel model is Pegasus [2], which is a
graph processing engine, implemented in the framework for processing large-
scale MapReduce data [3]. Pegasus follows the principles of the MapReduce
model and expresses a set of graph algorithms as a generalized form of sparse
matrix-vector multiplication. This representation is ideal for solving problems like
PageRank [4], propagation [5] (label propagation), but has a very low
performance in graph traversal algorithms and especially in performing multiple
multiplications of different vectors with a matrix.

In our case, we are looking at systems that support out-of-core graph
processing. In the category of such systems are disk-based systems such as

59

Graphchi [9], X-Stream [10] and TurboGraph [11]. The above systems apply
techniques that focus on reducing random access to the disk, so that they can
support very large graphs on a node.

Systems that follow the TLAV model, at mathematical level, practically execute
a matrix-vector multiplication with generalized operators. In our case, the GGM
problems we focus on are a matrix-matrix multiplication as mathematical
representation. Related research that studies matrix multiplication problems is
the friend-of-friend [7] that runs Facebook in a distributed way using the Giraph
system [13], but supporting only one multiplication. Yet another effort is to find
the shortest distances for multiple nodes (Multiple-source Shortest Distance)
implemented in the Galois in-memory system [8].

6. CONCLUSIONS

In work, we study the problem of Generalized Graph Multiplications (GGMs).
More specifically, we describe an execution plan that allows the out-of-core
execution of subsequent GGMs and analyze the design decisions and choices
required to efficiently implement it.

We then describe Graphity, a prototype system that implements that execution
plan. Then, we performed a set of experiments to evaluate our design choices
at the friend-of-friend problem. The results of the latest experiments showed the
competitive execution times achieved by Graphity in an environment with limited
memory compared to other approaches that shows the superiority of our
approach in GGM problems.

7. REFERENCES

[12]G. Madewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, |. Horn, N. Leiser, and G. Czajkowski, Pregel: a
system for large-scale graph processing, International Conference on Management of data (S GMOD),
ACM, New York, NY, USA, 2010, pp. 135-146.

[I3]KANG, U., TSOURAKAKIS, C. E., AND FALOUTSOS, C, PEGASUS: A peta-scale graph mining
system implementation and observations, |EEE International Conference on Data Mining, 20009.

[14]DEAN, J., AND GHEMAWAT, S, MapReduce: Simplified data processing on large clusters, Conference
on Symposium on Operating Systems Design & Implementation, vol. 6, 2004.

[15]BRIN, S., AND PAGE, L., The anatomy of a large-scale hypertextual web search engine, International
Conference on World Wide Web 7, 1998.

[16]ZHU, X., AND GHAHRAMANI, Z., Learning from labeled and unlabeled data with label propagation,
Tech. rep., Carnegie Mellon University, 2002.

[17]Aidan B. G. Chalk, Pedro Gonnet, Matthieu Schaller, Using Task-Based Parallelism Directly on the GPU
for Automated Asynchronous Data Transfer, PARCO, 2015, pp. 683-696.

[18]A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, One trillion edges: graph
processing at Facebook-scale, VLDB Endow. 8,12, Aug. 2015, pp. 1804-1815.

[19] D. Nguyen, A. Lenharth, and K. Pingali, A lightweight infrastructure for graph analytics, ACM Symposium
on Operating Systems Principles, SOSP, 2013, pp. 456-471.

[20] Aapo Kyrola, Guy E. Blelloch, Carlos Guestrin, GraphChi, Large-Scale Graph Computation on Just a PC,
USENIX Symposium on Operating Systems Design and Implementation, OSDI, 2012, pp. 31-46.

[21] Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel, X-Stream: edge-centric graph processing using
streaming partitions, ACM Symposium on Operating Systems Principles, SOSP, 2013, pp. 472-488.

60

[22] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, Hwanjo Yu,
TurboGraph: a fast parallel graph engine handling billion-scale graphs in a single PC, ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD, 2013, pp. 77-85.

[23]A. E. Feldmann, Fast Balanced Partitioning is Hard, Even on Grids and Trees, Proceedings of the 37th
International Symposium on Mathematical Foundations of Computer Science, Slovakia, 2010, pp. 372-382.

[24] Apache Giraph, http://giraph.apache.org/

61

62

o N e
..,,Ku s /o..

.
o -
ilid S o
¥ J ;.)
3 _.\...) ._.H-

MavemniothpLov ABnvay,

>
2
>
3
2
o
=
ER
E
m
4
(@

LOTPLOKOV

¥

~ Mavemniotnuioumoln, 15784 ABriva ;

Kot

