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Abstract— Context-awareness is viewed as one of the most important aspects in the emerging pervasive computing paradigm. 

Mobile context-aware applications are required to sense and react to changing environment conditions. Such applications, usually, 

need to recognize, classify and predict context in order to act efficiently, beforehand, for the benefit of the user. Firstly, we propose 

an efficient spatial context classifier and a short-term predictor for the future location of a mobile user in cellular networks. 

Secondly, we propose a novel adaptive mobility prediction algorithm, which deals with location context representation and 

trajectory prediction of moving users. Thirdly, we propose a short-memory adaptive location predictor that realizes mobility 

prediction in the absence of extensive historical mobility information. Fourthly, we assume the existence of a pattern base and try to 

compare the movement pattern of a certain user with stored information in order to predict future locations.  Our findings, 

compared with other schemes, are very promising for the location prediction problem and the adoption of proactive context-aware 

applications and services.  

 

 

1. Introduction 
 

In order to render mobile context-aware applications intelligent enough to support users everywhere and anytime, 

information on the present context of the users has to be captured and processed accordingly. A well-known definition of 

context is the following: “context is any information that can be used to characterize the situation of an entity. An entity 

is a person, place or object that is considered relevant to the integration between a user and an application, including 

the user and the application themselves” [1]. Context refers to the current values of specific ingredients that represent 

the activity of an entity, situation and environmental state e.g., location, time, walking, attendance of a meeting, driving a 

car, traveling. One of the more intuitive capabilities of the mobile applications is their proactivity. The prediction of the 

user’s mobility behavior enables a new class of location-aware applications to be developed along with the improvement 

of the existing location-based services [2]. Even at the network level, mobility prediction assists in critical operations 

like handoff management, resource allocation, and quality of service provisioning. 

Two classes of location (path) prediction schemes can be found in the current, mobile computing, literature. The first 

class includes schemes based on extensive historical data of the user movement. Such a scheme can be characterized as 

stateful. In a stateful scheme the prediction process relies on the matching of established (historical) movement patterns 

with the user movement experienced up to moment of prediction in order to estimate the future location of the user. 

Pattern-based and data mining approaches as well as machine learning techniques (e.g., learning automata) can be 

classified in this category. Contrary to the stateful scheme, a stateless model does not take into account extensive 

historical movement information for the prediction process. Instead, it uses of a short sliding window of historical 

movement information. Such scheme applies statistical techniques (e.g., extrapolation) on the recent movement 

information (window) in order to predict the future user location. The stateless scheme does not assume regularity in the 

user movement, as opposed to the stateful scheme, but proceeds with predictions based only on short-term 

spatiotemporal knowledge. Moreover, the prediction process comes along with adaptation techniques for certain 

parameters of the statistical techniques to fully cover the potential randomness of the user movement. One could also 

define hybrid schemes based on the stateful and stateless mechanisms that are invoked and collectively taken into 

account for joint decisions (e.g., weighted decisions).  
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2. Dissertation Summary 
 

 Firstly, we propose an efficient spatial context classifier and a short-term predictor for the future location of a mobile 

user in cellular networks [3], [4] and [5]. The process of location / context prediction is based on pattern classification in 

the sense that the user’s mobility patterns are collected, processed, classified and used for predicting future mobility 

behavior. Typically, Machine Learning (ML) is primarily concerned with the design and development of algorithms for 

pattern classification and prediction. Such algorithms train a system (classifier) to classify observations in order to 

predict (predictor) unknown situations based on a history of patterns. Hence, if a mobile application is capable of tracing, 

learning and classifying the mobility patterns of a user, (i.e., the observed trajectories) then, it can predict his/her future 

mobility behavior. In this approach, we adopt pattern classification in order to predict the future location of a mobile user 

based on the spatial context i.e., 

 the current position and direction of the user, 

 the history of the trajectories followed by the user, and 

 the information on the user’s surroundings (neighbouring network cells). 

 

Each observed trajectory (pattern) is assigned to a specific class (a symbolic location) from a fixed set of classes. Our 

objective is to predict the symbolic location of a trajectory based on a collected set of popular trajectories. We propose a 

Location Predictor (LP), which is based on a Trajectory Classifier (TC), in order to address the location prediction 

problem. We design, implement and evaluate different versions of the proposed LP. Each variant exploits differently the 

derived knowledge on the mobility behavior of the user. The proposed, classifier-based, LP relies on short-term historical 

data of the user movement. Prediction is accomplished through the matching of established (historical) movement 

patterns with the short-term history of the user movement (spatiotemporal knowledge) seen up to the moment of 

prediction. In our case, a user mobility pattern is a series of symbolic locations. The size of the mobility pattern is 

directly linked to prediction accuracy. Limiting the size of the user’s short-term history leads to loss of information, 

which results in false predictions and, on the other hand, redundant or excess historical knowledge results to noisy 

information and biased predictions. The challenge is to introduce an approach based on (a) short term spatio–temporal 

knowledge on user mobility behavior, and, (b) low computational cost on the decision predictor based on short-term 

historical movement data. The outcome of the proposed LP is provided through efficient and low complexity ML 

algorithms. Our findings show a clear advantage on the adoption of ML algorithms for location prediction as we obtain 

increased prediction accuracy (probability of correctness at a reasonable computing cost. In addition, we perform a 

comparative analysis of the proposed LP with popular prediction algorithms reported in the literature. 

Secondly, we propose a novel adaptive mobility prediction algorithm, which deals with location context representation 

and trajectory prediction of moving users [6], [7]. In this context ML provides algorithms for learning a system to: 

 clusters the user movements,  

 identifies changes in the user movements 

 adapts its knowledge structure to such changes, and,  

 predicts the future user location. 

 

In addition, ML provides solutions suitable for location prediction. Context-aware applications have a set of pivotal 

requirements e.g., flexibility and adaptation. These requirements would strongly benefit if the learning and prediction 

processes could be performed in real time. We argue that the most appropriate solutions for location prediction are offline 

and online clustering and classification. Offline clustering is performed through the Offline kMeans algorithm. Online 

clustering is accomplished through the Online kMeans and Adaptive Resonance Theory (ART). Offline learners typically 

perform complete model building, which can be very costly, if the amount of samples rises. On the other hand, online 

learning algorithms are able to (i) detect changes in patterns and (ii) update only parts of the model. The later provides 

adaptation of the model. Both forms of algorithms extract a subset of patterns, i.e., clusters in a knowledge base, from an 

initial dataset i.e., a database of user trajectories.  

Online learning is more suited for the task of prediction through classification than offline learning. That is because, in 

real life, user movement data often needs to be processed in an online manner, each time after a new portion of the data 

arrives. This is caused by the fact that such data is organized in the form of a data stream (e.g., a sequence of time-

stamped visited locations).  

Classification involves the matching of an unseen pattern with existing clusters in the knowledge base. We rely on a 



Hausdorff-like distance for matching unseen trajectories to clusters. Such metric applies to convex patterns and is 

considered ideal for user trajectories. Hence, location prediction boils down to location classification w.r.t. Hausdorff-

like distance. In this approach, we introduce two training methods for training our algorithm: (i) the “nearly” zero-

knowledge and (ii) the supervised method. In the first method, our algorithm is incrementally trained starting with a little 

knowledge on the user mobility behavior. In the second method, sets of known trajectories are fed to our algorithm. In 

addition, we introduce two learning methods for the proposed algorithm regarding the success of location prediction: (i) 

the non-reinforcement learning (nRL) and (ii) the reinforcement learning (RL). In the nRL method, a misclassified 

trajectory is no further used in the model-training phase. Hence, the algorithm is no longer aware of unsuccessful 

predictions. In the RL method, a misclassified trajectory is introduced into the knowledge base, thus, updating 

appropriately the model. 

We evaluate the performance of our algorithm against real users’ movement. We establish important metrics for the 

performance assessment process w.r.t. (i) low system-requirements, i.e., storage capacity, and (ii) the required effort for 

model building, i.e., processing power. We assess the prediction accuracy of our algorithm, i.e., the precision of location 

predictions, along with the required size of the derived knowledge base. This size indicates the portion of the produced 

clusters out of the volume of the training patterns. Surely, we need to keep storage capacity as low as possible while 

maintaining good prediction accuracy. We also study the capability of our algorithm in adapting the derived model to 

unseen patterns. Adaptivity indicates the capability of the proposed algorithm to detect and update appropriately a 

specific part of the trained model. The algorithm should rapidly detect changes in the behavior of the mobile user and 

adapt accordingly through model updates. This is, however, achieved often at the expense of the prediction accuracy.  

Thirdly, we propose a short-memory adaptive location predictor that realizes mobility prediction in the absence of 

extensive historical mobility information [8]. All the reported drawbacks led us to introduce a stateless scheme for 

movement prediction without considering user movement profiles and pattern-based techniques. The challenge is to 

introduce an approach based on  

 short term spatiotemporal knowledge on user mobility behavior,  

 detection and quick adaptation to changes of the user mobility behavior, and,  

 very low requirements on storing and manipulating short-term historical movement data.  

 

We present an approach for mobility prediction exploiting only the current spatiotemporal knowledge on the user’s 

mobility. Our aim is to address the problem of mobility prediction in the absence of large historical mobility information 

for the considered user(s). The proposed mobility prediction approach can be applied whenever the mobility behavior of 

a user is not known a-priori. For instance, consider tourists that visit a town or a freshman in a University campus. 

However, due to the absence of past mobility patterns, mobility prediction has also to regularly adapt to unseen user 

movements. The proposed scheme can, quite accurately, predict the traveling trajectory. This is achieved by using and 

dynamically adjusting only local current spatiotemporal knowledge on the user's mobility behavior having very short 

relevant historical information. The main objective of our approach is to circumvent the difficulties that arise in 

predicting the user's future location when extensive knowledge on the history of user's traveling patterns is not available 

or the user behaves quite randomly. Another challenging point is the determination of the capacity of the relevant 

historical information used for mobility prediction. The capacity of the relevant historical information varies among 

mobile users since they exhibit different movement behaviors. In addition, more interestingly, the capacity of the relevant 

historical information is time-varying for a single user itself. This is because the mobile user can abruptly change his/her 

movement behavior, which has to be reflected in the capacity of the relevant historical information in order for the 

mobility prediction system to adjust to such unseen, new changes. 

In this approach, we discuss the design and implementation of an adaptive, short-memory Location Predictor (LP). 

The LP does not require an extensive knowledge base of past user movements. Instead, the LP estimates the future 

location of the mobile user based on short-term movement information. That is, the LP exploits only local spatiotemporal 

knowledge of the user movement trying to predict future locations near in time. Evidently, this requires that the LP 

dynamically adjusts its model for future decisions on location estimations. Since there are no stored historical patterns or 

other representative knowledge on the user’s mobility behavior, the LP has also to be efficient even in the case of random 

(spontaneous) movement changes, e.g., sudden turns. On the other hand, the LP should reach a stable condition (model) 

whenever the user does not change his/her mobility behavior for long. Therefore, the LP should be able to rapidly detect 

changes in mobility behavior and adapt its model to the current behavior, thus, providing for fast adaptation of the 

model.  



The criteria that we establish for the performance assessment of the adaptive LP take into account the system 

requirements (storage capacity) and the computational effort for prediction and fast adaptation. Besides the prediction 

accuracy, i.e., the precision of location predictions, we are interested in the size / capacity of the information that LP has 

to process for making predictions. We should stress that in our case, the consumed memory is extremely low if compared 

with other adaptive techniques for location prediction. Lastly, our objective is to assess the adaptive behavior of the LP 

that is its capability to rapidly detect changes in the movement of the mobile user and react accordingly.  

Fourthly, we assume the existence of a pattern base and try to compare the movement pattern of a certain user with 

stored information in order to predict future locations [9]. Movement traces are always quite noisy and, therefore, 

undermine the performance of mobile computing mechanisms. A location-aware application requires online motion 

pattern learning and adaptation. On-line learning is more suited for the task of prediction. That is because, in real life, 

user movement data often needs to be processed in an on-line manner, each time new location information becomes 

available. However, most location-aware applications require training on the movement space of a moving object 

(supervised learning). Once the training is completed, the application is ready for prediction, and no additional 

modification is permitted. This case is acceptable provided that the motion patterns of the moving object correspond to 

well-defined boundaries. Nevertheless, in many realistic situations, the full spectrum of mobility patterns is not available 

during the training phase. The training process restricts the capability of the system to adapt its knowledge base to 

unseen patterns. The proposed system delays decision making (i) for trajectory classification and knowledge base 

adaptation, and for (ii) unseen pattern insertion in the knowledge base. Such delay makes the system ‘confident’ to 

decision making for classification, prediction, learning and adaptation. This system does not require a training process, 

learns, and revises the knowledge base in an on-line manner. Potential applications, as those mentioned above, which 

require efficient location prediction could adopt such delay tolerant decision making mechanism. Such functionality 

might enhance the prediction score for such location-aware applications by being more intelligent in decision making for 

location prediction and on-line motion pattern learning. 

Our system manages the entire life-cycle of an on-line motion pattern learning, trajectory (sequential) classification, 

and adaptive movement prediction. It works in a relatively stateless way and tries to keep the underlying knowledge base 

K with the lowest possible total spatial variance if the stored patterns. The proposed system demonstrates some temporal 

tolerance (i.e., patience - delay) in classifying a trajectory to an existing (stored) pattern or abandon the similarity 

matching process and treat the assessed trajectory as completely new. It is worth noting that the proposed system is not 

forced to proceed with prediction once not being able to classify an unseen pattern. The system delays decision making 

for being more certain on prediction and learning decisions. We also introduce a trajectory similarity metric, which 

provides a holistic view of how close a stored pattern and an observed trajectory are. Should the classifier conclude, 

spatial variance reduction process decides (based on spatial statistics) on the exact pattern to be kept in the underlying 

knowledge base, K. If the new (assessed) trajectory demonstrates smaller spatial variance than the best matching pattern 

then the latter is substituted by the former. Otherwise K remains unmodified. In this approach we propose, 

 a closed-loop system for sequential trajectory classification and k-step ahead location prediction; 

 a dynamic programming approach (optimal stopping rules) for sequential trajectory classification; 

 a trajectory similarity metric which supports sequential classification; 

 an incremental and adaptive motion pattern learning scheme. The system does not require training phase and 

incrementally refines the knowledge base; 

 a total spatial variance reduction process for the stored patterns in K, thus, avoiding classification decisions based 

on noisy patterns. 

 

3. Results and Discussion 

 
In the third approach, we adopt a local regression model based on kernel weighted functions in order to determine the 

future user location through extrapolation. The LP exploits a fuzzy controller in order to decide on the appropriate size of 

the memory of the local regression model that minimizes the prediction error. This means that, the fuzzy controller 

adjusts the memory size of the regression model based on the current user mobility behavior. Any detection of change on 

the mobility behavior is treated through a fuzzy control signal that adjusts the current memory size (history window) of 

the regression process. The overall model of the proposed LP is illustrated in Figure 1. Specifically, the regression model 

accumulates the last m  1 locations and constructs a statistic regression function f at time instance t. Then, the future 



location x, which is predicted for the next l > 1 time instances (i.e., at time index t + l), is an extrapolation point based on 

the mean value of the user velocity and direction of the last m locations. The prediction error e at time t + l is calculated 

whenever the predicted location x is not the actual location at time t + l. Specifically the prediction error e is the spatial 

distance between the predicted location and the actual location at time t + l. The fuzzy controller is fed with the 

prediction error e and adjusts the length of the m last locations in the LP.    
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Figure 1. The adaptive short-memory Location Predictor (LP) model and fuzzy controller 

 

3.1 Local Linear Regression Model 

 

We now elaborate on the local regression component of the LP as illustrated in Figure 1. The estimating local 

regression function (model) f(X) over a domain X  R
p
 fits a function f separately at each target point x0. This is achieved 

by using only those observations (points) close to x0 to fit the model in a way that the resulting estimated function f̂  is 

smooth (has derivatives of all orders) in the domain R
p
. Local linear regression becomes less useful for p > 2. In our case 

p = 1 as discussed below. This localization is based on a weighted function or kernel Kλ(x0, x). The kernel assigns 

weights to xi based on its distance from x0. The typical smoothing parameter λ indicates the width of the neighborhood. A 

larger λ implies lower variance. In such methods the model is structured by a set of observations and requires no training, 

i.e., all the work is performed at the location estimation time. The locally weighted regression solves a separate weighted 

least squares problem at each target point x0 for a set of m observations (xi, f(xi) = yi). It should be noted that although we 

fit an entire linear model to the data in the region of m observations, we only use it to evaluate the fit at x0. The 

extrapolated )(ˆ 0xf  is generated by the m previous observations f(xi), i = 1, …, m. The kernel function Kλ might be, for 

instance, the Epanechnikov quadratic kernel, defined as: 
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According to such function Kλ(x0, xi), as we “move” the point x0 from left to right, neighboring points xi enter the history 

window initially with weight zero, and then their contribution slowly increases. The regression model is used for 

interpolation among the location information of the user trajectory.   

 

3.2 Location and Trajectory Information Model 
 

We adopt a location and trajectory information model, in which the location of the user at time t is represented by a 

2D vector (x(t), y(t)) of longitude x(t) and latitude y(t). The exact position information can be easily estimated. In our 



case we use position information from GPS receivers embedded in the mobile user’s handheld terminal. Based on the 

discussed representation, the history of the user movement up to time index n is represented as a sequence –trajectory- of 

n points k(t) = (x(t), y(t)), t = 1…n, that is k = [k(t)] = [(x(1), y(1)), …, (x(n), y(n))]. The sequence k for t = 1…n is the 

user trajectory for the last n points starting from the point at time index t = 1. Each point k(t) is sampled with frequency 

q, e.g., in our traces, the GPS locations are samples with q = 1Hz. A window w is a sub-sequence of the m first points 

from k, that is w = [k(t)], t = 1, …, m, m < n. The estimation-prediction of the future position of a mobile user is based on 

the window w of m points. In other words, the predictor is fed with a trajectory of m points in order to predict future 

points. The discussed predictor is referred to as an m+l predictor model [12]. That is the predictor estimates the future 

point indexed as m+l, i.e., predicts the point k(m+l) = (x(m+l), y(m+l)), with l > 0 from a trajectory (history window) of m 

points (see also Figure 2). For instance, we set l =1 for the prediction of the future point at the next time instance. The 

window of length m, the number of the l time indices for predicting the k(l) point and the frequency of sampling q are the 

basic parameters in our LP, as illustrated in Figure 2. 
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Figure 2. The basic parameters of the m+l prediction.  

3.3 Location Predictor Design 

 

We discuss the adoption of the local linear regression in location prediction. We can distinguish the following cases for 

the user movement for a very small duration Δt > 0:  

 Case-1: the user moves more steadily in the longitude x(t) direction than in the latitude direction. This means 

that, it may hold true that the difference |x(t+Δt) - x(t)| << |y(t+Δt) - y(t)| in a Δt.  

 Case-2: the user moves more steadily in the latitude y(t) direction than in the longitude direction, that is, |y(t+Δt) 

- y(t)| << |x(t+Δt) - x(t)|, and, 

 Case-3: the user moves in such a way that |x(t+Δt) - x(t)| = |y(t+Δt) - y(t)| in Δt.  

 

Consider that for a time frame m, we calculate the mean differences for both longitude and latitude directions. That is, 

consider the vectors:  
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The predictor can estimate the point after l time instances when the following cases holds true: 

 If |Δx(m)| < |Δy(m)| then k(m+l) = (x(m+l), y(m+l)) with the extrapolation x(m+l) = x(m) + l 
.
 Δx(m) and the local 

regression estimate y(m+l) =   lmxf ˆ . In this case, the y(m+l) is generated by the window w and the local 

linear estimation of   lmxf ˆ  at x(m+l) having local regression in the 1-dimension domain (p = 1); 



 If |Δx(m)| > |Δy(m)| then k(m+l) = (x(m+l), y(m+l)) with the extrapolation y(m+l) = y(m) + l 
.
 Δy(m) and the local 

regression estimate x(m+l) =   lmyf ˆ . In this case, the x(m+l) is generated by the window w and the local 

linear estimation of   lmyf ˆ  at y(m+l). 

 

It is worth noting to study the case where |Δx(m)| = |Δy(m)|. Specifically, the time window m used for the calculation 

of |Δx(m)| or |Δy(m)| may contain smaller spatial transitions not captured by the absolute values of relocation in the x or y 

axis.  A small time window m renders the scheme more sensitive to such (small) transitions while a large time window 

may ‘absorb’ movements and derive predictions that are not representative of the actual movement (not necessarily 

wrong predictions). Surely, due to the above shortcoming, if |Δx(m)| = |Δy(m)| = 0, the predictor fails to distinguish 

between the totally static case and a recurring (cycle) path. Hence, in this case, the future point k(m+l) is (x(m+l), y(m+l)) 

with the extrapolation either y(m+l) = y(m) + l 
.
 Δy(m)  (and x(m+l) =   lmyf ˆ ) or x(m+l) = x(m) + l 

.
 Δx(m) (and 

y(m+l) =   lmxf ˆ ).  

In order to judge whether the predictor is successful in predicting the future point k(m+l) = (x(m+l), y(m+l)), we 

introduce an error threshold θ > 0. Such threshold is the minimum distance of the actual point z(m+l) at time instance 

m+l and the predicted point k(m+l). The z(m+l) point is the actual (observed) location of the mobile user at time instance 

m+l. Hence, a prediction is considered successful if ||z(m+l) - k(m+l)||  ≤ θ. Otherwise, the prediction fails.  

If we use the m+l predictor for N times (for large N) then we can estimate the probability of a successful m+l 

prediction P(m,l). P(m,l) is the fraction of the correctly predicted positions, i.e., those predicted points k(m+l) that fall 

within a circle of radius θ, out of N predictor invocations, i.e., 
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where z(m+l) is the actual (observed) location of the mobile user at time instance m+l and |U| is the cardinality of the set 

U.  

 
3.3 Fuzzy Control for Adaptive Location Prediction 

 

Fuzzy control is a direct nonlinear mapping between inputs (e.g., location prediction error, change of the prediction 

error) and outputs (e.g., change in the memory size m). Fuzzy control provides formal techniques to represent and 

implement human experts’ heuristic knowledge for controlling a system. Such techniques rely on certain if-then rules 

instead of relying on mathematical modeling of the system. Fuzzy logic controllers are used extensively, especially, in 

the form of the proportional, integral and derivative (PID), PD, and PI controllers. In this paper we consider a fuzzy, 

proportional-integral controller PIm for adjusting the window length m in location prediction. The control signal is based 

on a set of fuzzy rules that generate the required output. 

Figure 2 depicts the high level structure of the proposed closed-loop, real-time system for adjusting the history 

window length m. To achieve the maximum value of the probability of successful predictions P(m(t), l) at time t, which 

is denoted by the reference model a(t) = 1 at time t (the upper bound in the probability of successful predictions), the PIm 

controller computes the required value of m, denoted as u(t), based on the error e(t), change of error Δe(t) and the past 

decision of the controller on changing m, Δm(t). Specifically, the error e(t) at time instance t is: 

e(t) = a(t) - P(m(t), l)       (2) 

In location prediction, we aim at maximizing the P(m(t), l) at any given t that is, a(t) = 1 at each prediction. The error 

change at time t is: 

Δe(t) = e(t) - e(t – 1)       (3) 

and the change of the controller’s past decision on m is: 

Δm(t) = m(t) – m(t - 1)      (4) 

The exact value of u which is the window length that minimizes the error cannot be directly estimated. Instead, the 

PIm adjusts m(t) in order to minimize e(t) for each t. In addition, it should be noted that the m value that minimizes e(t) 

(denoted by m
*
) is not constant since the mobile user can spontaneously change its moving behavior. In such case, the 

controller has to adapt to such change and adjust m so as to minimize e(t) until the next change of the user’s behavior.  



We define the required change in the value of m, Δu(t)  [-1, 1], which denotes the signed portion of changing the 

value of m(t) -increase, decrease or leave constant- and results to the value of m(t + 1) at the next time step, t+1. In other 

words we obtain the following adaptation rule:  

 

m(t+1) = m(t) + μ(Δu(t)m(t))        (5) 

 

with μ > 0 an adaptation (learning) rate. The proposed fuzzy controller calculates the value of the control signal Δu(t) = 

u(t) - u(t - 1). That is, the decision on the next value of m (that minimizes the error) is based on the past decision on m 

along with the observed error induced by the LP. The change in m, Δm, and the change in error, Δe, are the basic 

components in our controller which, along with the value of error, determine the direction (positive, zero, negative) of Δu 

in the decision on the next value of m, as will be described subsequently.    
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Figure 2. The control flow and feedback of the fuzzy controller PIm to the location predictor LP 

 

The recursive equation of a discrete PID controller is: 
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t

IP   0
  

where GP, GI, GD are the corresponding constant proportional, integral and derivative gains. The definition of the 

difference between two consecutive control outputs Δu(t) is:  

Δu(t) = u(t)-u(t-1) = GIe(t) + GPΔe(t) + GDΔ
2
e(t)      (6)  

 

where Δ
2
e(t) = Δe(t) - Δe(t – 1). In our case, the PIm has three inputs –e(t), Δe(t), and Δm(t)- and one output –the current 

change in m, Δu(t). Our PIm controller has the following form: 

 

          tmteGeGteGtu D

t

IP   0
          (7) 

 

The iterative form of u(t) is obtained by taking the derivative of both sides of the Equation (8) having also Δm(t) = m(t) – 

m(t - 1), thus, in our case, 

 

Δu(t) = GPΔe(t) + GIe(t) + GD(Δ
2
e(t) +Δ

2
m(t))         (8) 

 

and then, u(t) = u(t - 1) + GIe(t) + GPΔe(t) + GD(Δ
2
e(t) + Δ

2
m(t)) with Δ

2
m(t) = Δm(t) - Δm(t - 1). Based on Equation (8), 

the inputs of our controller (e, Δe and Δm) and the output (Δu(t)) turn the controller into a PI controller. Figure 2 depicts 

the architecture of the proposed controller.   

 

3.5 Fuzzy Controller  

 

We describe the basic fuzzy control system for inferring the required control signal based on fuzzy inference rules. A 

fuzzy controller is a fuzzy logic system with n inputs and k outputs. In our case, the PIm controller is a Multiple Input 

Single Output (MISO) fuzzy logic system with n = 3 and k =1, such that the input at time t is p(t) = [e(t), Δe(t), Δm(t)] 

and output q(t) = [Δu(t)]. The fuzzy system consists of the processes:  

 fuzzification,  



 fuzzy inference process, and  

 defuzzification.  
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Figure 3. Probability of successful prediction for m=10 s and different l values 

 

3.6 Performance of the Fuzzy Controlled Location Predictor 
 

We assess the performance of the proposed LP and the capability of the proposed PIm controller to control the LP 

targeting to adaptively minimize the prediction error. At first, we examine the performance of the LP by experimenting 

with real GPS traces. We examine the probability of correct predictions P(m, l) and determine the best value of the 

window length m
*
 that minimizes the prediction error. The value m

*
 cannot be determined beforehand (e.g., analytically) 

due to the inherent randomness in the mobility behavior of humans. For this reason, we require that the proposed 

controller adjusts the value of m in order to converge to m
*
. Once the user changes its mobility behavior, the PIm has to 

re-adjust m. With the aim of evaluating the PIm controller, we have determined the best values for m for which the LP 

assumes minimum prediction error. Hence, we examine whether the PIm controller converges to such values. Moreover, 

we examine the adaptive behavior of the controller. That is, its capability to detect changes in the mobility behavior of 

the user and to re-adjust its decisions to new m
*
values.      

 
3.7 Experimental Movement Trajectories - Traces 

 

We examine the behavior of the proposed LP with real movement traces of mobile users in German, Italy, France, and 

Denmark. In those traces the mobile user moves  

 among different locations in a city (termed intra-city trajectory),  

 among different suburban areas of a city (termed suburban trajectory), and,  

 among different cities in highways (inter-city trajectory).  

 

3.8 Performance Assessment of the Fuzzy Controlled Location Predictor 
 

At first, we examine the probability of successful predictions derived from LP by experimenting with various values 

of m and l without introducing the PIm controller. Figure 3 depicts the probability of successful prediction P(10, l) for 

various values of l for N = 500 predictions. Such size of m is not the most suitable for making predictions with minimum 



prediction errors. As illustrated in Figure 3, for a low value of l (short-term prediction), P(10, l) assumes high values. For 

instance, for l = 5 < m, P(10, l) assumes high values for any type of trajectories (r = 0.5). In addition, for r = 1, that is m 

= l = 10, the probability of prediction assumes values 0.8 and 0.9 for intra-city and intercity trajectories, respectively. 

When the value of l increases the prediction error also increases, for constant m. For r = 2, P(10, 20) assumes values 

between 0.45 to 0.7 for all types of trajectories.  
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Figure 4. The P(m, l) vs. size of m for the different trajectory types 

 

3.9 Comparison with other Models 

 
We compare the behavior of our stateless model with other stateful and stateless models w.r.t. the probability of 

successful prediction, space requirements and time complexity. At first, we compare our model with the (stateless) 

Lagrange polynomial method for location information extrapolation (prediction). In addition, we experiment with two 

stateful models, the Adaptive Resonance Theory (ART) model enhanced with reinforcement learning and the on-line k-

means algorithm. Such models are based on mobility patterns and use pattern classification for a given trajectory in order 

to predict the future user location. It is worth noting that all considered models adapt their spatiotemporal knowledge 

base to the mobility behavior of the user. The main criterion for comparison is then how accurately and efficiently, in 

terms of space and time, each adaptive model predicts the future user location.  



  

3.10 Comparative Performance Assessment  

 

     At first, we examine the probability of successful prediction P(m, l) obtained by the stateless and stateful models for 

the three trajectory types . We experiment with the ‘m+l’ prediction with l = 5 seconds, vigilance h and threshold value θ 

set to 10 meters, and k = 100, 200 and 300 in the on-line k-means algorithm. Figure 4 depicts the P(m, l) (vs. the size m) 

achieved by the algorithms for the intercity, intra-city and sub-urban trajectories. We observe that the LP algorithm 

achieves better P(m, l) values than the other models in all types of trajectories; specifically, Figure 4 depicts the m* value 

for LP, in which P(m*, l) is maximum (m* = 10 for l = 5). On the other hand the ART-based model achieves good 

prediction accuracy, especially, for values of m < 25 for the three trajectory types. Specifically, the ART-based model 

demonstrates good prediction accuracy for the intracity trajectory (only 10% lower than that of LP) due to the fact that 

the mobile user ‘repeats’ some mobility patterns moving within the city. However, for m > 50 the ART-based model 

assumes very low P(m, l) and for  m > 100 it shows the worst performance. Furthermore the Lagrange polynomial model 

obtains quite good prediction accuracy when m is low. Specifically, it obtains P(m, l) = 0.78 with m = 5 for the intercity 

trajectory. For m > 10 the Lagrange polynomial is not suitable for predictions. Finally all the on-line k-means models (k 

= 100, 200 and 300), for every m and in all kinds of trajectories, achieve low performance in terms of prediction 

accuracy. This is attributed to the fact that such model is not able to increase the predefined number of clusters. Instead it 

can only readjust them. It is worth noting that the on-line k-means model is independent of the value of m, except for the 

case of the intra-city trajectory, in which m < 5. But, even in this case the performance in prediction accuracy is low.  

 

4. Conclusions   

 
     In the first approach we proposed efficient LP schemes based on ML algorithms for trajectory classification. 

Specifically, the proposed spatial context classifier and a short-term predictor for predicting the location of a mobile user 

in cellular networks exploits (i) the current position and direction of the user, (ii) history of the trajectories of the user, 

and, (iii) surrounding location information. We design, implement and evaluate different variants of the proposed LP. 

Each variant exploits differently the derived knowledge on the mobility behavior of the user (namely the macro and the 

micro LP). We define the parameters of the short-term LP and introduce certain metrics for evaluating the ability of 

correct predictions and the efficiency in the prediction process. Moreover, we compare our LP (all the corresponding 

variants) with popular predictors discussed in the relevant literature. Such predictors are also based on ML algorithms. 

Simulations with synthetic and real-world mobility data shown that the proposed short-term MiD predictor achieves high 

prediction efficiency and accuracy, thus, delivering LPs suitable for advanced context-aware applications.  

     In the second approach we presented how ML can be applied to the engineering of mobile context-aware applications 

for location prediction. Specifically, we proposed an adaptive ML algorithm for location prediction using ART (a special 

Neural Network Local Model). We introduce two learning methods: one with non-reinforcement learning and one with 

reinforcement learning. Furthermore, we deal with two training methods for each learning method: in the supervised 

method the model uses training data in order to make classification and in the zero-knowledge method the model 

incrementally learns from unsuccessful predictions. We evaluated our models (versions of the proposed algorithm) with 

different spatial and temporal parameters. We examine the knowledge bases storage cost (i.e., emerged clusters) and the 

precision measures (prediction accuracy). Our findings indicate that the C-RLnT suits better to context-aware systems. 

The advantage of C-RLnT is that (1) it does not require pre-existing knowledge in the user movement behavior in order 

to predict future movements, (2) it adapts its on-line knowledge base to unseen patterns and (3) it does not consumes 

much memory to store the emerged clusters. For this reason, C-RLnT is quite useful in context-aware applications where 

no prior knowledge about the user context is available. Furthermore, through experiments, we decide on which vigilance 

value achieves the appropriate precision w.r.t. memory limitations and prediction error. 
 In the third approach we study the proactivity feature of mobile, location-dependent applications and present an 

approach for mobility prediction exploiting only recent user movement knowledge. We propose a short-memory adaptive 

LP to address the problem of mobility prediction in the absence of extensive historical information. The location 

prediction of the proposed LP is obtained by a local linear regression model, while the adaptive capability is achieved 

through a fuzzy-driven PIm controller. Such controller produces control signals for estimating the best size for the 

mobility history window attempting to minimize the location prediction error. We experiment with real GPS traces and 

examine the predictability and adaptability behavior of our LP.  

The LP dynamically controls the size of the historical mobility behavior, by the produced control signals, for intra-city, 



sub-urban and inter-city trajectories. LP stabilizes to small m
*
 when dealing with sudden movement changes. This leads 

to minimizing the probability of inducing noise into the local regression model. In addition, we can conclude that the 

control signals are more aggressive in the case of intra-city trajectory than in intercity trajectory since the former 

movement integrates abrupt movement changes while the latter does not. Finally, we show that LP achieves fast 

adaptation to sudden changes experienced when the user changes mobility behavior (i.e., transition between different 

trajectory types).  

     In the forth approach, we propose a sequential trajectory classification and spatial variance reduction system for noise 

resilient movement prediction of moving objects. The system deals with noisy motion patterns due to random deviations 

from previously seen patterns, which negatively impacts the accuracy of the prediction result. The system relies on 

stochastic dynamic programming which relaxes the classification task so that slightly different patterns can be treated as 

equivalent. Moreover, the system adopts SVRP for keeping K concise and with minimum spatial variance. We provided a 

comparative assessment of the model with on-line classifiers and a variant adopting the odds algorithm. The proposed 

model achieves high prediction scores along with efficient data storage of motion patterns. 
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